WO2006093193A1 - Metal pattern, organic electronic device and process for producing the same - Google Patents

Metal pattern, organic electronic device and process for producing the same Download PDF

Info

Publication number
WO2006093193A1
WO2006093193A1 PCT/JP2006/303887 JP2006303887W WO2006093193A1 WO 2006093193 A1 WO2006093193 A1 WO 2006093193A1 JP 2006303887 W JP2006303887 W JP 2006303887W WO 2006093193 A1 WO2006093193 A1 WO 2006093193A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dae
layer
pattern
organic electronic
Prior art date
Application number
PCT/JP2006/303887
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
Shinichiro Nakamura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2006093193A1 publication Critical patent/WO2006093193A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Definitions

  • the present invention relates to a metal pattern manufacturing method, a metal pattern, and an electrode and an electric circuit using the metal pattern.
  • the present invention also provides organic electoluminescence (hereinafter
  • the present invention relates to various organic electronic devices using organic materials, such as displays and thin film transistors (hereinafter referred to as ⁇ organic TFTs ''), and methods for manufacturing such organic electronic devices. .
  • organic electronic devices such as organic EL displays that sandwich organic thin films with electrodes and inject current by applying voltage between the electrodes to use light emission and other functions. Research and development is active.
  • the organic EL display device includes a first electrode made of a transparent conductor such as ITO provided on a glass substrate, a hole transport layer provided on the first electrode, It consists of an organic layer with a powerful multilayer structure such as an electron transport layer and a light emitting layer, and a second electrode such as A1 and Mg provided on the organic layer.
  • a first electrode made of a transparent conductor such as ITO provided on a glass substrate
  • a hole transport layer provided on the first electrode
  • It consists of an organic layer with a powerful multilayer structure such as an electron transport layer and a light emitting layer
  • a second electrode such as A1 and Mg provided on the organic layer.
  • an electrode pattern corresponding to each pixel is formed.
  • an ITO anode (first electrode) patterned in advance on a glass substrate is used, and if necessary, each pixel is coated by vapor deposition using an organic material strength S metal mask.
  • the second electrode can also be formed by other methods with a force that may be patterned by
  • Patent Document 1 discloses a method for forming a cathode pattern of a nossive organic EL display.
  • a method for forming a cathode pattern of a nossive organic EL display In the method disclosed in Patent Document 1, as described in FIG. 14 of Patent Document 1, an overhanging line partition wall is provided in advance on a substrate, and an organic layer and a cathode metal are deposited thereon. Due to the effect of barrier overhang, the cathode is separated by the barrier during deposition, and a line cathode is automatically formed. That's it.
  • this method requires the provision of barrier ribs on the substrate in advance, which complicates the manufacturing process and has a problem that the degree of freedom in patterning of the cathode is small.
  • Patent Document 2 discloses a method in which a cathode is deposited on the entire surface of an organic layer, and then a film coated with an adhesive material corresponding to a desired pattern is applied and peeled off.
  • a cathode is deposited on the entire surface of an organic layer, and then a film coated with an adhesive material corresponding to a desired pattern is applied and peeled off.
  • this method only the electrodes are not always peeled into a desired pattern, and depending on the adhesive, the organic layer may be damaged.
  • Patent Document 1 JP-A-8-315981
  • Patent Document 2 JP 2004-79373 A
  • the present invention has been made in view of the above-described conventional circumstances, and the object thereof is to create various metal masks, formation of overhanging line partition walls, peeling with an adhesive film, and the like.
  • the purpose is to provide a technology for forming metal patterns such as electrode patterns of various organic electronic devices including the above-mentioned organic EL display devices in a free shape without being caught by constraints.
  • the method for producing a metal pattern of the first aspect is a method of producing a metal pattern on a substrate.
  • a material whose physical properties are changed by light on the substrate hereinafter referred to as "photosensitive material").
  • photosensitive material A material whose physical properties are changed by light on the substrate.
  • a method for producing a metal pattern of a second aspect is a metal pattern formed on a substrate, wherein a layer containing a photosensitive material is provided between the metal layer forming the metal pattern and the substrate. It is characterized by having.
  • the organic electronic device of the third aspect is an organic electronic device having a first electrode and a second electrode, and an organic layer provided between these electrodes, and is between the first electrode and the organic layer.
  • at least one portion between the second electrode and the organic layer has a layer containing 1,2-diarylethenes which may have a substituent in which a non-turn having a different isomerization state is formed. It is characterized by doing.
  • An organic electronic device of a fourth aspect is an organic electronic device having a substrate, a first electrode, an organic layer, and a second electrode, wherein the first electrode and the organic layer are interposed between the substrate and the first electrode. And a layer containing 1,2-diarylethene which may have a substituent, in which at least one portion between the second electrode and the organic layer is formed with a pattern having a different isomerization state. It is characterized by having.
  • the organic electronic device manufacturing method of the fifth aspect may have a substituent compared to the method of manufacturing an organic electronic device that functions by applying a voltage to a layer made of an organic electronic material.
  • An electrode material is applied on the underlayer by a step of forming an underlayer containing 1,2-diarylethene, a step of subjecting the 1,2-diarylethene of the underlayer to an isomeric reaction in a predetermined pattern, and the following. And forming an electrode pattern corresponding to the predetermined pattern.
  • FIG. 1 is a photograph showing the isomeric state of DAE and the adhesion state of magnesium in Experimental Example 1, and FIG. 1 lb is an absorption spectrum showing the ratio of ring-closed molecules of DEA.
  • FIGS. 2a, 2b, 2c, and 2d are explanatory diagrams showing experimental methods in Experimental Example 3, respectively.
  • FIG. 3 is a micrograph showing an undeposited line of magnesium in Experimental Example 3.
  • FIG. 4 is a graph showing voltage-current characteristics of Samples 1 and 2 in Experimental Example 4.
  • FIG. 5 is a graph showing the voltage-current characteristics of Samples 3 and 4 in Experimental Example 4 and Sample 10 in Experimental Example 6.
  • the inventors of the present invention are 1,2-diarylethenes (hereinafter abbreviated as “DAE”), which is a kind of photochromic molecular material.
  • DAE 1,2-diarylethenes
  • DAE may have a substituent.
  • materials that have substituents are also called “DAE”)), and other materials that change their physical properties by light, that is, light-sensitive materials are prominent depending on the state of physical property change such as their isomericity. It has been found that it has an affinity for metals such as magnesium. The inventor therefore pre-
  • an underlayer of a photosensitive material such as AE By forming an underlayer of a photosensitive material such as AE, and changing the physical properties of the photosensitive layer such as DAE into a predetermined pattern such as isomorphism, it is very easy to It has been found that a metal pattern can be formed.
  • the inventor further provides the DAE It has been found that by mixing a carrier transporting material in the underlayer of the photosensitive material such as DAE, it can be used as an underlayer of the photosensitive material such as DAE that also has excellent carrier transportability.
  • an organic device can be formed in a free shape and with high accuracy without being caught by various constraints associated with processes such as formation of a metal mask, formation of overhanging line partition walls, and peeling with an adhesive film. It is possible to form a metal pattern such as an electrode pattern.
  • the metal pattern formed by the present invention can be used for various electronic and electrical equipment electrodes and electrical circuits.
  • an organic electronic device such as an organic EL element, an organic TFT element, an organic memory element, or a semiconductor element.
  • a substrate having a layer containing a photosensitive material that changes its physical properties by light is irradiated with light in a predetermined pattern, and the substrate is subjected to the light irradiation pattern according to the light irradiation pattern.
  • the change in the physical properties controls the metal adhesion or film-forming property, and the metal pattern is formed into a free shape.
  • the mechanism for controlling the adhesion or film-forming property of the metal by changing the physical properties of the light-sensitive material is the metal that has reached the substrate surface on which the metal is to be formed, as shown in the following experimental examples. It is based on the state of mutual molecular motion between atoms (mainly given by vapor deposition mainly in industry) and the substrate surface.
  • Metal atoms can be dissipated without being deposited and deposited on the substrate surface, resulting in no film formation
  • the substrate surface is soft! / Or firm!
  • the state of molecular motion in this way, it leads to whether the molecular motion on the substrate surface is active or not. In other words, it is the level of thermal motion on the substrate surface as seen from the metal atoms.
  • the substrate surface is soft, metal atoms actively move on the surface of the substrate, including the bulk state, and the metal atoms on the substrate surface rarely come into contact with each other due to their activity.
  • the substrate surface is hard, the metal atoms are stably fixed on the substrate surface, and form clusters with neighboring metal atoms in the vicinity, further stabilizing.
  • the dynamic structure of the substrate As an element that determines the hardness and softness of the substrate surface (hereinafter, this physical property is referred to as "the dynamic structure of the substrate") that affects the ease of attachment and deposition of metal atoms.
  • Tg glass transition temperature
  • the metal adhesion and film formation can be controlled by controlling the dynamic structure of the substrate by the temperature of the substrate surface and the like.
  • metal adhesion or film formability is controlled by such a delicate balance between the dynamic structure of the substrate surface and the cluster formability of metal atoms to be deposited.
  • various metal patterns can be formed by controlling the adhesion or film forming properties of metals other than magnesium, such as aluminum and lithium, which will be described later.
  • One representative parameter is the material of the light-sensitive material-containing layer such as DAE, that is, the polymer medium that forms the light-sensitive material-containing layer, the substance impregnated therein, the metal species to be laminated, and Compatibility between them, temperature, etc.
  • the formation principle of the metal pattern in the present invention will be described by exemplifying a case where DAE that is isomerized by light irradiation is used as the photosensitive material. Photosensitive materials other than DAE are described below. Even in the case of using the patterning, it is possible to perform patterning by utilizing the fact that the adhesion property of the metal or the film forming property changes due to the change in physical properties of the photosensitive material due to light irradiation as described above.
  • DAE has two isomers: a closed ring state in which two aryl groups are bonded to form a ring containing a ethene double bond, and a ring-opened state in which these aryl groups are separated. Force Of these, magnesium does not adhere to the ring-open state, and magnesium adheres to the ring-closed state.
  • the electrode can be patterned as follows.
  • a base layer containing DAE is formed on the organic layer of the substrate on which an organic layer for expressing the function of the device is formed in advance, and a pattern corresponding to a desired pattern is formed on the base layer.
  • a base layer containing DAE is formed on the organic layer of the substrate on which an organic layer for expressing the function of the device is formed in advance, and a pattern corresponding to a desired pattern is formed on the base layer.
  • an isomerized state portion of DAE is formed, and an electrode layer is formed thereon by evaporating, for example, magnesium.
  • magnesium adheres to the isomerized state (ring-closed state) and the electrode pattern corresponding to the pattern Can be formed.
  • the isomerized state (open ring state) portion is not included.
  • Magnesium adheres to the outside, and an electrode corresponding to the negative pattern of the pattern can be formed. In this way, it is possible to easily form an electrode pattern with a pattern corresponding to the DAE isomorphism pattern.
  • an electrode pattern corresponding to the electrode pattern can be formed. Therefore, according to the present invention, an electrode pattern having an arbitrary shape including a fine pattern corresponding to a focused spot of the laser beam can be formed. Can be formed with high accuracy at the same accuracy as the scanning accuracy of the laser beam. If the filter is devised, the light works effectively only in the part where the laser intensity is high, and it is possible to create a pattern less than the restriction by the wavelength.
  • DAE is normally colorless in the ring-opened state and colored in the ring-closed state. Therefore, according to the present invention, DAE is in a closed state, and there is an advantage that a portion having magnesium adhesion can be confirmed in a spectrum corresponding to color.
  • DAE does not affect the organic layers and electrodes of organic electronic devices.
  • the functions of organic electronic devices are not impaired.
  • the photosensitive material that changes its physical properties by light used in the present invention is not limited to DAE unless the gist thereof is changed.
  • Examples of the change in physical properties of the light-sensitive material due to light include photoisomerization and optical phase change.
  • Materials that are isomerized by light are not particularly limited as long as they induce changes in physical properties as described above, for example, DAE, azobenzene, spiropyran, spirooxazine spironaphthoxa.
  • Various photochromic materials such as gin and fulgide can be used.
  • the material that changes phase by light may be any inorganic material that can be used for phase-change optical memory materials and that can change the physical properties by light stimulation.
  • a thermocomic material that can impart the above-mentioned physical property change by heat generated by light irradiation.
  • photosensitive materials can be formed on the substrate not only by a dry process such as an evaporation method but also by a wet process such as a cast method, a spin coat method, an ink jet method, and other printing methods.
  • the layer containing the photosensitive material on the substrate may contain only one type or two or more types of photosensitive material, and polystyrene, MEH- PPV if necessary. It may contain one kind or two or more kinds of polymer media such as (poly (2-methoxy-5- (2,1-ethynolehexyloxy) p-phenylene-lene)).
  • the photosensitive material-containing layer is irradiated with light in a predetermined pattern to thereby improve the physical properties of the photosensitive material.
  • the metal is deposited on the light-sensitive material-containing layer after the light irradiation by utilizing the difference in the adhesion property of the metal due to the change in physical properties and the difference in film formability, Form.
  • the metal adheres according to the light irradiated pattern to form a metal pattern.
  • the metal adhesion or film-forming property becomes low due to changes in the physical properties of the light-sensitive material due to light irradiation, the metal will adhere to areas other than the light-irradiated pattern, and the light irradiation pattern will be reduced. A negative metal pattern is formed.
  • the substrate on which the light-sensitive material-containing layer is formed is not particularly limited, and glass, plastic, metal, ceramic, and any other material can be used.
  • the photosensitive material-containing layer may be formed after forming a base layer for improving adhesion of the photosensitive material-containing layer and other functions on such a substrate.
  • the photosensitive material-containing layer includes the type of photosensitive material used and the concentration of photosensitive material in the layer. Depending on the thickness, the film is formed to a thickness that allows patterning by light irradiation.
  • Examples of the metal used for forming the metal pattern include, but are not limited to, magnesium, aluminum, strong lithium, lithium, or an alloy containing one or more of these.
  • the metal pattern is formed by depositing metal to a predetermined thickness by vapor deposition or the like on the photosensitive material-containing layer whose physical properties have been changed by light irradiation according to its application.
  • the metal pattern formed as described above has a photosensitive material between the substrate and the substrate, and is useful as an electrode and an electric circuit, particularly as an electrode and an electric circuit of an organic electronic device.
  • the metal pattern manufactured by the method of the present invention and the electrode, electric circuit, and organic electronic device prepared using the metal pattern may have a layer containing a photosensitive material as described above. After manufacturing the metal pattern, the layer containing the photosensitive material can be appropriately removed by transfer, washing, etc. In this case, the layer containing the photosensitive material is not included. Become.
  • the present invention will be described in detail by exemplifying a case where the method for producing a metal pattern of the present invention is applied to the production of an organic electronic device.
  • the metal pattern according to the present invention is not limited to any organic electronic device. It is not limited to what is used for.
  • the organic electronic device usually has a structure in which a first electrode, an organic layer, and a second electrode are laminated in this order, or further has a substrate on the first electrode side.
  • the organic electronic device of the present invention further includes
  • Any one or more of them may have a substituent, such as 1, 2-diarylmethene It has a layer containing a responsive material.
  • the organic electronic device of the present invention has a layer containing a light-sensitive material such as DAE between the electrode and the adjacent member.
  • a layer containing a light-sensitive material such as DAE between the electrode and the adjacent member.
  • the conventional configuration and formation method of the organic electronic device can be applied.
  • the configuration described in Japanese Patent Application Laid-Open No. 2004-362930, Japanese Patent Application Laid-Open No. 2004-359671, Japanese Patent Application Laid-Open No. 2004-431587, etc. is arbitrarily selected and adopted. be able to.
  • a configuration described in an organic organic transistor such as Japanese Unexamined Patent Publication No. 2003-309268 and # ⁇ 2004-103638, can be arbitrarily selected and employed.
  • Japanese Unexamined Patent Publication No. 2003-309268 and # ⁇ 2004-103638 can be arbitrarily selected and employed.
  • the content is not limited to those described in these publications.
  • the formation method of the first electrode and the second electrode can be arbitrarily selected within the range of the dry process without damaging the organic layer, such as vacuum deposition or sputtering.
  • the organic layer such as vacuum deposition or sputtering.
  • the substrate is not necessarily required for the organic electronic device of the present invention. If the first electrode and the organic layer as described later have sufficient thickness and strength, there is no substrate. It's all about composition.
  • the light-sensitive material-containing layer which is a characteristic part of the organic electronic device of the present invention, will be described with reference to the DAE-containing layer.
  • the light-sensitive material according to the present invention is not limited to DAE. It is not a thing.
  • the compounds described in Irie et al., “Chemistry of Organic Photochemical Misumi”, Academic Publishing Center, 1996, and Japanese Laid-Open Patent Publication No. 2005-082507 are used. Force that can be used The present invention is not limited to these as long as selective adhesion with the electrode material such as magnesium described above is confirmed.
  • Examples of the compound having selective adhesion to such an electrode material and having excellent radiation sensitivity include compounds represented by the following general formula (I).
  • a compound in which R 1 and R 2 are alkoxy groups is preferable because it causes less fading due to ambient light.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • R 3 and R 4 are each independently a naphthyl group which may have a substituent, a styryl group which may have a substituent, a phenolic group which may have a substituent, or
  • the substituted phenyl group represented by the following general formula (A) is shown.
  • R 9 has an alkoxy group which may have a substituent, an aralkyloxy group which may have a substituent, an alkylthio group which may have a substituent, and a substituent.
  • An alkyl group that may be substituted, a phenoxy group that may have a substituent, or a substituent A phenyl group, an alkylamino group which may have a substituent, or an arylamino group which may have a substituent.
  • R 7 , R 8 , R 10 and R 11 each independently represent a hydrogen atom or an arbitrary substituent. However, among the groups described below as R 7 to R U, bonded to adjacent groups to, it may also have a substituent, to form a ring, even if good.
  • R 5 and R 6 each independently represents a hydrogen atom or an arbitrary substituent.
  • R 1 and R 2 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group.
  • An alkyl group having 1 to 4 carbon atoms such as a cyclobutyl group, or a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a cyclopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group,
  • An alkoxy group having 1 to 4 carbon atoms such as a cyclobutoxy group.
  • an alkoxy group is preferred, and a methoxy group is particularly preferred without causing a problem of fading due to ambient light.
  • R 3 and R 4 each independently have a substituent! / May be !, a naphthyl group, an optionally substituted styryl group, and a substituent.
  • R 9 is, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, ter Alkoxy groups having 1 to 10 carbon atoms such as t-butoxy group; aralkyloxy groups having 1 to 7 carbon atoms such as benzyloxy group, a-phenoxy group and ⁇ -phenethyloxy group; methylthio group and ethylthio group Alkylthio group having 1 to 10 carbon atoms such as propylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group; methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group Alkyl group having 1 to 10 carbon atoms such as isopropyl group, sec-
  • alkylarylamino group and the like.
  • substituent is not particularly limited as long as it does not impair the performance of the compound represented by the general formula (I).
  • R9 the aforementioned groups and halogen nuclear power are selected.
  • alkoxy group as the R 9 is an electron-donating among the group described above, Ararukiruokishi group, an alkylthio group, an alkyl group, phenoxy group, an alkylamino group, preferably is Ariruamino group member both of which are optionally substituted Also good.
  • R 9 is more preferably an alkoxy group, an alkyl group, an optionally substituted phenoxy group, a dialkylamino group or a diarylamino group, and particularly preferably an alkoxy group.
  • R 7 , R 8 , R 10 and R 11 each independently represent a hydrogen atom or an arbitrary substituent.
  • the optional substituent is not particularly limited as long as it does not impair the performance of the compound represented by the general formula (I), and examples thereof include the groups described above as examples of R 9 .
