WO2006095066A1 - Resistive heating element for a pyrotechnic initiator - Google Patents

Resistive heating element for a pyrotechnic initiator Download PDF

Info

Publication number
WO2006095066A1
WO2006095066A1 PCT/FR2006/000289 FR2006000289W WO2006095066A1 WO 2006095066 A1 WO2006095066 A1 WO 2006095066A1 FR 2006000289 W FR2006000289 W FR 2006000289W WO 2006095066 A1 WO2006095066 A1 WO 2006095066A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistive
layer
resin
substrate
thermal
Prior art date
Application number
PCT/FR2006/000289
Other languages
French (fr)
Inventor
Bernard Le Grives
Claude Flassayer
Original Assignee
Vishay S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay S.A filed Critical Vishay S.A
Priority to EP06709276A priority Critical patent/EP1853871A1/en
Publication of WO2006095066A1 publication Critical patent/WO2006095066A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge

Definitions

  • the present invention relates to a heating resistive element for electropyrotechnic initiator intended in particular to initiate automotive safety devices, in particular to control the operation of air bags, commonly known as "airbags", or seat belt tensioners.
  • the present invention more particularly relates to a heating resistive element with a substrate with improved thermal conductivity.
  • Electro-pyrotechnic initiators are generally constituted by a container containing a pyrotechnic composition which is raised to its deflagration temperature by a resistive heating element. It is known, in particular from US Pat. No. 5,544,585, a pyrotechnic initiator in which the resistive heating element is formed of a resistive layer or resistive ribbon, etched and glued on an insulating substrate consisting of a material support. composite type circuit board. A thermosensitive explosive varnish is deposited on the resistive ribbon. The resistive ribbon is connected to power supply terminals. The passage of a current results in the heating by Joule effect of the resistive ribbon and varnish. When the self-decomposition temperature of the varnish is reached, a deflagration occurs.
  • This temperature can be reached by voluntary application of a short current pulse, a few milliseconds, and high amplitude, representing an energy of the order of milliJoule. In this case, we speak of an "all-fire" impulse and we search for a probability of explosion This temperature can also be reached accidentally if parasitic currents cross the resistive ribbon. These parasitic currents are simulated by the "No Fire" pulse, of a longer duration and smaller amplitude, corresponding to an energy of a few Joules. When applying this parasitic pulse, the probability of explosion should be close to 0.
  • the probability of explosion should be 1 when the energy applied is the lowest and 0 when it is higher. This result is obtained by the heat transfer time between the resistive heating element and the heat sink.
  • the heat is confined in the resistive ribbon which heats up adiabatically.
  • the resistive ribbon heats the less as the depth of penetration of heat is important.
  • This type of resistive heating element using a resistive layer deposited on a support of composite material, can be manufactured in a simple, accurate and reproducible manner according to well known techniques for manufacturing printed circuits. In addition, its shape can be easily adapted by simply stamping various pyrotechnic initiators. However, this type of heating resistive element is no longer suitable for certain operating reliability and safety standards, particularly those of the automotive industry, which impose intervals. between "No Fire” impulse and “All Fire” impulse getting narrower. The thermal conductivity of the composite material support is not high enough to rapidly drain the energy of the "No Fire" pulse towards the heat sink.
  • the object of the present invention is to overcome the disadvantages of the prior art cited above, by providing a heating resistive element simple 1 design and manufacturing, which meets the requirements of the automotive industry.
  • the present invention proposes a resistive heating element for electropyrotechnic initiator comprising a substrate on which is fixed a resistive layer via a bonding layer, said substrate comprising a support made of composite material, in particular of circuit type. printed film, based on fiber and resin, characterized in that said substrate is doped with thermal charges and has, at least at its face in contact with the bonding layer, a thermal conductivity greater than or equal to 0.9 W / mK, said bonding layer providing thermal and mechanical bonding between the substrate and the resistive layer.
  • the heating resistive element comprises a substrate with improved thermal conductivity, at least on the surface, by adding thermal charges.
  • the substrate is doped with thermal charges, at least at its face in contact with the bonding layer, so as to have a thermal conductivity greater than or equal to 0.9 W / mK at least at said face.
  • Heat load means a heat conducting load. The substrate allows rapid drainage of energy from the "No Fire" pulse to the outside.
  • the resistive element according to the invention makes it possible to respond to the demanding conditions of the automotive industry, in particular to an "all-fire" pulse with a duration close to 1 millisecond (ras) and an amplitude close to 1 Ampere (A ), corresponding to an energy of 2 milliJoules (mJ), and a "non-fire” pulse of a duration close to 10 s, and an amplitude close to 0.5 A, corresponding to an energy of 5 J.
  • the substrate is an electrical insulator and does not include any metal part.
  • Said thermal charges are non-metallic, and more generally non-electrically conductive.
  • the thermal charges consist of fine particles of heat-conducting ceramic, such as fine particles of boron nitride and / or alumina.
  • the substrate has a thermal conductivity greater than or equal to 1 W / m.K, preferably less than 5 W / m.K, more preferably between 1 and 2 W / m.K.
  • the substrate is thermally doped by volume.
  • the support made of composite material based on resin and fibers is doped with thermal charges, said thermal charges being dispersed in the resin of the composite material support, the latter having a thermal conductivity greater than or equal to 0.9 W / mK, of preferably greater than or equal to 1 W / mK
  • the substrate is thermally doped on the surface.
  • the substrate comprises a support of rigid composite material of printed circuit type, based on fiber and resin, and at least a first heat-doped coating layer covering a first main face of the support made of composite material, so that said layer doped coating is interposed between said bonding layer and said composite material support, said doped coating layer having a thermal conductivity greater than or equal to 0.9W / mK, preferably greater than or equal to 1W / mK.
  • the substrate may comprise a support of standard composite material, undoped with thermal charges.
  • the substrate may comprise at the same time a support made of composite material doped with thermal charges, at least the first face of which vis-à-vis the bonding layer is covered with a coating layer doped with thermal charges.
  • Said thermal charge-doped coating layer may be formed from a self-supporting resin film, a glass cloth pre-impregnated with resin and / or resin-impregnated glass felt, preferably from a glass cloth pre-impregnated with resin, of the "pre-preg" type.
  • the second main face of the support made of composite material, opposite to the resistive layer is advantageously covered with a second coating layer, analogous to the first coating layer, optionally doped with thermal charges.
