WO2006094441A1 - Systeme de station de base - Google Patents

Systeme de station de base Download PDF

Info

Publication number
WO2006094441A1
WO2006094441A1 PCT/CN2005/002352 CN2005002352W WO2006094441A1 WO 2006094441 A1 WO2006094441 A1 WO 2006094441A1 CN 2005002352 W CN2005002352 W CN 2005002352W WO 2006094441 A1 WO2006094441 A1 WO 2006094441A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
intermediate frequency
iiu
module
interface unit
Prior art date
Application number
PCT/CN2005/002352
Other languages
English (en)
French (fr)
Inventor
Shihe Li
Tiezhu Xu
Hongbo Wang
Liwei Wang
Xiaozhou Chen
Xian Liu
Guoxin Zhao
Jianfeng Wu
Original Assignee
Datang Mobile Communications Equipment Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd filed Critical Datang Mobile Communications Equipment Co., Ltd
Priority to US11/885,948 priority Critical patent/US7962176B2/en
Priority to JP2008500027A priority patent/JP4598118B2/ja
Publication of WO2006094441A1 publication Critical patent/WO2006094441A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the radio access network part includes two main parts of the base station system and the radio network controller, wherein the design of the base station system directly affects the networking mode of the wireless network, the coverage quality of the network, the operation cost of the network construction, and the like. .
  • the following takes the time division-synchronous code division multiple access (TD-SCDMA) system as an example to analyze the importance of the base station system design.
  • TD-SCDMA time division-synchronous code division multiple access
  • FIG. 1 is a schematic structural diagram of a prior art base station system. As shown in FIG. 1, in a TD-SCDMA system, a base station NodeB and a radio network controller (RNC) are connected through a standard Iub interface, and the NodeB includes two parts, indoor and outdoor. :
  • the NodeB outdoor section includes: Amplification Unit (PA&LNA) and Antenna (ANT).
  • PA&LNA receives the analog RF signal output from the indoor part of the base station through the RF cable, and amplifies the signal and transmits it through the ANT; or the PA&LNA receives and amplifies the analog RF signal from the ANT, and transmits the analog RF signal through the RF cable.
  • a radio frequency processing unit (RFU) for the indoor portion of the base station.
  • the NodeB indoor part consists of five parts:
  • the RNC interface unit (RIU) is used to complete the interface function between the NodeB and the RNC; the central control unit (CCU) is used to complete the main control function of the NodeB, and the signaling and service data exchange functions between the units in the NodeB.
  • the data from the RNC is transmitted to the CCU via the RIU, and the data to be uploaded in the NodeB is uploaded by the CCU to the RNC via the RIU;
  • the digital baseband unit (BBU) is used to perform symbol level and chip-level digital signal processing functions of the physical layer, and The digital baseband signals are exchanged between the RFUs;
  • the RFU is used to perform the mutual conversion between the digital baseband signals and the analog RF signals;
  • the clock unit (GPSU) and the GPS antenna (GPS ANT) are used to acquire the global positioning system (GPS) through the GPS ANT.
  • the clock signal and generates a clock signal to be provided to other units within the NodeB.
  • the RFU includes a digital intermediate frequency module and a radio frequency transceiver module.
  • FIG. 2 is a schematic diagram of the RRJ component module and function in FIG. 1.
  • the BBU is connected to the digital intermediate frequency module of the RFU. And transmitting the digital baseband signal between the two; the digital intermediate frequency module of the RFU is connected with the RF processing module of the RFU and transmits the analog intermediate frequency signal therebetween; the RF processing module of the RU is connected with the PA&LNA and the RF cable is connected therebetween Transmit an analog RF signal.
  • the specific functions are described as follows:
  • the RFU's upstream channel means that the RFU receives the analog RF signal from the PA&LNA, and processes the received RF analog signal to transmit the processed digital baseband signal to the BBU.
  • the processing performed by the RFU on the received RF analog signal includes: (1) the RPU RF transceiver module completes the amplification, filtering, gain control, and analog RF signal to analog IF signal conversion of the received RF analog signal from the antenna.
  • the IF signal is subjected to analog/digital (A/D) conversion, digital down conversion, and baseband signal shaping filtering to obtain a digital baseband signal, and the digital baseband signal is transmitted to the BBU.
  • A/D analog/digital
  • the downstream channel of the RFU means that the RFU receives the digital baseband signal from the BBU, and processes the received digital baseband signal to transmit the processed analog RF signal to the PA&LNA.
  • the processing performed by the RFU on the received digital baseband signal includes: (1) the digital intermediate frequency module of the RFU performs shaping filtering, digital up-conversion, and digital/analog (D/A) conversion of the baseband signal on the received digital baseband signal.
  • the RFU transceiver module amplifies, filters, gains, and simulates the IF signal to the analog RF signal The frequency conversion processing, then the amplification, filtering and gain control processing of the analog RF signal obtained by the frequency conversion processing, and finally transmitting the processed analog RF signal to the PA&LNA.
  • the installation distance of the radio frequency transceiver module for covering the cell in the RFU is limited, so that the distance between the indoor part of the base station and the antenna can only be limited.
  • the coverage area capability of the base station depends on the radio frequency transceiver module, and the radio frequency transceiver module of the existing base station system is located in the indoor part, as the coverage of the wireless communication becomes wider and wider, such a base station system is actually applied. In order to reach different areas of coverage, only a large number of base station sites are required to be selected, thereby increasing network operation costs.
  • the design of the existing base station system transmits signals through the radio frequency cable between the indoor part of the base station and the outdoor part of the base station, and the RF cable is relatively heavy, which brings difficulties for engineering installation, in particular, If the base station uses a smart antenna, multiple RF cables need to be installed, which increases the difficulty of installation and increases the cost on the other hand.
  • the main object of the present invention is to provide a base station system capable of improving the coverage capability of a base station and reducing network operation costs.
  • a base station system includes an indoor part and an outdoor part, wherein the indoor part includes an RNC interface unit RIU for performing an interface function between the base station NodeB and the radio network controller RNC, and a clock unit for providing a clock signal to other units in the NodeB GPSU and GPS antenna,
  • RNC interface unit RIU for performing an interface function between the base station NodeB and the radio network controller RNC
  • RNC radio network controller
  • clock unit for providing a clock signal to other units in the NodeB GPSU and GPS antenna
  • the indoor part further includes:
  • the central control unit CCU is configured to complete the main control function of the NodeB and the exchange of signaling and service data between the units in the NodeB;
  • a local interface unit for converting a digital baseband signal from the BBU into an interface signal and transmitting the signal to the remote interface unit, or converting the interface signal from the remote interface unit into a digital baseband signal and outputting the signal to the BBU;
  • a remote interface unit configured to convert an interface signal from the local interface unit into an analog intermediate frequency signal and output the signal to the TRU, or convert the analog intermediate frequency signal from the TRU into an interface signal and transmit the signal to the local interface unit;
  • the local interface unit is a local baseband interface unit BIU-L;
  • the remote interface unit includes a remote baseband interface unit BIU-R and a digital intermediate frequency unit IFU;
  • the BIU-R receives an interface signal from the BIU-L, outputs a digital baseband signal to the IFU, and the IFU converts the received digital baseband signal into Simulating the intermediate frequency signal and outputting to the TRU;
  • the IFU receives the analog intermediate frequency signal from the TRU, outputs a digital baseband signal to the BIU-R, and the BIU-R converts the received digital baseband signal into an interface signal and transmits it to the BIU-L.
  • the interface signal is a digital baseband optical signal.
  • the remote interface unit is a remote intermediate frequency processing unit IIU-R; - the local interface unit includes an IFU and a local intermediate frequency interface unit IIU-L;
  • the IFU receives the digital baseband signal from the BBU, outputs the analog intermediate frequency signal to the IIU-L, and the IIU-L converts the received analog intermediate frequency signal into an interface signal and transmits it to the IIU-R;
  • the IIU-L receives the interface signal from the IIU-R, and outputs the analog IF signal to the IFU.
  • the IFU converts the received analog IF signal into a digital baseband signal and outputs it to the BBU.
  • the interface signal is an analog intermediate frequency signal or an analog intermediate frequency optical signal.
  • the local interface unit further includes an IFU and an IIU-L;
  • the remote interface unit further includes an IIU-R;
  • the IFU receives the digital baseband signal from the BBU, outputs the analog intermediate frequency signal to the IIU-L, and the IIU-L converts the received analog intermediate frequency signal into an interface signal and transmits it to the IIU-R;
  • the IIU-L receives the interface signal from the IIU-R, and outputs the analog IF signal to the IFU.
  • the IFU converts the received analog IF signal into a digital baseband signal and outputs it to the BBU.
  • the interface signal transmitted between the IIU-L and the IIU-R is an analog intermediate frequency signal or an analog intermediate frequency optical signal.
  • the BBU includes: a first digital baseband unit BBU1 and a second digital baseband unit BBU2 for performing processing on the physical layer symbol level and the chip level digital signal, wherein the BBU1 is between the BBU1 and the local interface unit Interacting digital baseband signals; the BBU2 interacts with the digital baseband signals of the local interface unit's IFU.
  • the IIU-L includes:
  • a first up-conversion module configured to frequency-convert the analog intermediate frequency signal from the IFU, and output the analog intermediate frequency signal of the different center frequencies after the frequency conversion to the first combining module;