  • R 7 to R U groups adjacent groups, that is, R 7 and R 8 , R 8 and R 9 , R 9 and R 1Q , R 10 and R 11 are bonded to form a ring.
  • the ring which may be formed may have a substituent.
  • examples of the substituted phenol group represented by the general formula (A) include the following.
  • the ring formed by bonding of adjacent groups among the forces R 7 to R U that are not described in the above examples is an arbitrary group as long as the characteristics of the compound represented by the general formula (I) are not impaired.
  • substituent which may have a substituent include the groups described above as R 7 to R U (when no ring is formed).
  • R 7 to R U are preferably relatively electron donating groups as well as R 9 which is the p-position substituent of the general formula (A). Therefore, R 7 to R U Preferred examples of the optional substituents corresponding to include the same groups as the preferred groups for R 9 and the ring formed by combining these groups.
  • R 7 and R 11 are preferably hydrogen atoms.
  • R 8 and R 1Q are preferably hydrogen atoms, alkoxy groups, or alkyl groups U.
  • R 3 and R 4 forces may each independently have a substituent, may have a naphthyl group, have a substituent, may have a styryl group, or have a substituent! /
  • the substituent may be any substituent as long as the properties of the compound represented by the general formula (I) are not impaired.
  • the same groups as those exemplified as R 9 can be mentioned. Among them, an electron donating group is preferable as in R 9 , but is particularly preferable. Or an alkoxy group, an alkyl group, or a dialkylamino group.
  • R 3 and Z or R 4 have a substituent, and represent a naphthyl group
  • a 2-naphthyl group is more preferable as the naphthyl group.
  • R 3 and R 4 may have a substituent from the viewpoint of thermal stability and repeated durability, and are preferably a naphthyl group or a substituted phenyl group represented by the general formula (A).
  • R 5 and R 6 are each independently a hydrogen atom or an arbitrary substituent as long as the performance of the compound represented by the general formula (I) is not impaired! , But not too bulky
  • V is preferred, so hydrogen atom or methyl group is particularly preferred.
  • R 1 and R 2 , R 3 and R 4 , and R 5 and R 6 may be the same or different, but the same is preferable.
  • the compounds represented by the general formula (I) represented by the general formula (I) preferably include, but are not limited to, the following compounds.
  • the DAE-containing layer according to the present invention may contain only one kind of such DAE. Two or more kinds of DAE may be contained in any combination and in any combination ratio! / ⁇ OK!
  • the DAE-containing layer according to the present invention has vapor deposition selectivity of an electrode material such as magnesium (usually a metal material described later) due to the DAE isomerism, but the DAE itself exhibits excellent carrier transportability. Not exclusively. For this reason, by providing a DAE-containing layer, even if the electrode pattern can be easily formed, the electron injection and transport characteristics (carrier transportability) may be deteriorated. In this case, the characteristics as a device are deteriorated. .
  • carrier transporting material molecules in the DAE-containing layer according to the present invention for the purpose of enhancing carrier transportability.
  • Mix DAE and carrier transporting material molecules By being present, a layer having both the deposition selectivity of the electrode material and excellent carrier transportability can be obtained.
  • the carrier transporting material is not particularly limited as long as it does not inhibit the properties of DAE.
  • Alq3 aluminate-tris-8-hydroxyquinolate
  • a- NPB N, N di (naphthalene 1-yl) N, N, 1 diphenyl benzidene
  • organic molecules such as triphenylamine, polybutylcarbazole, MEH—PPV (polyphenylene bilene)
  • polymer carrier transport materials such as, known ones can be used alone or in admixture of two or more.
  • DAE-containing layer other organic molecular materials, polymers, etc. may be arbitrarily selected within a range without impairing the properties of DAE.
  • a binder for improving film properties may be blended.
  • binders include the usual polymer materials such as polystyrene.
  • the above-mentioned polymer-based carrier transport materials also function as binders. These other components may be used alone or in combination of two or more.
  • the DAE-containing layer may be composed of only DAE.
  • the carrier-transporting material as described above and other components may be included.
  • the proportion of DAE in the DAE-containing layer is usually 5% by weight or more, preferably 20% by weight or more, more preferably 45% by weight or more, and particularly preferably 50% by weight or more. .
  • the ratio of DAE in the DAE-containing layer is not necessarily the same in any part of the DAE-containing layer.
  • the concentration distribution is generated in the thickness direction depending on the method of forming the DAE-containing layer. There may be.
  • the ratio of the carrier transportable material in the DAE-containing layer is sufficient for maintaining the vapor deposition selectivity of the electrode material. It is necessary to set the ratio to exhibit.
  • the specific carrier transportable material ratio is determined as appropriate depending on the V, the carrier transportability of the carrier transportable material, the carrier transportability required for the DAE-containing layer, etc.
  • the ratio of the carrier transportable material in the DAE-containing layer is usually 20% by weight or more. It is preferably 50% by weight or more, usually 90% by weight or less, preferably 80% by weight or less.
  • carrier transporting material molecules When carrier transporting material molecules are mixed, increase the carrier transporting material molecule ratio to improve carrier transportability, and then apply annealing treatment described later to develop deposition selectivity by DAE. It is preferable to enhance sex.
  • a dry process such as a vacuum deposition method or a sputtering method can be employed without any particular limitation.
  • a method for forming a mixed layer of DAE and a carrier transporting material as a DAE-containing layer for example, a binary evaporation method in which a deposition source of DAE and a carrier transporting material is separately prepared and heated independently.
  • a single mixed source with a predetermined concentration in advance and put it in an evaporation boat in an amount that gives a predetermined film thickness.
  • the carrier transporting material usually has a lower vapor pressure than DA E, so the DAE is deposited first and then the carrier transporting material adheres. In this case, sufficient DAE deposition selectivity may not be obtained for the formed DAE-containing layer.
  • the device is placed in a temperature environment higher than room temperature, for example. It is preferable to anneal for several hours. By performing such annealing treatment, the DAE and carrier transporting material molecules in the DAE-containing layer are appropriately mixed by thermal diffusion, and a thin film in which these are uniformly mixed can be obtained.
  • the annealing temperature is usually 30 ° C or higher, preferably 45 ° C or higher, usually 120 ° C.
  • the temperature is preferably 100 ° C or lower. If the annealing temperature is too low, the mixing effect due to thermal diffusion is not sufficient, and on the contrary, if the annealing temperature is too high, the organic layer may be damaged if it has an organic layer in the DAE-containing layer or its lower layer. This is not desirable.
  • the annealing time is not generally determined by the temperature conditions, but is usually about 30 minutes to 30 hours. In general, when the temperature is lower, it is preferable to shorten the time when the temperature is longer and higher, and the product of the processing temperature (° C) and the processing time (hour) ⁇ ⁇ 5 ° C ⁇ hours It is preferable that
  • the annealing process is performed by storing the sample after forming the organic layer in a constant temperature bath set at a predetermined temperature so that the sample is not exposed to light for a predetermined period of time. It is desirable to carry out in a dry nitrogen atmosphere.
  • the film thickness of the DAE-containing layer according to the present invention is not particularly limited. The force varies depending on whether or not the DAE-containing layer contains carrier transportable material molecules and other components. Only DAE as shown in the examples below. In the case of the DAE-containing layer formed in (1), the patterning according to the present invention is possible even with a thickness of about 1 nm corresponding to the monomolecular layer. However, if the film thickness is excessively thin, a layer covering the entire DAE molecule cannot be formed, and the electrode layer adheres to this portion by locally exposing the underlying layer. Therefore, the lower limit of the film thickness is 1 nm or more, preferably 2 nm or more.
  • the upper limit of the film thickness if it is excessively thick, it may lead to undesired properties of DAE, for example, a material with low carrier transport capacity and low glass transition point, which may increase the operating voltage and deteriorate durability at high temperatures. Therefore, it is usually lOOnm or less, preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably lOnm or less.
  • DAE itself has excellent carrier transportability and high glass transition point, there is no such upper limit of film thickness.
  • the film thickness when the DAE-containing layer contains carrier transporting material molecules and other components varies depending on the content of these mixed components. For the same reason as above, it is usually 1 nm or more, particularly 2 nm or more. In general, it is 200 nm or less, preferably lOOnm or less, more preferably 50 ⁇ m or less, particularly preferably 20 nm or less, and particularly preferably lOnm or less.
  • DAE is a ring-opened state and a ring-closed state by isomerization. It is formed to perform electrode patterning by utilizing the difference in adhesion of the electrode material due to the difference in state. Accordingly, the DAE is formed between the electrode and another member. In addition, there is a closed DAE in the part corresponding to the patterned electrode pattern.
  • the second electrode is also patterned by forming an isomerization pattern of the DAE-containing layer on the organic layer as described later.
  • a DAE-containing layer is formed on one or both sides of an organic layer having sufficient thickness and strength, and the first electrode and / or the second electrode is turned by forming an isomerization pattern of the DAE-containing layer.
  • the electrode patterning can be performed in various ways.
  • the patterning of the second electrode can be performed according to the following steps [1] to [5].
  • a step of forming a first electrode on a substrate according to a conventional method [1] A step of forming a first electrode on a substrate according to a conventional method.
  • the underlayer is preferably formed by a vacuum deposition method, a sputtering method, or the like, but when forming by a wet method such as a doctor blade method, a cast method, a spin coating method, or a dipping method, DAE is diluted with a solvent. It is desirable to prepare a coating solution and use this coating solution .
  • the type of solvent is not particularly limited as long as it does not attack the organic layer.
  • the carrier transporting material molecules are further mixed in the DAE-containing layer, as described above, the carrier transporting material is formed together with the DAE by the binary evaporation method or the like.
  • a coating solution may be prepared by dissolving a carrier transporting material together with DAE in a solvent.
  • the underlayer containing this DAE is a layer consisting only of DAE, as described above, it is usually at least 1 nm, preferably at least 2 nm, usually at most lOOnm, preferably at most 50 nm, particularly at most lOnm. It is formed.
  • a carrier transporting material molecule and other components are mixed, as described above, usually 1 nm or more, particularly 2 nm or more, usually 200 nm or less, preferably lOOnm or less, more preferably It is formed to a thickness of 50 nm or less, particularly preferably 20 nm or less, particularly preferably lOnm or less.
  • DAE used in the present invention is generally isomerized from a ring-opened state to a ring-closed state by irradiation with ultraviolet light in a wavelength region of 300 to 430 nm, particularly 300 to 400 nm, and 450 to 600 nm, especially 500 Irradiation with light of ⁇ 600 nm causes isomerization from the closed ring state to the open ring state.
  • DAE isomerism in a predetermined pattern in the underlayer according to the following method ⁇ A> or ⁇ B>, for example.
  • ⁇ A> The ultraviolet ray in the wavelength region of 300 to 430 nm, particularly 300 to 400 nm, is entirely irradiated to the underlayer containing DAE so that the DAE of the underlayer is entirely closed. Thereafter, light of 450 to 600 nm, particularly 500 to 600 nm, is irradiated to a predetermined pattern by laser spot scanning, and the DAE in the irradiated portion is isomerized to the ring-closing state force and the ring-opening state. This forms an underlayer in which the DAE ring-opened molecules exist in a predetermined pattern shape in the DAE ring-closed molecule matrix.
  • the DAE containing the DAE is irradiated with light in the wavelength region of 450 to 600 nm, particularly 500 to 600 nm, so that the DAE of the underlayer is fully opened. Thereafter, ultraviolet light of 300 to 430 nm, especially 300 to 400 nm, is irradiated to a predetermined pattern by laser spot scanning, and the DAE of the irradiated portion is isomerized to a ring-opening state force or a ring-closing state.
  • This second electrode is preferably formed by a vacuum deposition method.
  • constituent material of the second electrode there are no particular restrictions on the constituent material of the second electrode, but materials that differ in adhesion due to the DAE isomerism are preferably used.
  • materials that differ in adhesion due to the DAE isomerism are preferably used.
  • one or two metals such as magnesium, aluminum, calcium, and lithium are used. More than species.
  • the film thickness of the second electrode is not particularly limited as long as the electrode performance required in the application of the organic electronic device can be sufficiently exhibited, but is usually 50 nm or more, usually lOOnm or less. is there.
  • the electrode material By depositing the electrode material on the underlayer on which the isomerization pattern is formed in this way, the electrode material selectively adheres to the portion of the underlayer where the DAE is in a closed state, and the DAE is opened. Since the electrode material does not adhere to the state portion, the second electrode can be formed in a predetermined pattern.
  • the predetermined pattern portion is an undeposited portion of the electrode material, A second electrode is formed on the other matrix portion. Further, in the case where the DAE ring-closed molecules are formed in a predetermined pattern by laser spot scanning by the method ⁇ B> described above, the predetermined pattern portion becomes a vapor deposition portion of the electrode material, and the second portion is formed in this portion. An electrode is formed.
  • the present invention it is possible to perform patterning of ultrafine electrodes having a width of 450 nm or less, for example, 260 to 450 nm, with high accuracy.
  • laser The light spot can be narrowed to a very small spot having a diameter of 600 nm or less, for example, 260 to 450 nm. Therefore, by scanning such a small laser spot, the laser beam can be irradiated with a width corresponding to the spot diameter.
  • DAE is a force that electrode material does not adhere in the ring-open state and electrode material adheres in the ring-closed state.
  • Experimental Examples 1 and 2 below, Even if it is not 100% ring-closed, depending on the type of DAE, for example, even if 50% or more is ring-closed, the electrode material will adhere. Therefore, for example, a laser beam including a part that has been closed by direct irradiation with laser light and a part that has been partially closed by the influence of laser light in the vicinity thereof. The spot diameter can be adjusted if the filter is further devised.
  • the closed molecular part of the DAE can be formed with a width less than the spot of the laser beam. For this reason, it is possible to form an ultrafine pattern having a width of 400 nm or less by attaching an electrode material to this portion.
  • the above-described light irradiation is not limited to scanning by a laser spot, and it is also possible to use a light blocking mask and a mask together with spot scanning.
  • the electrode patterning is not limited to the method using only the DAE isomorphism as described above, but by using another patterning means such as a separate metal mask in combination with higher accuracy and efficiency. Patterning can also be performed.
  • the first electrode, the organic layer, and the second electrode can be formed on the substrate to produce the organic electronic device of the present invention.
  • a DAE thin film with a film thickness of lOOnm was formed on a slide glass substrate by vacuum evaporation using DAE represented by the following structural formula. [0111] [Chemical 13]
  • magnesium was vacuum-deposited on this DAE thin film to a thickness of lOOnm, and the adhesion state of magnesium was examined.
  • Fig. 1 also shows the absorption spectrum in each state for investigating the ring-closing molecular ratio.
  • this DAE also shows magnesium adhesion in the ring-closed state and non-adhesiveness of magnesium in the ring-opened state, but the degree is different from the DAE used in Experimental Example 1, and all the ring-closed molecules are Magnesium was attached even at 50% of the molecules.
  • the DAE thin film 2 was irradiated with ultraviolet light 3 with a wavelength of 365 nm over the entire surface to form a colored state (ring-closed state) (Fig. 2b), and then a red laser with a wavelength of 650 nm (power lmW) 4 with a diameter of 10
  • the surface of the DAE thin film was scanned in a line shape with a spot of about ⁇ m and erased to form an isomerization pattern 5 (Fig. 2c). That is, a ring-opening molecule line was formed in the ring-closing molecule.
  • magnesium was vacuum-deposited on this DAE thin film 2 to a thickness of lOOnm (Fig. 2d) and observed with a microscope. As a result, the isomerization pattern (line of ring-opened molecules) shown in Fig. 3 was obtained. A corresponding magnesium undeposited line (about 15 m wide) was formed!
  • the present invention was applied to an organic EL element, which is a typical organic electronic device, to form a magnesium cathode.
  • a copper phthalocyanine layer was formed as a hole injection layer on an ITO (Indium Tin Oxide) substrate to a thickness of 2 nm, and an ⁇ -NPB layer was formed as a hole transport layer thereon to a thickness of 30 nm.
  • an aluminum quinolinol complex Alq3 layer with a film thickness of 30 nm was formed as a light-emitting and electron transport layer.
  • the DAE thin film used in Experimental Example 1 was deposited on this Alq3 layer to a thickness of 1 nm to form a DAE thin film.
  • the DAE thin film was irradiated with ultraviolet rays for 10 minutes to bring the DAE-containing layer into a closed state, and then the ring-opened state with a width of 15 m was detected by spot scanning with a red laser having a wavelength of 650 nm.
  • the pattern was formed in a linear shape and a zigzag shape.
  • magnesium was vacuum-deposited on the DAE thin film to a thickness of lOOnm and observed under a microscope. A magnesium undeposited pattern corresponding to the pattern that was scanned by a laser and subjected to an isomeric reaction was formed. It was confirmed that magnesium was deposited.
  • the magnesium non-adhering pattern was formed by red laser scanning.
  • a colored line (ring opening body force is also isomerized to ring closure) was formed by scanning with an ultraviolet laser, and this scanning was performed.
  • A-NPB which is a hole transport material
  • Alq3 which is a typical electron transport material
  • a film was formed on OOnm.
  • a total of four samples were prepared on these samples that were not DAE vacuum-deposited to a thickness of lnm. That is, the following Sampnole 1-4.
  • Sampnole 1 and 3 after DAE was colored by ultraviolet irradiation, a magnesium electrode with a film thickness of 200 nm was deposited on all samples.
  • Sample 1 ITO substrate Z a NPB layer ZDAE-containing layer
  • Sample 2 ITO substrate Z a NPB layer
  • DAEZA lq3 mixed source deposition source with DAE concentration of 75%, 50%, 25%, 10%, 5% by weight was prepared, and a film was formed on the glass substrate (film thickness 3nm). Samples 5-9 below with different DAE concentrations were prepared.
  • Sample 5 DAE concentration 75% by weight
  • Sample 6 DAE concentration 50% by weight
  • the DAE concentration is 50 wt. It was found that deposition selectivity appeared only in samples 5 and 6 above.
  • each sample formed into a film under the same conditions as above was annealed in a thermostatic chamber in a light-shielded state at 50 ° C for 2 hours, and then magnesium was similarly deposited. It was confirmed that the deposition selectivity of samples 5 to 7 with a DAE concentration of 25% by weight or more was exhibited, and that the annealing process was not performed! /, Lower than the case 1, and that the deposition selectivity of magnesium appeared at the DAE concentration. It was.
  • the annealing conditions in this experimental example are only examples. However, if the processing is performed at an excessively high temperature, the organic layer itself may be damaged as described above, which is not desirable. It was confirmed that annealing at 30 ° C, which is a slightly higher room temperature, can achieve the same effect as above in about 24 hours.
  • Example 4 Alq3 was formed on the ITO substrate with a film thickness of lOOnm, and a mixed layer with a DAE concentration of 25% by weight was formed on it using a single deposition source with a DAE concentration of 25% by weight. Formed with. Next, after annealing at 50 ° C. for 2 hours, DAE was colored by irradiation with ultraviolet rays, and then a magnesium electrode was deposited to prepare Sample 10.
  • the present invention is not limited to organic EL devices, but can be applied to various organic electronic devices such as organic TFTs and organic memory devices. It is also clear that the DAE and carrier transporting material molecules used can be applied in the same manner as those other than the examples given here.
  • Polystyrene (styrene polymer), one of the representative polymers, or MEH—PPV (ADS100 RE, manufactured by American Dye Source, Inc), which is a typical high-molecular organic electronic material, displays the same DAE as used in Experimental Example 1.
  • the samples were mixed at various concentrations shown in FIG. 5, dissolved in a cyclohexanone solvent, and prepared by forming a film with a thickness of 0.0 on a glass substrate by a casting method.
  • the sample was sufficiently irradiated with ultraviolet light (wavelength 365 nm) to form a colored state (ring-opened molecule), and then red laser light was collected and scanned to remove a 5 ⁇ m wide decoloring line ( Closed ring molecules).
  • ultraviolet light wavelength 365 nm
  • red laser light was collected and scanned to remove a 5 ⁇ m wide decoloring line ( Closed ring molecules).
  • Magnesium was vacuum-deposited on this sample without using a mask, and it was examined whether or
  • DAE is 5% by weight for styrene polymer, and DAE is 10% for MEH-PPV.
  • a colored line having a width of 5 ⁇ m was similarly formed with a violet laser having a wavelength of 405 nm, with the DAE remaining in a decolored state without coloring the sample prepared in the same manner as described above.
  • this DAE has a very low absorption at a wavelength of 405 nm! /, It has a high coloring sensitivity (quantum yield of the coloring reaction), so it can cause an isomeric reaction by violet laser irradiation.
  • the corresponding width was 5% by weight or more for DAE with styrene polymer and 10% by weight or more for DAE for MEH PPV, as in the case of forming the decoloring line. It was confirmed that a magnesium line of ⁇ m was formed.
  • polystyrene is not used as an organic electronic material and has no electrical conductivity.
  • isomerization reaction by laser scanning and subsequent maskless deposition. It shows that any minute electrical wiring pattern can be easily formed.
  • MEH-PPV does not change its electron transport property even when doped with about 10% by weight of force D AE, which is an electron transport material. This indicates that this method can also be used as a cathode for polymer-based organic electronic devices.
  • this selective vapor deposition method using the DAE isomorphism reaction is used to form electrode patterns and wiring patterns of various organic electronic devices such as organic EL, organic TFT, and organic memory. I can do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