  • the substrate thus consists of a support made of composite material covered on both sides with a coating layer.
  • the composite material support is advantageously of the epoxy glass or polyimide glass type.
  • the tie layer may be a self-supported resin film, a resin-impregnated fiber fabric, particularly a fiberglass fabric, or a resin impregnated fiber felt, particularly a fiberglass felt or aramid fiber, said bonding layer preferably having a thermal conductivity of between 0.1 and 0.3 W / mK, and / or a thickness between 10 and 30 microns.
  • the bonding layer must be thick enough to ensure good thermal insulation of the resistive ribbon during the "all-fire” pulse. It must also be thin enough not to hinder the flow of energy from the "No Fire" pulse.
  • the bonding layer rests continuously flat on the substrate, substantially without differences in level, or steps, which would be conducive to the occurrence of electrical non-continuity defects, especially during thermal cycling.
  • the structure of the resistive element according to the invention is homogeneous and therefore insensitive to the thermomechanical stresses induced by the welding operations.
  • the tie layer is preferably made of a glass fiber felt or aramid fibers impregnated with resin. Such a felt, in which the fibers are entangled in a random manner, makes it possible to obtain a substantially constant layer thickness and a substantially homogeneous thermal conductivity.
  • the resistive layer consists of an etched resistive alloy thin sheet, such as a photo-etched nickel-chromium sheet.
  • the resistive heating element further comprises a conductive layer partially covering the resistive layer, intended to ensure the arrival of the electric current.
  • the present invention also relates to an electro-pyrotechnic initiator, characterized in that it comprises a resistive heating element as defined above.
  • FIG. 1 is a diagrammatic cross-sectional view of a heating resistive element according to a first embodiment of the invention
  • - Figure 2 is a schematic cross-sectional view of a resistive heating element according to a second embodiment.
  • FIG. 1 schematically represents a resistive element 1 for an electro-pyrotechnic initiator comprising a substrate 2 consisting of a support made of composite material 21, on which a resistive layer 3 is fixed by means of a tie layer 4.
  • the resistive layer 3 is partially covered by a conductive layer 5 of tinned copper or copper, forming two pads for making electrical contact with two electric power supply terminals.
  • the resistive layer 3 consists of a thin layer formed of a NiCr alloy sheet having a thickness of between 3 and 5 micrometers ( ⁇ m).
  • the resistive layer is formed of a sheet of a Ta 2 N resistive alloy, CrSi or
  • the substrate 2 consists of a rigid composite material support with improved thermal conductivity 21.
  • This support made of composite material is formed of a fabric of glass and epoxy resin in which are dispersed in a substantially homogeneous manner fine particles of nitride. boron or alumina.
  • the glass fabric comprises woven glass fibers 10 to 12 ⁇ m in diameter.
  • the support made of composite material has a thickness of 0.3 to 0.5 mm, a glass transition temperature (Tg) greater than 17O 0 C, and a thermal conductivity greater than lW / mK
  • the support of composite material is formed from a polyimide resin doped with boron nitride particles or alumina.
  • the tie layer 4 consists of a glass fiber impregnated with high temperature epoxy resin having a Tg greater than 150 ° C.
  • the pre-impregnated felt has a thermal conductivity of the order of 0.25 W / mK.
  • the glass felt is made of glass microfibers, for example borosilicate glass, 3 to 5 ⁇ m in diameter, assembled without weaving.
  • the resistive layer, the glass felt impregnated with unpolymerized epoxy resin, and the support made of composite material are stacked and then subjected to firing, preferably under pressure.
  • the thickness of the pre-impregnated felt is of the order of 25 to 50 ⁇ m before and after firing, its density is of the order of 0.180 g / cm 3 .
  • the tie layer is formed of a self-supported adhesive film, for example a film of acrylic adhesive or phenol butyral, 25 to 50 microns thick before firing, and 15 to 25 microns thick after baking, having a thermal conductivity of the order of 0.25 W / mK
  • the adhesive film is manipulated on a sheet of paper, the latter being removed during stacking.
  • the tie layer may also be formed from a prepreg fiberglass fabric a resin, type "prepreg".
  • the prepreg comprises a resin of the same nature as that of the support made of composite material, for example an epoxy resin, of the FR5 type, for example having a thickness close to 50 ⁇ tn after baking, or a polyimide or Teflon resin.
  • FIG. 2 represents a second embodiment of a resistive heating element 11 according to the invention, comprising a substrate 12, with improved surface thermal conductivity, on which a resistive layer 13 is fixed by means of a connecting layer 14 , said resistive layer being partially covered by a conductive layer 15.
  • This resistive heating element 11 differs from that described with reference to FIG. 1 in that its substrate 12 consists of a support of standard rigid composite material 121, conventionally used in the printed circuit industry, the opposite main faces are each covered with a coating layer with improved thermal conductivity, a first coating layer referenced 122a, and a second coating layer referenced 122b.
  • the support made of composite material consists of woven glass fibers, for example 10 to 12 ⁇ m in diameter, and epoxy resin, having a thermal conductivity of the order of 0.35 W / mK.
  • the composite material support 21 is for example of the FR4 family, with an epoxy resin having a Tg of 140 ° C.
  • the support is of the FR5 family, with an epoxy resin having a Tg greater than 160 ° C., for better temperature performance, especially for the transition to lead-free solder, or family polyamide G, for even higher temperature resistance.
  • Each coating layer 122a, 122b consists of a fiberglass fabric pre-impregnated with an epoxy resin doped with fine particles of boron nitride or alumina, having a Tg greater than 170 ° C., and thermal conductivity greater than lW / m ° K.
  • Each coating layer preferably has a thickness of between 75 and 125 microns.
  • the bonding layer 14 provides the thermal and mechanical connection between the resistive layer and the first coating layer 122a.
  • This first coating layer 122a has the main function of draining the energy of the "Non-Fire" pulse and a secondary function of mechanical reinforcement.
  • the second coating layer 122b on the face of the support of composite material opposite to the bonding layer and the resistive layer, has only a mechanical reinforcing function to avoid the curvature of the substrate by bimetal effect during its manufacture or its use.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a resistive heating element for an electropyrotechnic initiator which is intended, in particular, to initiate automobile safety devices. The inventive element comprises a substrate (2) having a resistive layer (3) fixed thereto by means of a connecting layer (4). The substrate comprises a support which is made from a composite material (21), in particular of the printed circuit type, based on fibre and resin. Said substrate is doped with thermal loads and has a thermal conductivity of greater than or equal to 0.9 W/m.K at the face that is in contact with the connecting layer, said connecting layer providing a thermal and mechanical connection between the substrate and the resistive layer.