  • An FSK modulation module configured to modulate an operation and maintenance OM control signal from the CCU to a predetermined fixed frequency, and output the modulated OM control signal to the first combining module;
  • a first combining module configured to superimpose the received signal with a clock signal fclk from the IFU, and output the superimposed analog IF signal to the second branch module of the IIU-R;
  • the first branching module is configured to separate an analog intermediate frequency signal from the second combining module of the IIU-R, and output the separated analog intermediate frequency signals of different center frequencies to the first down conversion module; the first down conversion module , for converting the analog intermediate frequency signal from different center frequencies of the first shunt module, and outputting the converted analog intermediate frequency signal to the IFU of the local interface unit;
  • the IIU-R includes:
  • a second branching module is configured to separate an analog intermediate frequency signal from the first combining module in the ⁇ -L, and output the separated analog intermediate frequency signal to the second down conversion module, and the separated fclk signals are respectively output to the The TRU, the second up-conversion module and the second down-conversion module, and the separated FSK-modulated OM control signal is output to the FSK demodulation module;
  • a second up-conversion module configured to frequency-convert the analog intermediate frequency signal from the TRU, and output the analog intermediate frequency signals of different center frequencies after being converted to the second combining module;
  • a second combining module configured to perform frequency signal superposition on the analog intermediate frequency signal from the second up-conversion module, and transmit the superimposed one analog intermediate frequency signal to the first branching module of the IIU-L;
  • the FSK demodulation module is configured to demodulate the OM control signal modulated by the second branching module, and output the demodulated signal to the TRU.
  • the IIU-L and IIU-R also respectively include an optical transceiver module.
  • the antenna is a single antenna or two antennas or four antennas or eight antennas.
  • the local interface unit and the remote interface unit are connected by a fiber optic cable or an intermediate frequency cable.
  • the indoor portion and one or more remote radio frequency subsystems RRS form a serial connection, a star connection, or a hybrid connection through one or more interface units.
  • the base station system of the present invention is designed to design a radio frequency transceiver module for covering a cell at a remote end, thereby ensuring the design requirement of the distance between the radio frequency transceiver module and the antenna, and increasing the distance between the indoor part and the outdoor part of the base station. Therefore, the indoor part of the base station system and the RRS can be connected by long-distance connection through a light fiber cable or an intermediate frequency cable, thereby reducing the base station site, reducing the network operation cost, and reducing the difficulty of engineering installation;
  • the module can be flexibly distributed with different antennas in different locations.
  • One base station can provide multiple coverage cells through multiple antennas or smart antennas, and the connection between the indoor part and the RRS can be completed by using only one optical cable or analog intermediate frequency cable. It saves network operating costs and reduces engineering costs.
  • connection between the indoor part of the base station and the R S can also be realized by a flexible optical cable or an intermediate frequency cable.
  • FIG. 1 is a schematic structural diagram of a prior art base station system
  • FIG. 3 is a schematic structural diagram of a base station system of the present invention.
  • FIG. 4 is a schematic structural diagram of a base station system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station system according to Embodiment 2 of the present invention.
  • Figure 7 (b) is a schematic diagram of the components and functions of the IIU-L uplink channel in Figure 6;
  • FIG. 8 is a schematic diagram of a connection between an indoor part of a base station and an RRS according to the second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a structure of a third base station system according to an embodiment of the present invention.
  • the core idea of the present invention is: designing a radio frequency transceiver module at a remote end, and separately setting an interface unit in the indoor part of the base station and the RRS to complete signal interaction between the indoor part of the base station system and the RRS, and enhancing the implementation of the base station system. flexibility.
  • FIG. 3 is a schematic structural diagram of a base station system according to the present invention. As shown in FIG. 3, taking a TD-SCDMA system as an example, a NodeB and an RNC are connected through a standard Iub interface.
  • the base station includes an indoor part and an outdoor part consisting of RRS:
  • the RRS includes: a remote interface unit, a radio frequency transceiver unit (TRU), and an ANT.
  • the TRU receives the analog intermediate frequency signal output from the remote interface unit, converts and processes the signal into an analog RF signal and amplifies it and transmits it via the ANT; or the TRU receives and amplifies the analog RF signal from the ANT, and the analog
  • the RF signal is converted and processed into an analog IF signal, and then processed by the remote interface unit, and finally the processed interface signal is sent to the local interface unit of the indoor part of the base station through the optical cable or the intermediate frequency cable.
  • the indoor part of the base station consists of five parts:
  • the RIU is used to complete the interface function between the NodeB and the RNC; the CCU is used to complete the main control function of the NodeB, and the signaling and service data exchange functions between the units in the NodeB, and the data from the RC is transmitted to the CCU through the RIU.
  • the data to be uploaded in the NodeB is uploaded by the CCU to the RNC via the RIU; the BBU is used to perform the symbol level and chip level digital signal processing functions of the physical layer, and interact with the local interface unit with the digital baseband signal; GPSU and GPS ANT, It is used to obtain a GPS clock signal through a GPS ANT, and generate a clock signal to be provided to a unit such as a RIU, a CCU BBU, etc.
  • a local interface unit configured to receive a digital baseband signal from the BBU, and to receive the received signal
  • the number is processed, and the processed interface signal is sent to the remote interface unit of the RRS through an optical cable or an intermediate frequency cable; or the received digital baseband signal is processed after processing the received interface signal from the optical cable or the intermediate frequency cable.
  • the base station system components described below are the same as the components of the existing base station system, and include the uplink channel and the downlink channel.
  • Embodiment 1 Digital baseband remote mode.
  • FIG. 4 is a schematic structural diagram of a base station system according to an embodiment of the present invention, where
  • the local interface unit is a local baseband interface unit (BIU-L).
  • the function of the local interface unit is - (1) in the downstream channel of the local interface unit, the BIU-L receives the digital baseband signal from the BBU, converts the electrical signal into a digital baseband optical signal, and transmits the optical signal to the remote interface Unit, where the interface signal is a digital baseband optical signal; (2) in the upstream channel of the local interface unit, the BIU-L receives the interface signal from the output of the remote interface unit, ie, the digital baseband optical signal, and converts the optical signal into The digital baseband signal is then transmitted to the BBU.
  • the BIU-L can be realized by an optical transceiver module with electric/optical conversion function and optical/electrical conversion function, such as: single mode optical transceiver module PT7320-41 or single mode optical transceiver module PT7320-61.
  • the IFU After being transmitted to the IFU, the IFU performs shaping filtering, digital up-conversion and D/A conversion on the received digital baseband signal to generate an analog intermediate frequency signal, and finally transmits the analog intermediate frequency signal to the TRU; (2) at the far end The uplink channel of the interface unit, the IFU receives the analog intermediate frequency signal from the TRU, and performs A/D conversion, digital down conversion, and baseband signal shaping filtering processing on the signal to generate a digital baseband signal, and transmits the digital baseband signal to the BIU. -R, the BIU-R converts the received digital baseband signal into a digital baseband optical signal by electrical/optical, and transmits the optical signal to the local interface unit.
  • the BIU-R can be realized by an optical transceiver module with electric/optical conversion function and optical/electrical conversion function, such as: single mode optical transceiver module PT7320-41 or single mode optical transceiver module ⁇ 7320-61.
  • the TRU is an RF transceiver module of the existing RFU. Since the RF transceiver module of the RFU itself has the function of amplifying the signal, the original PA&LNA unit is omitted in the present invention.
  • the functions of the TRU are as follows: (1) In the downlink channel of the TRU, the TRU receives the analog IF signal from the IFU, and amplifies, filters, gains, and converts the analog IF signal to the analog RF signal and performs frequency conversion processing on the signal.
  • the obtained analog RF signal is subjected to amplification, filtering and gain control processing, and finally the processed analog RF signal is transmitted to the antenna;
  • the TRU receives the analog RF signal from the antenna and amplifies the signal , filtering, gain control, analog RF signal to analog IF signal frequency conversion processing and amplification, filtering and gain control processing of the analog IF signal obtained after the frequency conversion processing, and finally transmitting the processed analog IF signal to the remote interface unit.
  • the RRS can adopt different antenna coverage methods as needed, such as single antenna coverage, two antenna coverage, four antenna coverage, eight antenna coverage, and the like.
  • optical transceiver devices of different speeds such as electric/optical or optical/electrical conversion chips of different speeds, can be used to complete signal conversion, for example: when single antenna coverage mode is used A low-rate conversion chip can be used; when multi-antenna coverage is used, a high-rate conversion chip can be used.