It is intended to form an electrode pattern of organic device with free morphology and with high precision without being placed under various restraints accompanying the steps of metal mask preparation, formation of overhanging line bulkhead, detachment with adhesive film, etc. There is provided a process for producing an organic electronic device wherein voltage is applied to a layer of organic electronic material to thereby cause the same to function, which process comprises forming a foundation layer containing an optionally substituted 1,2-diarylethene, realizing an isomerization reaction in given pattern of the 1,2-diarylethene of the foundation layer, and thereafter applying an electrode material on the foundation layer to thereby form an electrode pattern corresponding to the given pattern. The adherence of magnesium, etc. as the electrode material is changed by the isomerization reaction of the 1,2-diarylethene, and further by the induction of the isomerization reaction, a striking difference between magnesium adherence and nonadherence is brought about when the ratio between open-ring molecules and closed-ring molecules at relevant portion exceeds a certain value. Thus, patterning can be accomplished.

Description

明 細 書  Specification
金属パターン及び有機電子デバイスとその製造方法  Metal pattern, organic electronic device and manufacturing method thereof
発明の分野  Field of Invention
[0001] 本発明は、金属パターンの製造方法及び金属パターン、並びに該金属パターンを 用いた電極、電気回路に関する。本発明はまた、有機エレクト口ルミネッセンス(以下 The present invention relates to a metal pattern manufacturing method, a metal pattern, and an electrode and an electric circuit using the metal pattern. The present invention also provides organic electoluminescence (hereinafter
、「有機 EL」と記す)ディスプレイや薄膜トランジスタ (以下、「有機 TFT」と記す)など の、有機材料を用いた様々な有機電子デバイスと、このような有機電子デバイスの製 造方法に関するものである。 The present invention relates to various organic electronic devices using organic materials, such as displays and thin film transistors (hereinafter referred to as `` organic TFTs ''), and methods for manufacturing such organic electronic devices. .
発明の背景  Background of the Invention
[0002] 近年、有機 ELディスプレイなどに代表されるような、有機薄膜を電極ではさみ、電 極間に電圧を印加することによって電流を注入し、発光、その他の機能を利用する 有機電子デバイスの研究開発が活発に行われている。  [0002] In recent years, organic electronic devices such as organic EL displays that sandwich organic thin films with electrodes and inject current by applying voltage between the electrodes to use light emission and other functions. Research and development is active.
[0003] これらの有機電子デバイスのうち、有機 ELディスプレイデバイスは、ガラス基板上に 設けられた ITOなどの透明導電体からなる第一電極と、この第一電極上に設けられ たホール輸送層、電子輸送層、発光層など力 なる多層構造の有機層と、この有機 層上に設けられた A1や Mgなどカゝらなる第二電極とから構成されている。一般に、デ イスプレイデバイスなどでは、各画素ごとに発光 (色や強度)を制御する必要があるた めに、画素ごとに対応した電極パターンが形成される。例えば、ガラス基板上に予め I TO陽極 (第一電極)がパターン形成されたものが用いられ、必要に応じて各画素ご とに有機材料力 Sメタルマスクを用いて蒸着法により塗りわけられる。第二電極につい てもメタルマスクによってパターン形成されることもある力 他の方法によっても形成す ることち可會である。  [0003] Among these organic electronic devices, the organic EL display device includes a first electrode made of a transparent conductor such as ITO provided on a glass substrate, a hole transport layer provided on the first electrode, It consists of an organic layer with a powerful multilayer structure such as an electron transport layer and a light emitting layer, and a second electrode such as A1 and Mg provided on the organic layer. Generally, in a display device or the like, since it is necessary to control light emission (color and intensity) for each pixel, an electrode pattern corresponding to each pixel is formed. For example, an ITO anode (first electrode) patterned in advance on a glass substrate is used, and if necessary, each pixel is coated by vapor deposition using an organic material strength S metal mask. The second electrode can also be formed by other methods with a force that may be patterned by a metal mask.
[0004] 例えば、特許文献 1には、ノ ッシブ型有機 ELディスプレイの陰極パターン形成方 法が開示されている。この特許文献 1に開示される方法は、同特許文献 1の図 14で 説明されている通り、予め基板上にオーバーハング状のライン隔壁を設け、有機層 や陰極金属をその上から蒸着形成するものであり、隔壁のオーバーハングの効果に より陰極がその蒸着時に隔壁により分離されて、ライン状陰極が自動的に形成される というものである。しかしながらこの方法では、予め基板上に隔壁を設けておく必要が あり、製造プロセスが煩雑になる上に、陰極のパターン自由度が小さいという問題点 がある。 [0004] For example, Patent Document 1 discloses a method for forming a cathode pattern of a nossive organic EL display. In the method disclosed in Patent Document 1, as described in FIG. 14 of Patent Document 1, an overhanging line partition wall is provided in advance on a substrate, and an organic layer and a cathode metal are deposited thereon. Due to the effect of barrier overhang, the cathode is separated by the barrier during deposition, and a line cathode is automatically formed. That's it. However, this method requires the provision of barrier ribs on the substrate in advance, which complicates the manufacturing process and has a problem that the degree of freedom in patterning of the cathode is small.
[0005] また、特許文献 2には有機層の上に陰極を全面蒸着形成した後に、所望のパター ンに対応した粘着材を塗ったフィルムを貼り付けて剥離するという方法が開示されて いる。し力しながら、この方法では電極のみが常に所望のパターンに剥離されるとは 限らず、粘着材によっては有機層もダメージを受ける恐れがあった。  [0005] Further, Patent Document 2 discloses a method in which a cathode is deposited on the entire surface of an organic layer, and then a film coated with an adhesive material corresponding to a desired pattern is applied and peeled off. However, in this method, only the electrodes are not always peeled into a desired pattern, and depending on the adhesive, the organic layer may be damaged.
特許文献 1 :特開平 8— 315981号公報  Patent Document 1: JP-A-8-315981
特許文献 2:特開 2004— 79373号公報  Patent Document 2: JP 2004-79373 A
発明の概要  Summary of the Invention
[0006] 本発明は上記従来の実情に鑑みてなされたものであって、その目的は、メタルマス クの作成、オーバーハング状ライン隔壁の形成、粘着フィルムによる剥離、などのェ 程に伴う種々の制約に捕われることなぐ自由な形状に、上記有機 ELディスプレイデ バイスを含む種々の有機電子デバイスの電極パターン等の金属パターンを形成する 技術を与えることにある。  [0006] The present invention has been made in view of the above-described conventional circumstances, and the object thereof is to create various metal masks, formation of overhanging line partition walls, peeling with an adhesive film, and the like. The purpose is to provide a technology for forming metal patterns such as electrode patterns of various organic electronic devices including the above-mentioned organic EL display devices in a free shape without being caught by constraints.
[0007] 第 1アスペクトの金属パターンの製造方法は、基板上に金属パターンを製造する方 法において、該基板上に、光により物性変化する材料 (以下「光感応性材料」と称す 。)を含む層を形成する工程と、該光感応性材料を含む層に光照射することにより該 光感応性材料の物性変化のパターンを形成する工程と、該パターン上に金属を積 層して金属パターンを形成する工程とを含むことを特徴とするものである。  [0007] The method for producing a metal pattern of the first aspect is a method of producing a metal pattern on a substrate. A material whose physical properties are changed by light on the substrate (hereinafter referred to as "photosensitive material"). Forming a layer including a layer, forming a pattern of physical property change of the photosensitive material by irradiating the layer including the photosensitive material with light, and stacking a metal on the pattern to form a metal pattern Forming the step.
[0008] 第 2アスペクトの金属パターンの製造方法は、基板上に形成された金属パターンで あって、該金属パターンを形成する金属層と該基板との間に、光感応性材料を含む 層を有することを特徴とするものである。  [0008] A method for producing a metal pattern of a second aspect is a metal pattern formed on a substrate, wherein a layer containing a photosensitive material is provided between the metal layer forming the metal pattern and the substrate. It is characterized by having.
[0009] 第 3アスペクトの有機電子デバイスは、第一電極及び第二電極と、これらの電極間 に設けられた有機層とを有する有機電子デバイスであって、第一電極と有機層との 間、及び、第二電極と有機層との間の少なくとも 1つの部分に、異性化状態の異なる ノ《ターンが形成された、置換基を有しても良い 1, 2—ジァリールェテンを含む層を有 することを特徴とするものである。 [0010] 第 4アスペクトの有機電子デバイスは、基板、第一電極、有機層及び第二電極を有 する有機電子デバイスであって、基板と第一電極との間、第一電極と有機層との間、 及び、第二電極と有機層との間の少なくとも 1つの部分に、異性化状態の異なるバタ ーンが形成された、置換基を有しても良い 1, 2—ジァリールェテンを含む層を有する ことを特徴とするものである。 [0009] The organic electronic device of the third aspect is an organic electronic device having a first electrode and a second electrode, and an organic layer provided between these electrodes, and is between the first electrode and the organic layer. In addition, at least one portion between the second electrode and the organic layer has a layer containing 1,2-diarylethenes which may have a substituent in which a non-turn having a different isomerization state is formed. It is characterized by doing. [0010] An organic electronic device of a fourth aspect is an organic electronic device having a substrate, a first electrode, an organic layer, and a second electrode, wherein the first electrode and the organic layer are interposed between the substrate and the first electrode. And a layer containing 1,2-diarylethene which may have a substituent, in which at least one portion between the second electrode and the organic layer is formed with a pattern having a different isomerization state. It is characterized by having.
[0011] 第 5アスペクトの有機電子デバイスの製造方法は、有機電子材料からなる層に電圧 を印カロして機能させる有機電子デバイスを製造する方法にぉ ヽて、置換基を有して も良い 1, 2—ジァリールェテンを含む下地層を形成する工程と、該下地層の 1, 2- ジァリールェテンを所定パターン状に異性ィ匕反応させる工程と、次 、で該下地層上 に電極材料を付与して、前記所定パターンに対応した電極パターンを形成する工程 とを有することを特徴とするものである。  [0011] The organic electronic device manufacturing method of the fifth aspect may have a substituent compared to the method of manufacturing an organic electronic device that functions by applying a voltage to a layer made of an organic electronic material. An electrode material is applied on the underlayer by a step of forming an underlayer containing 1,2-diarylethene, a step of subjecting the 1,2-diarylethene of the underlayer to an isomeric reaction in a predetermined pattern, and the following. And forming an electrode pattern corresponding to the predetermined pattern.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 laは実験例 1における DAEの異性ィ匕状態とマグネシウムの付着状態を示す 写真であり、図 lbは同 DEAの閉環分子比率を示す吸収スペクトルである。  [0012] FIG. 1 is a photograph showing the isomeric state of DAE and the adhesion state of magnesium in Experimental Example 1, and FIG. 1 lb is an absorption spectrum showing the ratio of ring-closed molecules of DEA.
[図 2]図 2a, 2b, 2c及び 2dの各図は、それぞれ実験例 3における実験方法を示す説 明図である。  [FIG. 2] FIGS. 2a, 2b, 2c, and 2d are explanatory diagrams showing experimental methods in Experimental Example 3, respectively.
[図 3]実験例 3におけるマグネシウムの未蒸着ラインを示す顕微鏡写真である。  FIG. 3 is a micrograph showing an undeposited line of magnesium in Experimental Example 3.
[図 4]実験例 4におけるサンプル 1, 2の電圧電流特性を示すグラフである。  FIG. 4 is a graph showing voltage-current characteristics of Samples 1 and 2 in Experimental Example 4.
[図 5]実験例 4におけるサンプル 3, 4と、実験例 6におけるサンプル 10の電圧電流特 性を示すグラフである。  FIG. 5 is a graph showing the voltage-current characteristics of Samples 3 and 4 in Experimental Example 4 and Sample 10 in Experimental Example 6.
[0013] 本発明者らは、フォトクロミック分子材料の一種である 1, 2—ジァリールェテン (以 下、「DAE」と略す。本発明において、 DAEは置換基を有していても良ぐ以下にお いて、置換基を有したものも含めて「DAE」と称す。)等の、光により物性変化する材 料、即ち光感応性材料が、その異性ィ匕等の物性変化の状態に応じた顕著なマグネ シゥム等の金属に対する親和性を示すことを見出した。本発明者は、従って、予め D [0013] The inventors of the present invention are 1,2-diarylethenes (hereinafter abbreviated as “DAE”), which is a kind of photochromic molecular material. In the present invention, DAE may have a substituent. In addition, materials that have substituents are also called “DAE”)), and other materials that change their physical properties by light, that is, light-sensitive materials are prominent depending on the state of physical property change such as their isomericity. It has been found that it has an affinity for metals such as magnesium. The inventor therefore pre-
AE等の光感応性材料の下地層を形成し、該 DAE等の光感応性材料の下地層を所 定のパターン状に異性ィ匕等の物性変化させることにより、極めて容易に電極パターン 等の金属パターンを形成することができることを見出した。本発明者は、更に、 DAE 等の光感応性材料の下地層にキャリア輸送性材料を混在させることにより、優れたキ ャリア輸送性を兼ね備える DAE等の光感応性材料の下地層とすることができることを 見出した。 By forming an underlayer of a photosensitive material such as AE, and changing the physical properties of the photosensitive layer such as DAE into a predetermined pattern such as isomorphism, it is very easy to It has been found that a metal pattern can be formed. The inventor further provides the DAE It has been found that by mixing a carrier transporting material in the underlayer of the photosensitive material such as DAE, it can be used as an underlayer of the photosensitive material such as DAE that also has excellent carrier transportability.
[0014] 本発明によれば、メタルマスクの作成、オーバーハング状ライン隔壁の形成、粘着 フィルムによる剥離、などの工程に伴う種々の制約に捕われることなぐ自由な形状に かつ高精度に有機デバイスの電極パターン等の金属パターンを形成することが可能 とされる。  [0014] According to the present invention, an organic device can be formed in a free shape and with high accuracy without being caught by various constraints associated with processes such as formation of a metal mask, formation of overhanging line partition walls, and peeling with an adhesive film. It is possible to form a metal pattern such as an electrode pattern.
[0015] 本発明のより形成された金属パターンは、各種電子'電気機器の電極や電気回路 [0015] The metal pattern formed by the present invention can be used for various electronic and electrical equipment electrodes and electrical circuits.
、或いは有機 EL素子、有機 TFT素子、有機メモリ素子、半導体素子等の有機電子 デバイスの電極や電気回路などとして用いることができる。 Alternatively, it can be used as an electrode or an electric circuit of an organic electronic device such as an organic EL element, an organic TFT element, an organic memory element, or a semiconductor element.
[0016] 以下に本発明の実施の形態を詳細に説明するが、本発明は、以下の実施の形態 の説明に限定されるものではなぐその要旨の範囲内で種々に変更して実施すること ができる。 [0016] Embodiments of the present invention will be described in detail below. However, the present invention is not limited to the description of the following embodiments, and various modifications may be made within the scope of the gist thereof. Can do.
[0017] [金属パターン形成の原理]  [0017] [Principle of metal pattern formation]
本発明の金属パターンの製造方法においては、光により物性変化する光感応性材 料を含む層が表面に形成された基板に、所定のパターンで光照射することにより、そ の光照射パターンに従って該光感応性材料の物性を変化させ、該物性の変化により 、金属の付着性ないし成膜性を制御し、金属パターンを自由な形状に形成する。  In the method for producing a metal pattern of the present invention, a substrate having a layer containing a photosensitive material that changes its physical properties by light is irradiated with light in a predetermined pattern, and the substrate is subjected to the light irradiation pattern according to the light irradiation pattern. By changing the physical properties of the light-sensitive material, the change in the physical properties controls the metal adhesion or film-forming property, and the metal pattern is formed into a free shape.
[0018] 光感応性材料の物性の変化により、金属の付着性ないし成膜性を制御するメカ- ズムは、後述の実験例でも示すように、金属を成膜すべき基板表面に到達した金属 原子 (主として工業的には蒸着により与えられることが多い)と基板表面との相互の分 子運動の様態に基くものであり、  [0018] The mechanism for controlling the adhesion or film-forming property of the metal by changing the physical properties of the light-sensitive material is the metal that has reached the substrate surface on which the metal is to be formed, as shown in the following experimental examples. It is based on the state of mutual molecular motion between atoms (mainly given by vapor deposition mainly in industry) and the substrate surface.
0 基板表面への金属原子の付着、堆積が進行し、結果として成膜がなされる 或いは  0 Adhesion and deposition of metal atoms on the surface of the substrate proceeds, resulting in film formation or
ii) 基板表面に金属原子が付着、堆積されることなく散逸していまい、結果として成 膜がなされない  ii) Metal atoms can be dissipated without being deposited and deposited on the substrate surface, resulting in no film formation
ことにより、金属の成膜性が制御される。  Thereby, the metal film-forming property is controlled.
[0019] 即ち、金属が成膜される基板表面の状態が堅ければ、この表面に衝突して比較的 大きなエネルギーを失った金属原子は余剰のエネルギーで基板表面上で動き回る 力 その頻度と、後続してくる金属原子と接触する頻度が拮抗すると考えられる。そし て、この金属原子は基板上で後続の金属原子と接触して結合し、塊を形成すること により、基板上で運動エネルギーを殆ど失って安定ィ匕し、この結果として基板上での 金属の堆積、成膜が進行する。 That is, if the surface of the substrate on which the metal is deposited is firm, It is thought that metal atoms that have lost a large amount of energy move around the surface of the substrate with surplus energy, and the frequency with which they contact the metal atoms that follow. The metal atoms then contact and bond with subsequent metal atoms on the substrate to form a mass, thereby losing little kinetic energy on the substrate and stabilizing, resulting in the metal on the substrate. The deposition and film formation progress.
[0020] これに対して、基板表面が極端に軟らかいと、基板表面に到達した金属原子は基 板との衝突でエネルギーを多少失うものの、その失うエネルギーは少なぐ依然として 高レベルのエネルギーを有し、このため活発に動き回る。後続の金属原子も同様に 活発な状態であるため、金属原子同士の衝突の頻度にかかわらず、高いエネルギー を有する金属原子同士の接触で金属塊が形成される可能性は、上述の基板表面が 堅い場合に比べて少ないと予想される。そして、この結果として、このような場合は、 金属の成膜が進行しない。  [0020] On the other hand, if the substrate surface is extremely soft, metal atoms that have reached the substrate surface lose some energy due to collision with the substrate, but the loss energy is small and still has a high level of energy. Because of this, it moves actively. Since the subsequent metal atoms are similarly active, the possibility that a metal lump is formed by contact between metal atoms having high energy regardless of the frequency of collision between metal atoms is that the above-mentioned substrate surface is Expected to be less than the hard case. As a result, in such a case, metal film formation does not proceed.
[0021] 基板表面が軟らか!/、か堅!、かを、このように分子運動の状態として考えると、基板 表面の分子運動が活発であるかそうでないかにつながる。つまり、金属原子からみた ときの基板表面での熱運動のレベルの大小である。基板表面が軟らかい場合、バル クの状態も含めて、基板の表面で金属原子が活発に動いており、基板表面の金属原 子は、その活発さゆえに、互いに接触して結合することは殆どない。一方、基板表面 が堅い場合は、金属原子は基板表面で安定に定着し、近傍の後続金属原子との間 でクラスターを形成し、更に安定化される。  Considering whether the substrate surface is soft! / Or firm! As the state of molecular motion in this way, it leads to whether the molecular motion on the substrate surface is active or not. In other words, it is the level of thermal motion on the substrate surface as seen from the metal atoms. When the substrate surface is soft, metal atoms actively move on the surface of the substrate, including the bulk state, and the metal atoms on the substrate surface rarely come into contact with each other due to their activity. . On the other hand, when the substrate surface is hard, the metal atoms are stably fixed on the substrate surface, and form clusters with neighboring metal atoms in the vicinity, further stabilizing.
[0022] このような金属原子の付着し易さ、堆積し易さを左右する基板表面の堅さや軟らか さ(以下、この物性を「基板の動的構造」と称す。)を決定する要素としては、基板材料 のガラス転移温度 (Tg)、基板表面の形態などがあるが、同じ材料であっても温度を 変化させることにより、この動的構造の様態が変化することから、基板材料のガラス転 移温度、基板表面の形態の他、基板表面の温度等によっても基板の動的構造を制 御して金属の付着性ないし成膜性を制御することができると考えられる。  [0022] As an element that determines the hardness and softness of the substrate surface (hereinafter, this physical property is referred to as "the dynamic structure of the substrate") that affects the ease of attachment and deposition of metal atoms. The glass transition temperature (Tg) of the substrate material, the morphology of the substrate surface, etc., but even with the same material, the dynamic structure changes by changing the temperature. In addition to the transition temperature and the surface shape of the substrate, it is considered that the metal adhesion and film formation can be controlled by controlling the dynamic structure of the substrate by the temperature of the substrate surface and the like.
[0023] 本発明では、このように基板表面の動的構造と成膜される金属原子のクラスタ一形 成性との精妙なバランスにより、金属の付着性ないし成膜性を制御する。この付着性 ないし成膜性の制御には、その成膜操作や材料の選定においてパラメーターが存在 する。これらパラメーターの最適化により、本発明によれば、後述のマグネシウム以外 の金属、例えばアルミニウム、リチウム等の付着性ないし成膜性をも制御して、各種の 金属パターンの形成を可能とする。 [0023] In the present invention, metal adhesion or film formability is controlled by such a delicate balance between the dynamic structure of the substrate surface and the cluster formability of metal atoms to be deposited. There are parameters for controlling adhesion and film formation in the film formation operation and selection of materials. To do. By optimizing these parameters, according to the present invention, various metal patterns can be formed by controlling the adhesion or film forming properties of metals other than magnesium, such as aluminum and lithium, which will be described later.
[0024] 代表的なパラメータ一は、 DAE等の光感応性材料含有層の材質、即ち、光感応性 材料含有層の形成材料となるポリマー媒体、それに含浸させる物質、積層させる金 属種、そしてそれらの間の適合性、温度、などである。  [0024] One representative parameter is the material of the light-sensitive material-containing layer such as DAE, that is, the polymer medium that forms the light-sensitive material-containing layer, the substance impregnated therein, the metal species to be laminated, and Compatibility between them, temperature, etc.
[0025] 積層する金属に対して、成膜条件のパラメーターを最適化し、最適化された条件下 に基板の表面に光感応性材料含有層を形成して光照射した後金属を積層させること により、金属原子の付着性ないし成膜性を制御して金属パターンを形成することが可 能となる。  [0025] By optimizing the parameters of the film formation conditions for the metal to be laminated, forming a light-sensitive material-containing layer on the surface of the substrate under the optimized conditions, and then laminating the metal after light irradiation. In addition, it becomes possible to form a metal pattern by controlling the adhesion or film-forming property of metal atoms.