Description

Elément résistif chauffant pour initiateur pyrotechnique Heating resistive element for pyrotechnic initiator
La présente invention concerne un élément résistif chauffant pour initiateur électropyrotechnique destiné en particulier à initier des dispositifs de sécurité automobile, notamment pour commander le fonctionnement de coussins gonflables, communément appelés "airbags", ou de tensionneurs de ceinture de sécurité. La présente invention concerne plus particulièrement un élément résistif chauffant avec un substrat à conductibilité thermique améliorée.The present invention relates to a heating resistive element for electropyrotechnic initiator intended in particular to initiate automotive safety devices, in particular to control the operation of air bags, commonly known as "airbags", or seat belt tensioners. The present invention more particularly relates to a heating resistive element with a substrate with improved thermal conductivity.
Les initiateurs électro-pyrotechniques sont généralement constitués par un récipient contenant une composition pyrotechnique qui est portée à sa température de déflagration par un élément résistif chauffant. Il est connu, notamment par le document de brevet US 5 544 585, un initiateur pyrotechnique dans lequel l'élément résistif chauffant est formé d'une couche résistive ou ruban résistif, gravé et collé sur un substrat isolant constitué d'un support en matériau composite de type circuit imprimé. Un vernis explosif thermo-sensible est déposé sur le ruban résistif. Le ruban résistif est connecté à des bornes d'amenée de courant électrique. Le passage d'un courant se traduit par l'échauffement par effet joule du ruban résistif et du vernis. Lorsque la température d'auto-décomposition du vernis est atteinte, une déflagration se produit. Cette température peut être atteinte par application volontaire d'une impulsion de courant brève, de quelques millisecondes, et de forte amplitude, représentant une énergie de l'ordre du milliJoule. Dans ce cas, on parle d'une impulsion "Tout Feu" et on recherche une probabilité de déflagration proche de 1. Cette température peut aussi être atteinte accidentellement si des courants parasites traversent le ruban résistif. Ces courants parasites sont simulés par l'impulsion "Non Feu", d'une durée plus longue et d'amplitude plus faible, correspondant à une énergie de quelques Joules. Lorsque l'on applique cette impulsion parasite, la probabilité de déflagration doit être proche de 0.Electro-pyrotechnic initiators are generally constituted by a container containing a pyrotechnic composition which is raised to its deflagration temperature by a resistive heating element. It is known, in particular from US Pat. No. 5,544,585, a pyrotechnic initiator in which the resistive heating element is formed of a resistive layer or resistive ribbon, etched and glued on an insulating substrate consisting of a material support. composite type circuit board. A thermosensitive explosive varnish is deposited on the resistive ribbon. The resistive ribbon is connected to power supply terminals. The passage of a current results in the heating by Joule effect of the resistive ribbon and varnish. When the self-decomposition temperature of the varnish is reached, a deflagration occurs. This temperature can be reached by voluntary application of a short current pulse, a few milliseconds, and high amplitude, representing an energy of the order of milliJoule. In this case, we speak of an "all-fire" impulse and we search for a probability of explosion This temperature can also be reached accidentally if parasitic currents cross the resistive ribbon. These parasitic currents are simulated by the "No Fire" pulse, of a longer duration and smaller amplitude, corresponding to an energy of a few Joules. When applying this parasitic pulse, the probability of explosion should be close to 0.
Assez paradoxalement la probabilité de déflagration doit être de 1 quand l'énergie appliquée est la plus faible et de 0 quand elle est plus élevée. Ce résultat est obtenu par le temps de transfert thermique entre l'élément résistif chauffant et le puits de chaleur. Pour l'impulsion "Tout Feu", la chaleur est confinée dans le ruban résistif qui s'échauffe de façon adiabatique. Pour l'impulsion "Non Feu" , la chaleur se diffuse au travers du support en matériau composite pour atteindre le milieu extérieur, le ruban résistif s'échauffe d'autant moins que la profondeur de pénétration de la chaleur est importante .Paradoxically enough the probability of explosion should be 1 when the energy applied is the lowest and 0 when it is higher. This result is obtained by the heat transfer time between the resistive heating element and the heat sink. For the "All-Fire" impulse, the heat is confined in the resistive ribbon which heats up adiabatically. For the "No Fire" impulse, the heat is diffused through the composite material support to reach the external environment, the resistive ribbon heats the less as the depth of penetration of heat is important.
Ce type d'élément résistif chauffant, utilisant une couche résistive déposée sur un support en matériau composite, peut être fabriqué de manière simple, précise et reproductible suivant des techniques bien connues de fabrication de circuits imprimés. En outre, sa forme peut être facilement adaptée par simple emboutissage à divers initiateurs pyrotechniques. Toutefois, ce type d'élément résistif chauffant n'est plus adapté à certaines normes de fiabilité de fonctionnement et de sécurité, notamment celles de l'industrie automobile, qui imposent des intervalles entre impulsion "Non Feu" et impulsion "Tout Feu "de plus en plus étroits. La conductibilité thermique du support en matériau composite n'est pas assez élevée pour drainer rapidement l'énergie de l'impulsion "Non Feu" vers le puits de chaleur.This type of resistive heating element, using a resistive layer deposited on a support of composite material, can be manufactured in a simple, accurate and reproducible manner according to well known techniques for manufacturing printed circuits. In addition, its shape can be easily adapted by simply stamping various pyrotechnic initiators. However, this type of heating resistive element is no longer suitable for certain operating reliability and safety standards, particularly those of the automotive industry, which impose intervals. between "No Fire" impulse and "All Fire" impulse getting narrower. The thermal conductivity of the composite material support is not high enough to rapidly drain the energy of the "No Fire" pulse towards the heat sink.
Le but de la présente invention est de pallier les inconvénients de l'art antérieur cités ci-dessus, en proposant un élément résistif chauffant simple de1 conception et de fabrication, qui réponde notamment aux exigences de l'industrie automobile.The object of the present invention is to overcome the disadvantages of the prior art cited above, by providing a heating resistive element simple 1 design and manufacturing, which meets the requirements of the automotive industry.
A cet effet, la présente invention propose un élément résistif chauffant pour initiateur électropyrotechnique comprenant un substrat sur lequel est fixée une couche résistive par l'intermédiaire d'une couche de liaison, ledit substrat comportant un support en matériau composite, en particulier de type circuit imprimé, à base de fibre et de résine, caractérisé en ce que ledit substrat est dopé de charges thermiques et présente, au moins au niveau de sa face en contact avec la couche de liaison, une conductibilité thermique supérieure ou égale à 0,9 W/m.K, ladite couche de liaison assurant la liaison thermique et mécanique entre le substrat et la couche résistive.For this purpose, the present invention proposes a resistive heating element for electropyrotechnic initiator comprising a substrate on which is fixed a resistive layer via a bonding layer, said substrate comprising a support made of composite material, in particular of circuit type. printed film, based on fiber and resin, characterized in that said substrate is doped with thermal charges and has, at least at its face in contact with the bonding layer, a thermal conductivity greater than or equal to 0.9 W / mK, said bonding layer providing thermal and mechanical bonding between the substrate and the resistive layer.