  • connection modes can be flexibly selected by the digital optical cable through one or more interface units, such as a series connection, a star connection, and a hybrid connection, that is, a serial connection and a star simultaneously Type connection.
  • FIG. 5 is a schematic diagram of a connection between an indoor part of a base station and an RRS according to the structure of the first embodiment of the present invention. It is assumed that there are BBUs that process six carrier frequencies, handle TRUs of three carrier frequencies, and adopt eight-antenna coverage mode, according to The base station structure of the first embodiment of the present invention is as shown in FIG. 5.
  • the remote part of the base station includes two RRSs, and the TRU in each RRS is the above-mentioned TRU that processes three carrier frequencies, and the base station
  • the digital baseband unit of the indoor part is composed of the above-mentioned BBUs that process six carrier frequencies, and the BBU is connected to two BIU-Ls, and the two BIU-Ls are respectively connected to the BIU-Rs of the two RRSs through the optical cable, and each BIU- R is connected to the TRU in the respective RRS to which it belongs.
  • the base station room The inner part forms a star connection with the two RRSs, that is, one base station covers two different areas by two remote RRSs, and the two RRSs cover different areas by eight antenna coverage respectively. .
  • Embodiment 2 The intermediate frequency is extended.
  • the local interface unit consists of an IFU and a local IF interface unit (IIU-L).
  • IFU is the digital IF module of the existing RFU;
  • IIU-L consists of two parts: the downlink channel and the uplink channel: as shown in Figure 7 (a) and Figure 7 (b) respectively.
  • Figure 7 (a) is a schematic diagram of the components and functions of the IIU-L downlink channel in Figure 6.
  • the composition of the IIU-L downstream channel is as follows:
  • the IIU-L is connected to the remote intermediate frequency interface unit (IIU-R) located at the RRS, the IIU-L is connected by the first up-conversion module, the frequency shift keying (FSK) modulation module and the first combining module.
  • Composition If the cable is connected between the IIU-L and the IIU-R, the IIU-L is composed of a first up-conversion module, a FSK modulation module, a first combining module and an electric/optical conversion module.
  • the function of each component module is:
  • a first up-conversion module configured to frequency-convert the center frequency of the analog intermediate frequency signal of the IFU from the local interface unit to a different center frequency based on the frequency of the clock signal fclk of the IFU from the local interface unit, and convert the frequency
  • the analog intermediate frequency signal is transmitted to the first combining module.
  • the clock signal fclk can be sent to the BBU by the GPSU as shown in FIG. 6, and then transmitted to the IFU by the BBU; or can be directly sent by the GPSU to the IFU;
  • the FSK modulation module is configured to modulate an operation and maintenance (OM) control signal from the CCU to a predetermined fixed frequency, and transmit the modulated OM control signal to the combining module.
  • OM control signal can be used to control whether the TRU initiates radio frequency processing, etc.
  • a first combining module configured to receive an fclk signal of the IFU from the local interface unit, an up-converted analog intermediate frequency signal, and an FSK-modulated OM control signal, and perform frequency signal superposition on the received signal, and superimpose the signal
  • the analog IF signal of one channel is transmitted to the IIU-R via the intermediate frequency cable, or converted into an optical signal by the electric/optical conversion module, and then transmitted to the IIU-R via the optical cable.
  • Figure 7 (b) is a schematic diagram of the components and functions of the IIU-L upstream channel in Figure 6. As can be seen from Figure 7 (b), the composition of the IIU-L upstream channel is as follows:
  • a first down conversion module configured to frequency-convert the center frequency of the analog intermediate frequency signal from the different center frequencies of the first branching module to each analog intermediate frequency signal outputted by the IFU based on the frequency of the fclk signal of the IFU from the local interface unit
  • the center frequency, and the converted analog IF signal is transmitted to the IFU of the local interface unit.
  • the IFU in Figure 7 (a) and Figure 7 (b) refers to the same IFU.
  • the remote interface unit is a remote intermediate frequency interface unit (IIU-R).
  • the composition of IIU-R also includes the downlink channel and the uplink channel. It is similar to the upstream channel composition and downlink channel composition of IIU-L as shown in Figure 7 (b) and Figure 7 (a), except in IIU-R.
  • the FSK modulation module is replaced by an FSK demodulation module and is located in the downstream channel for demodulating the FSK-modulated OM control signal from the IIU-L to restore the OM control signal.
  • FSK demodulation is a well-known technique and will not be described in detail.
  • the frequency reference fclk signal of the up-conversion module and the down-conversion module is derived from the fclk signal in the analog intermediate frequency signal separated by the remote interface unit shunt module.
  • the IIU-R downlink channel consists of the following:
  • the FSK demodulation module is configured to demodulate the OM control signal modulated by the second branching module into an original OM control signal and transmit the signal to the TRU.
  • the IIU-R upstream channel consists of the following:
  • the IIU-R is composed of the second up-conversion module and the second combination module; if the cable is connected between the IIU-L and the IIU-R, the IIU-R is The second up-conversion module, the second combination module and the electric/optical conversion module are composed.
  • the function of each component module is:
  • a second up-conversion module configured to frequency-modulate a center frequency of the received analog intermediate frequency signal from the TRU to a different center frequency by using a folk signal from the second branching module as a frequency reference, and simulate the frequency conversion
  • the intermediate frequency signal is transmitted to the second combining module;
  • the combined module of the IIU-L and the branching module of the IIU-R are connected by an intermediate frequency cable; the combined module of the IIU-L and the combined module of the IIU-R pass The intermediate frequency cable is connected.
  • the interface signal transmitted between the IIU-L of the local interface unit of the base station indoors and the IIU-R of the RRS is an analog intermediate frequency electrical signal;
  • the electric/optical conversion module of the IIU-L and the optical/electrical conversion module of the IIU-R are connected by an optical cable; the optical/electrical conversion module of the IIU-L and the IIU-R The electric/optical conversion module is connected by an optical cable.
  • the interface signal transmitted between the IIU-L of the local interface unit of the base station indoors and the IIU-R of the RRS is an analog intermediate frequency optical signal.
  • the TRU is also the RF transceiver module of the existing RFU.
  • the function of the TRU is as described in the first embodiment, and is not repeated here. It is also the conversion and processing between the analog intermediate frequency signal and the analog RF signal.
  • the TRU in the downlink channel, receives the analog intermediate frequency signal output from the down conversion module of the IIU-R, converts the analog intermediate frequency signal into an analog RF signal, and processes and transmits the signal to the antenna;
  • the TRU receives the analog RF signal from the antenna, converts the analog RF signal into an analog IF signal, and processes it for transmission to the IIU-R's up-conversion module.
  • n uplink/downlink frequency conversion modules where n depends on the number of antennas in the antenna coverage mode adopted by the base station in actual applications, and if the base station uses eight antennas Coverage mode, that is, m is equal to eight, then n is equal to m, that is, n is eight, that is, there are eight up/down conversion modules.
  • the above is a base station system implemented by the intermediate frequency remote mode of the present invention. It can be seen from the above solution that the indoor part and the RRS are divided by the analog intermediate frequency signal as a demarcation point, and the indoor part and the RRS can be connected by an optical cable or an intermediate frequency cable. This intermediate frequency remote mode can be used when the distance between the indoor part of the base station and the R S is relatively close.
  • the RRS can adopt different antenna coverage methods as needed, such as single antenna coverage, two antenna coverage, four antenna coverage, and eight antenna coverage.
  • the medium frequency remote mode is adopted, according to different antenna coverage modes, optical transceiver devices of different speeds, such as electric/optical or optical/electrical conversion chips of different speeds, can be used to complete signal conversion.
  • different connection modes can be flexibly selected by the optical cable or the intermediate frequency cable through one or more interface units, such as a serial connection, a star connection, and a hybrid connection, that is, a serial connection and Star connection.
  • the TRU component the digital baseband unit in the indoor part of the base station is composed of two BBUs that handle three carrier frequencies, and two BBUs are connected to the IFU, and the IFU passes through an IIU-L and a remote IIU-R via an intermediate frequency cable or an optical cable. Connected, and the two RRSs are connected by an intermediate frequency cable or fiber optic cable.
  • a serial connection between a base station interior portion and two RRSs is formed. That is to say, one base station covers two different areas by two remote RRSs, and two RRSs cover different areas by four antenna coverage methods, respectively.
  • Embodiment 3 The digital baseband is extended and the intermediate frequency is extended.
  • FIG. 9 is a schematic structural diagram of a structure of a third base station system according to an embodiment of the present invention, where The local interface unit is composed of three units: BIU-L, IFU and IIU-L; the two remote interface units are respectively composed of three units: BIU-R IFU and IIU-R.
  • a base station of the present invention simultaneously supports coverage in a building and coverage of a large area in the remote end, and can achieve coverage in a building by using an RRS with a medium frequency extension, and at the same time, by using a digital baseband Another RRS far away achieves coverage of a large area of the far end.