[0026] 以下に、本発明における金属パターンの形成原理を、光感応性材料として、光の 照射により異性ィ匕する DAEを用いた場合を例示して説明するが、 DAE以外の光感 応性材料を用いた場合でも、上述の如ぐ同様に光照射による光感応性材料の物性 変化で、金属の付着性ないし成膜性が変化することを利用してパターユングを行うこ とがでさる。  [0026] In the following, the formation principle of the metal pattern in the present invention will be described by exemplifying a case where DAE that is isomerized by light irradiation is used as the photosensitive material. Photosensitive materials other than DAE are described below. Even in the case of using the patterning, it is possible to perform patterning by utilizing the fact that the adhesion property of the metal or the film forming property changes due to the change in physical properties of the photosensitive material due to light irradiation as described above.
[0027] DAEは、 2つのァリール基が結合してェテン二重結合を含む環を形成した閉環状 態と、これらのァリール基が離れた開環状態との 2つの異性体を有するものである力 このうち、開環状態のものはマグネシウムが付着せず、閉環状態のものはマグネシゥ ムが付着する。本発明では、 DAEのこの性質を利用して、例えば次のようにして電極 のパター-ングを行うことができる。  [0027] DAE has two isomers: a closed ring state in which two aryl groups are bonded to form a ring containing a ethene double bond, and a ring-opened state in which these aryl groups are separated. Force Of these, magnesium does not adhere to the ring-open state, and magnesium adheres to the ring-closed state. In the present invention, by utilizing this property of DAE, for example, the electrode can be patterned as follows.
[0028] 即ち、予めそのデバイスの機能を発現するための有機層が形成された基板の該有 機層上に、 DAEを含む下地層を形成し、この下地層に所望のパターンに対応したパ ターンでレーザーなどの光を照射することによって、 DAEの異性化状態部分を形成 し、さらにその上に電極層を、例えばマグネシウムを蒸着することにより形成する。形 成された下地層中の DAEが開環状態であり、異性ィ匕により閉環状態となった場合に は、異性化状態(閉環状態)部分にマグネシウムが付着して当該パターンに対応した 電極パターンを形成することができる。また、形成された下地層中の DAEが閉環状 態であり、異性化により開環状態となつた場合には、異性化状態(開環状態)部分以 外にマグネシウムが付着して、当該パターンのネガパターンに対応した電極を形成 することができる。このように DAEの異性ィ匕パターンに対応したパターンで容易に電 極パターンを形成することが可能となる。 That is, a base layer containing DAE is formed on the organic layer of the substrate on which an organic layer for expressing the function of the device is formed in advance, and a pattern corresponding to a desired pattern is formed on the base layer. By irradiating light such as laser with a turn, an isomerized state portion of DAE is formed, and an electrode layer is formed thereon by evaporating, for example, magnesium. When the DAE in the formed underlayer is in a ring-opened state and becomes ring-closed due to isomerism, magnesium adheres to the isomerized state (ring-closed state) and the electrode pattern corresponding to the pattern Can be formed. In addition, when the DAE in the formed underlayer is in a closed ring state and becomes an open ring state by isomerization, the isomerized state (open ring state) portion is not included. Magnesium adheres to the outside, and an electrode corresponding to the negative pattern of the pattern can be formed. In this way, it is possible to easily form an electrode pattern with a pattern corresponding to the DAE isomorphism pattern.
[0029] このように DAEの異性化により電極のパターユングを行うことができるメカニズムの 詳細は必ずしも明らかではないが、次のように推定される。即ち、 DAEの異性化反応 に伴う何らかの物性変化により、マグネシウムの付着性に変化が生じ、また、異性ィ匕 反応を起こすことで、当該部分の開環体分子と閉環体分子との比率がある値を超え た時に、マグネシウムの付着性と非不着性とに顕著な差が生じ、パターユングが可能 になるものと考えられる。 DAEは、その 1分子程度に相当する膜厚である lnmという ような超薄膜でもこのような作用効果を得ることができ、さらにレーザーを集光して形 成したミクロンオーダーの異性ィ匕パターンに対しても、それに対応した電極パターン を形成することができ、従って、本発明によれば、レーザー光の集光スポットに対応 するような微細なパターンを含めて、所望の任意の形状の電極パターンをレーザー 光の走査精度と同等の精度で高精度に形成することが可能となる。なお、フィルター の工夫をすれば、レーザー強度の大きな部分のみ光が実効的に働き、波長による制 約以下のパターンもつくることができる。  [0029] The details of the mechanism by which electrode patterning can be performed by DAE isomerization in this way are not necessarily clear, but are estimated as follows. That is, due to some physical property change accompanying the isomerization reaction of DAE, the adhesiveness of magnesium changes, and the ratio between the ring-opened molecule and the ring-closed molecule of the part is caused by causing the isomeric reaction. When this value is exceeded, there is a significant difference between the adhesion and non-stickiness of magnesium, and patterning is considered possible. DAE can achieve this effect even with ultra-thin films such as lnm, which has a film thickness equivalent to about one molecule. In addition, DAE has a micron-order isomeric pattern formed by focusing the laser. In contrast, an electrode pattern corresponding to the electrode pattern can be formed. Therefore, according to the present invention, an electrode pattern having an arbitrary shape including a fine pattern corresponding to a focused spot of the laser beam can be formed. Can be formed with high accuracy at the same accuracy as the scanning accuracy of the laser beam. If the filter is devised, the light works effectively only in the part where the laser intensity is high, and it is possible to create a pattern less than the restriction by the wavelength.
[0030] なお、 DAEは、通常開環状態で無色のものが、閉環状態で着色する。従って、本 発明によれば、 DAEが閉環状態となり、マグネシウムの付着性を有する部分を色に 対応するスペクトルにて確認することができるという利点も有する。  [0030] It should be noted that DAE is normally colorless in the ring-opened state and colored in the ring-closed state. Therefore, according to the present invention, DAE is in a closed state, and there is an advantage that a portion having magnesium adhesion can be confirmed in a spectrum corresponding to color.
また、 DAEは、有機電子デバイスの有機層や電極に何ら影響を及ぼすものではな ぐ DAE含有層を形成することにより、有機電子デバイスの機能が損なわれることも ない。  In addition, DAE does not affect the organic layers and electrodes of organic electronic devices. By forming a DAE-containing layer, the functions of organic electronic devices are not impaired.
[0031] [光により物性変化する光感応性材料]  [0031] [Photosensitive material whose physical properties are changed by light]
本発明に用いられる光により物性変化する光感応性材料は、その主旨を変えない かぎり DAEに限るものではない。  The photosensitive material that changes its physical properties by light used in the present invention is not limited to DAE unless the gist thereof is changed.
光による光感応性材料の物性変化には、光異性化、光相変化等が挙げられる。  Examples of the change in physical properties of the light-sensitive material due to light include photoisomerization and optical phase change.
[0032] 光により異性ィ匕する材料としては、上記のような物性変化を誘起するものであれば よぐ例えば、 DAE、ァゾベンゼン、スピロピラン、スピロォキサジンスピロナフトォキサ ジン、フルギドなどさまざまなフォトクロミック材料を用いることができる。 [0032] Materials that are isomerized by light are not particularly limited as long as they induce changes in physical properties as described above, for example, DAE, azobenzene, spiropyran, spirooxazine spironaphthoxa. Various photochromic materials such as gin and fulgide can be used.
[0033] また、光により相変化する材料としては、相変化型の光メモリ材料に用いられる無機 材料で、光刺激により上記物性変化をもたらす材料であればよい。例えば、光照射 により発生した熱により上記物性変化を付与することができるサーモク口ミック材料を 用いることが可能である。  [0033] The material that changes phase by light may be any inorganic material that can be used for phase-change optical memory materials and that can change the physical properties by light stimulation. For example, it is possible to use a thermocomic material that can impart the above-mentioned physical property change by heat generated by light irradiation.
[0034] これらの光感応性材料は、蒸着法等のドライプロセスの他、キャスト法、スピンコート 法、インクジェット法やその他の印刷法などのウエットプロセスによっても基板上に成 膜することができる。  [0034] These photosensitive materials can be formed on the substrate not only by a dry process such as an evaporation method but also by a wet process such as a cast method, a spin coat method, an ink jet method, and other printing methods.
[0035] 基板上の光感応性材料を含む層は光感応性材料の 1種又は 2種以上のみを含む ものであっても良ぐ光感応性材料と、必要に応じてポリスチレン、 MEH— PPV (ポリ (2—メトキシ一 5— (2,一ェチノレへキシロキシ) p フエ-レンビ-レン)等のポリマ 一媒体の 1種又は 2種以上等を含むものであっても良い。  [0035] The layer containing the photosensitive material on the substrate may contain only one type or two or more types of photosensitive material, and polystyrene, MEH- PPV if necessary. It may contain one kind or two or more kinds of polymer media such as (poly (2-methoxy-5- (2,1-ethynolehexyloxy) p-phenylene-lene)).
[0036] [金属パターンの製造方法]  [0036] [Metallic pattern manufacturing method]
本発明の金属パターンの製造方法においては、基板上に光感応性材料を含む層 を形成した後、この光感応性材料含有層に所定のパターンで光を照射して光感応性 材料の物性を変化させ、この物性の変化による金属の付着性な 、し成膜性の差を利 用して、この光照射後の光感応性材料含有層上に金属を成膜する際に、金属バタ ーンを形成する。  In the method for producing a metal pattern of the present invention, after a layer containing a photosensitive material is formed on a substrate, the photosensitive material-containing layer is irradiated with light in a predetermined pattern to thereby improve the physical properties of the photosensitive material. When the metal is deposited on the light-sensitive material-containing layer after the light irradiation by utilizing the difference in the adhesion property of the metal due to the change in physical properties and the difference in film formability, Form.
[0037] 即ち、光照射による光感応性材料の物性変化で金属の付着性な 、し成膜性が高く なる場合には、光照射したパターンに従って金属が付着して金属パターンが形成さ れる。逆に、光照射による光感応性材料の物性変化で金属の付着性ないし成膜性 が低くなる場合には、光照射したパターン以外の部分に金属が付着して、光照射パ ターンに対してネガ型の金属パターンが形成される。  [0037] That is, in the case where the adhesion property of the metal is increased due to the change in physical properties of the photosensitive material due to light irradiation, and the film forming property is improved, the metal adheres according to the light irradiated pattern to form a metal pattern. On the other hand, if the metal adhesion or film-forming property becomes low due to changes in the physical properties of the light-sensitive material due to light irradiation, the metal will adhere to areas other than the light-irradiated pattern, and the light irradiation pattern will be reduced. A negative metal pattern is formed.
[0038] 本発明において、光感応性材料含有層を形成する基板としては特に制限はなぐ ガラス、プラスチック、金属、セラミック、その他あらゆる材料を用いることができる。  In the present invention, the substrate on which the light-sensitive material-containing layer is formed is not particularly limited, and glass, plastic, metal, ceramic, and any other material can be used.
[0039] また、光感応性材料含有層は、このような基板上に光感応性材料含有層の付着性 改善、その他機能性向上のための下地層を形成した後に形成しても良 、。  [0039] In addition, the photosensitive material-containing layer may be formed after forming a base layer for improving adhesion of the photosensitive material-containing layer and other functions on such a substrate.
[0040] 光感応性材料含有層は、用いる光感応性材料の種類や層内の光感応性材料濃度 等に応じて、光照射によるパターンィ匕が可能な程度の厚さに形成される。 [0040] The photosensitive material-containing layer includes the type of photosensitive material used and the concentration of photosensitive material in the layer. Depending on the thickness, the film is formed to a thickness that allows patterning by light irradiation.
[0041] 光感応性材料含有層への光照射条件にも特に制限はなぐ光感応性材料含有層 内の光感応性材料が金属パターンを形成可能な程度の明確な物性変化を起こす程 度であれば良い。  [0041] There are no particular restrictions on the light irradiation conditions for the light-sensitive material-containing layer. To the extent that the light-sensitive material in the light-sensitive material-containing layer causes a clear change in physical properties such that a metal pattern can be formed. I just need it.
[0042] 金属パターンの形成に用いられる金属としては、マグネシウム、アルミニウム、力リウ ム、リチウム、或いはこれらの 1種又は 2種以上を含む合金が挙げられるが何らこれに 限定されるものではない。金属パターンはその用途に応じて、光照射により物性変化 した光感応性材料含有層上に、蒸着等により所定の厚さに金属を堆積させることによ り形成される c  [0042] Examples of the metal used for forming the metal pattern include, but are not limited to, magnesium, aluminum, strong lithium, lithium, or an alloy containing one or more of these. The metal pattern is formed by depositing metal to a predetermined thickness by vapor deposition or the like on the photosensitive material-containing layer whose physical properties have been changed by light irradiation according to its application.
[0043] このようにして形成される金属パターンは、基板との間に、光感応性材料を有するも のであり、電極、電気回路、特に有機電子デバイスの電極や電気回路として有用で ある。  [0043] The metal pattern formed as described above has a photosensitive material between the substrate and the substrate, and is useful as an electrode and an electric circuit, particularly as an electrode and an electric circuit of an organic electronic device.
[0044] ただし、本発明の方法で製造した金属パターン及び該金属パターンを用いて作成 した電極、電気回路、有機電子デバイスは、上述のように光感応性材料を含む層を 有する場合もあるが、金属パターンを製造した後に、光感応性材料を含む層を適宜 、転写、洗浄等により除去することも可能であり、この場合には、光感応性材料を含 む層を有さないものとなる。  However, the metal pattern manufactured by the method of the present invention and the electrode, electric circuit, and organic electronic device prepared using the metal pattern may have a layer containing a photosensitive material as described above. After manufacturing the metal pattern, the layer containing the photosensitive material can be appropriately removed by transfer, washing, etc. In this case, the layer containing the photosensitive material is not included. Become.
[0045] [有機電子デバイス] [0045] [Organic electronic devices]
以下に、本発明の金属パターンの製造方法を、有機電子デバイスの製造に適用す る場合を例示して、本発明を詳細に説明するが、本発明に係る金属パターンは、何 ら有機電子デバイスに用いられるものに限定されるものではない。  Hereinafter, the present invention will be described in detail by exemplifying a case where the method for producing a metal pattern of the present invention is applied to the production of an organic electronic device. The metal pattern according to the present invention is not limited to any organic electronic device. It is not limited to what is used for.
[0046] 有機電子デバイスは、通常、第一電極、有機層及び第二電極をこの順で積層した 構造であるか、或いは、更に第一電極側に基板を有する。 [0046] The organic electronic device usually has a structure in which a first electrode, an organic layer, and a second electrode are laminated in this order, or further has a substrate on the first electrode side.
[0047] また、本発明の有機電子デバイスは、さらに [0047] The organic electronic device of the present invention further includes
基板と第一電極との間  Between substrate and first electrode
第一電極と有機層との間  Between the first electrode and the organic layer
有機層と第二電極との間  Between the organic layer and the second electrode
のいずれか 1以上に、置換基を有していても良い 1, 2—ジァリールェテン等の光感 応性材料を含む層を有するものである。 Any one or more of them may have a substituent, such as 1, 2-diarylmethene It has a layer containing a responsive material.
[0048] 即ち、本発明の有機電子デバイスは、電極と隣接する部材との間に DAE等の光感 応性材料を含む層を有する点が、従来の有機電子デバイスとは異なり、 DAE等の光 感応性材料を含む層以外の各部材の構成及びその形成方法につ!、ては、従来の 有機電子デバイスの構成及び形成方法を適用することができる。例えば、有機 EL素 子 ίこつ ヽて ίま、特開 2004— 362930号公報、特開 2004— 359671号公報、特開 2 004— 331587号公報等に記載の構成を任意に選択して採用することができる。ま た、有機卜ランジスタ【こつ ヽて ίま特開 2003— 309268号公報、 #^2004- 10363 8号公報等に記載の構成を任意に選択して採用することができる。もちろん、これら の公報に記載の内容に限定されるものではないことは言うまでもない。  That is, unlike the conventional organic electronic device, the organic electronic device of the present invention has a layer containing a light-sensitive material such as DAE between the electrode and the adjacent member. For the configuration of each member other than the layer containing the sensitive material and the formation method thereof, the conventional configuration and formation method of the organic electronic device can be applied. For example, the configuration described in Japanese Patent Application Laid-Open No. 2004-362930, Japanese Patent Application Laid-Open No. 2004-359671, Japanese Patent Application Laid-Open No. 2004-431587, etc. is arbitrarily selected and adopted. be able to. In addition, a configuration described in an organic organic transistor, such as Japanese Unexamined Patent Publication No. 2003-309268 and # ^ 2004-103638, can be arbitrarily selected and employed. Of course, it goes without saying that the content is not limited to those described in these publications.
[0049] ただし、第一電極、第二電極の形成方法については、真空蒸着法、スパッタリング 法など有機層にダメージを与えな 、ドライプロセスの範囲で任意に選ぶことができる 力 本発明の DAE異性ィ匕等の光感応性材料の物性変化によるパターユングを適用 する電極につ!ヽては、電極となる金属原子の付着時における DAE等の光感応性材 料への低ダメージ性の理由により、真空蒸着を採用することが好ましい。  [0049] However, the formation method of the first electrode and the second electrode can be arbitrarily selected within the range of the dry process without damaging the organic layer, such as vacuum deposition or sputtering. For electrodes to which patterning is applied due to changes in the physical properties of photosensitive materials such as 匕 ヽ, because of the low damage to photosensitive materials such as DAE when metal atoms become electrodes It is preferable to employ vacuum deposition.
[0050] なお、本発明の有機電子デバイスにお!/ヽて基板は必ずしも必要とされず、後述の 如ぐ第一電極や有機層に十分な厚みと強度がある場合には、基板のない構成とす ることちでさる。  [0050] It should be noted that the substrate is not necessarily required for the organic electronic device of the present invention. If the first electrode and the organic layer as described later have sufficient thickness and strength, there is no substrate. It's all about composition.
[0051] 〈光感応性材料含有層〉  <Photosensitive material-containing layer>
以下に、本発明の有機電子デバイスの特徴部分である光感応性材料含有層につ いて、 DAE含有層についてを例示して説明する力 本発明に係る光感応性材料は 何ら DAEに限定されるものではない。  Hereinafter, the light-sensitive material-containing layer, which is a characteristic part of the organic electronic device of the present invention, will be described with reference to the DAE-containing layer. The light-sensitive material according to the present invention is not limited to DAE. It is not a thing.
[0052] DAE  [0052] DAE
本発明に係る DAE含有層を形成する DAEとしては、入江らの総説、「有機フォトク 口ミスムの化学」、学会出版センター、 1996や、特開 2005— 082507号公報〖こ掲載 された化合物を用いることができる力 本発明は、上に述べたマグネシウム等の電極 材料との選択的付着性が確認されたものであれば良ぐ何らこれらに限定されるもの ではない。 このような電極材料との選択的付着性を有する化合物であって、かつ優れた放射 線感応性を有する化合物としては、例えば下記一般式 (I)で表される化合物を挙げ ることができる。中でも下記一般式 (I)において、 R1及び R2がアルコキシ基である化 合物は、環境光による退色が少なぐ好ましい。 As the DAE that forms the DAE-containing layer according to the present invention, the compounds described in Irie et al., “Chemistry of Organic Photochemical Misumi”, Academic Publishing Center, 1996, and Japanese Laid-Open Patent Publication No. 2005-082507 are used. Force that can be used The present invention is not limited to these as long as selective adhesion with the electrode material such as magnesium described above is confirmed. Examples of the compound having selective adhesion to such an electrode material and having excellent radiation sensitivity include compounds represented by the following general formula (I). In particular, in the following general formula (I), a compound in which R 1 and R 2 are alkoxy groups is preferable because it causes less fading due to ambient light.
[化 1] [Chemical 1]
Figure imgf000013_0001
式中、 R1及び R2は、それぞれ独立に、炭素数 1〜4のアルキル基、又は炭素数 1〜 4のアルコキシ基を示す。
Figure imgf000013_0001
In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
R3及び R4は、それぞれ独立に、置換基を有していても良いナフチル基、置換基を 有していても良いスチリル基、置換基を有していても良いフエ-ルェチュル基、又は 下記一般式 (A)で表される置換フエ二ル基を示す。 R 3 and R 4 are each independently a naphthyl group which may have a substituent, a styryl group which may have a substituent, a phenolic group which may have a substituent, or The substituted phenyl group represented by the following general formula (A) is shown.
[化 2] [Chemical 2]
Figure imgf000013_0002
Figure imgf000013_0002
(A)式中、 R9は置換基を有していても良いアルコキシ基、置換基を有していても良 ぃァラルキルォキシ基、置換基を有していても良いアルキルチオ基、置換基を有して いても良いアルキル基、置換基を有しても良いフエノキシ基、置換基を有しても良い フエ-ル基、置換基を有していても良いアルキルアミノ基、又は置換基を有していて も良いァリールアミノ基を示す。 In the formula (A), R 9 has an alkoxy group which may have a substituent, an aralkyloxy group which may have a substituent, an alkylthio group which may have a substituent, and a substituent. An alkyl group that may be substituted, a phenoxy group that may have a substituent, or a substituent A phenyl group, an alkylamino group which may have a substituent, or an arylamino group which may have a substituent.
R7, R8, R10, R11は、それぞれ独立に、水素原子又は任意の置換基を表す。但し、 R7〜RUとして後述する各基のうち、隣接する基同士が結合し、置換基を有していて も良 、環を形成して 、ても良 、。 R 7 , R 8 , R 10 and R 11 each independently represent a hydrogen atom or an arbitrary substituent. However, among the groups described below as R 7 to R U, bonded to adjacent groups to, it may also have a substituent, to form a ring, even if good.
R5及び R6は、それぞれ独立に、水素原子又は任意の置換基を表す。 R 5 and R 6 each independently represents a hydrogen atom or an arbitrary substituent.
[0054] 以下に、上記一般式 (I)で表される化合物について詳細に説明する。  [0054] Hereinafter, the compound represented by the general formula (I) will be described in detail.
一般式 (I)において、 R1及び R2は、それぞれ独立に、メチル基、ェチル基、プロピ ル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、シクロブチル基等の炭素数 1〜4のアルキル基、又は、メトキシ基、 エトキシ基、プロポキシ基、イソプロポキシ基、シクロプロポキシ基、ブトキシ基、イソブ トキシ基、 sec—ブトキシ基、 tert—ブトキシ基、シクロブトキシ基等の炭素数 1〜4の アルコキシ基を示す。中でも環境光による退色の問題がな 、アルコキシ基であること が好ましぐ特にメトキシ基が好ましい。 In the general formula (I), R 1 and R 2 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group. An alkyl group having 1 to 4 carbon atoms such as a cyclobutyl group, or a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a cyclopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, An alkoxy group having 1 to 4 carbon atoms such as a cyclobutoxy group. Among them, an alkoxy group is preferred, and a methoxy group is particularly preferred without causing a problem of fading due to ambient light.