Selon l'invention, l'élément résistif chauffant comprend un substrat à conductibilité thermique améliorée, au moins en surface, par adjonction de charges thermiques. Le substrat est dopé avec des charges thermiques, au moins au niveau de sa face en contact avec la couche de liaison, de manière à présenter une conductibilité thermique supérieure ou égale à 0,9 W/m.K au moins au niveau de ladite face. On entend par "charge thermique" une charge conductrice de chaleur. Le substrat permet un drainage rapide de l'énergie de l'impulsion "Non Feu" vers l'extérieur. L'élément résistif selon l'invention permet de répondre aux conditions exigeantes de l'industrie automobile, notamment à une impulsion "Tout Feu" d'une durée voisine de 1 milliseconde (ras) et d'une amplitude voisine de 1 Ampère (A) , correspondant à une énergie de 2 milliJoules (mJ) , et une impulsion "Non Feu" d'une durée voisine de 10 s, et d'une amplitude voisine de 0,5 A, correspondant à une énergie de 5 J.According to the invention, the heating resistive element comprises a substrate with improved thermal conductivity, at least on the surface, by adding thermal charges. The substrate is doped with thermal charges, at least at its face in contact with the bonding layer, so as to have a thermal conductivity greater than or equal to 0.9 W / mK at least at said face. We "Heat load" means a heat conducting load. The substrate allows rapid drainage of energy from the "No Fire" pulse to the outside. The resistive element according to the invention makes it possible to respond to the demanding conditions of the automotive industry, in particular to an "all-fire" pulse with a duration close to 1 millisecond (ras) and an amplitude close to 1 Ampere (A ), corresponding to an energy of 2 milliJoules (mJ), and a "non-fire" pulse of a duration close to 10 s, and an amplitude close to 0.5 A, corresponding to an energy of 5 J.
Avantageusement, le substrat est un isolant électrique et ne comprend aucune partie métallique. Lesdites charges thermiques sont non métalliques, et plus généralement non-conductrices d'électricité. Selon une particularité, les charges thermiques sont constituées de fines particules en céramique conductrice de la chaleur, telles que de fines particules de nitrure de bore et/ou d'alumine. Avantageusement, le substrat présente une conductibilité thermique supérieure ou égale à 1 W/m.K, de préférence inférieure à 5 W/m.K, mieux encore comprise entre 1 et 2 W/m.K.Advantageously, the substrate is an electrical insulator and does not include any metal part. Said thermal charges are non-metallic, and more generally non-electrically conductive. According to one feature, the thermal charges consist of fine particles of heat-conducting ceramic, such as fine particles of boron nitride and / or alumina. Advantageously, the substrate has a thermal conductivity greater than or equal to 1 W / m.K, preferably less than 5 W / m.K, more preferably between 1 and 2 W / m.K.
Selon un premier mode de réalisation, le substrat est dopé thermiquement en volume . Le support en matériau composite à base de résine et de fibres est dopé de charges thermiques, lesdites charges thermiques étant dispersées dans la résine du support en matériau composite, ce dernier présentant une conductibilité thermique supérieure ou égale à 0,9 W/m.K, de préférence supérieure ou égale à 1 W/m.K. Selon un deuxième mode de réalisation, le substrat est dopé thermiquement en surface. Le substrat comprend un support en matériau composite rigide de type circuit imprimé, à base de fibre et de résine, et au moins une première couche de revêtement dopée de charges thermiques recouvrant une première face principale du support en matériau composite, de sorte que ladite couche de revêtement dopée soit intercalée entre ladite couche de liaison et ledit support en matériau composite, ladite couche de revêtement dopée présentant une conductibilité thermique supérieure ou égale à 0,9W/m.K, de préférence supérieure ou égale à lW/m.K. Dans ce cas, le substrat peut comprendre un support en matériau composite standard, non dopé de charges thermiques. En variante, le substrat peut comprendre à la fois un support en matériau composite dopé de charges thermiques dont au moins la première face en vis-à-vis de la couche de liaison est recouverte d'une couche de revêtement dopée de charges thermiques .According to a first embodiment, the substrate is thermally doped by volume. The support made of composite material based on resin and fibers is doped with thermal charges, said thermal charges being dispersed in the resin of the composite material support, the latter having a thermal conductivity greater than or equal to 0.9 W / mK, of preferably greater than or equal to 1 W / mK According to a second embodiment, the substrate is thermally doped on the surface. The substrate comprises a support of rigid composite material of printed circuit type, based on fiber and resin, and at least a first heat-doped coating layer covering a first main face of the support made of composite material, so that said layer doped coating is interposed between said bonding layer and said composite material support, said doped coating layer having a thermal conductivity greater than or equal to 0.9W / mK, preferably greater than or equal to 1W / mK. In this case, the substrate may comprise a support of standard composite material, undoped with thermal charges. In a variant, the substrate may comprise at the same time a support made of composite material doped with thermal charges, at least the first face of which vis-à-vis the bonding layer is covered with a coating layer doped with thermal charges.
Ladite couche de revêtement dopée de charges thermiques peut être formée à partir d'un film de résine auto-supportée, d'un tissu de verre pré-imprégné de résine et/ou d'un feutre de verre imprégné d'une résine, de préférence à partir d'un tissu de verre préimprégné de résine, de type "pré-preg" .Said thermal charge-doped coating layer may be formed from a self-supporting resin film, a glass cloth pre-impregnated with resin and / or resin-impregnated glass felt, preferably from a glass cloth pre-impregnated with resin, of the "pre-preg" type.
Pour renforcer le substrat et éviter notamment une courbure du substrat par effet bilame, la deuxième face principale du support en matériau composite, opposée à la couche résistive, est avantageusement recouverte d'une deuxième couche de revêtement, analogue à la première couche de revêtement, éventuellement dopée de charges thermiques. Le substrat est ainsi constitué d'un support en matériau composite recouvert de part et d'autre d'une couche de revêtement .In order to reinforce the substrate and in particular to avoid curvature of the substrate by bimetallic effect, the second main face of the support made of composite material, opposite to the resistive layer, is advantageously covered with a second coating layer, analogous to the first coating layer, optionally doped with thermal charges. The substrate thus consists of a support made of composite material covered on both sides with a coating layer.