Description

一种基站系统 技术领域
本发明涉及基站结构设计, 尤指一种基站系统。
背景技术
在无线蜂窝通信系统中, 无线接入网部分包括基站系统和无线网络控制 器两个主要部分, 其中基站系统的设计直接影响到无线网络的组网方式、 网 络的覆盖质量、 建网运营成本等。
下面以时分一同步码分多址(TD-SCDMA) 系统为例, 对基站系统设计 的重要性进行分析。
图 1是现有技术基站系统组成结构示意图, 如图 1所示, 在 TD-SCDMA 系统中,基站 NodeB与无线网络控制器(RNC)之间通过标准 Iub接口连接, NodeB包括室内和室外两部分:
NodeB 室外部分包括: 放大单元 (PA&LNA) 及天线 (ANT)。 其中, PA&LNA通过射频电缆接收来自基站室内部分输出的模拟射频信号, 并将该 信号放大后经 ANT发射出去;或 PA&LNA接收并放大来自 ANT的模拟射频 信号, 并通过射频电缆将该模拟射频信号发送给基站室内部分的射频处理单 元 (RFU)。
NodeB室内部分包括五大部分:
RNC接口单元(RIU), 用于完成 NodeB与 RNC之间的接口功能; 中央 控制单元(CCU), 用于完成 NodeB的主控功能, 以及 NodeB内各单元间信 令、 业务数据的交换功能, 来自 RNC的数据经 RIU传送至 CCU, NodeB中 需要上传的数据由 CCU经 RIU上传给 RNC; 数字基带单元(BBU),用于完 成物理层的符号级和码片级数字信号处理功能,并与 RFU之间交互数字基带 信号; RFU用于完成数字基带信号与模拟射频信号之间的相互转换; 以及时 钟单元 (GPSU) 和 GPS天线 (GPS ANT), 用于通过 GPS ANT获取全球定 位系统(GPS) 时钟信号, 并产生时钟信号提供给 NodeB内的其它各单元。
其中, RFU包括数字中频模块和射频收发模块, 图 2所示是图 1中 RRJ 组成模块及功能示意图, 从图 2可见, BBU与 RFU的数字中频模块相连接 并在二者间传送数字基带信号; RFU的数字中频模块与 RFU的射频处理模块 相连接并在二者间传送模拟中频信号; R U的射频处理模块与 PA&LNA相 连接并在二者间经射频电缆传送模拟射频信号。 具体功能描述如下:
RFU的上行通道, 是指 RFU接收来自 PA&LNA的模拟射频信号, 并对 接收到的射频模拟信号进行处理后, 将处理后的数字基带信号传送给 BBU。 其中 RFU对接收到的射频模拟信号进行的处理包括:( 1 ) RPU的射频收发模 块完成对接收到的来自天线的射频模拟信号进行放大、 滤波、 增益控制、 模 拟射频信号到模拟中频信号的变频处理, 再对变频处理后得到的模拟中频信 号进行放大、滤波及增益控制处理,最后将处理后的模拟中频信号传送给 RFU 的数字中频模块; (2) RFU的数字中频模块对接收到的模拟中频信号进行模 拟 /数字 (A/D) 变换、 数字下变频和基带信号的成形滤波处理得到数字基带 信号后, 将该数字基带信号传送给 BBU。
RFU的下行通道, 是指 RFU接收来自 BBU的数字基带信号, 并对接收 到的数字基带信号进行处理后, 将处理后的模拟射频信号传送给 PA&LNA。 其中 RFU对接收到的数字基带信号进行的处理包括:( 1 ) RFU的数字中频模 块对接收到的数字基带信号进行基带信号的成形滤波、 数字上变频和数字 /模 拟 (D/A)变换后生成模拟中频信号, 并将生成的模拟中频信号传送给 R U 的射频收发模块; (2) RFU的射频收发模块对接收到的模拟中频信号进行放 大、 滤波、 增益控制、 模拟中频信号到模拟射频信号的变频处理, 再对变频 处理得到的模拟射频信号进行放大、 滤波和增益控制处理, 最后将处理后的 模拟射频信号传送给 PA&LNA。
在现有基站系统中, 由于 RFU位于基站的室内部分, 而 RFU中用于覆 盖小区的射频收发模块与天线之间在安装距离上有一定限制, 使得基站的室 内部分与天线的距离只能限制在几十米以内, 并且, 由于基站的覆盖区域能 力取决于射频收发模块, 而现有基站系统的射频收发模块位于室内部分, 随 着无线通信覆盖面越来越广, 这样的基站系统在实际应用中, 要达到覆盖不 同的区域, 只能是要求选择非常多的基站站址, 从而增加了网络运营成本。 另外, 现有基站系统的设计, 在基站室内部分和基站室外部分之间是通过射 频电缆传送信号的, 射频电缆比较粗重, 为工程安装带来了困难, 尤其是, 如果基站采用智能天线时, 需要安装多根射频电缆, 这一方面增加了安装难 度, 另一方面也增加了成本。
发明内容
有鉴于此, 本发明的主要目的在于提供一种基站系统, 该系统能够提高 基站的覆盖能力, 降低网络运营成本。
为达到上述目的, 本发明的技术方案具体是这样实现的:
一种基站系统, 包括室内部分和室外部分, 其中室内部分包括用于完成 基站 NodeB与无线网络控制器 RNC之间接口功能的 RNC接口单元 RIU、用 于为 NodeB内其它单元提供时钟信号的时钟单元 GPSU及 GPS天线,
所述室内部分还包括:
中央控制单元 CCU, 用于完成 NodeB的主控功能以及 NodeB内各单元 间信令、 业务数据的交换;
数字基带单元 BBU,用于完成对物理层符号级和码片级数字信号的处理, 并与本地接口单元之间交互数字基带信号;
本地接口单元,用于将来自 BBU的数字基带信号转换成接口信号后传送 给远端接口单元, 或将来自远端接口单元的接口信号转换成数字基带信号后 输出给 BBU;
所述室外部分为远端射频子系统 RRS, 包括用于收发模拟射频信号的天 线, 还包括:
远端接口单元, 用于将来自本地接口单元的接口信号转换成模拟中频信 号后输出给 TRU, 或将来自 TRU的模拟中频信号转换成接口信号后传送给 本地接口单元;
射频收发单元 TRU, 用于将来自远端接口单元的模拟中频信号转换处理 成模拟射频信号后输出给天线, 或将来自天线的模拟射频信号转换处理成模 拟中频信号后输出给远端接口单元。
所述本地接口单元为本地基带接口单元 BIU-L;
所述远端接口单元包括远端基带接口单元 BIU-R和数字中频单元 IFU; BIU-R接收来自 BIU-L的接口信号, 向 IFU输出数字基带信号, IFU将 接收到的数字基带信号转换成模拟中频信号后输出给所述 TRU; 或 IFU接收来自所述 TRU的模拟中频信号, 向 BIU-R输出数字基带信 号, BIU-R将接收到的数字基带信号转换成接口信号后传送给 BIU-L。
所述接口信号是数字基带光信号。
所述远端接口单元为远端中频处理单元 IIU-R; - 所述本地接口单元包括 IFU和本地中频接口单元 IIU-L;
IFU接收来自 BBU的数字基带信号, 向 IIU-L输出模拟中频信号, IIU-L 将接收到的模拟中频信号转换成接口信号后传送给 IIU-R;
或 IIU-L接收来自 IIU-R的接口信号,向 IFU输出模拟中频信号, IFU将 接收到的模拟中频信号转换成数字基带信号后输出给 BBU。
所述接口信号是模拟中频信号或模拟中频光信号。
所述本地接口单元还包括 IFU和 IIU-L;所述远端接口单元还包括 IIU-R;
IFU接收来自 BBU的数字基带信号, 向 IIU-L输出模拟中频信号, IIU-L 将接收到的模拟中频信号转换成接口信号后传送给 IIU-R;
或 IIU-L接收来自 IIU-R的接口信号,向 IFU输出模拟中频信号, IFU将 接收到的模拟中频信号转换成数字基带信号后输出给 BBU。
所述 BIU-L与 BIU-R之间传送的接口信号是数字基带光信号;
所述 IIU-L与 IIU-R之间传送的接口信号是模拟中频信号或模拟中频光 信号。
所述 BBU包括:用于完成对物理层符号级和码片级数字信号进行处理的 第一数字基带单元 BBU1和第二数字基带单元 BBU2, 其中 BBU1与所述本 地接口单元的 BIU-L之间交互数字基带信号; BBU2与所述本地接口单元的 IFU之间交互数字基带信号。
所述 IIU-L包括:
第一上变频模块, 用于对来自 IFU的模拟中频信号进行变频, 并将变频 后的不同中心频率的模拟中频信号输出给第一合路模块;
FSK调制模块, 用于将来自 CCU的操作维护 OM控制信号调制到规定 的固定频率上, 并将调制后的 OM控制信号输出给第一合路模块;
第一合路模块, 用于将接收到的信号与来自 IFU的时钟信号 fclk进行频 率信号叠加,并将叠加后的一路模拟中频信号输出给 IIU-R的第二分路模块; 第一分路模块, 用于分离来自 IIU-R中第二合路模块的一路模拟中频信 号, 并将分离后的不同中心频率的模拟中频信号输出给第一下变频模块; 第一下变频模块, 用于对来自第一分路模块的不同中心频率的模拟中频 信号进行变频, 并将变频后的模拟中频信号输出给本地接口单元的 IFU;
所述 IIU-R包括:
第二分路模块, 用于分离来自 Πϋ-L中第一合路模块的一路模拟中频信 号, 并将分离后的模拟中频信号输出给第二下变频模块, 分离后的 fclk信号 分别输出给所述 TRU、 第二上变频模块和第二下变频模块, 分离后的经 FSK 调制的 OM控制信号输出给 FSK解调模块;
第二下变频模块, 用于对来自第二分路模块的不同中心频率的模拟中频 信号进行变频, 并将变频后的模拟中频信号输出给所述 TRU;
第二上变频模块,用于对来自所述 TRU的模拟中频信号进行变频, 并将 变频后的不同中心频率的模拟中频信号输出给第二合路模块;
第二合路模块, 用于对来自第二上变频模块的模拟中频信号进行频率信 号叠加, 并将叠加后的一路模拟中频信号传送给 IIU-L的第一分路模块;
FSK解调模块, 用于将来自第二分路模块调制后的 OM控制信号进行解 调, 并将解调信号输出给所述 TRU。
所述第一上变频模块和第一下变频模块分别为一个或一个以上, 第一上 变频模块和第一下变频模块的数目分别等于当前使用的天线数目;