[0055] R3及び R4は、それぞれ独立に、置換基を有して!/ヽても良!、ナフチル基、置換基を 有していても良いスチリル基、置換基を有していても良いフエ-ルェチュル基、又は 前記一般式 (A)で表される置換フエ二ル基を示し、このうち、置換基を有しても良い ナフチル基、置換基を有しても良いフエ-ルェチュル基、又は前記一般式 (A)で示 される置換フエ-ル基が好まし 、。 [0055] R 3 and R 4 each independently have a substituent! / May be !, a naphthyl group, an optionally substituted styryl group, and a substituent. A good phenyl group, or a substituted phenyl group represented by the general formula (A), of which a naphthyl group which may have a substituent, a phenyl group which may have a substituent, A luthul group or a substituted phenol group represented by the general formula (A) is preferred.
[0056] R3又は R4が一般式 (A)で示される場合、 R9としては、例えばメトキシ基、エトキシ基 、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、 sec—ブトキシ基、 ter t—ブトキシ基等の、炭素数 1〜10のアルコキシ基;ベンジルォキシ基、 a—フエネチ ルォキシ基、 βーフエネチルォキシ基等の、炭素数 1〜7のァラルキルォキシ基;メチ ルチオ基、ェチルチオ基、プロピルチオ基、ブチルチオ基、イソブチルチオ基、 sec ーブチルチオ基、 tert—ブチルチオ基等の、炭素数 1〜10のアルキルチオ基;メチ ル基、ェチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソプチ ル基、 sec—ブチル基、 tert—ブチル基、シクロブチル基、ペンチル基、へキシル基 等の、炭素数 1〜10のアルキル基;フエノキシ基;フエニル基;メチルァミノ基、ジメチ ルァミノ基、ジェチルァミノ基、メチルェチルァミノ基等の、炭素数 1〜6のアルキル鎖 部分を有するアルキルアミノ基;フエ-ルァミノ基、ジフエ-ルァミノ基等のァリールァ ミノ基;メチルフエ-ルァミノ基などのアルキルァリールアミノ基;などが挙げられる。 上記した各基は、いずれも置換基を有していてもよぐ該置換基としては、前記一般 式 (I)で表される化合物の性能を損なわない限り特に制限はないが、好ましくは、 R9 の例として前述した基及びハロゲン原子力 選択される。 When R 3 or R 4 is represented by the general formula (A), R 9 is, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, ter Alkoxy groups having 1 to 10 carbon atoms such as t-butoxy group; aralkyloxy groups having 1 to 7 carbon atoms such as benzyloxy group, a-phenoxy group and β-phenethyloxy group; methylthio group and ethylthio group Alkylthio group having 1 to 10 carbon atoms such as propylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group; methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group Alkyl group having 1 to 10 carbon atoms such as isopropyl group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, hexyl group, etc .; phenoxy group; phenyl ; Mechiruamino group, dimethicone Alkylamino groups having an alkyl chain part having 1 to 6 carbon atoms, such as a ruamino group, a jetylamino group, a methylethylamino group; an arylamino group such as a phenolamino group, a diphenylamino group; a methylphenolamino group, etc. An alkylarylamino group; and the like. Each of the above-described groups may have a substituent, and the substituent is not particularly limited as long as it does not impair the performance of the compound represented by the general formula (I). As an example of R9, the aforementioned groups and halogen nuclear power are selected.
[0057] R9としては前述した基の中でも電子供与性であるアルコキシ基、ァラルキルォキシ 基、アルキルチオ基、アルキル基、フエノキシ基、アルキルアミノ基、ァリールアミノ基 が好ましぐこれらはいずれも置換されていても良い。 R9はさらに好ましくは、アルコキ シ基、アルキル基、置換基を有していても良いフエノキシ基、ジアルキルアミノ基又は ジァリールアミノ基であり、特に好ましくはアルコキシ基である。 [0057] alkoxy group as the R 9 is an electron-donating among the group described above, Ararukiruokishi group, an alkylthio group, an alkyl group, phenoxy group, an alkylamino group, preferably is Ariruamino group member both of which are optionally substituted Also good. R 9 is more preferably an alkoxy group, an alkyl group, an optionally substituted phenoxy group, a dialkylamino group or a diarylamino group, and particularly preferably an alkoxy group.
[0058] R7, R8, R10, R11はそれぞれ独立に、水素原子又は任意の置換基を表す。この任 意の置換基は、前記一般式 (I)で表される化合物の性能を損なわない限り特に制限 はな 、が、例えば R9の例として前述した各基などが挙げられる。 [0058] R 7 , R 8 , R 10 and R 11 each independently represent a hydrogen atom or an arbitrary substituent. The optional substituent is not particularly limited as long as it does not impair the performance of the compound represented by the general formula (I), and examples thereof include the groups described above as examples of R 9 .
なお、 R7〜RUの各基のうち、隣接する基同士、つまり R7と R8、 R8と R9、 R9と R1Q、 R10 と R11がそれぞれ結合して、環を形成しても良ぐ該環は置換基を有していても良い。 このような環を形成した場合、前記一般式 (A)で表される置換フエ-ル基としては、 例えば下記のものが挙げられる。 Of the R 7 to R U groups, adjacent groups, that is, R 7 and R 8 , R 8 and R 9 , R 9 and R 1Q , R 10 and R 11 are bonded to form a ring. The ring which may be formed may have a substituent. When such a ring is formed, examples of the substituted phenol group represented by the general formula (A) include the following.
[0059] [化 3] [0059] [Chemical 3]
Figure imgf000016_0001
Figure imgf000016_0001
[0060] 上記例では記載を省略した力 R7〜RUのうち隣接する基同士が結合してなる環は 、前記一般式 (I)で表される化合物の特性を損なわない限り、任意の置換基を有して いても良ぐ該置換基としては、例えば (環を形成しない場合の) R7〜RUとして前述し た各基が挙げられる。 [0060] The ring formed by bonding of adjacent groups among the forces R 7 to R U that are not described in the above examples is an arbitrary group as long as the characteristics of the compound represented by the general formula (I) are not impaired. Examples of the substituent which may have a substituent include the groups described above as R 7 to R U (when no ring is formed).
R7〜RUについても、前記一般式 (A)の p—位の置換基である R9と同様に、比較的 電子供与性の基であることが好まし 、ため、 R7〜RUに相当する任意の置換基として 好ましいものも、 R9における好ましい基と同様の基、及びこれらが結合して形成する 環が挙げられる。 R 7 to R U are preferably relatively electron donating groups as well as R 9 which is the p-position substituent of the general formula (A). Therefore, R 7 to R U Preferred examples of the optional substituents corresponding to include the same groups as the preferred groups for R 9 and the ring formed by combining these groups.
[0061] 特に、 R7及び R11としては水素原子が好ましぐ R8及び R1Qとしては、水素原子、アル コキシ基又はアルキル基が好ま U、。 [0061] In particular, R 7 and R 11 are preferably hydrogen atoms. R 8 and R 1Q are preferably hydrogen atoms, alkoxy groups, or alkyl groups U.
[0062] R3及び R4力 それぞれ独立に、置換基を有して ヽても良 、ナフチル基、置換基を 有して 、ても良 、スチリル基、又は置換基を有して!/、ても良 、フエ-ルェチュル基を 表す場合、該置換基としては、前記一般式 (I)で表される化合物の特性を損なわな い限り、任意の置換基が挙げられ、具体的には、例えば R9の例として挙げたものと同 様の基が挙げられる。中でも、 R9と同様に電子供与性の基が好ましいが、特に好まし くはアルコキシ基、アルキル基、又はジアルキルアミノ基である。 [0062] R 3 and R 4 forces may each independently have a substituent, may have a naphthyl group, have a substituent, may have a styryl group, or have a substituent! / In the case of representing a phenolic group, the substituent may be any substituent as long as the properties of the compound represented by the general formula (I) are not impaired. For example, the same groups as those exemplified as R 9 can be mentioned. Among them, an electron donating group is preferable as in R 9 , but is particularly preferable. Or an alkoxy group, an alkyl group, or a dialkylamino group.
R3及び R4力 それぞれ独立に、置換基を有していても良いナフチル基、置換基を 有して 、ても良 、スチリル基、又は置換基を有して!/、ても良 、フエ-ルェチュル基を 表す場合、最も好ましくは、これらが無置換の場合である。 R 3 and R 4 force each independently has a naphthyl group optionally having a substituent, may have a substituent, may have a styryl group, or have a substituent! / When it represents a pheuture group, it is most preferred that they are unsubstituted.
[0063] R3及び Z又は R4が置換基を有して ヽても良 ヽナフチル基を示す場合、このナフチ ル基としては 2—ナフチル基がより好まし 、。 [0063] When R 3 and Z or R 4 have a substituent, and represent a naphthyl group, a 2-naphthyl group is more preferable as the naphthyl group.
R3及び R4としては、熱安定性及び繰り返し耐久性の点からは、置換基を有していて も良 、ナフチル基又は前記一般式 (A)で表される置換フエニル基が好ま 、。 R 3 and R 4 may have a substituent from the viewpoint of thermal stability and repeated durability, and are preferably a naphthyl group or a substituted phenyl group represented by the general formula (A).
[0064] R5及び R6は、それぞれ独立に、水素原子であるか、前記一般式 (I)で表される化 合物の性能を損なわな!/、限り任意の置換基であって良 、が、あまり嵩高 、基ではな[0064] R 5 and R 6 are each independently a hydrogen atom or an arbitrary substituent as long as the performance of the compound represented by the general formula (I) is not impaired! , But not too bulky
Vヽ方が好ま 、ため、特に水素原子又はメチル基が好ま 、。 V is preferred, so hydrogen atom or methyl group is particularly preferred.
[0065] R1と R2、 R3と R4、 R5と R6はそれぞれ同一でも異なっても良いが、同一の方が好まし い。 [0065] R 1 and R 2 , R 3 and R 4 , and R 5 and R 6 may be the same or different, but the same is preferable.
[0066] 前記一般式 (I)で示される前記一般式 (I)で表される化合物の、好ま 、例としては 下記のものが挙げられる力 これらに限定されるものではない。  [0066] The compounds represented by the general formula (I) represented by the general formula (I) preferably include, but are not limited to, the following compounds.
[0067] [化 4] [0067] [Chemical 4]
Figure imgf000018_0001
Figure imgf000018_0001
(Me :メチル基)
Figure imgf000018_0002
(Me: methyl group)
Figure imgf000018_0002
(Me :メチル基) (Me: methyl group)
[0068] [化 5] 置¾006 [0068] [Chemical 5] 置 ¾006
Figure imgf000019_0001
Figure imgf000019_0001
//:/ O /-88εοε900ί1£ ε6ϊε60900ΝAV //: / O / -88εοε900ί1 £ ε6ϊε60900ΝAV
Figure imgf000020_0001
Figure imgf000020_0001
墓〔皇0 Tomb [Emperor 0
Figure imgf000021_0001
Figure imgf000021_0001
[0071] [化 8] [0071] [Chemical 8]
Figure imgf000022_0001
.88C0C/900Zdf/X3d 03 C6TC60/900Z OAV
Figure imgf000023_0001
[0073] [化 10]
Figure imgf000022_0001
.88C0C / 900Zdf / X3d 03 C6TC60 / 900Z OAV
Figure imgf000023_0001
[0073] [Chemical 10]
Figure imgf000024_0001
[0074] [化 11]
Figure imgf000024_0001
[0074] [Chemical 11]
Figure imgf000025_0001
[0075] [化 12]
Figure imgf000025_0001
[0075] [Chemical 12]
Figure imgf000026_0001
Figure imgf000026_0001
[0076] 本発明に係る DAE含有層には、このような DAEの 1種のみが含まれていても良ぐ 2種以上の DAEが任意の組み合わせ、任意の配合比率で含まれて!/ヽても良!、。  [0076] The DAE-containing layer according to the present invention may contain only one kind of such DAE. Two or more kinds of DAE may be contained in any combination and in any combination ratio! / ヽOK!
[0077] キャリア輸送性材料  [0077] Carrier transportable material
本発明に係る DAE含有層は、 DAEの異性ィ匕による、マグネシウム等の電極材料( 通常、後述する金属材料)の蒸着選択性を有するが、 DAE自体が優れたキャリア輸 送性を示すとは限らない。このため、 DAE含有層を設けることにより、電極のパター ン形成が容易に行えても、電子注入輸送特性 (キャリア輸送性)が低下するおそれが あり、この場合にはデバイスとしての特性が低下する。  The DAE-containing layer according to the present invention has vapor deposition selectivity of an electrode material such as magnesium (usually a metal material described later) due to the DAE isomerism, but the DAE itself exhibits excellent carrier transportability. Not exclusively. For this reason, by providing a DAE-containing layer, even if the electrode pattern can be easily formed, the electron injection and transport characteristics (carrier transportability) may be deteriorated. In this case, the characteristics as a device are deteriorated. .
そこで、本発明に係る DAE含有層には、キャリア輸送性を高める目的で、キャリア 輸送性材料分子を混在させることが好まし ヽ。 DAEとキャリア輸送性材料分子を混 在させることにより、電極材料の蒸着選択性と優れたキャリア輸送性の両方を兼ね備 えた層とすることができる。 Therefore, it is preferable to mix carrier transporting material molecules in the DAE-containing layer according to the present invention for the purpose of enhancing carrier transportability. Mix DAE and carrier transporting material molecules By being present, a layer having both the deposition selectivity of the electrode material and excellent carrier transportability can be obtained.
[0078] キャリア輸送性材料としては、 DAEの特性を阻害しないものであれば特に制限は 無ぐ例えば、アルミニウムのキノリノール錯体である Alq3 (アルミナート—トリス— 8— ヒドロキシキノラート)、 a -NPB (N, N ジ(ナフタレン一 1—ィル) N, N,一ジフ ェ-ルベンジデン)、トリフエ-ルァミンなどの有機分子材料や、ポリビュルカルバゾー ル、 MEH— PPV (ポリフエ-レンビ-レン)などのポリマー系キャリア輸送材料を始め 、既知のものが 1種を単独で、或いは 2種以上を混合して用いられる。 [0078] The carrier transporting material is not particularly limited as long as it does not inhibit the properties of DAE. For example, Alq3 (aluminate-tris-8-hydroxyquinolate) which is a quinolinol complex of aluminum, a- NPB (N, N di (naphthalene 1-yl) N, N, 1 diphenyl benzidene), organic molecules such as triphenylamine, polybutylcarbazole, MEH—PPV (polyphenylene bilene) Including polymer carrier transport materials such as, known ones can be used alone or in admixture of two or more.
[0079] その他の成分  [0079] Other ingredients
本発明に係る DAE含有層には、 DAEの性質を損なわな 、範囲で任意に他の有 機分子材料や、ポリマーなどをカ卩えても良い。例えば、膜性向上のためのバインダー を配合しても良い。バインダーとしては通常のポリマー材料であるポリスチレンなどが 挙げられる力 前述のポリマー系キャリア輸送材料として既知のものもバインダーとし て機能する。これらの他の成分は、 1種を単独で、或いは 2種以上を混合して用いら れる。  In the DAE-containing layer according to the present invention, other organic molecular materials, polymers, etc. may be arbitrarily selected within a range without impairing the properties of DAE. For example, a binder for improving film properties may be blended. Examples of binders include the usual polymer materials such as polystyrene. The above-mentioned polymer-based carrier transport materials also function as binders. These other components may be used alone or in combination of two or more.
[0080] DAE含有層中の DAE等の割合  [0080] Ratio of DAE etc. in DAE containing layer
DAE含有層は DAEのみで構成されても良ぐ上述の如ぐキャリア輸送性材料、そ の他の成分を含んで 、ても良 、。  The DAE-containing layer may be composed of only DAE. The carrier-transporting material as described above and other components may be included.
DAE含有層が DAE以外の他の成分を含む場合、 DAE含有層中の DAEの割合 が過度に少ないと、本発明の所期の目的を達成し得ないため、電極材料の蒸着選 択性を維持する上では、 DAE含有層に占める DAEの割合が通常 5重量%以上、好 ましくは 20重量%以上、更に好ましくは 45重量%以上、特に好ましくは 50重量%以 上となるようにする。  When the DAE-containing layer contains components other than DAE, if the proportion of DAE in the DAE-containing layer is excessively small, the intended purpose of the present invention cannot be achieved. In order to maintain the ratio, the proportion of DAE in the DAE-containing layer is usually 5% by weight or more, preferably 20% by weight or more, more preferably 45% by weight or more, and particularly preferably 50% by weight or more. .
[0081] なお、 DAE含有層中の DAEの割合は、 DAE含有層のいずれの部分においても 必ずしも同じである必要はなぐ DAE含有層の成膜方法によって、厚さ方向に濃度 分布が生じるものであっても良い。  [0081] The ratio of DAE in the DAE-containing layer is not necessarily the same in any part of the DAE-containing layer. The concentration distribution is generated in the thickness direction depending on the method of forming the DAE-containing layer. There may be.
[0082] また、 DAE含有層がキャリア輸送性材料を含む場合、 DAE含有層中のキャリア輸 送性材料の割合は、電極材料の蒸着選択性を維持した上で、十分なキャリア輸送性 を発揮する割合とすることが必要である。具体的なキャリア輸送性材料の割合は、用 V、るキャリア輸送性材料のキャリア輸送性、 DAE含有層に必要とされるキャリア輸送 性等によって適宜決定されるが、キャリア輸送性材料分子を混在させることによる DA E含有層の電極材料の蒸着選択性の低下を防止した上で十分なキャリア輸送性を 得るために、 DAE含有層中のキャリア輸送性材料の割合は通常 20重量%以上、好 ましくは 50重量%以上で、通常 90重量%以下、好ましくは 80重量%以下とすること が好ましい。 [0082] When the DAE-containing layer contains a carrier transportable material, the ratio of the carrier transportable material in the DAE-containing layer is sufficient for maintaining the vapor deposition selectivity of the electrode material. It is necessary to set the ratio to exhibit. The specific carrier transportable material ratio is determined as appropriate depending on the V, the carrier transportability of the carrier transportable material, the carrier transportability required for the DAE-containing layer, etc. In order to obtain a sufficient carrier transport property while preventing the deposition selectivity of the electrode material of the DAE-containing layer from being deteriorated, the ratio of the carrier transportable material in the DAE-containing layer is usually 20% by weight or more. It is preferably 50% by weight or more, usually 90% by weight or less, preferably 80% by weight or less.
なお、キャリア輸送性材料分子を混在させる場合は、キャリア輸送性材料分子の割 合を高めてキャリア輸送性を高めた上で、後述のァニール処理を施して、 DAEによ る蒸着選択性の発現性を高めることが好まし 、。  When carrier transporting material molecules are mixed, increase the carrier transporting material molecule ratio to improve carrier transportability, and then apply annealing treatment described later to develop deposition selectivity by DAE. It is preferable to enhance sex.
[0083] 成膜方法 [0083] Film formation method
本発明に係る DAE含有層の成膜方法としては特に制限はなぐ真空蒸着法、スパ ッタリング法等のドライプロセスを採用することができる。  As a method for forming the DAE-containing layer according to the present invention, a dry process such as a vacuum deposition method or a sputtering method can be employed without any particular limitation.
[0084] DAE含有層として、 DAEとキャリア輸送性材料の混合層を成膜する方法としては、 例えば DAEとキャリア輸送性材料の蒸着ソースを別々に準備して独立に加熱制御 する 2元蒸着法で行えるが、予め所定の濃度の単一混合ソースを準備して所定の膜 厚が得られる量だけ蒸着ボートに投入し、急激に温度を上げて投入した分を蒸着す る手法 (フラッシュ蒸着)も利用できる。ただし単一混合ソースを用いる場合、通常 DA Eよりもキャリア輸送性材料の方が蒸気圧が低いので、先に DAEが蒸着され後から キャリア輸送性材料が付着し、その結果、表面がキャリア輸送性材料リッチな薄膜が 形成され、この場合は、形成された DAE含有層に十分な DAE蒸着選択性が得られ ない可能性がある。 [0084] As a method for forming a mixed layer of DAE and a carrier transporting material as a DAE-containing layer, for example, a binary evaporation method in which a deposition source of DAE and a carrier transporting material is separately prepared and heated independently. However, it is possible to prepare a single mixed source with a predetermined concentration in advance and put it in an evaporation boat in an amount that gives a predetermined film thickness. Can also be used. However, when a single mixed source is used, the carrier transporting material usually has a lower vapor pressure than DA E, so the DAE is deposited first and then the carrier transporting material adheres. In this case, sufficient DAE deposition selectivity may not be obtained for the formed DAE-containing layer.
[0085] この様な場合には、 DAE含有層成膜後、電極材料の蒸着前、特に DAE含有層の 成膜後、異性化パターン形成前に、デバイスを、例えば室温より高い温度環境下で 数時間程度ァニールすることが好ましい。このようなァニール処理を行うことにより、 D AE含有層中の DAEとキャリア輸送性材料分子の熱拡散による混合が適度に行わ れて、これらが均一に混在した薄膜とすることができる。  [0085] In such a case, after the DAE-containing layer is formed, before the deposition of the electrode material, in particular, after the DAE-containing layer is formed and before the isomerization pattern is formed, the device is placed in a temperature environment higher than room temperature, for example. It is preferable to anneal for several hours. By performing such annealing treatment, the DAE and carrier transporting material molecules in the DAE-containing layer are appropriately mixed by thermal diffusion, and a thin film in which these are uniformly mixed can be obtained.
[0086] このァニール処理温度は通常 30°C以上、好ましくは 45°C以上であり、通常 120°C 以下、好ましくは 100°C以下である。ァニール処理温度が低すぎると熱拡散による混 合効果が十分で無ぐ反対にァニール処理温度が高過ぎると DAE含有層やその下 層に有機層を有する場合は当該有機層にダメージを与える恐れがあるので望ましく ない。ァニール処理時間は温度条件によって一概に決められないが、通常 30分〜 3 0時間程度である。一般に低めの温度の場合は時間を長ぐ高めの温度の場合は時 間を短くすることが好ましく、処理温度 (°C)と処理時間(時間)との積力^〜 5°C ·時間 程度であることが好ましい。 [0086] The annealing temperature is usually 30 ° C or higher, preferably 45 ° C or higher, usually 120 ° C. The temperature is preferably 100 ° C or lower. If the annealing temperature is too low, the mixing effect due to thermal diffusion is not sufficient, and on the contrary, if the annealing temperature is too high, the organic layer may be damaged if it has an organic layer in the DAE-containing layer or its lower layer. This is not desirable. The annealing time is not generally determined by the temperature conditions, but is usually about 30 minutes to 30 hours. In general, when the temperature is lower, it is preferable to shorten the time when the temperature is longer and higher, and the product of the processing temperature (° C) and the processing time (hour) ^ ~ 5 ° C · hours It is preferable that
[0087] ァニール処理は具体的には、有機層形成後のサンプルを所定温度に設定された 恒温槽中に所定時間光が当たらないように保管することでなされるが、このような処 理は乾燥窒素雰囲気中で行うことが望ましい。  [0087] Specifically, the annealing process is performed by storing the sample after forming the organic layer in a constant temperature bath set at a predetermined temperature so that the sample is not exposed to light for a predetermined period of time. It is desirable to carry out in a dry nitrogen atmosphere.
[0088] 膜厚  [0088] Film thickness
本発明に係る DAE含有層の膜厚には特に制限はなぐ DAE含有層がキャリア輸 送性材料分子、その他の成分を含むか否かによっても異なる力 後述の実施例に示 す如ぐ DAEのみで形成される DAE含有層の場合、単分子層に相当する lnm程度 であっても、本発明によるパターユングが可能である。ただし、膜厚が過度に薄いと D AE分子が全体を覆う層を形成し得ず、局所的にその下の層が表出することにより、 この部分に電極材料が付着することとなる。従って、膜厚の下限としては lnm以上、 好ましくは 2nm以上である。膜厚の上限については、過度に厚いと DAEの不所望な 性質、例えば低いキャリア輸送能力や低いガラス転移点を有する材料の場合、動作 電圧上昇や高温に対する耐久性の劣化をもたらす可能性があるため、通常 lOOnm 以下、好ましくは 50nm以下、更に好ましくは 20nm以下、特に好ましくは lOnm以下 とする。ただし、 DAE自体が優れたキャリア輸送性や高いガラス転移点を有する場合 は、このような膜厚の上限の制限はない。  The film thickness of the DAE-containing layer according to the present invention is not particularly limited. The force varies depending on whether or not the DAE-containing layer contains carrier transportable material molecules and other components. Only DAE as shown in the examples below. In the case of the DAE-containing layer formed in (1), the patterning according to the present invention is possible even with a thickness of about 1 nm corresponding to the monomolecular layer. However, if the film thickness is excessively thin, a layer covering the entire DAE molecule cannot be formed, and the electrode layer adheres to this portion by locally exposing the underlying layer. Therefore, the lower limit of the film thickness is 1 nm or more, preferably 2 nm or more. With regard to the upper limit of the film thickness, if it is excessively thick, it may lead to undesired properties of DAE, for example, a material with low carrier transport capacity and low glass transition point, which may increase the operating voltage and deteriorate durability at high temperatures. Therefore, it is usually lOOnm or less, preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably lOnm or less. However, when DAE itself has excellent carrier transportability and high glass transition point, there is no such upper limit of film thickness.