Le support en matériau composite est avantageusement du type verre époxy ou verre polyimide . La couche de liaison peut être constituée d'un film de résine auto-supportée, d'un tissu de fibres imprégné de résine, en particulier un tissu de fibres de verre, ou d'un feutre de fibres imprégné de résine, en particulier un feutre de fibres de verre ou de fibres aramide, ladite couche de liaison ayant avantageusement une conductibilité thermique comprise entre 0,1 et 0,3 W/m.K, et/ou une épaisseur comprise entre 10 et 30 μm. La couche de liaison doit être suffisamment épaisse pour assurer un bon isolement thermique du ruban résistif pendant l'impulsion "Tout Feu" . Elle doit être aussi suffisamment fine pour ne pas faire obstacle à l'écoulement de l'énergie de l'impulsion « Non Feu ». La couche de liaison, d'épaisseur sensiblement constante, repose continûment à plat sur le substrat, substantiellement sans différences de niveau, ou marches, qui seraient propices à l'apparition de défauts de non-continuité électrique, notamment lors de cycles thermiques. La structure de l'élément résistif selon l'invention est homogène et donc peu sensible aux contraintes thermomécaniques induites par les opérations de soudure . La couche de liaison est de préférence constituée d'un feutre de fibres de verre ou de fibres aramide imprégné de résine. Un tel feutre, dans lequel les fibres sont enchevêtrées de manière aléatoire, permet d'obtenir une épaisseur de couche sensiblement constante et une conductibilité thermique sensiblement homogène .The composite material support is advantageously of the epoxy glass or polyimide glass type. The tie layer may be a self-supported resin film, a resin-impregnated fiber fabric, particularly a fiberglass fabric, or a resin impregnated fiber felt, particularly a fiberglass felt or aramid fiber, said bonding layer preferably having a thermal conductivity of between 0.1 and 0.3 W / mK, and / or a thickness between 10 and 30 microns. The bonding layer must be thick enough to ensure good thermal insulation of the resistive ribbon during the "all-fire" pulse. It must also be thin enough not to hinder the flow of energy from the "No Fire" pulse. The bonding layer, of substantially constant thickness, rests continuously flat on the substrate, substantially without differences in level, or steps, which would be conducive to the occurrence of electrical non-continuity defects, especially during thermal cycling. The structure of the resistive element according to the invention is homogeneous and therefore insensitive to the thermomechanical stresses induced by the welding operations. The tie layer is preferably made of a glass fiber felt or aramid fibers impregnated with resin. Such a felt, in which the fibers are entangled in a random manner, makes it possible to obtain a substantially constant layer thickness and a substantially homogeneous thermal conductivity.
Selon une particularité, la couche résistive est constituée d'une feuille mince d'alliage résistif gravé, telle qu'une feuille de nickel-chrome photogravée .According to one feature, the resistive layer consists of an etched resistive alloy thin sheet, such as a photo-etched nickel-chromium sheet.
Selon une autre particularité, l'élément résistif chauffant comprend en outre une couche conductrice recouvrant partiellement la couche résistive, destinée à assurer l'arrivée du courant électrique.According to another feature, the resistive heating element further comprises a conductive layer partially covering the resistive layer, intended to ensure the arrival of the electric current.
La présente invention a également pour objet un initiateur électro-pyrotechnique, caractérisé en ce qu'il comporte un élément résistif chauffant tel que défini précédemment. L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre de deux modes de réalisation particuliers actuellement préférés de l'invention, en référence au dessin schématique annexé sur lequel :The present invention also relates to an electro-pyrotechnic initiator, characterized in that it comprises a resistive heating element as defined above. The invention will be better understood, and other objects, details, features and advantages will become more clearly apparent from the following detailed explanatory description of two presently preferred particular embodiments of the invention, with reference to the attached schematic drawing. on which :
- la figure 1 est une vue schématique en .coupe transversale d'un élément résistif chauffant selon un premier mode de réalisation de l'invention ; et, - la figure 2 est une vue schématique en coupe transversale d'un élément résistif chauffant selon un deuxième mode de réalisation.FIG. 1 is a diagrammatic cross-sectional view of a heating resistive element according to a first embodiment of the invention; and, - Figure 2 is a schematic cross-sectional view of a resistive heating element according to a second embodiment.
La figure 1 représente schématiguement un élément résistif 1 pour initiateur électro-pyrotechnique comportant un substrat 2 constitué d'un support en matériau composite 21, sur lequel est fixée une couche résistive 3 au moyen d'une couche de liaison 4. La couche résistive 3 est recouverte partiellement par une couche conductrice 5 en cuivre ou cuivre étamé, formant deux plages pour établir le contact électrique avec deux bornes d'amenée de courant électrique.FIG. 1 schematically represents a resistive element 1 for an electro-pyrotechnic initiator comprising a substrate 2 consisting of a support made of composite material 21, on which a resistive layer 3 is fixed by means of a tie layer 4. The resistive layer 3 is partially covered by a conductive layer 5 of tinned copper or copper, forming two pads for making electrical contact with two electric power supply terminals.
La couche résistive 3 est constituée par une couche mince, formée d'une feuille d'alliage NiCr ayant une épaisseur comprise entre 3 et 5 micromètres (μm) .The resistive layer 3 consists of a thin layer formed of a NiCr alloy sheet having a thickness of between 3 and 5 micrometers (μm).
La chaleur dissipée par effet joule par la couche résistive sera transmise par conduction thermique à une composition pyrotechnique déposée sur la couche résistive. En variante, la couche résistive est formée d'une feuille en un alliage résistif Ta2N, CrSi ouThe heat dissipated by the joule effect by the resistive layer will be transmitted by thermal conduction to a pyrotechnic composition deposited on the resistive layer. Alternatively, the resistive layer is formed of a sheet of a Ta 2 N resistive alloy, CrSi or
PtW.PtW.
Le substrat 2 est constitué d'un support en matériau composite rigide à conductibilité thermique améliorée 21. Ce support en matériau composite est formé d'un tissu de verre et de résine époxy dans laquelle sont dispersées de manière sensiblement homogène de fines particules de nitrure de bore ou d'alumine. Le tissu de verre comprend des fibres de verre tissées de 10 à 12 μm de diamètre. Le support en matériau composite a une épaisseur de 0,3 à 0,5 mm, une température de transition vitreuse (Tg) supérieure à 17O0C, et une conductibilité thermique supérieure à lW/m.K.The substrate 2 consists of a rigid composite material support with improved thermal conductivity 21. This support made of composite material is formed of a fabric of glass and epoxy resin in which are dispersed in a substantially homogeneous manner fine particles of nitride. boron or alumina. The glass fabric comprises woven glass fibers 10 to 12 μm in diameter. The support made of composite material has a thickness of 0.3 to 0.5 mm, a glass transition temperature (Tg) greater than 17O 0 C, and a thermal conductivity greater than lW / mK
En variante, pour des tenues à plus haute température, le support en matériau composite est formé à partir d'une résine polyimide dopée de particules de nitrure de bore ou d'alumine.Alternatively, for higher temperature withstandings, the support of composite material is formed from a polyimide resin doped with boron nitride particles or alumina.