所述第二上变频模块和第二下变频模块分别为一个或一个以上, 第二上 变频模块和第二下变频模块的数目分别等于当前使用的天线数目。
所述 IIU-L和 IIU-R还分别包括光收发模块,
分别接收来自 IIU-L中第一合路模块和 IIU-R中第二合路模块的一路模 拟中频信号, 并输出模拟中频光信号给光缆;
或是分别接收来自光缆的一路模拟中频光信号, 并分别输出模拟中频信 号给 IIU-L的第一分路模块和 IIU-R的第二分路模块。
所述 BIU-L是光收发模块; 所述 BIU-R是光收发模块。
所述天线为单天线或两天线或四天线或八天线。
所述接口信号是: 数字基带光信号和 /或模拟中频信号; 或数字基带光信 号和 /或模拟中频光信号。
所述本地接口单元与远端接口单元之间通过光缆或中频电缆连接。
所述室内部分与一个或一个以上远端射频子系统 RRS通过一个或一个以 上接口单元构成串型连接、 星型连接或混合型连接。
由上述技术方案可见, 本发明这种基站系统, 分别在基站室内部分和由 远端射频子系统 (RRS) 构成的室外部分增加接口单元, 并通过接口单元完 成室内部分与 RRS之间的信号交互。 其中室内部分包括 RIU、 CCU, BBU、 GPSU和 GPS ANT, 及本地接口单元; RRS由远端接口单元、 射频收发单元 (TRU)和天线组成, 省去原有的 PA&LNA。 本地接口单元和远端接口单元 是用于完成基站的室内部分与 RRS之间信号连接交互的,两个接口单元之间 可以通过光缆或中频电缆连接; TRU由原有 RFU的射频收发模块组成,完成 模拟中频信号与模拟射频信号之间的相互转换。 本发明基站系统的设计, 将 用于覆盖小区的射频收发模块设计在远端, 一方面保证了射频收发模块与天 线之间距离的设计要求, 同时增加了基站室内部分与室外部分之间的距离, 使得基站系统室内部分与 RRS之间可以通过轻巧的光缆或中频电缆进行长距 离连接, 从而减少了基站站址, 减少了网络运营成本, 也降低了工程安装难 度; 另一方面, 因为射频收发模块可以灵活地随天线分布在不同的地点, 一 个基站可以通过多天线或智能天线提供多个覆盖小区, 且只需用一根光缆或 模拟中频电缆即可完成室内部分与 RRS之间的连接, 节省了网络运营成本, 同时也减少了工程成本。
另外, 根据实际情况, 通过对接口单元的不同设计, 可以采用数字基带 拉远和中频拉远两种不同的实现方式。同时对于基站室内部分与 R S之间的 连接, 也可以灵活光缆或中频电缆来实现。
附图说明
图 1是现有技术基站系统组成结构示意图;
图 2是图 1中 RFU组成模块及功能示意图;
图 3是本发明基站系统组成结构示意图;
图 4是本发明实施例一基站系统组成结构示意图;
图 5是本发明基于实施例一结构的一种基站室内部分与 RRS之间的连接 示意图;
图 6是本发明实施例二基站系统组成结构示意图;
图 Ί (a)是图 6中本地中频接口单元(IIU-L)下行通道组成模块及功能 示意图;
图 7 (b) 是图 6中 IIU-L上行通道组成模块及功能示意图;
图 8是本发明基于实施例二结构的一种基站室内部分与 RRS之间的连接 示意图;
图 9是本发明实施例三基站系统组成结构示意图。
具体实施方式
本发明的核心思想是: 将射频收发模块设计在远端, 并通过在基站室内 部分和 RRS中分别设置接口单元, 来完成基站系统室内部分和 RRS之间的 信号交互, 增强了基站系统实现的灵活性。
图 3是本发明基站系统组成结构示意图, 如图 3所示, 以 TD-SCDMA 系统为例, NodeB与 RNC之间通过标准 Iub接口连接。基站包括室内部分和 由 RRS构成的室外部分:
其中, RRS包括: 远端接口单元、射频收发单元(TRU)和 ANT。其中, TRU接收来自远端接口单元输出的模拟中频信号, 并将该信号转换、 处理成 模拟射频信号并放大后经 ANT发射出去;或 TRU接收并放大来自 ANT的模 拟射频信号, 并将该模拟射频信号转换、 处理成模拟中频信号, 再通过远端 接口单元的处理, 最后将处理后的接口信号通过光缆或中频电缆发送给基站 室内部分的本地接口单元。
基站室内部分包括五大部分:
RIU,用于完成 NodeB与 RNC之间的接口功能; CCU,用于完成 NodeB 的主控功能, 以及 NodeB内各单元间信令、业务数据的交换功能,来自 R C 的数据经 RIU传送至 CCU, NodeB中需要上传的数据由 CCU经 RIU上传给 RNC; BBU, 用于完成物理层的符号级和码片级数字信号处理功能, 并与本 地接口单元之间交互数字基带信号; GPSU和 GPS ANT, 用于通过 GPS ANT 获取 GPS时钟信号, 并产生时钟信号提供给 NodeB内的 RIU、 CCU BBU 等单元; 本地接口单元, 用于接收来自 BBU的数字基带信号, 对接收到的信 号进行处理,并将处理后的接口信号通过光缆或中频电缆发送给 RRS的远端 接口单元; 或对接收到的来自光缆或中频电缆的接口信号进行处理后, 将处 理得到的数字基带信号传送给 BBU。
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举 较佳实施例, 对本发明进一步详细说明。
以下描述的基站系统组成单元与现有基站系统的组成单元一样, 均包括 上行通道和下行通道两部分。
实施例一: 数字基带拉远方式。
图 4是本发明实施例一基站系统组成结构示意图, 其中,
本地接口单元为本地基带接口单元 (BIU-L)。 本地接口单元的功能是- ( 1 )在本地接口单元的下行通道, BIU-L接收来自 BBU的数字基带信号, 将该电信号转变成数字基带光信号, 并将该光信号传送给远端接口单元, 此 时接口信号是数字基带光信号; (2)在本地接口单元的上行通道, BIU-L接 收来自远端接口单元输出的接口信号, 即数字基带光信号, 并将该光信号转 换成数字基带电信号后传送给 BBU。 BIU-L可通过具有电 /光转换功能和光 / 电转换功能的光收发模块来实现, 如: 单模光收发模块 PT7320-41或单模光 收发模块 PT7320-61。
远端接口单元由远端基带接口单元(BIU-R)和数字中频单元(IFU)组 成, 其中, IFU为现有 RFU的数字中频模块。 远端接口单元的功能是: (1 ) 在远端接口单元的下行通道, BIU-R接收来自本地接口单元的数字基带光信 号,并将该光信号转换成数字基带信号,即数字基带电信号后传送给 IFU, IFU 对接收到的数字基带信号进行基带信号的成形滤波、 数字上变频和 D/A变换 后生成模拟中频信号, 最后将该模拟中频信号传送给 TRU; (2)在远端接口 单元的上行通道, IFU接收来自 TRU的模拟中频信号, 并对该信号进行 A/D 变换、 数字下变频和基带信号的成形滤波处理后生成数字基带信号, 并将该 数字基带信号传送给 BIU-R, BIU-R将接收到的数字基带信号经电 /光转换成 数字基带光信号后, 将该光信号传送给本地接口单元。 BIU-R可通过具有电 / 光转换功能和光 /电转换功能的光收发模块来实现, 如: 单模光收发模块 PT7320-41或单模光收发模块 ΡΤ7320-61。 TRU为现有 RFU的射频收发模块, 由于 RFU的射频收发模块本身具有 对信号进行放大的功能,所以,在本发明中省去了原有的 PA&LNA单元。 TRU 的功能是: (1 ) 在 TRU的下行通道, TRU接收来自 IFU的模拟中频信号, 并对该信号进行放大、 滤波、 增益控制、 模拟中频信号到模拟射频信号的变 频处理和对变频处理后得到的模拟射频信号进行放大、滤波和增益控制处理, 最后将处理后的模拟射频信号传送给天线; (2) 在 TRU 的上行通道, TRU 接收来自天线的模拟射频信号, 并对该信号进行放大、 滤波、 增益控制、 模 拟射频信号到模拟中频信号的变频处理和对变频处理后得到的模拟中频信号 进行放大、 滤波及增益控制处理, 最后将处理后的模拟中频信号传送给远端 接口单元。
以上是本发明采用数字基带拉远方式实现的基站系统,从上述方案可见, 本实施例以数字基带信号为分界点划分室内部分和 RRS, 在室内部分与 RRS 之间可以通过光缆连接。 当基站室内部分与 RRS之间距离较远时, 可以采用 这种数字基带拉远方式。
另外, RRS可以根据需要采用不同的天线覆盖方式, 如单天线覆盖、 两 天线覆盖、 四天线覆盖、 八天线覆盖等。 在采用数字基带拉远方式时, 根据 不同的天线覆盖方式, 可以采用不同速率的光收发器件, 如不同速率的电 /光 或光 /电转换芯片, 完成信号转换, 比如: 单天线覆盖方式时, 可以采用低速 率的转换芯片; 多天线覆盖方式时, 可采用高速率的转换芯片。 基站室内部 分与一个或一个以上 RRS之间可通过一个或一个以上接口单元经数字光缆灵 活选择不同的连接方式, 如串型连接、 星型连接和混合型连接, 即同时有串 型连接和星型连接。
图 5是本发明基于实施例一结构的一种基站室内部分与 RRS之间的连接 示意图, 假设有处理六个载频的 BBU, 处理三个载频的 TRU, 且采用八天线 覆盖方式, 按照本发明实施例一的基站结构, 如图 5所示, 在数字基带拉远 方式下, 基站拉远部分包括两个 RRS, 每个 RRS中的 TRU为上述处理三个 载频的 TRU, 该基站室内部分的数字基带单元由上述处理六个载频的 BBU 组成, 该 BBU与两个 BIU-L相连接, 两个 BIU-L分别与两个 RRS的 BIU-R 通过光缆连接, 每个 BIU-R与各自所属 RRS中的 TRU相连。 这样, 基站室 内部分与两个 RRS之间构成星型连接方式,也就是说,通过两个拉远的 RRS 使一个基站覆盖了两个不同的区域,且两个 RRS分别通过八天线覆盖方式覆 盖不同的区域。
实施例二: 中频拉远方式。
图 6是本发明实施例二基站系统组成结构示意图, 其中,
本地接口单元由 IFU和本地中频接口单元(IIU-L)组成。 其中, IFU为 现有 RFU的数字中频模块; IIU-L的组成包括下行通道和上行通道两部分: 分别如图 7 (a) 和图 7 (b) 所示。