[0089] DAE含有層がキャリア輸送性材料分子、その他の成分を含む場合の膜厚は、これ らの混在成分の含有量によっても異なる力 上記と同様な理由から、通常 lnm以上 、特に 2nm以上で、通常 200nm以下、好ましくは lOOnm以下、更に好ましくは 50η m以下、特に好ましくは 20nm以下、中でも特に好ましくは lOnm以下とする。  [0089] The film thickness when the DAE-containing layer contains carrier transporting material molecules and other components varies depending on the content of these mixed components. For the same reason as above, it is usually 1 nm or more, particularly 2 nm or more. In general, it is 200 nm or less, preferably lOOnm or less, more preferably 50 ηm or less, particularly preferably 20 nm or less, and particularly preferably lOnm or less.
[0090] 本発明の有機電子デバイスにおいて、 DAEは、その異性化による開環状態と閉環 状態との差異による電極材料の付着性の差を利用して電極のパターユングを行うた めに形成されるものである。従って、 DAEは、電極と他の部材との間に介在して形成 される。また、パターユングされた電極パターンに対応する部分に、閉環状態の DAE が存在する。 [0090] In the organic electronic device of the present invention, DAE is a ring-opened state and a ring-closed state by isomerization. It is formed to perform electrode patterning by utilizing the difference in adhesion of the electrode material due to the difference in state. Accordingly, the DAE is formed between the electrode and another member. In addition, there is a closed DAE in the part corresponding to the patterned electrode pattern.
[0091] [有機電子デバイスの製造方法] [0091] [Method for manufacturing organic electronic device]
以下に本発明の有機電子デバイスの製造方法についてその操作手順に従って説 明する。  The method for producing the organic electronic device of the present invention will be described in accordance with the operation procedure.
[0092] なお、以下においては、基板上に常法に従って第一電極を形成した後、その上に 有機層を形成し、この有機層上に形成する第二電極のパターユングのために DAE 含有層を形成して所定のパターン形状に第二電極を形成する場合を例示して本発 明の方法を説明するが、本発明は何らこの方法に限らず、  [0092] In the following, after the first electrode is formed on the substrate according to a conventional method, an organic layer is formed thereon, and DAE is contained for patterning the second electrode formed on the organic layer. The method of the present invention will be described by exemplifying the case where the second electrode is formed in a predetermined pattern shape by forming a layer, but the present invention is not limited to this method.
0 基板上に DAE含有層を形成し、この DAE含有層について異性化パターンを形 成した後、第一電極をこのパターンに倣って形成し、更に有機層及び第二電極を形 成する方法  0 A method of forming a DAE-containing layer on a substrate, forming an isomerization pattern for the DAE-containing layer, forming a first electrode following the pattern, and further forming an organic layer and a second electrode
ii) 上記 0の方法において、第二電極についても後述の如ぐ有機層上の DAE含 有層の異性化パターン形成によりパター-ングする方法  ii) In the above method 0, the second electrode is also patterned by forming an isomerization pattern of the DAE-containing layer on the organic layer as described later.
iii) 十分な厚みと強度を有する有機層の一方の面又は両面に DAE含有層を形成 し、この DAE含有層の異性化パターン形成により、第一電極及び/又は第二電極を ノ《ターニングする方法  iii) A DAE-containing layer is formed on one or both sides of an organic layer having sufficient thickness and strength, and the first electrode and / or the second electrode is turned by forming an isomerization pattern of the DAE-containing layer. Method
など様々な態様で電極のパターユングを行うことができる。  The electrode patterning can be performed in various ways.
[0093] 〈第二電極のパターユング〉 <Patterning of the second electrode>
第 2電極のパターユングは次の [1]〜 [5]の工程に従って行うことができる。  The patterning of the second electrode can be performed according to the following steps [1] to [5].
[1]基板上に常法に従って第一電極を形成する工程。  [1] A step of forming a first electrode on a substrate according to a conventional method.
[0094] [2]第一電極上に所定の有機層を常法に従って形成する工程。 [0094] A step of forming a predetermined organic layer on the first electrode according to a conventional method.
[0095] [3]前述の DAEを含む下地層を形成する工程。 [0095] [3] A step of forming an underlayer containing the aforementioned DAE.
ここで、下地層は、真空蒸着法、スパッタリング法等により形成することが好ましいが 、ドクターブレード法、キャスト法、スピンコート法、浸漬法などの湿式法により形成す る場合、 DAEを溶媒で希釈して塗布液を調製し、この塗布液を用いることが望ましい 。この場合、溶媒の種類としては、有機層を侵さない溶媒であれば、特に限定されな い。 Here, the underlayer is preferably formed by a vacuum deposition method, a sputtering method, or the like, but when forming by a wet method such as a doctor blade method, a cast method, a spin coating method, or a dipping method, DAE is diluted with a solvent. It is desirable to prepare a coating solution and use this coating solution . In this case, the type of solvent is not particularly limited as long as it does not attack the organic layer.
ここで、 DAE含有層に更にキャリア輸送性材料分子を混在させる場合、前述の如く 、 2元蒸着法等により、 DAEと共にキャリア輸送性材料を成膜する。また、湿式法で あれば、 DAEと共にキャリア輸送性材料を溶媒に溶解して塗布液を調製して用いれ ば良い。  Here, when the carrier transporting material molecules are further mixed in the DAE-containing layer, as described above, the carrier transporting material is formed together with the DAE by the binary evaporation method or the like. In the case of a wet method, a coating solution may be prepared by dissolving a carrier transporting material together with DAE in a solvent.
[0096] この DAEを含む下地層は、 DAEのみよりなる層の場合は、前述のように通常 lnm 以上、好ましくは 2nm以上で、通常 lOOnm以下、好ましくは 50nm以下、特に lOnm 以下の厚さに形成される。また、 DAEとキャリア輸送性材料分子、その他の成分が混 在する下地層の場合は、前述のように、通常 lnm以上、特に 2nm以上で、通常 200 nm以下、好ましくは lOOnm以下、更に好ましくは 50nm以下、特に好ましくは 20nm 以下、中でも特に好ましくは lOnm以下の厚さに形成される。  [0096] In the case where the underlayer containing this DAE is a layer consisting only of DAE, as described above, it is usually at least 1 nm, preferably at least 2 nm, usually at most lOOnm, preferably at most 50 nm, particularly at most lOnm. It is formed. In the case of an underlayer in which DAE, a carrier transporting material molecule and other components are mixed, as described above, usually 1 nm or more, particularly 2 nm or more, usually 200 nm or less, preferably lOOnm or less, more preferably It is formed to a thickness of 50 nm or less, particularly preferably 20 nm or less, particularly preferably lOnm or less.
[0097] DAE含有層の成膜後は必要に応じて前述のァニール処理を施す。  [0097] After the formation of the DAE-containing layer, the annealing treatment described above is performed as necessary.
[0098] [4]下地層中の DAEを、所定のパターンに異性ィ匕反応を起こさせる工程。  [0098] [4] A step of causing an isomeric reaction of DAE in the underlayer in a predetermined pattern.
この異性ィ匕反応を起こさせる方法としては、光の照射による方法が簡便であり、 つパター-ング精度も高いことから好ましい。即ち、本発明で用いる DAEは、一般に 、 300〜430nm、中でも 300〜400nmの波長領域の紫外光を照射されることにより 、開環状態から閉環状態に異性化し、また、 450〜600nm、中でも 500〜600nmの 光が照射されることにより、閉環状態から開環状態に異性化する。  As a method for causing this isomeric reaction, a method by irradiation with light is simple and preferable because of high patterning accuracy. That is, DAE used in the present invention is generally isomerized from a ring-opened state to a ring-closed state by irradiation with ultraviolet light in a wavelength region of 300 to 430 nm, particularly 300 to 400 nm, and 450 to 600 nm, especially 500 Irradiation with light of ˜600 nm causes isomerization from the closed ring state to the open ring state.
従って、この性質を利用して、例えば、以下の〈A〉又は〈B〉の方法に従って下地層 に所定のパターンで DAEの異性ィ匕を起こさせることが好ましい。  Therefore, using this property, it is preferable to cause DAE isomerism in a predetermined pattern in the underlayer according to the following method <A> or <B>, for example.
[0099] 〈A〉DAEを含む下地層に、 300〜430nm、中でも 300〜400nmの波長領域の紫 外光を全面的に照射して、下地層の DAEを全面的に閉環状態とする。その後、 450 〜600nm、中でも 500〜600nmの光をレーザースポット走査により、所定のパター ンに照射して照射部分の DAEを閉環状態力 開環状態に異性ィ匕する。これにより、 DAEの閉環分子のマトリックス中に、所定のパターン形状で DAEの開環分子が存 在する下地層が形成される。なお、下地層が全て閉環状態である場合には、最初の 全面照射工程は省略することができる。 [0100] 〈B〉DAEを含む下地層に、 450〜600nm、中でも 500〜600nmの波長領域の光 を全面的に照射して、下地層の DAEを全面的に開環状態する。その後、 300〜430 nm、中でも 300〜400nmの紫外光をレーザースポット走査により、所定のパターン に照射して照射部分の DAEを開環状態力 閉環状態に異性ィ匕する。これにより、 D AEの開環分子のマトリックス中に、所定のパターン形状で DAEの閉環分子が存在 する下地層が形成される。なお、下地層が全て開環状態である場合には、最初の全 面照射工程は省略することができる。 [0099] <A> The ultraviolet ray in the wavelength region of 300 to 430 nm, particularly 300 to 400 nm, is entirely irradiated to the underlayer containing DAE so that the DAE of the underlayer is entirely closed. Thereafter, light of 450 to 600 nm, particularly 500 to 600 nm, is irradiated to a predetermined pattern by laser spot scanning, and the DAE in the irradiated portion is isomerized to the ring-closing state force and the ring-opening state. This forms an underlayer in which the DAE ring-opened molecules exist in a predetermined pattern shape in the DAE ring-closed molecule matrix. Note that when the entire underlayer is in a closed state, the first entire surface irradiation step can be omitted. [0100] <B> The DAE containing the DAE is irradiated with light in the wavelength region of 450 to 600 nm, particularly 500 to 600 nm, so that the DAE of the underlayer is fully opened. Thereafter, ultraviolet light of 300 to 430 nm, especially 300 to 400 nm, is irradiated to a predetermined pattern by laser spot scanning, and the DAE of the irradiated portion is isomerized to a ring-opening state force or a ring-closing state. This forms an underlayer in which the DAE ring-closing molecules exist in a predetermined pattern shape in the matrix of the DAE ring-opening molecules. If all the underlayers are in the ring-opened state, the first entire surface irradiation step can be omitted.
[0101] [5]上述の如ぐ所定のパターンに従って、 DAEの異性ィ匕反応をさせた下地層上に 第二電極を形成する工程。  [0101] [5] A step of forming the second electrode on the underlayer subjected to the DAE isomerism reaction according to the predetermined pattern as described above.
この第二電極は真空蒸着法により形成することが好ましい。  This second electrode is preferably formed by a vacuum deposition method.
第二電極の構成材料としては特に制限はないが、 DAEの異性ィ匕により付着性に差 異が生じるものが好ましく用いられ、例えば、マグネシウム、アルミニウム、カルシウム 、リチウム等の金属の 1種又は 2種以上が挙げられる。  There are no particular restrictions on the constituent material of the second electrode, but materials that differ in adhesion due to the DAE isomerism are preferably used. For example, one or two metals such as magnesium, aluminum, calcium, and lithium are used. More than species.
[0102] この第二電極の膜厚には特に制限はなぐ当該有機電子デバイスの用途において 要求される電極性能を十分に発揮し得る程度であれば良いが、通常 50nm以上、通 常 lOOnm以下である。 [0102] The film thickness of the second electrode is not particularly limited as long as the electrode performance required in the application of the organic electronic device can be sufficiently exhibited, but is usually 50 nm or more, usually lOOnm or less. is there.
[0103] このように異性化パターンが形成された下地層上に電極材料を蒸着することにより 、下地層の DAEが閉環状態となつた部分に選択的に電極材料が付着し、 DAEが開 環状態の部分には電極材料が付着しなことにより、第二電極を所定のパターンに形 成することが可能となる。  [0103] By depositing the electrode material on the underlayer on which the isomerization pattern is formed in this way, the electrode material selectively adheres to the portion of the underlayer where the DAE is in a closed state, and the DAE is opened. Since the electrode material does not adhere to the state portion, the second electrode can be formed in a predetermined pattern.
[0104] 即ち、前述の〈A〉の方法でレーザースポット走査により所定のパターンに DAEの開 環分子を形成したものにあっては、この所定のパターン部分が電極材料の未蒸着部 分となり、その他のマトリックス部分に、第二電極が形成される。また、前述の〈B〉の方 法でレーザースポット走査により所定のパターンに DAEの閉環分子を形成したもの にあっては、この所定のパターン部分が電極材料の蒸着部分となり、この部分に第二 電極が形成される。  That is, in the case where the DAE ring-opening molecules are formed in a predetermined pattern by laser spot scanning by the method <A> described above, the predetermined pattern portion is an undeposited portion of the electrode material, A second electrode is formed on the other matrix portion. Further, in the case where the DAE ring-closed molecules are formed in a predetermined pattern by laser spot scanning by the method <B> described above, the predetermined pattern portion becomes a vapor deposition portion of the electrode material, and the second portion is formed in this portion. An electrode is formed.
[0105] このような本発明の方法によれば、幅 450nm以下、例えば 260〜450nmというよう な極細の電極のパターユングも、高精度に行うことができる。即ち、一般にレーザー 光のスポットは、直径 600nm以下、例えば 260〜450nmというような極めて小さいス ポットに絞ることができる。従って、このような小さいレーザースポットを走査することに より、このスポット径に応じた幅でレーザー光を照射することができる。 [0105] According to such a method of the present invention, it is possible to perform patterning of ultrafine electrodes having a width of 450 nm or less, for example, 260 to 450 nm, with high accuracy. In general, laser The light spot can be narrowed to a very small spot having a diameter of 600 nm or less, for example, 260 to 450 nm. Therefore, by scanning such a small laser spot, the laser beam can be irradiated with a width corresponding to the spot diameter.
[0106] 一方、 DAEは、開環状態で電極材料が付着せず、閉環状態で電極材料が付着す る力 後述の実験例 1, 2に示すように、下地層の光照射部分の DAEが 100%閉環 状態になっていなくても、 DAEの種類に応じて例えば 50%以上が閉環状態であつ ても電極材料が付着する。従って、例えば、レーザー光が直接光照射されることによ り閉環状態となつた部分と、その近傍において、レーザー光の影響を受けて一部閉 環状態となつた部分を含めて、レーザー光のスポット径は、更にフィルターを工夫す るなどすれば調節可能である。例えば、レーザー強度の強いところだけのスポットが 可能となり、レーザー光のスポット以下の幅に DAEの閉環分子部を形成することがで きる。このため、この部分に電極材料を付着させて、幅 400nm以下の極細パターン を形成することが可能となる。  [0106] On the other hand, DAE is a force that electrode material does not adhere in the ring-open state and electrode material adheres in the ring-closed state. As shown in Experimental Examples 1 and 2 below, Even if it is not 100% ring-closed, depending on the type of DAE, for example, even if 50% or more is ring-closed, the electrode material will adhere. Therefore, for example, a laser beam including a part that has been closed by direct irradiation with laser light and a part that has been partially closed by the influence of laser light in the vicinity thereof. The spot diameter can be adjusted if the filter is further devised. For example, it is possible to spot only where the laser intensity is strong, and the closed molecular part of the DAE can be formed with a width less than the spot of the laser beam. For this reason, it is possible to form an ultrafine pattern having a width of 400 nm or less by attaching an electrode material to this portion.
[0107] なお、上記の光照射は、レーザースポットの走査によるものに限られず、光遮断マス クを用いても良ぐマスクとスポット走査とを併用しても良 、。  [0107] Note that the above-described light irradiation is not limited to scanning by a laser spot, and it is also possible to use a light blocking mask and a mask together with spot scanning.
また、本発明において、電極のパターユングは、上述のような DAEの異性ィ匕のみを 利用する方法に限らず、別途メタルマスク等の他のパターユング手段を併用し、より 一層高精度で効率的なパターニングを行うことも可能である。  Further, in the present invention, the electrode patterning is not limited to the method using only the DAE isomorphism as described above, but by using another patterning means such as a separate metal mask in combination with higher accuracy and efficiency. Patterning can also be performed.
[0108] 上述のようにして、基板上に第一電極、有機層及び第二電極を形成して本発明の 有機電子デバイスを製造することができる。  As described above, the first electrode, the organic layer, and the second electrode can be formed on the substrate to produce the organic electronic device of the present invention.
実施例  Example
[0109] 以下に実験例及び実施例を挙げて本発明をより具体的に説明するが、本発明は、 以下の実施例に限定されるものではなぐその要旨の範囲内で種々に変更して実施 することができる。  [0109] Hereinafter, the present invention will be described more specifically with reference to experimental examples and examples. However, the present invention is not limited to the following examples, and various modifications may be made within the scope of the gist thereof. Can be implemented.
[0110] [DAEの電極パターニング機能を示す実験例と実施例]  [0110] [Experimental examples and examples showing DAE electrode patterning function]
実験例 1  Experimental example 1
下記構造式で表される DAEを用いて、真空蒸着法によってスライドガラス基板上に 膜厚 lOOnmで DAE薄膜を形成した。 [0111] [化 13] A DAE thin film with a film thickness of lOOnm was formed on a slide glass substrate by vacuum evaporation using DAE represented by the following structural formula. [0111] [Chemical 13]
Figure imgf000034_0001
Figure imgf000034_0001
(M e :メチル基) (M e: methyl group)
[0112] 次に、この DAE薄膜に波長 365nmの紫外光をその照射量を部分的に変えて照射 して、同一の DAE薄膜に 5段階の異性ィ匕状態を形成した。即ち、  [0112] Next, ultraviolet light with a wavelength of 365 nm was irradiated to the DAE thin film while changing the irradiation amount partially, and five stages of isomeric states were formed on the same DAE thin film. That is,
状態 0 =全 DAE分子が開環状態  State 0 = all DAE molecules open
状態 1 =全 DAE分子の約 20%が閉環状態 (約 80%が開環状態)  State 1 = about 20% of all DAE molecules are closed (about 80% open)
状態 2 =全 DAE分子の約 50%が閉環状態  State 2 = about 50% of all DAE molecules are closed
状態 3 =全 DAE分子の約 80%が閉環状態  State 3 = about 80% of all DAE molecules are closed
状態 4 =全 DAE分子のほぼ 100%が閉環状態  State 4 = Almost 100% of all DAE molecules are closed
とした。このとき、 DAEは閉環状態となることにより着色することから、異性化状態の 程度によって、 DAE薄膜は部分的に異なる程度に着色した。  It was. At this time, since DAE is colored by being in a closed state, the DAE thin film is colored partially different depending on the degree of isomerization.
[0113] 次に、この DAE薄膜上にマグネシウムを厚さ lOOnmに真空蒸着することよって、マ グネシゥムの付着状況を調べた。 [0113] Next, magnesium was vacuum-deposited on this DAE thin film to a thickness of lOOnm, and the adhesion state of magnesium was examined.
その結果、図 1に示す様に、閉環分子が 50%以下 (状態 1, 2)ではマグネシウムの 付着が見られな力つた力 80%以上 (状態 3, 4)ではマグネシウムが付着することが 分かった。  As a result, as shown in Fig. 1, it was found that when the ring-closing molecule was 50% or less (states 1 and 2), magnesium was not attached, and when the force was 80% or more (states 3 and 4), magnesium was attached. It was.
なお、図 1には閉環分子比率を調べるための各状態における吸収スペクトルも併せ て示してある。  Fig. 1 also shows the absorption spectrum in each state for investigating the ring-closing molecular ratio.
[0114] 実験例 2 [0114] Experimental Example 2
実験例 1において、 DAEとして、下記構造式で表されるものを用いたこと以外は同 様にして、マグネシウムの付着状況を調べる実験を行った。  In Experimental Example 1, an experiment was conducted in the same manner except that the DAE represented by the following structural formula was used as the DAE.
[0115] [化 14]
Figure imgf000035_0001
[0115] [Chemical 14]
Figure imgf000035_0001
( M e : メチ 'レ基) (Me: Mechi're group)
[0116] その結果、この DAEも、閉環状態でマグネシウム付着性を示し、開環状態でマグネ シゥムの非付着性を示すが、その程度は実験例 1で用いた DAEと異なり、閉環分子 が全分子の 50%であってもマグネシウムが付着した。 [0116] As a result, this DAE also shows magnesium adhesion in the ring-closed state and non-adhesiveness of magnesium in the ring-opened state, but the degree is different from the DAE used in Experimental Example 1, and all the ring-closed molecules are Magnesium was attached even at 50% of the molecules.
[0117] これらの結果から、 DAEはその異性ィ匕状態により、マグネシウムの選択的付着性を 示すが、マグネシウム付着性を示す閉環体比率は絶対的なものではなぐ個々の D[0117] From these results, DAE shows selective adhesion of magnesium due to its isomeric state, but the ratio of ring-closed bodies showing magnesium adhesion is not absolute.
AEにより異なることが分かる。 It can be seen that it differs depending on the AE.
[0118] 実験例 3 [0118] Experimental Example 3
図 2a〜図 2dに示す手順で DAE薄膜へのマグネシウムの付着実験を行った。まず 、実験例 1と同様にしてガラス基板 1に膜厚 50nmの DAE薄膜 2を形成した(図 2a)。  The adhesion experiment of magnesium to the DAE thin film was conducted according to the procedure shown in Fig. 2a to 2d. First, a 50 nm-thick DAE thin film 2 was formed on a glass substrate 1 in the same manner as in Experimental Example 1 (FIG. 2a).
[0119] この DAE薄膜 2に波長 365nmの紫外光 3を全面的に照射して全面着色状態(閉 環状態)とし(図 2b)、次に波長 650nmの赤色レーザー(パワー lmW) 4を直径 10 μ m程度のスポットでこの DAE薄膜 2面上をライン状に走査して消色させ、異性化パタ ーン 5を形成した (図 2c)。即ち、閉環体分子中に開環体分子のラインを形成した。そ の後、この DAE薄膜 2上にマグネシウムを厚さ lOOnmに真空蒸着した後(図 2d)、 顕微鏡によって観察したところ、図 3に示す如ぐ異性化パターン(開環体分子のライ ン)に対応したマグネシウム未蒸着ライン (約 15 m幅)が形成されて!、る様子が観 察された。 [0119] The DAE thin film 2 was irradiated with ultraviolet light 3 with a wavelength of 365 nm over the entire surface to form a colored state (ring-closed state) (Fig. 2b), and then a red laser with a wavelength of 650 nm (power lmW) 4 with a diameter of 10 The surface of the DAE thin film was scanned in a line shape with a spot of about μm and erased to form an isomerization pattern 5 (Fig. 2c). That is, a ring-opening molecule line was formed in the ring-closing molecule. After that, magnesium was vacuum-deposited on this DAE thin film 2 to a thickness of lOOnm (Fig. 2d) and observed with a microscope. As a result, the isomerization pattern (line of ring-opened molecules) shown in Fig. 3 was obtained. A corresponding magnesium undeposited line (about 15 m wide) was formed!
[0120] なお、上記マグネシウムの付着実験を、 DAEの 1分子層レベルである lnmの膜厚 の DAE薄膜に対して行ったところ、このような 1分子層レベルの膜厚の DAE薄膜に ぉ ヽても同様にマグネシウム付着の選択性があることが確認された。 [0121] 実施例 1 [0120] When the above magnesium adhesion experiment was performed on a DAE thin film with a thickness of 1 nm, which is the level of a single molecular layer of DAE, the DAE thin film with a thickness of a single molecular layer was used. However, it was confirmed that there was selectivity for magnesium adhesion. [0121] Example 1
典型的な有機電子デバイスである有機 EL素子に、本発明を適用してマグネシウム 陰極を形成した。  The present invention was applied to an organic EL element, which is a typical organic electronic device, to form a magnesium cathode.