La couche de liaison 4 est constituée par un feutre de verre imprégné de résine époxy haute température présentant une Tg supérieure à 15O0C. Le feutre pré-imprégné a une conductibilité thermique de l'ordre de 0.25 W/m.K. Le feutre de verre est constitué de microfibres de verre, par exemple de verre borosilicate, de 3 à 5 μm de diamètre, assemblées sans tissage. Pour leur assemblage, la couche résistive, le feutre de verre imprégné de résine époxy non polymérisée, et le support en matériau composite sont empilés, puis soumis à une cuisson, de préférence sous pression. L'épaisseur du feutre pré-imprégné est de l'ordre de 25 à 50 μm avant et après cuisson, sa densité est de l'ordre de 0.180 g/cm3.The tie layer 4 consists of a glass fiber impregnated with high temperature epoxy resin having a Tg greater than 150 ° C. The pre-impregnated felt has a thermal conductivity of the order of 0.25 W / mK. The glass felt is made of glass microfibers, for example borosilicate glass, 3 to 5 μm in diameter, assembled without weaving. For their assembly, the resistive layer, the glass felt impregnated with unpolymerized epoxy resin, and the support made of composite material are stacked and then subjected to firing, preferably under pressure. The thickness of the pre-impregnated felt is of the order of 25 to 50 μm before and after firing, its density is of the order of 0.180 g / cm 3 .
En variante, la couche de liaison est formée d'un film de colle auto-supportée, par exemple un film de colle acrylique ou phénol butyral, de 25 à 50 μm d'épaisseur avant cuisson, et de 15 à 25 μm d'épaisseur après cuisson, ayant une conductibilité thermique de l'ordre de 0.25 W/m.K. Le film de colle est manipulé sur une feuille de papier, cette dernière étant enlevée lors de l'empilage. La couche de liaison peut également être formée à partir d'un tissu de fibres de verre pré-imprégné d'une résine, de type "prépreg" . De préférence, le prépreg comprend une résine de même nature que celle du support en matériau composite, par exemple une résine époxy, du type FR5, présentant par exemple une épaisseur voisine de 50 μtn après cuisson, ou une résine polyimide ou Téflon.Alternatively, the tie layer is formed of a self-supported adhesive film, for example a film of acrylic adhesive or phenol butyral, 25 to 50 microns thick before firing, and 15 to 25 microns thick after baking, having a thermal conductivity of the order of 0.25 W / mK The adhesive film is manipulated on a sheet of paper, the latter being removed during stacking. The tie layer may also be formed from a prepreg fiberglass fabric a resin, type "prepreg". Preferably, the prepreg comprises a resin of the same nature as that of the support made of composite material, for example an epoxy resin, of the FR5 type, for example having a thickness close to 50 μtn after baking, or a polyimide or Teflon resin.
La figure 2 représente un deuxième mode de réalisation d'un élément résistif chauffant 11 selon l'invention, comportant un substrat 12, à conductibilité thermique améliorée en surface, sur lequel est fixée une couche résistive 13 au moyen d'une couche de liaison 14, ladite couche résistive étant recouverte partiellement par une couche conductrice 15. Cet élément résistif chauffant 11 se différencie de celui décrit en référence à la figure 1 par le fait que son substrat 12 est constitué d'un support en matériau composite rigide standard 121, classiquement utilisé dans l'industrie du circuit imprimé, dont les faces principales opposées sont chacune recouvertes d'une couche de revêtement à conductibilité thermique améliorée, une première couche de revêtement référencée 122a, et une deuxième couche de revêtement référencée 122b.FIG. 2 represents a second embodiment of a resistive heating element 11 according to the invention, comprising a substrate 12, with improved surface thermal conductivity, on which a resistive layer 13 is fixed by means of a connecting layer 14 , said resistive layer being partially covered by a conductive layer 15. This resistive heating element 11 differs from that described with reference to FIG. 1 in that its substrate 12 consists of a support of standard rigid composite material 121, conventionally used in the printed circuit industry, the opposite main faces are each covered with a coating layer with improved thermal conductivity, a first coating layer referenced 122a, and a second coating layer referenced 122b.
Le support en matériau composite est constitué de fibres de verre tissées, par exemple de 10 à 12 μm de diamètre, et de résine époxy, ayant une conductibilité thermique de l'ordre de 0.35 W/m.K. Le support en matériau composite 21 est par exemple de la famille FR4 , avec une résine époxy ayant une Tg de 14O0C. En variante, le support est de la famille FR5, avec une résine époxy ayant une Tg supérieure à 1600C, pour de meilleures tenues en température, notamment en vue du passage aux soudures sans plomb, ou de la famille polyamide G, pour des tenues en température encore plus élevées. Chaque couche de revêtement • 122a, 122b est constituée d'un tissu de fibre de verre pré-imprégnée d'une résine époxy dopée de fines particules de nitrure de bore ou d'alumine, ayant une Tg supérieure à 1700C, et une conductibilité thermique supérieure à lW/m°K. Chaque couche de revêtement a de préférence une épaisseur comprise entre 75 et 125 μm.The support made of composite material consists of woven glass fibers, for example 10 to 12 μm in diameter, and epoxy resin, having a thermal conductivity of the order of 0.35 W / mK. The composite material support 21 is for example of the FR4 family, with an epoxy resin having a Tg of 140 ° C. In a variant, the support is of the FR5 family, with an epoxy resin having a Tg greater than 160 ° C., for better temperature performance, especially for the transition to lead-free solder, or family polyamide G, for even higher temperature resistance. Each coating layer 122a, 122b consists of a fiberglass fabric pre-impregnated with an epoxy resin doped with fine particles of boron nitride or alumina, having a Tg greater than 170 ° C., and thermal conductivity greater than lW / m ° K. Each coating layer preferably has a thickness of between 75 and 125 microns.
La couche de liaison 14 assure la liaison thermique et mécanique entre la couche résistive et la première couche de revêtement 122a. Cette première couche de revêtement 122a a pour fonction principale de drainer l'énergie de l'impulsion "Non Feu" et une fonction secondaire de renfort mécanique. La deuxième couche de revêtement 122b, sur la face du support en matériau composite opposée à la couche de liaison et à la couche résistive, a uniquement une fonction de renfort mécanique pour éviter la courbure du substrat par effet bilame lors de sa fabrication ou de son utilisation.The bonding layer 14 provides the thermal and mechanical connection between the resistive layer and the first coating layer 122a. This first coating layer 122a has the main function of draining the energy of the "Non-Fire" pulse and a secondary function of mechanical reinforcement. The second coating layer 122b, on the face of the support of composite material opposite to the bonding layer and the resistive layer, has only a mechanical reinforcing function to avoid the curvature of the substrate by bimetal effect during its manufacture or its use.
Bien que l'invention ait été décrite en liaison avec deux modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles- ci entrent dans le cadre de l'invention. Although the invention has been described in connection with two particular embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described and their combinations if these are within the scope of the invention.