图 7 (a) 是图 6中 IIU-L下行通道组成模块及功能示意图。 从图 7 (a) 可见, IIU-L下行通道的组成如下:
若 IIU-L与位于 RRS的远端中频接口单元(IIU-R)之间采用中频电缆连 接, IIU-L由第一上变频模块、 频移键控(FSK)调制模块和第一合路模块组 成; 若 IIU-L与 IIU-R之间采用光缆连接, IIU-L由第一上变频模块、 FSK调 制模块、 第一合路模块和电 /光转换模块组成。 各组成模块功能为:
第一上变频模块, 用于以来自本地接口单元的 IFU的时钟信号 fclk的频 率为基准, 将来自本地接口单元的 IFU的模拟中频信号的中心频率变频到不 同的中心频率, 并将变频后的模拟中频信号传送给第一合路模块。 这里, 时 钟信号 fclk可以如图 6所示, 由 GPSU下发给 BBU, 再由 BBU传送给 IFU; 也可以直接由 GPSU下发给 IFU;
FSK调制模块, 用于将来自 CCU的操作维护 (OM)控制信号调制到规 定的某固定频率上, 并将调制好的 OM控制信号传送给合路模块。 OM控制 信号可用于控制 TRU是否启动射频处理等;
第一合路模块, 用于接收来自本地接口单元的 IFU的 fclk信号、 经上变 频后的模拟中频信号和经 FSK调制的 OM控制信号,对接收到的信号进行频 率信号叠加,并将叠加后的一路模拟中频信号经中频电缆传送给 IIU-R,或经 过电 /光转换模块转换成光信号后经光缆传送给 IIU-R。
图 7 (b) 是图 6中 IIU-L上行通道组成模块及功能示意图。 从图 7 (b) 可见, IIU-L上行通道的组成如下:
若 IIU-L与 IIU-R之间釆用中频电缆连接, IIU-L由第一分路模块和第一 下变频模块组成;若 IIU-L与 IIU-R之间采用光缆连接, IIU-L由光 /电转换模 块、 第一分路模块和第一下变频模块组成。 各组成模块功能为- 第一分路模块, 用于接收来自 IIU-R的第二合路模块的一路模拟中频信 号, 并对该模拟中频信号进行频率信号分离后将分离后的模拟中频信号传送 给第一下变频模块;
第一下变频模块, 用于以来自本地接口单元的 IFU的 fclk信号的频率为 基准, 将来自第一分路模块的不同中心频率的模拟中频信号的中心频率变频 为 IFU输出的各模拟中频信号的中心频率, 并将变频后的模拟中频信号传送 给本地接口单元的 IFU。
图 7 (a) 与图 7 (b) 中的 IFU指的是同一个 IFU。
这里, 变频或称混频、 FSK调制和频率信号叠加 /分离均属公知技术, 不 再做详细描述, 而强调的是本发明基站系统的一种实现方式。
远端接口单元为远端中频接口单元(IIU-R)。 IIU-R的组成同样包括下行 通道和上行通道两部分, 与如图 7 (b)和图 7 (a)所示的 IIU-L的上行通道 组成和下行通道组成类似, 只是在 IIU- R中, FSK调制模块由 FSK解调模块 替换, 位于下行通道中, 用于解调来自 IIU-L的经过 FSK调制的 OM控制信 号,还原 OM控制信号。这里 FSK解调属公知技术,不再做详细描述。另外, 在远端接口单元中, 上变频模块和下变频模块的频率基准 fclk信号来自远端 接口单元分路模块分离出的模拟中频信号中的 fclk信号。
具体讲, IIU-R下行通道组成如下:
若 IIU-L与 IIU-R之间采用中频电缆连接, IIU-R由第二分路模块、 第二 下变频模块和 FSK解调模块组成;若 IIU-L与 IIU-R之间采用光缆连接, IIU-R 由光 /电转换模块、第二分路模块、第二下变频模块和 FSK解调模块组成。各 组成模块功能为:
第二分路模块, 用于接收来自 IIU-L的第一合路模块的一路模拟中频信 号, 并对该模拟中频信号进行频率信号分离, 将分离后的模拟中频信号传送 给第二下变频模块, 分离后的 fclk信号分别传送给所述 TRU、 第二上变频模 块和第二下变频模块, 分离后的经 FSK调制的 OM控制信号传送给 FSK解 调模块; 第二下变频模块, 用于以来自第二分路模块的 fclk信号的频率为基准, 对接收到的来自第二分路信号的模拟中频信号进行变频, 将来自第二分路模 块的不同中心频率的模拟中频信号的中心频率变频为原有中心频率, 并将变 频后的模拟中频信号传送给所述 TRU;
FSK解调模块, 用于将来自第二分路模块调制后的 OM控制信号解调成 原 OM控制信号, 并传送给所述 TRU。
IIU-R上行通道组成如下:
若 IIU-L与 IIU-R之间采用中频电缆连接, IIU-R由第二上变频模块和第 二合路模块组成; 若 IIU-L与 IIU-R之间采用光缆连接, IIU-R由第二上变频 模块、 第二合路模块和电 /光转换模块组成。 各组成模块功能为:
第二上变频模块, 用于以来自第二分路模块的 folk信号为频率基准, 将 接收到的来自所述 TRU的模拟中频信号的中心频率变频到不同的中心频率, 并将变频后的模拟中频信号传送给第二合路模块;
第二合路模块,用于接收来自第二上变频模块的变频后的模拟中频信号, 并对接收到的信号进行频率信号叠加, 最后将叠加后的一路模拟中频信号传 送给 IIU-L的第一分路模块。
IIU-R与 IIU-L的接口是这样连接的:
若基站室内部分和 RRS 之间采用中频电缆连接, IIU-L 的合路模块与 IIU-R的分路模块通过中频电缆相连接; IIU-L的分路模块与 IIU-R的合路模 块通过中频电缆相连接,此时,在基站室内部分本地接口单元的 IIU-L与 RRS 的 IIU-R之间传送的接口信号是模拟中频电信号;
若基站室内部分和 RRS 之间采用光缆连接, IIU-L 的电 /光转换模块与 IIU-R的光 /电转换模块通过光缆相连接; IIU-L的光 /电转换模块与 IIU-R的电 /光转换模块通过光缆相连接, 此时, 在基站室内部分本地接口单元的 IIU-L 与 RRS的 IIU-R之间传送的接口信号是模拟中频光信号。
TRU同样为现有 RFU的射频收发模块。 TRU的功能如实施例一所述, 这里不再重复, 也是模拟中频信号与模拟射频信号之间的转换和处理。只是, 本实施例中, 在下行通道, TRU接收的是来自 IIU-R的下变频模块输出的模 拟中频信号, 将该模拟中频信号转换为模拟射频信号并处理后传送给天线; 在上行通道, TRU接收来自天线的模拟射频信号, 将该模拟射频信号转换为 模拟中频信号并处理后传送给 IIU-R的上变频模块。
另外, 从图 7 (a) 和图 7 (b) 可以看出, 上 /下行变频模块有 n个, 这 里 n取决于实际应用中基站采用的天线覆盖方式下天线数目 m, 若基站采用 八天线覆盖方式, 即 m等于八, 则 n等于 m, 即 n取值为八, 即有八个上 / 下行变频模块。
以上是本发明采用中频拉远方式实现的基站系统, 从上述方案可见, 本 实施例以模拟中频信号为分界点划分室内部分和 RRS,在室内部分与 RRS之 间可以通过光缆或中频电缆连接。在基站室内部分与 R S之间距离较近时可 以采用这种中频拉远方式。
同样, 中频拉远方式下, RRS可以根据需要采用不同的天线覆盖方式, 如单天线覆盖、 两天线覆盖、 四天线覆盖、 八天线覆盖等。 在采用中频拉远 方式时, 根据不同的天线覆盖方式, 可以采用不同速率的光收发器件, 如不 同速率的电 /光或光 /电转换芯片,完成信号转换。室内基站与一个或一个以上 RRS之间可通过一个或一个以上接口单元经光缆或中频电缆灵活选择不同的 连接方式, 如串型连接、 星型连接和混合型连接, 即同时有串型连接和星型 连接。
图 8是本发明基于实施例二结构的一种基站室内部分与 RRS之间的连接 示意图, 假设远端的每个 TRU处理三个载频, 采用四天线覆盖方式; 每个 BBU完成三个载频的基带处理。 按照本发明实施例二的基站结构, 如图 8所 示, 在中频拉远方式下, 若 IFU处理三载频八天线, 那么, 基站拉远部分的 每个 RRS由一个上述处理三个载频的 TRU组成, 基站室内部分的数字基带 单元由两个上述处理三个载频的 BBU组成,且两个 BBU与 IFU相连接, IFU 通过一个 IIU-L和远端 IIU-R经中频电缆或光缆连接, 而两个 RRS之间通过 中频电缆或光缆连接。 这样, 一个基站室内部分与两个 RRS之间构成串型连 接方式。也就是说,通过两个拉远的 RRS使一个基站覆盖了两个不同的区域, 且两个 RRS分别通过四天线覆盖方式覆盖不同的区域。
实施例三: 数字基带拉远加中频拉远方式。
图 9是本发明实施例三基站系统组成结构示意图, 其中, 本地接口单元由 BIU-L、 IFU和 IIU-L三个单元组成; 两个远端接口单元 均分别由 BIU-R IFU和 IIU-R三个单元组成。
另外室内部分还包括: RIU、 CCU, BBU1、 BBU2和 GPSU, 这里需要 说明一点, 在本实施例中, 室内部分的 BIU-L和 IFU可以如图 9所示各自分 别对应一个 BBU, δ卩 BBU1和 BBU2的组成和功能一致, 也可以共用一个 BBU; R S还包括 TRU。
从本实施例的组成结构来看, 在实际应用中, 这样的基站系统的结构会 更灵活。 同一种基站结构支持两种拉远方式, 使用者可以根据基站室内部分 与 RRS之间的距离, 灵活选择拉远方式, 比如, 距离比较短, 可以使用中频 拉远, 采用中频电缆, 价格便宜。 另外使用者也可以根据光纤模块价格, 灵 活选择拉远方式, 比如模拟光纤模块便宜, 可以采用中频拉远方式; 数字光 纤模块便宜, 则可以选择数字基带拉远方式等。 具体来讲, 比如一个本发明 的基站同时支持一个楼宇内的覆盖和远端的一个大范围区域的覆盖, 可以通 过采用中频拉远的一个 RRS实现楼宇内的覆盖, 而同时通过采用数字基带拉 远的另一个 RRS实现远端的一个大范围区域的覆盖。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。