[0122] ITO (Indium Tin Oxide)基板上にホール注入層として銅フタロシア-ン層を膜 厚 2nmに形成し、その上にホール輸送層として α— NPB層を膜厚 30nmに形成し、 更にその上に発光層兼電子輸送層としてアルミニウムキノリノール錯体 Alq3層を膜 厚 30nmで形成した。そしてこの Alq3層上に実験例 1で用いた DAEの薄膜を膜厚 1 nmに蒸着して DAE薄膜を形成した。その後、実験例 3と同様にして、この DAE薄膜 に紫外線を 10分間全面照射して DAE含有層を閉環状態とした後、波長 650nmの 赤色レーザーのスポット走査により、幅 15 mの開環状態のパターンを直線状及び ジグザグ状に形成した。その後、 DAE薄膜上にマグネシウムを厚さ lOOnmに真空蒸 着して顕微鏡観察したところ、レーザーで走査して異性ィ匕反応させたパターンに対 応したマグネシウム未蒸着パターンが形成され、それ以外の部分にマグネシウムが 蒸着されたことが確認された。  [0122] A copper phthalocyanine layer was formed as a hole injection layer on an ITO (Indium Tin Oxide) substrate to a thickness of 2 nm, and an α-NPB layer was formed as a hole transport layer thereon to a thickness of 30 nm. On top of this, an aluminum quinolinol complex Alq3 layer with a film thickness of 30 nm was formed as a light-emitting and electron transport layer. The DAE thin film used in Experimental Example 1 was deposited on this Alq3 layer to a thickness of 1 nm to form a DAE thin film. Then, in the same manner as in Experimental Example 3, the DAE thin film was irradiated with ultraviolet rays for 10 minutes to bring the DAE-containing layer into a closed state, and then the ring-opened state with a width of 15 m was detected by spot scanning with a red laser having a wavelength of 650 nm. The pattern was formed in a linear shape and a zigzag shape. After that, magnesium was vacuum-deposited on the DAE thin film to a thickness of lOOnm and observed under a microscope. A magnesium undeposited pattern corresponding to the pattern that was scanned by a laser and subjected to an isomeric reaction was formed. It was confirmed that magnesium was deposited.
[0123] 次に、基板の ITOを陽極、形成したマグネシウム蒸着膜を陰極として、両極間に電 圧を印加して電流注入を行い、 ITO側から発光の様子を観察した所、赤色レーザー の走査パターンに対応して未発光パターンが形成されていることが確認された。  [0123] Next, using the ITO of the substrate as the anode and the formed magnesium deposited film as the cathode, voltage was applied between the two electrodes, current injection was performed, and the state of light emission was observed from the ITO side, scanning with a red laser. It was confirmed that a non-light emitting pattern was formed corresponding to the pattern.
[0124] なお、本実施例では、マグネシウム未付着パターンを赤色レーザー走査によって形 成したが、紫外光レーザーの走査により着色(開環体力も閉環体への異性化)ライン を形成し、この走査パターンに倣う形状のマグネシウム付着パターンにより、同様に 有機 EL素子の電極のパターユングを行うこともできた。  [0124] In this example, the magnesium non-adhering pattern was formed by red laser scanning. However, a colored line (ring opening body force is also isomerized to ring closure) was formed by scanning with an ultraviolet laser, and this scanning was performed. In the same way, it was possible to pattern the electrodes of organic EL elements by using a magnesium adhesion pattern shaped like the pattern.
[0125] [DAEにキャリア輸送性材料を併用した場合のキャリア輸送性向上効果を示す実験 例]  [0125] [Experimental example showing improvement in carrier transportability when DAE is used in combination with carrier transportable material]
実験例 4  Example 4
実験例 1で用いた DAEのキャリア輸送性を評価するために、以下のような実験を行 つた o  The following experiment was conducted to evaluate the carrier transportability of the DAE used in Experimental Example 1.
アセトン及び UVオゾン洗浄が行われた ITO基板に対して、ホール輸送材料である a— NPB、及び代表的電子輸送材料である Alq3をそれぞれ真空蒸着により膜厚 1 OOnmに成膜した。次に、これらの試料の上に DAEを膜厚 lnmに真空蒸着したもの としていないもの、計 4試料を準備した。即ち、下記のサンプノレ 1〜4である。サンプノレ 1, 3については、 DAEを紫外線照射により着色状態とした上で、すべてのサンプル 上に膜厚 200nmのマグネシウム電極を蒸着形成した。 A-NPB, which is a hole transport material, and Alq3, which is a typical electron transport material, are deposited by vacuum evaporation on an ITO substrate that has been cleaned with acetone and UV ozone. A film was formed on OOnm. Next, a total of four samples were prepared on these samples that were not DAE vacuum-deposited to a thickness of lnm. That is, the following Sampnole 1-4. For Sampnole 1 and 3, after DAE was colored by ultraviolet irradiation, a magnesium electrode with a film thickness of 200 nm was deposited on all samples.
サンプル 1 : ITO基板 Z a NPB層 ZDAE含有層  Sample 1: ITO substrate Z a NPB layer ZDAE-containing layer
サンプル 2 : ITO基板 Z a NPB層  Sample 2: ITO substrate Z a NPB layer
サンプル 3: ITO基板 ZAlq3層 ZDAE含有層  Sample 3: ITO substrate ZAlq3 layer ZDAE containing layer
サンプル 4: ITO基板 ZAlq3層  Sample 4: ITO substrate ZAlq3 layer
[0126] まず、 α—NPBサンプル 1, 2について、 ITO側を陽極、マグネシウム側を陰極とし て電圧電流特性を調べた。 a NPBは電子輸送性よりもホール輸送性が非常に優 れており、流れている電流は殆どがホールによるものと考えられる。その結果、図 4に 示すように、 DAE含有層の有無によらずほぼ同じ電圧電流特性が得られた。これは DAE含有層がホール伝導に影響を与えて 、な 、ことを示すものである。 First, voltage-current characteristics of α-NPB samples 1 and 2 were examined using the ITO side as an anode and the magnesium side as a cathode. a NPB is much more excellent in hole transport than electron transport, and the current that flows is considered to be mostly due to holes. As a result, as shown in Fig. 4, almost the same voltage-current characteristics were obtained regardless of the presence or absence of the DAE-containing layer. This indicates that the DAE-containing layer affects the hole conduction.
[0127] 次に、 Alq3サンプル 3, 4について同様に電圧電流特性を調べたところ、図 5に示 すように DAE含有層有りのサンプル 3では、無しのサンプル 4に比べて大幅に電流 量が低下した。 Alq3は電子輸送性がホール輸送性よりも非常に優れているので、流 れる電流は殆どが電子によるものと考えることが出来るので、この実験結果は、 DAE 含有層の存在によって陰極側力 の電子注入輸送特性が大幅に低下していることを 表している。 [0127] Next, the voltage-current characteristics of Alq3 samples 3 and 4 were examined in the same way. As shown in Fig. 5, sample 3 with the DAE-containing layer had a much larger current than sample 4 without. Declined. Since Alq3 is much better in electron transport than hole transport, it can be considered that the current that flows is mostly due to electrons. This indicates that the injecting and transporting characteristics have been greatly deteriorated.
[0128] 実験例 5 [0128] Experimental Example 5
DAE含有層を設けることにより、陰極のパターン形成が容易に行えても、電子注入 輸送特性が低下してはデバイスとしての特性が低下する恐れがある。そこで、次に、 DAEとキャリア輸送性材料の混存層を形成した場合の電極金属の蒸着選択性と電 子注入輸送特性にっ 、て調べた。  By providing a DAE-containing layer, even if the patterning of the cathode can be easily performed, there is a risk that the characteristics as a device will deteriorate if the electron injection and transport characteristics deteriorate. Therefore, we next investigated the deposition selectivity and electron injection and transport characteristics of the electrode metal when a mixed layer of DAE and carrier transport material was formed.
[0129] DAE濃度 75重量%、 50重量%、 25重量%、 10重量%、 5重量%とした DAEZA lq3混合一元蒸着ソースを準備し、ガラス基板上に膜形成 (膜厚 3nm)して、 DAE濃 度が異なる下記のサンプル 5〜9を作製した。 [0129] DAEZA lq3 mixed source deposition source with DAE concentration of 75%, 50%, 25%, 10%, 5% by weight was prepared, and a film was formed on the glass substrate (film thickness 3nm). Samples 5-9 below with different DAE concentrations were prepared.
サンプル 5: DAE濃度 75重量% サンプル 6: DAE濃度 50重量% Sample 5: DAE concentration 75% by weight Sample 6: DAE concentration 50% by weight
サンプル 7: DAE濃度 25重量%  Sample 7: DAE concentration 25% by weight
サンプル 8: DAE濃度 10重量%  Sample 8: DAE concentration 10% by weight
サンプル 9 :DAE濃度 5重量%  Sample 9: DAE concentration 5% by weight
[0130] その直後(ァニール処理無し)に各サンプルの DAE含有層上にマグネシウムを蒸 着した。このとき DAEは消色状態であり、 DAEの蒸着選択機能が現れればマグネシ ゥムは付着し得ない。 [0130] Immediately thereafter (without annealing), magnesium was deposited on the DAE-containing layer of each sample. At this time, the DAE is in a decolored state, and if the deposition selection function of the DAE appears, the magnesium cannot adhere.
この結果、 DAE濃度 50重量。ん以上のサンプル 5, 6だけに蒸着選択性が現れるこ とがわカゝつた。  As a result, the DAE concentration is 50 wt. It was found that deposition selectivity appeared only in samples 5 and 6 above.
[0131] 次に、上記と同様の条件で膜形成した各試料を、恒温槽中で遮光状態において 5 0°Cの環境下で 2時間ァニール処理を行った後に同様にマグネシウムを蒸着したとこ ろ、 DAE濃度 25重量%以上のサンプル 5〜7について蒸着選択性が現れ、了ニー ル処理を行わな!/、場合よりも低 1、DAE濃度でマグネシウムの蒸着選択性が現れるこ とが確認された。  [0131] Next, each sample formed into a film under the same conditions as above was annealed in a thermostatic chamber in a light-shielded state at 50 ° C for 2 hours, and then magnesium was similarly deposited. It was confirmed that the deposition selectivity of samples 5 to 7 with a DAE concentration of 25% by weight or more was exhibited, and that the annealing process was not performed! /, Lower than the case 1, and that the deposition selectivity of magnesium appeared at the DAE concentration. It was.
[0132] このような結果が得られた原因は、前述の通り Alq3が混在することで DAEの蒸着 選択性が低下するが、ァニール処理を施すことにより、 Alq3と DAEとが熱拡散により 均一混合され、この結果、 DAE濃度が低くても DAEによる蒸着選択性を発現させる ことがでさたこと〖こよる。  [0132] The reason why such a result was obtained is that, as mentioned above, the presence of Alq3 reduces the deposition selectivity of DAE, but by annealing, Alq3 and DAE are mixed uniformly by thermal diffusion. As a result, even if the DAE concentration is low, the deposition selectivity by DAE can be expressed.
電子輸送性を考慮すると出来るだけ低い DAE濃度で蒸着選択性が現れる方がデ バイスとしての特性は向上すると考えられるので、このようにァニール処理を施すこと が望ましいといえる。  Considering the electron transport properties, it is considered that the deposition characteristics at the lowest possible DAE concentration will improve the characteristics of the device. Therefore, it is desirable to perform annealing treatment in this way.
[0133] 本実験例による蒸着選択性の有 (yes)、無 (no)を下記表 1にまとめて示す。  [0133] The vapor deposition selectivity (yes) or not (no) according to this experimental example is summarized in Table 1 below.
[0134] [表 1] [0134] [Table 1]
サンプル 5 6 7 8 Θ Sample 5 6 7 8 Θ
DAE¾度(重量%) 75 50 25 10 5  DAE ¾ degree (% by weight) 75 50 25 10 5
ァニール処理なし yes yes no no no  No annealing process yes yes no no no
ァニール処理あり yes yes yes no no [0135] なお、本実験例のァニール処理条件は、一例であるが、過度に高!、温度で処理を 行うと、前述の如ぐ有機層自体にダメージを与える恐れがあるので望ましくない。や や高めの室温程度である 30°Cでのァニール処理では、 24時間程度で上記と同等の 効果が得られることが確認された。 With annealing treatment yes yes yes no no [0135] The annealing conditions in this experimental example are only examples. However, if the processing is performed at an excessively high temperature, the organic layer itself may be damaged as described above, which is not desirable. It was confirmed that annealing at 30 ° C, which is a slightly higher room temperature, can achieve the same effect as above in about 24 hours.
[0136] 実験例 6  [0136] Experimental Example 6
次に、 DAEと Alq3の混存層の電子物性を評価した。  Next, the electronic properties of the mixed layer of DAE and Alq3 were evaluated.
実験例 4と同様に、 ITO基板上に Alq3を膜厚 lOOnmで形成し、その上に DAE濃 度 25重量%の 1元蒸着ソースを用いて DAE濃度 25重量%の混存層を膜厚 2nmで 形成した。次いで、 50°Cで 2時間ァニール後、紫外線照射により DAEを着色状態と してからマグネシウム電極を蒸着してサンプル 10とした。  As in Example 4, Alq3 was formed on the ITO substrate with a film thickness of lOOnm, and a mixed layer with a DAE concentration of 25% by weight was formed on it using a single deposition source with a DAE concentration of 25% by weight. Formed with. Next, after annealing at 50 ° C. for 2 hours, DAE was colored by irradiation with ultraviolet rays, and then a magnesium electrode was deposited to prepare Sample 10.
[0137] このサンプル 10につ 、て、 ITO側を陽極、マグネシウム側を陰極として電圧電流特 性を調べたところ、図 5のサンプル 10のプロットで示されるように、実験例 4のサンプ ル 4 (Alq3単層のみ DAE含有層無し)に匹敵する電流が流れることが確認できた。こ の結果は、この構成'製造プロセスにより、蒸着選択性による微細電極パターンを有 し、かつ優れた電子注入輸送特性を有する有機電子デバイスが実現できることを示 している。 [0137] The voltage and current characteristics of this sample 10 were examined using the ITO side as the anode and the magnesium side as the cathode. As shown in the plot of sample 10 in Fig. 5, sample 4 of experimental example 4 was obtained. It was confirmed that a current comparable to that of (Alq3 single layer only, no DAE-containing layer) flows. This result shows that this configuration 'manufacturing process can realize an organic electronic device having a fine electrode pattern by vapor deposition selectivity and excellent electron injection and transport characteristics.
[0138] なお、本発明は有機 ELデバイスに制限されることはなぐ有機 TFTや有機メモリ素 子など様々な有機電子デバイスに適用可能であることは明らかである。また、用いる DAE、キャリア輸送性材料分子についても、ここに挙げた例以外のものを同様に適 用可能であることも明らかである。  [0138] It should be noted that the present invention is not limited to organic EL devices, but can be applied to various organic electronic devices such as organic TFTs and organic memory devices. It is also clear that the DAE and carrier transporting material molecules used can be applied in the same manner as those other than the examples given here.
[0139] [基板表面温度又はガラス転移温度 (Tg)と金属の付着性との関係を調べる実験例] 実験例 7  [0139] [Experimental example to examine the relationship between substrate surface temperature or glass transition temperature (Tg) and metal adhesion] Experimental example 7
真空蒸着により成膜した、下記構造式で表される MTDATA (トリフ ニルァミンを 基本にした星型 (スターバスト)分子はスターバストアミン)(Tg = 76°C)と α— NPB ( Tg = 95°C)アモルファス膜について、それぞれ表面温度を表 2の通り変えて、マグネ シゥムを真空蒸着し、マグネシウムが付着するカゝ否かを調べ、結果を表 2に示した。  MTDATA deposited by vacuum evaporation and represented by the following structural formula (starfastamine based on triphenylamine is starbust amine) (Tg = 76 ° C) and α—NPB (Tg = 95 ° C) With regard to the amorphous film, the surface temperature was changed as shown in Table 2, and magnesium was vacuum-deposited to determine whether magnesium was deposited. The results are shown in Table 2.
[0140] [化 15]
Figure imgf000040_0001
[0140] [Chemical 15]
Figure imgf000040_0001
[0141] [表 2]  [0141] [Table 2]
Figure imgf000040_0002
Figure imgf000040_0002
[0142] 実験例 8  [0142] Experimental Example 8
基板材料の Tg力 マグネシウムの付着性に 、かなる影響を与えるのかを調べるた めに、 Tgの異なる表 3の材料に対して、マグネシウムを真空蒸着し、マグネシウムが 付着するか否かを調べ結果を表 3に示した。  Tg force of substrate material In order to investigate whether it has a significant effect on the adhesion of magnesium, magnesium was vacuum-deposited on the materials in Table 3 with different Tg, and the result of examining whether or not magnesium adhered Are shown in Table 3.
[0143] [表 3] [0143] [Table 3]
Figure imgf000040_0003
Figure imgf000040_0003
以上の結果から、マグネシウムは、同じ材料でも表面温度が低い程金属原子の運 動が不活発であるため付着し易ぐ表面温度が高いと金属原子の運動が活発になる ため付着し易ぐまた、 Tgの異なる材料では、 Tgの高い材料ほど付着し易ぐ Tgの 低!、材料ほど付着し難!、ことが分かる。 From the above results, even if the surface of magnesium is the same material, the movement of metal atoms is inactive as the surface temperature is low. For materials with different Tg, it can be seen that the higher the Tg, the lower the Tg, and the lower the Tg!
[0145] 実験例 9  [0145] Experimental Example 9
基板材料の Tgが、マグネシウム以外の他の金属であるアルミニウムの付着性に!/ヽ かなる影響を与えるのかを調べるために、表 4の材料に対してアルミニウムを真空蒸 着し、アルミニウムが付着するか否かを調べ、結果を表 4に示した。  In order to investigate whether Tg of the substrate material has a significant effect on the adhesion of aluminum, which is another metal other than magnesium! / Aluminum was deposited on the materials in Table 4 by vacuum evaporation. Table 4 shows the results.
[0146] [表 4] [0146] [Table 4]
Figure imgf000041_0001
Figure imgf000041_0001
[0147] この結果から、アルミニウムは Tgの非常に高いガラスには十分に付着する力 Tgの 低い、常温では非常に軟らかい、従って基板表面での金属原子のエネルギーが高く 、運動が活発である基板表面には、マグネシウムのシリコンゴムに対する付着性に比 較するとやや多いものの殆ど付着 (積層)しないことが明らかになった。  From this result, it can be seen that aluminum has a sufficient force to adhere to a glass with a very high Tg, has a low Tg, is very soft at room temperature, and therefore has a high energy of metal atoms on the substrate surface and an active motion. It was clarified that although the surface of the surface was slightly larger than the adhesion of magnesium to silicon rubber, it hardly adhered (laminated).
[0148] これらの結果から、種々の金属について、基板の適合性を最適化すれば、その付 着性ないし成膜性の制御が可能であることが分力る。  [0148] From these results, it can be seen that if the suitability of the substrate is optimized for various metals, its adhesion or film-formability can be controlled.
[0149] 実験例 10  [0149] Experimental Example 10
代表的ポリマーの一種であるポリスチレン (スチレンポリマー)、又は代表的高分子 系有機電子材料である MEH— PPV (American Dye Source, Inc製 ADS100 RE)に、実験例 1で用いたと同様の DAEを表 5に示す種々の濃度で混合し、これを シクロへキサノン溶媒に溶解して、キャスト法によりガラス基板上に厚さ 0. で膜 形成したサンプルを準備した。次に、このサンプルに紫外光 (波長 365nm)を充分に 照射して着色状態(開環分子)とした後、赤色レーザー光を集光して走査することで 幅 5 μ mの消色ライン(閉環分子)を形成した。このサンプルに対してマスクを用いず にマグネシウムを真空蒸着し、マグネシウムの選択的蒸着現象が生じるかどうかを調 ベた。結果を表 5に示す。  Polystyrene (styrene polymer), one of the representative polymers, or MEH—PPV (ADS100 RE, manufactured by American Dye Source, Inc), which is a typical high-molecular organic electronic material, displays the same DAE as used in Experimental Example 1. The samples were mixed at various concentrations shown in FIG. 5, dissolved in a cyclohexanone solvent, and prepared by forming a film with a thickness of 0.0 on a glass substrate by a casting method. Next, the sample was sufficiently irradiated with ultraviolet light (wavelength 365 nm) to form a colored state (ring-opened molecule), and then red laser light was collected and scanned to remove a 5 μm wide decoloring line ( Closed ring molecules). Magnesium was vacuum-deposited on this sample without using a mask, and it was examined whether or not a selective deposition phenomenon of magnesium would occur. The results are shown in Table 5.
[0150] 表 5中、 formedが選択的蒸着現象が現れ消色ラインに対応した幅 5 μ mのマグネシ ゥム未付着ラインが形成されたものを示し、 not formedは選択的蒸着現象が現れず 、マグネシウムが全面的に付着したものを示す。 [0150] In Table 5, selective indicates a selective deposition phenomenon, and a 5 μm wide magnetic field corresponding to the decoloring line. A non-adhesion line is formed, and not formed indicates that a selective vapor deposition phenomenon does not appear and magnesium is adhered to the entire surface.
表 5より、スチレンポリマーでは DAE5%重量で、 MEH— PPVでは DAE10重量 From Table 5, DAE is 5% by weight for styrene polymer, and DAE is 10% for MEH-PPV.
%で選択的蒸着現象が現れることが判明した。 It was found that the selective deposition phenomenon appears in%.
他の種々のポリマーに対しても調べてみたところ、 DAE1〜30重量%、さらにそれ よりも高い濃度でこの様な現象が現れはじめることが判った。  Examining various other polymers, it was found that such a phenomenon began to appear at concentrations of DAE of 1 to 30% by weight and higher.
[0151] 次に、上記と同様にして作製したサンプルを着色させずに DAEが消色体のまま、 波長 405nmのバイオレットレーザーにより同様に幅 5 μ mの着色ラインを形成した。 この DAEは波長 405nmでの吸収は非常に小さ!/、が、着色感度(着色反応の量子収 率)が高いため、バイオレットレーザー照射により異性ィ匕反応を起こすことが可能であ る。 [0151] Next, a colored line having a width of 5 µm was similarly formed with a violet laser having a wavelength of 405 nm, with the DAE remaining in a decolored state without coloring the sample prepared in the same manner as described above. Although this DAE has a very low absorption at a wavelength of 405 nm! /, It has a high coloring sensitivity (quantum yield of the coloring reaction), so it can cause an isomeric reaction by violet laser irradiation.
このサンプルにマスクを用いずにマグネシウムの真空蒸着を行ったところ、上記消 色ラインの形成の場合と同様に、スチレンポリマーでは DAE5重量%以上で、 MEH PPVでは DAE10重量%以上で対応する幅 5 μ mのマグネシウムラインが形成さ れることが確認できた。  When magnesium was vacuum-deposited on this sample without using a mask, the corresponding width was 5% by weight or more for DAE with styrene polymer and 10% by weight or more for DAE for MEH PPV, as in the case of forming the decoloring line. It was confirmed that a magnesium line of μm was formed.
従って、ポリマー材料中の DAEであっても、消色によるパターン形成、着色による パターン形成のどちらでも、対応するマグネシウムパターンの形成が可能であること が確認された。  Therefore, it was confirmed that even with DAE in a polymer material, it is possible to form a corresponding magnesium pattern by either pattern formation by decoloring or pattern formation by coloring.
[0152] [表 5] [0152] [Table 5]
DAE濃度 (重量%) ポリスチレン MEH - PPV DAE concentration (wt%) Polystyrene MEH-PPV
0 not rormed not formed  0 not rormed not formed
5 formed not formed  5 formed not formed
10 formed formed  10 formed formed
15 formed formed  15 formed formed
20 formed formed  20 formed formed
30 formed formed [0153] この結果は、ポリスチレンは有機電子材料として用いられず、電気伝導性は無いが 、例えば電子デバイス周辺の電気絶縁体として用いたとき、レーザー走査による異性 化反応とその後のマスクレス蒸着により任意の微小な電気配線パターンが簡単に形 成可能であることを示している。さらに、 MEH— PPVは電子輸送性材料である力 D AEを 10重量%程度ドープしてもその電子輸送性は変化しないことが判明した。これ はポリマー系の有機電子デバイスの陰極としてもこの方法が使用できることを示して いる。 30 formed formed [0153] As a result, polystyrene is not used as an organic electronic material and has no electrical conductivity. However, when it is used as an electrical insulator around an electronic device, for example, isomerization reaction by laser scanning and subsequent maskless deposition. It shows that any minute electrical wiring pattern can be easily formed. Furthermore, it was found that MEH-PPV does not change its electron transport property even when doped with about 10% by weight of force D AE, which is an electron transport material. This indicates that this method can also be used as a cathode for polymer-based organic electronic devices.
[0154] 以上述べたように DAEの異性ィ匕反応を用いたこの選択的蒸着法は、有機 EL、有 機 TFTや有機メモリなどの様々な有機電子デバイスの電極パターン'配線パターン 形成に用いることが出来る。  [0154] As described above, this selective vapor deposition method using the DAE isomorphism reaction is used to form electrode patterns and wiring patterns of various organic electronic devices such as organic EL, organic TFT, and organic memory. I can do it.
[0155] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。 [0155] Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
なお、本出願は、 2005年 3月 2日付で出願された日本特許出願 (特願 2005— 05 This application is a Japanese patent application filed on March 2, 2005 (Japanese Patent Application 2005-05).
7709)及び 2005年 12月 15日付で出願された日本特許出願(特願 2005— 362007709) and Japanese patent applications filed on December 15, 2005 (Japanese Patent Application 2005-36200)
2)に基づいており、その全体が引用により援用される。 Based on 2), which is incorporated by reference in its entirety.