Claims

REVENDICATIONS
1. Elément résistif chauffant pour initiateur électro-pyrotechnique comprenant un substrat sur lequel est fixée une couche résistive par l'intermédiaire d'une couche de liaison, ledit substrat comportant un support en matériau composite, caractérisé en ce que ledit substrat (2, 12) est dopé de charges thermiques et présente, au moins au niveau de sa face en contact avec la couche de liaison, une conductibilité thermique supérieure ou égale à 0,9 W/m.K, ladite couche de liaison (4, 14) assurant la liaison thermique et mécanique entre le substrat et la couche résistive (3, 13), ladite couche de liaison (4, 14) étant constituée d'un film de résine auto-supportée, d'un tissu de fibres imprégné de résine ou d'un feutre de fibres imprégné de résine.A heating resistive element for an electro-pyrotechnic initiator comprising a substrate on which a resistive layer is attached by means of a bonding layer, said substrate comprising a support made of composite material, characterized in that said substrate (2, 12 ) is doped with thermal charges and has, at least at its face in contact with the bonding layer, a thermal conductivity greater than or equal to 0.9 W / mK, said bonding layer (4, 14) providing the bond thermal and mechanical connection between the substrate and the resistive layer (3, 13), said bonding layer (4, 14) consisting of a self-supported resin film, a resin impregnated fiber fabric or a fiber felt impregnated with resin.
2. Elément résistif chauffant (1, 11) selon la revendication 1, caractérisé en ce que les charges thermiques sont constituées de fines particules en céramique conductrice de la chaleur, telles que de fines particules de nitrure de bore et/ou d'alumine.2. Resistive heating element (1, 11) according to claim 1, characterized in that the thermal charges consist of fine particles of heat-conducting ceramic, such as fine particles of boron nitride and / or alumina.
3. Elément résistif chauffant (1, 11) selon la revendication 1 ou 2, caractérisé en ce que le substrat (2, 12) présente une conductibilité thermique supérieure ou égale à 1 W/m.K, de préférence inférieure à 5 W/m.K, mieux encore comprise entre 1 et 2 W/m.K.Resistive heating element (1, 11) according to claim 1 or 2, characterized in that the substrate (2, 12) has a thermal conductivity greater than or equal to 1 W / mK, preferably less than 5 W / mK, better still between 1 and 2 W / mK
4. Elément résistif chauffant (1) selon l'une des revendications 1 à 3, caractérisé en ce que le support en matériau composite (2) à base de fibre et de résine est dopé de charges thermiques, lesdites charges thermiques étant dispersées dans la résine du support en matériau composite .4. Resistive heating element (1) according to one of claims 1 to 3, characterized in that the support of composite material (2) based on fiber and resin is doped with thermal charges, said charges heat being dispersed in the resin of the composite material support.
5. Elément résistif chauffant (11) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le substrat (12) comprend un support en matériau composite rigide (121) de type circuit imprimé, à base de fibre et de résine, et au moins une première couche de revêtement dopée de charges thermiques (122a) recouvrant une première face principale du support en matériau composite, de sorte que ladite couche de revêtement dopée soit intercalée entre ladite couche de liaison (14) et ledit support en matériau composite.5. resistive heating element (11) according to any one of claims 1 to 4, characterized in that the substrate (12) comprises a support of rigid composite material (121) of the printed circuit type, based on fiber and resin and at least a first thermal charge doped coating layer (122a) covering a first major face of the composite material backing, such that said doped coating layer is interposed between said bonding layer (14) and said material backing composite.
6. Elément résistif chauffant selon la revendication 5, caractérisé en ce que ladite couche de revêtement (122a) dopée de charges thermiques est formée à partir d'un film de résine auto-supportée, d'un tissu de verre pré-imprégné de résine et/ou d'un feutre de verre imprégné d'une résine, de préférence à partir d'un tissu de verre pré-imprégné de résine, de type "pré-preg" .Heating resistive element according to claim 5, characterized in that said thermal charge-doped coating layer (122a) is formed from a self-supported resin film, a glass cloth pre-impregnated with resin and / or a glass felt impregnated with a resin, preferably from a pre-preg type pre-impregnated glass fabric.
7. Elément résistif chauffant (11) selon la revendication 5, caractérisé en ce que la deuxième face principale du support en matériau composite, opposée à la couche résistive, est recouverte d'une deuxième couche de revêtement (122b) , éventuellement dopée de charges thermiques .7. heating resistive element (11) according to claim 5, characterized in that the second main face of the composite material support, opposite to the resistive layer, is covered with a second coating layer (122b), optionally doped with fillers. thermal.
8. Élément résistif chauffant (1, 11) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le support en matériau composite est du type verre êpoxy ou verre polyimide. 8. Resistive heating element (1, 11) according to any one of claims 1 to 7, characterized in that the support of composite material is of the epoxy glass or polyimide glass type.
9. Élément résistif chauffant (1, 11) selon l'une quelconque des revendications 1 à 8 , caractérisé en ce que la couche de liaison (4, 14) est un feutre de fibres imprégné de résine, de préférence un feutre de fibres de verre ou de fibres aramide imprégné de résine .Resistive heating element (1, 11) according to any one of claims 1 to 8, characterized in that the bonding layer (4, 14) is a resin impregnated fiber felt, preferably a fiber felt of glass or aramid fibers impregnated with resin.
10. Élément résistif chauffant (1, 11) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la couche de liaison (4, 14) présente une conductibilité thermique comprise entre 0,1 et 0,3 W/m.K, et/ou une épaisseur comprise entre 10 et 30 μm.Heating resistive element (1, 11) according to any one of claims 1 to 9, characterized in that the bonding layer (4, 14) has a thermal conductivity of between 0.1 and 0.3 W / mK , and / or a thickness of between 10 and 30 μm.
11. Elément résistif chauffant (1, 11) selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la couche résistive (3, 13) est constituée d'une feuille mince d'alliage résistif gravé.11. Resistive heating element (1, 11) according to any one of claims 1 to 10, characterized in that the resistive layer (3, 13) consists of an etched resistive alloy foil.
12. Elément résistif chauffant selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend une couche conductrice (5, 15) recouvrant partiellement la couche résistive (3, 13) destinée à assurer l'arrivée du courant électrique.Heating resistive element according to any one of claims 1 to 11, characterized in that it comprises a conductive layer (5, 15) partially covering the resistive layer (3, 13) intended to ensure the arrival of the electric current. .
13. Initiateur électro-pyrotechnique, caractérisé en ce qu'il comporte un élément résistif chauffant (1, 11) selon l'une des revendications 1 à 12. 13. Electro-pyrotechnic initiator, characterized in that it comprises a resistive heating element (1, 11) according to one of claims 1 to 12.
PCT/FR2006/000289 2005-03-04 2006-02-08 Resistive heating element for a pyrotechnic initiator WO2006095066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06709276A EP1853871A1 (en) 2005-03-04 2006-02-08 Resistive heating element for a pyrotechnic initiator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0502224A FR2882814A1 (en) 2005-03-04 2005-03-04 HEAT RESISTIVE ELEMENT FOR PYROTECHNIC INITIATOR
FR0502224 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006095066A1 true WO2006095066A1 (en) 2006-09-14