Claims

权利 要 求 书
1. 一种基站系统, 包括室内部分和室外部分, 其中室内部分包括用于完 成基站 NodeB与无线网络控制器 RNC之间接口功能的 R C接口单元 RIU、 用于为 NodeB内其它单元提供时钟信号的时钟单元 GPSU及 GPS天线, 其 特征在于,
所述室内部分还包括- 中央控制单元 CCU, 用于完成 NodeB的主控功能以及 NodeB内各单元 间信令、 业务数据的交换;
数字基带单元 BBU,用于完成对物理层符号级和码片级数字信号的处理, 并与本地接口单元之间交互数字基带信号;
本地接口单元,用于将来自 BBU的数字基带信号转换成接口信号后传送 给远端接口单元, 或将来自远端接口单元的接口信号转换成数字基带信号后 输出给 BBU;
所述室外部分为远端射频子系统 RRS, 包括用于收发模拟射频信号的天 线, 还包括:
远端接口单元, 用于将来自本地接口单元的接口信号转换成模拟中频信 号后输出给 TRU, 或将来自 TRU的模拟中频信号转换成接口信号后传送给 本地接口单元;
射频收发单元 TRU, 用于将来自远端接口单元的模拟中频信号转换处理 成模拟射频信号后输出给天线, 或将来自天线的模拟射频信号转换处理成模 拟中频信号后输出给远端接口单元。
2.根据权利要求 1所述的系统, 其特征在于,
所述本地接口单元为本地基带接口单元 BIU-L;
所述远端接口单元包括远端基带接口单元 BIU-R和数字中频单元 IFU;
BIU-R接收来自 BIU-L的接口信号, 向 IFU输出数字基带信号, IFU将 接收到的数字基带信号转换成模拟中频信号后输出给所述 TRU;
或 IFU接收来自所述 TRU的模拟中频信号, 向 BIU-R输出数字基带信 号, BIU-R将接收到的数字基带信号转换成接口信号后传送给 BIU-L。
3.根据权利要求 2所述的系统, 其特征在于, 所述接口信号是数字基带 光信号。
4.根据权利要求 1所述的系统, 其特征在于,
所述远端接口单元为远端中频处理单元 IIU-R;
所述本地接口单元包括 IFU和本地中频接口单元 IIU-L;
IFU接收来自 BBU的数字基带信号, 向 IIU-L输出模拟中频信号, IIU-L 将接收到的模拟中频信号转换成接口信号后传送给 IIU-R;
或 IIU-L接收来自 IIU-R的接口信号,向 IFU输出模拟中频信号, IFU将 接收到的模拟中频信号转换成数字基带信号后输出给 BBU。
5.根据权利要求 4所述的系统, 其特征在于, 所述接口信号是模拟中频 信号或模拟中频光信号。
6.根据权利要求 2所述的系统, 其特征在于,
所述本地接口单元还包括 IFU和 IIU-L;所述远端接口单元还包括 IIU-R;
IFU接收来自 BBU的数字基带信号, 向 IIU-L输出模拟中频信号, IIU-L 将接收到的模拟中频信号转换成接口信号后传送给 IIU-R;
或 IIU-L接收来自 IIU-R的接口信号, 向 IFU输出模拟中频信号, IFU将 接收到的模拟中频信号转换成数字基带信号后输出给 BBU。
7.根据权利要求 6所述的系统, 其特征在于- 所述 BIU-L与 BIU-R之间传送的接口信号是数字基带光信号;
所述 IIU-L与 IIU-R之间传送的接口信号是模拟中频信号或模拟中频光 信号。
8. 根据权利要求 6所述的系统, 其特征在于, 所述 BBU包括: 用于完 成对物理层符号级和码片级数字信号进行处理的第一数字基带单元 BBU1和 第二数字基带单元 BBU2, 其中 BBU1与所述本地接口单元的 BIU-L之间交 互数字基带信号; BBU2与所述本地接口单元的 IFU之间交互数字基带信号。
9.根据权利要求 4或 6所述的系统, 其特征在于,
所述 IIU-L包括:
第一上变频模块, 用于对来自 IFU的模拟中频信号进行变频, 并将变频 后的不同中心频率的模拟中频信号输出给第一合路模块; FSK调制模块, 用于将来自 CCU的操作维护 OM控制信号调制到规定 的固定频率上, 并将调制后的 OM控制信号输出给第一合路模块;
第一合路模块, 用于将接收到的信号与来自 IFU的时钟信号 fclk进行频 率信号叠加, 并将叠加后的一路模拟中频信号输出给 IIU-R的第二分路模块; 第一分路模块, 用于分离来自 IIU-R中第二合路模块的一路模拟中频信 号, 并将分离后的不同中心频率的模拟中.频信号输出给第一下变频模块; 第一下变频模块, 用于对来自第一分路模块的不同中心频率的模拟中频 信号进行变频, 并将变频后的模拟中频信号输出给本地接口单元的 IFU; 所述 IIU-R包括:
第二分路模块, 用于分离来自 IIU-L中第一合路模块的一路模拟中频信 号, 并将分离后的模拟中频信号输出给第二下变频模块, 分离后的 fdk信号 分别输出给所述 TRU、 第二上变频模块和第二下变频模块, 分离后的经 FSK 调制的 OM控制信号输出给 FSK解调模块;
第二下变频模块, 用于对来自第二分路模块的不同中心频率的模拟中频 信号进行变频, 并将变频后的模拟中频信号输出给所述 TRU;
第二上变频模块, 用于对来自所述 TRU的模拟中频信号进行变频, 并将 变频后的不同中心频率的模拟中频信号输出给第二合路模块;
第二合路模块, 用于对来自第二上变频模块的模拟中频信号进行频率信 号叠加, 并将叠加后的一路模拟中频信号传送给 IIU-L的第一分路模块;
FSK解调模块, 用于将来自第二分路模块调制后的 OM控制信号进行解 调, 并将解调信号输出给所述 TRU。
10. 根据权利要求 9所述的系统, 其特征在于- 所述第一上变频模块和第一下变频模块分别为一个或一个以上, 第一上 变频模块和第一下变频模块的数目分别等于当前使用的天线数目;
所述第二上变频模块和第二下变频模块分别为一个或一个以上, 第二上 变频模块和第二下变频模块的数目分别等于当前使用的天线数目。
11.根据权利要求 9所述的系统, 其特征在于, 所述 IIU-L和 IIU-R还分 别包括光收发模块,
分别接收来自 IIU-L中第一合路模块和 IIU-R中第二合路模块的一路模 拟中频信号, 并输出模拟中频光信号给光缆;
或是分别接收来自光缆的一路模拟中频光信号, 并分别输出模拟中频信 号给 IIU-L的第一分路模块和 IIU-R的第二分路模块。
12.根据权利要求 2或 6所述的系统, 其特征在于, 所述 BIU-L是光收 发模块; 所述 BIU- R是光收发模块。
13.根据权利要求 1 所述的系统, 其特征在于, 所述天线为单天线或两 天线或四天线或八天线。 '
14.根据权利要求 1 所述的系统, 其特征在于, 所述接口信号是: 数字 基带光信号和 /或模拟中频信号; 或数字基带光信号和 /或模拟中频光信号。
15.根据权利要求 1 所述的系统, 其特征在于, 所述本地接口单元与远 端接口单元之间通过光缆或中频电缆连接。
16.根据权利要求 1 所述的系统, 其特征在于, 所述室内部分与一个或 一个以上远端射频子系统 RRS通过一个或一个以上接口单元构成串型连接、 星型连接或混合型连接。
PCT/CN2005/002352 2005-03-07 2005-12-29 Systeme de station de base WO2006094441A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/885,948 US7962176B2 (en) 2005-03-07 2005-12-29 Base station system
JP2008500027A JP4598118B2 (ja) 2005-03-07 2005-12-29 基地局システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005100515719A CN100375550C (zh) 2005-03-07 2005-03-07 一种基站系统
CN200510051571.9 2005-03-07

Publications (1)

Publication Number Publication Date
WO2006094441A1 true WO2006094441A1 (fr) 2006-09-14

Family

ID=36952941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/002352 WO2006094441A1 (fr) 2005-03-07 2005-12-29 Systeme de station de base

Country Status (5)