Claims

請求の範囲 The scope of the claims
[I] 基板上に金属パターンを製造する方法において、該基板上に、光により物性変化 する材料 (以下「光感応性材料」と称す。)を含む層を形成する工程と、該光感応性 材料を含む層に光照射することにより該光感応性材料の物性変化のパターンを形成 する工程と、該パターン上に金属を積層して金属パターンを形成する工程とを含むこ とを特徴とする金属パターンの製造方法。  [I] In a method for producing a metal pattern on a substrate, a step of forming a layer containing a material whose physical properties are changed by light (hereinafter referred to as “photosensitive material”) on the substrate; The method includes a step of forming a pattern of physical property change of the photosensitive material by irradiating the layer containing the material with light, and a step of forming a metal pattern by laminating metal on the pattern. A method for producing a metal pattern.
[2] 請求項 1にお!ヽて、前記光感応性材料の光による物性変化が、異性化及び相変化 の一方であることを特徴とする金属パターンの製造方法。  [2] Claim 1! The method for producing a metal pattern is characterized in that the change in physical properties of the photosensitive material due to light is one of isomerization and phase change.
[3] 請求項 2において、前記光感応性材料が光により異性ィ匕する、置換基を有していて も良い 1 , 2—ジァリールェテンであることを特徴とする金属パターンの製造方法。 [3] The method for producing a metal pattern according to claim 2, wherein the photosensitive material is 1,2-diarylethene which may have a substituent which is isomerized by light.
[4] 請求項 1において、前記金属が、マグネシウム、アルミニウム、カリウム及びリチウム よりなる群力 選ばれる少なくとも 1つの金属であることを特徴とする金属パターンの 製造方法。 [4] The method for producing a metal pattern according to claim 1, wherein the metal is at least one metal selected from the group consisting of magnesium, aluminum, potassium, and lithium.
[5] 基板上に形成された金属パターンであって、該金属パターンを形成する金属層と 該基板との間に、光感応性材料を含む層を有することを特徴とする金属パターン。  [5] A metal pattern formed on a substrate, comprising a layer containing a photosensitive material between the metal layer forming the metal pattern and the substrate.
[6] 請求項 5に記載の金属パターンを有する電極。 [6] An electrode having the metal pattern according to claim 5.
[7] 請求項 5に記載の金属パターンを有する電気回路。 [7] An electric circuit having the metal pattern according to [5].
[8] 請求項 1に記載の電極を有する有機電子デバイス。 [8] An organic electronic device having the electrode according to claim 1.
[9] 請求項 7に記載の電気回路を有する有機電子デバイス。 [9] An organic electronic device having the electric circuit according to claim 7.
[10] 第一電極及び第二電極と、これらの電極間に設けられた有機層とを有する有機電 子デバイスであって、第一電極と有機層との間、及び、第二電極と有機層との間の少 なくとも 1つに、異性ィ匕状態の異なるパターンが形成された、置換基を有しても良い 1 , 2—ジァリールェテンを含む層を有することを特徴とする有機電子デバイス。  [10] An organic electronic device having a first electrode and a second electrode, and an organic layer provided between these electrodes, between the first electrode and the organic layer, and between the second electrode and the organic layer Organic electronic device comprising a layer containing 1,2-diarylethene which may have a substituent, in which at least one of the layers has a pattern with different isomeric states formed .
[II] 基板、第一電極、有機層及び第二電極を有する有機電子デバイスであって、基板 と第一電極との間、第一電極と有機層との間、及び、第二電極と有機層との間の少な くとも 1つに、異性ィ匕状態の異なるパターンが形成された、置換基を有しても良い 1, [II] An organic electronic device having a substrate, a first electrode, an organic layer and a second electrode, between the substrate and the first electrode, between the first electrode and the organic layer, and between the second electrode and the organic At least one of the layers may have a substituent formed with a pattern of different isomeric states 1,
2—ジァリールェテンを含む層を有することを特徴とする有機電子デバイス。 An organic electronic device having a layer containing 2-diarylmethene.
[12] 請求項 10において、第一電極及び第二電極の少なくとも一方に、前記 1, 2—ジァ リールェテンを含む層の異性ィ匕状態の異なるパターンに対応したパターンが含まれ ることを特徴とする有機電子デバイス。 [12] In Claim 10, at least one of the first electrode and the second electrode is provided with the 1, 2-dia. An organic electronic device comprising a pattern corresponding to a pattern having a different isomeric state of a layer containing Lilleweten.
[13] 請求項 11において、第一電極及び第二電極の少なくとも一方に、前記 1, 2—ジァ リールェテンを含む層の異性ィ匕状態の異なるパターンに対応したパターンが含まれ ることを特徴とする有機電子デバイス。  [13] The method according to claim 11, wherein at least one of the first electrode and the second electrode includes a pattern corresponding to a different pattern of the isomeric state of the layer including the 1,2-diarylethene. And organic electronic devices.
[14] 請求項 10において、前記置換基を有しても良い 1 , 2—ジァリールェテンを含む層14. The layer according to claim 10, wherein the layer contains 1,2-diarylethene which may have the substituent.
1S 置換基を有しても良い 1, 2—ジァリールェテンとキャリア輸送性材料分子とが混 在する層であることを特徴とする有機電子デバイス。 1S An organic electronic device characterized by being a layer in which 1,2-diarylethene, which may have a substituent, and a carrier transporting material molecule are mixed.
[15] 請求項 11において、前記置換基を有しても良い 1 , 2—ジァリールェテンを含む層15. The layer according to claim 11, wherein the layer contains 1,2-diarylethene which may have the substituent.
1S 置換基を有しても良い 1, 2—ジァリールェテンとキャリア輸送性材料分子とが混 在する層であることを特徴とする有機電子デバイス。 1S An organic electronic device characterized in that it is a layer in which 1,2-diarylethene, which may have a substituent, and carrier transporting material molecules are mixed.
[16] 有機電子材料カゝらなる層に電圧を印カロして機能させる有機電子デバイスを製造す る方法において、置換基を有しても良い 1, 2—ジァリールェテンを含む下地層を形 成する工程と、該下地層の 1, 2—ジァリールェテンを所定パターン状に異性ィ匕反応 させる工程と、次いで該下地層上に電極材料を付与して、前記所定パターンに対応 した電極パターンを形成する工程とを有することを特徴とする有機電子デバイスの製 造方法。 [16] In a method of manufacturing an organic electronic device in which a voltage is applied to a layer made of an organic electronic material to make it function, an underlayer containing 1,2-diarylethene that may have a substituent is formed. Forming an electrode pattern corresponding to the predetermined pattern by applying an electrode material on the base layer, and then subjecting the 1,2-diarylethene of the base layer to an isomeric reaction in a predetermined pattern. A process for producing an organic electronic device.
[17] 請求項 16において、前記置換基を有しても良い 1 , 2—ジァリールェテンを含む下 地層を形成する工程が、置換基を有しても良い 1, 2—ジァリールェテンとキャリア輸 送性材料分子とが混在する下地層を形成する工程であることを特徴とする有機電子 デバイスの製造方法。  [17] In Claim 16, the step of forming an underlayer containing 1,2-diarylethene which may have a substituent may have 1,2-diarylethene which may have a substituent and carrier transportability. A method of manufacturing an organic electronic device, characterized in that it is a step of forming an underlayer in which material molecules are mixed.
[18] 請求項 16において、前記置換基を有しても良い 1 , 2—ジァリールェテンを含む下 地層を形成する工程と、該下地層の 1, 2—ジァリールェテンを所定パターン状に異 性ィ匕反応させる工程との間に、デバイスを室温以上の温度でァニールする工程を有 することを特徴とする有機電子デバイスの製造方法。  [18] The method according to claim 16, wherein the base layer containing the 1,2-diarylethenes optionally having the substituent is formed, and the 1,2-dierlethenes of the underlayers are different in a predetermined pattern. A method for producing an organic electronic device, comprising the step of annealing the device at a temperature of room temperature or higher between the step of reacting.
PCT/JP2006/303887 2005-03-02 2006-03-01 Metal pattern, organic electronic device and process for producing the same WO2006093193A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-057709 2005-03-02
JP2005057709 2005-03-02
JP2005-362002 2005-12-15
JP2005362002 2005-12-15

Publications (1)

Publication Number Publication Date
WO2006093193A1 true WO2006093193A1 (en) 2006-09-08

Family

ID=36941222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303887 WO2006093193A1 (en) 2005-03-02 2006-03-01 Metal pattern, organic electronic device and process for producing the same

Country Status (1)

Country Link
WO (1) WO2006093193A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277973A (en) * 2005-03-28 2006-10-12 Osaka Kyoiku Univ Organic electron device and its manufacturing method
JP2012084652A (en) * 2010-10-08 2012-04-26 Cretec Co Ltd Circuit formation method using laser
GB2488575A (en) * 2011-03-02 2012-09-05 Cretec Co Ltd Method for forming a wiring pattern by laser irradiation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919358A (en) * 1972-06-14 1974-02-20
JPH04341555A (en) * 1990-12-12 1992-11-27 Basf Ag Manufacture of structure selectively coated by vacuum deposition
JP2004109253A (en) * 2002-09-13 2004-04-08 Dainippon Printing Co Ltd Pattern form and method for manufacturing same
JP2005082507A (en) * 2003-09-05 2005-03-31 Mitsubishi Chemicals Corp Diarylethene compound, photochromic material, color dosimeter and optical memory device
JP2005272935A (en) * 2004-03-24 2005-10-06 Seiko Epson Corp Deposition method, film, electronic component, and electronic equipment
JP2005317445A (en) * 2004-04-30 2005-11-10 National Institute Of Advanced Industrial & Technology Organic display device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919358A (en) * 1972-06-14 1974-02-20
JPH04341555A (en) * 1990-12-12 1992-11-27 Basf Ag Manufacture of structure selectively coated by vacuum deposition
JP2004109253A (en) * 2002-09-13 2004-04-08 Dainippon Printing Co Ltd Pattern form and method for manufacturing same
JP2005082507A (en) * 2003-09-05 2005-03-31 Mitsubishi Chemicals Corp Diarylethene compound, photochromic material, color dosimeter and optical memory device
JP2005272935A (en) * 2004-03-24 2005-10-06 Seiko Epson Corp Deposition method, film, electronic component, and electronic equipment
JP2005317445A (en) * 2004-04-30 2005-11-10 National Institute Of Advanced Industrial & Technology Organic display device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277973A (en) * 2005-03-28 2006-10-12 Osaka Kyoiku Univ Organic electron device and its manufacturing method
JP2012084652A (en) * 2010-10-08 2012-04-26 Cretec Co Ltd Circuit formation method using laser
GB2488575A (en) * 2011-03-02 2012-09-05 Cretec Co Ltd Method for forming a wiring pattern by laser irradiation

Similar Documents

Publication Publication Date Title
JP5233074B2 (en) Metal pattern, organic electronic device and manufacturing method thereof
US12069939B2 (en) Method for patterning a coating on a surface and device including a patterned coating
JP7503852B2 (en) DEVICE INCLUDING CONDUCTIVE COATING DISPOSED ON EMISSION REGION AND METHOD THE
US11158803B2 (en) Method for patterning a coating on a surface and device including a patterned coating
CN108611591B (en) Method for depositing a conductive coating on a surface
JP4336742B2 (en) Organic EL display panel and manufacturing method thereof
KR102039390B1 (en) Organic electronic element and method for manufacturing organic electronic element
TWI280070B (en) In-situ method for making OLED devices that are moisture or oxygen-sensitive
JP2008537631A (en) Display manufacturing method
TW200303152A (en) Method and materials for transferring a material onto a plasma treated surface according to a pattern
JP2006216544A (en) Conductive polymer patterned film and method of patterning the same, and organic electroluminescent element using the film and method of manufacturing the element
KR20060111672A (en) Thermal transfer of light-emitting dendrimers
TW200901531A (en) Process for making contained layers
JPWO2018190010A1 (en) Organic electroluminescence device
WO2006093193A1 (en) Metal pattern, organic electronic device and process for producing the same
JP4197447B2 (en) Method for manufacturing organic electroluminescent device and organic electroluminescent device
Bang et al. Highly stable and scalable blue QD‐LED via an evaporated TiO2 thin film as an electron transport layer
CN110291642B (en) Display panel, manufacturing method thereof and display device
JP2004342407A (en) Organic electroluminescent element and its manufacturing method
JP4572370B2 (en) Organic electronic device and manufacturing method thereof
JP2005310469A (en) Organic light emitting element
JP2011060551A (en) Organic electroluminescence device and method of manufacturing the same
WO2021044705A1 (en) Source/drain electrode for organic semiconductor device, organic semiconductor device using same, and production method for source/drain electrode and semiconductor device
KR100742561B1 (en) Method for selective growth of encapsulation layer and organic light emitting diode and organic thin film transistor using the same
JP2005078942A (en) Transfer material and manufacturing method of organic electroluminescent element using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715004

Country of ref document: EP

Kind code of ref document: A1