Family

ID=35058628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000289 WO2006095066A1 (en) 2005-03-04 2006-02-08 Resistive heating element for a pyrotechnic initiator

Country Status (3)

Country Link
EP (1) EP1853871A1 (en)
FR (1) FR2882814A1 (en)
WO (1) WO2006095066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737681A (en) * 2016-03-10 2016-07-06 中国振华集团云科电子有限公司 Preparation method for bridge area of film bridge initiator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449999A (en) * 1967-04-24 1969-06-17 Myron A Coler Method of making an electrical initiator
US3557699A (en) * 1968-06-26 1971-01-26 Olin Mathieson Electroexplosive primer ignition assembly
US4103619A (en) * 1976-11-08 1978-08-01 Nasa Electroexplosive device
US5544585A (en) 1993-05-05 1996-08-13 Ncs Pyrotechnie Et Technologies Electro-pyrotechnical initiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449999A (en) * 1967-04-24 1969-06-17 Myron A Coler Method of making an electrical initiator
US3557699A (en) * 1968-06-26 1971-01-26 Olin Mathieson Electroexplosive primer ignition assembly
US4103619A (en) * 1976-11-08 1978-08-01 Nasa Electroexplosive device
US5544585A (en) 1993-05-05 1996-08-13 Ncs Pyrotechnie Et Technologies Electro-pyrotechnical initiator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737681A (en) * 2016-03-10 2016-07-06 中国振华集团云科电子有限公司 Preparation method for bridge area of film bridge initiator

Also Published As

Publication number Publication date
FR2882814A1 (en) 2006-09-08
EP1853871A1 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
EP2047201B1 (en) Heat flow device
CA1258481A (en) Heating element for a wing-like structure defrosting device, said device, and its manufacture
FR2818795A1 (en) THERMAL ACTUATOR MICRO-DEVICE
EP2795702B1 (en) Current collector made of an amorphous metal
FR2629236A1 (en) METHOD FOR PRODUCING AN ELECTRONIC MEMORY CARD AND CARD AS EXTENDED BY CARRYING OUT SAID METHOD
FR2792764A3 (en) Printed circuit board safety resistance, has thin polymer strip containing conducting particles, conducting elements and insulating films
EP1559296B1 (en) Transparent window with non-transparent contact surface for a soldering bonding
FR2859867A1 (en) Heating unit for cooking apparatus, has plate unit with spring and coupled to electrical conductor unit that is placed in contact with heat resistance of heating unit layer by elastic force exerted by plate unit
JP4638873B2 (en) Laminating element with heating layer
FR2981795A1 (en) FLIP-CHIP HYBRIDIZATION OF MICROELECTRONIC COMPONENTS BY LOCAL HEATING OF CONNECTION ELEMENTS
EP1468960B1 (en) Tunable bimetallic microresonator formed on an isolated flexible beam
WO2006095066A1 (en) Resistive heating element for a pyrotechnic initiator
FR2864233A1 (en) Infrared bolometer e.g. sensor, for e.g. military field, has signal bridge placed between lower and upper substrates to transmit signal from resistor, whose ohmic value varies with infrared heat, of upper substrate to lower substrate
WO2015140294A1 (en) Optical device with deformable membrane having reduced response time
FR2718317A1 (en) Combination of building elements.
FR2904102A1 (en) HEAT FLOW DEVICE
EP3031726A1 (en) Wing element for aircraft
FR2753819A1 (en) Integrated circuit with dual connection modes
FR2511193A1 (en) Laminated support for cooling semiconductor - has three metal layers including one rigid layer to avoid bi-metallic bending with changing temp.
FR3026226A1 (en) CIRCUIT PLATE
EP0291462A2 (en) Integrated-circuit micro probe for detecting certain gases
EP0730058B1 (en) Heating sandwich structure in particular for domestic appliances and domestic appliances with such a structure
EP1638370A1 (en) Heating element forming device
FR2490056A1 (en) Electrically powered heating panel - uses medium resistivity material on heat and electrically insulating base with electric insulator covering to provide uniform heat
EP0855722B1 (en) High energy and/or power dissipation resistor and its method of manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006709276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006709276

Country of ref document: EP