Country Link
US (1) US7962176B2 (zh)
JP (1) JP4598118B2 (zh)
KR (1) KR100914478B1 (zh)
CN (1) CN100375550C (zh)
WO (1) WO2006094441A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135862A1 (zh) * 2009-05-26 2010-12-02 华为技术有限公司 一种天线装置
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9253003B1 (en) 2014-09-25 2016-02-02 Corning Optical Communications Wireless Ltd Frequency shifting a communications signal(S) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9338823B2 (en) 2012-03-23 2016-05-10 Corning Optical Communications Wireless Ltd Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9813229B2 (en) 2007-10-22 2017-11-07 Corning Optical Communications Wireless Ltd Communication system using low bandwidth wires
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166334B (zh) * 2006-10-18 2010-06-09 中兴通讯股份有限公司 无线通信系统远端射频单元的信息记录的实现方法
CN101188818B (zh) * 2006-11-16 2011-08-10 华为技术有限公司 基站、基站中基带信号处理方法及无线通信系统
CN101014160B (zh) * 2007-02-12 2011-06-08 芯通科技(成都)有限公司 一种用于td-scdma基站中的多芯同轴馈线馈电组合避雷器
CN101325752B (zh) * 2007-06-14 2011-08-03 电信科学技术研究院 基站主设备及其与拉远单元间信号传输的控制方法及系统
CN101106766B (zh) * 2007-07-18 2010-06-02 华为技术有限公司 分布式基站、分布式基站的室内单元和室外单元
CN101394647B (zh) * 2007-09-21 2013-10-02 电信科学技术研究院 一种实现小区组网的方法及系统
CN101272548B (zh) * 2008-04-17 2012-05-30 华为技术有限公司 基站系统及通信网络组网方法
CN101771900B (zh) * 2008-12-26 2012-12-19 中兴通讯股份有限公司 一种eNB的光交换装置及方法
CN101651990B (zh) * 2009-09-09 2014-06-04 华为技术有限公司 一种异地提供小区无线信号的方法、系统及装置
CN101800716B (zh) * 2010-01-19 2013-08-28 华为技术有限公司 提高输出性能的方法和系统及室外单元和室内单元
CN102149224B (zh) 2010-02-05 2014-04-30 华为技术有限公司 数据传输方法、装置及系统
US20130039402A1 (en) * 2010-04-21 2013-02-14 Telefonaktiebolaget L M Ericsson (Publ) Method to get a frequency reference to a base station
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
CN102449845A (zh) * 2010-08-31 2012-05-09 华为技术有限公司 天线装置
EP2544378A3 (en) * 2010-12-08 2014-05-28 Broadcom Corporation Method and system for 60 GHz chipset RF control interface (RF module control interface)
CN102547778B (zh) * 2012-01-06 2014-12-10 京信通信系统(中国)有限公司 一种扁平化网络架构的无线通信系统、方法及扩展装置
CN102547775B (zh) * 2012-02-29 2015-01-07 中邮科通信技术股份有限公司 使用catv线缆进行多种通信信号室内同时覆盖的系统和方法
US9270371B2 (en) 2012-09-11 2016-02-23 Industrial Technology Research Institute Radio frequency signal transceiving device and method thereof, self-optimizing optical transmission device and method thereof
WO2015100576A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 传输数据的方法和装置
WO2015125408A1 (ja) 2014-02-18 2015-08-27 日本電気株式会社 無線通信装置及び通信機器の取り付け構造
CN104363025B (zh) * 2014-11-11 2017-10-17 北京旋极星源技术有限公司 一种移动通信中频拉远系统的射频接收芯片及接收机
US11303346B2 (en) 2015-08-25 2022-04-12 Cellium Technologies, Ltd. Systems and methods for transporting signals inside vehicles
US10027374B1 (en) * 2015-08-25 2018-07-17 Cellium Technologies, Ltd. Systems and methods for wireless communication using a wire-based medium
US10177832B2 (en) * 2015-08-25 2019-01-08 Cellium Technologies, Ltd. Using a coaxial cable for distributing MIMO signals in-house
CN106793180A (zh) * 2015-11-19 2017-05-31 中兴通讯股份有限公司 基站
CN109076641A (zh) * 2016-06-27 2018-12-21 华为技术有限公司 信号处理方法和微波通信设备
CN108207003B (zh) * 2016-12-20 2022-11-29 中兴通讯股份有限公司 无线信号发送、接收方法及装置、无线收发装置
WO2018207014A1 (en) * 2017-05-10 2018-11-15 Cellium Technologies, Ltd. Systems and methods improving communication performance using a wire-based medium
CN108987894B (zh) * 2017-06-05 2021-07-27 中兴通讯股份有限公司 一种天线控制方法和天线装置
CN108847891B (zh) * 2018-05-30 2020-10-13 武汉虹信通信技术有限责任公司 一种光载无线电分布式小基站系统
CN110267278B (zh) * 2019-05-10 2023-01-10 何嘉庆 全网通全实时自适应信号稳定装置
CN112636807B (zh) * 2020-12-29 2023-02-28 京信网络系统股份有限公司 基带拉远传输装置、基站、拉远覆盖单元及无线覆盖系统
CN115514381A (zh) * 2021-06-21 2022-12-23 中兴通讯股份有限公司 一种信号传输方法、传输系统及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281322A (zh) * 1999-07-19 2001-01-24 现代电子产业株式会社 数字移动远程通信系统的收发两用器基站
CN1409563A (zh) * 2001-09-18 2003-04-09 深圳市中兴通讯股份有限公司上海第二研究所 宽带无线接入系统基站装置
CN1571551A (zh) * 2004-05-13 2005-01-26 中兴通讯股份有限公司 一种基站设备结构及备份方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377226A (ja) * 1986-09-20 1988-04-07 Fujitsu Ltd 通信方式
JP3351655B2 (ja) * 1995-05-01 2002-12-03 株式会社東芝 移動通信システム及びこのシステムで使用される共用基地局装置
JPH09102977A (ja) * 1995-10-03 1997-04-15 Mitsubishi Electric Corp 基地局システム
KR100314206B1 (ko) * 1998-12-11 2001-12-28 김용훈 이동통신기지국의디지털전송장치
JP3695999B2 (ja) * 1999-07-29 2005-09-14 三菱電機株式会社 無線方法および無線装置
KR20020055223A (ko) * 2000-12-28 2002-07-08 구자홍 기지국 사이의 디지털 데이터 전송 장치
JP4564182B2 (ja) * 2001-01-18 2010-10-20 株式会社日立国際電気 無線通信装置
KR100400926B1 (ko) * 2001-09-27 2003-10-08 엘지전자 주식회사 통신 시스템의 기지국 수신장치
JP3766397B2 (ja) * 2003-04-24 2006-04-12 埼玉日本電気株式会社 無線基地局システム、及びそれに用いる無線基地局装置と無線送受信部と、その遠隔アンテナ信号伝送制御方法
US20080318589A1 (en) * 2004-03-05 2008-12-25 Sheng Liu Transmission Optimization in a Wireless Base Station System Based on Load-Sharing
WO2006026891A1 (fr) * 2004-09-08 2006-03-16 Utstarcom Telecom Co., Ltd. Systeme de station de base centralisee a base de plate-forme d'architecture atca
US20080214221A1 (en) * 2005-06-14 2008-09-04 Mitsubishi Electric Corporation Radio Base Station System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281322A (zh) * 1999-07-19 2001-01-24 现代电子产业株式会社 数字移动远程通信系统的收发两用器基站
CN1409563A (zh) * 2001-09-18 2003-04-09 深圳市中兴通讯股份有限公司上海第二研究所 宽带无线接入系统基站装置
CN1571551A (zh) * 2004-05-13 2005-01-26 中兴通讯股份有限公司 一种基站设备结构及备份方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813229B2 (en) 2007-10-22 2017-11-07 Corning Optical Communications Wireless Ltd Communication system using low bandwidth wires
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
WO2010135862A1 (zh) * 2009-05-26 2010-12-02 华为技术有限公司 一种天线装置
US8346092B2 (en) 2009-05-26 2013-01-01 Huawei Technologies Co., Ltd. Antenna device
US8965213B2 (en) 2009-05-26 2015-02-24 Huawei Technologies Co., Ltd. Antenna device
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9948329B2 (en) 2012-03-23 2018-04-17 Corning Optical Communications Wireless, LTD Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
US9338823B2 (en) 2012-03-23 2016-05-10 Corning Optical Communications Wireless Ltd Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9253003B1 (en) 2014-09-25 2016-02-02 Corning Optical Communications Wireless Ltd Frequency shifting a communications signal(S) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US9515855B2 (en) 2014-09-25 2016-12-06 Corning Optical Communications Wireless Ltd Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)

Also Published As

Publication number Publication date
US20080317464A1 (en) 2008-12-25
KR20070119022A (ko) 2007-12-18
KR100914478B1 (ko) 2009-08-28
US7962176B2 (en) 2011-06-14
JP2008532443A (ja) 2008-08-14
CN1832593A (zh) 2006-09-13
CN100375550C (zh) 2008-03-12
JP4598118B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2006094441A1 (fr) Systeme de station de base
CN100399842C (zh) 基站设备实现射频拉远的中频传输方法及中频接口
US7174165B2 (en) Integrated wireless local loop (WLL) and wireless local area network (WLAN) transceiver apparatus
JP2952249B2 (ja) マイクロセルラ移動通信システム
JP2901170B2 (ja) 衛星/陸上移動体通信システム統合方式
CN101426210B (zh) 一种td-scdma中频室内分布系统
CN106712851A (zh) 一种分布式无线信号覆盖系统
CN101247162B (zh) 一种模拟中频的td-scdma室内分布系统
US10367572B2 (en) Repeater system and method
CN106162945A (zh) 蜂窝基站设备及其数据传输方法、通信设备和通信系统
CN109286944B (zh) 一种高频5g基站和高频5g基站信号处理方法
WO2016123751A1 (zh) 分布式基站及信号传输方法
CN111726158B (zh) 通信模块、集中器、直放站及微功率无线抄表通信系统
CN101494493A (zh) 一种采用数字微波传输的数字直放站系统
CN107343328B (zh) 一种分布式基站系统
CN105450285B (zh) 一种超短波车载台的中继通信装置
CN201550113U (zh) 一种数字微波移频直放站
CN205356344U (zh) 一种超短波车载台的中继通信装置
CN114614895A (zh) 信号传输方法、多端口转发器、射频拉远单元及分布系统
CN215498977U (zh) 多端口转发器、射频拉远单元及分布系统
JP3695999B2 (ja) 無線方法および無線装置
CN109246651A (zh) 一种便携式自组网系统
US11799501B2 (en) Coverage extension antenna system
US7164707B2 (en) Cellular radio communication system cellular radio communication method and rake reception method
CN108207003A (zh) 无线信号发送、接收方法及装置、无线收发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008500027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1598/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077022706

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05824012

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5824012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885948

Country of ref document: US