WO2006093094A1 - Hydrogen occlusion device and hydrogen occlusion method - Google Patents

Hydrogen occlusion device and hydrogen occlusion method Download PDF

Info

Publication number
WO2006093094A1
WO2006093094A1 PCT/JP2006/303623 JP2006303623W WO2006093094A1 WO 2006093094 A1 WO2006093094 A1 WO 2006093094A1 JP 2006303623 W JP2006303623 W JP 2006303623W WO 2006093094 A1 WO2006093094 A1 WO 2006093094A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydrogen storage
hydrogen
cartridge
storage cartridge
Prior art date
Application number
PCT/JP2006/303623
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Matsuura
Toyoyuki Kubokawa
Masaki Hosoda
Original Assignee
Taiheiyo Cement Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corporation filed Critical Taiheiyo Cement Corporation
Publication of WO2006093094A1 publication Critical patent/WO2006093094A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage device and a hydrogen storage method for a hydrogen storage material that stores hydrogen under high pressure.
  • the size of the hydrogen storage tank including the hydrogen storage material is preferably small and light.
  • hydrogen can be refilled at a different location, there is no strict restriction on the time for filling hydrogen compared to the case of onboard fixed tank.
  • Patent Document 1 has found a material that exhibits a high storage capacity under high pressure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-196634
  • the thickness of the hydrogen storage tank must be designed to be thick enough to withstand the hydrogen filling pressure, resulting in heavy weight. It must be a hydrogen storage tank. For this reason, even if the capacity of the hydrogen storage material is high, an effective hydrogen storage density cannot be obtained for the tank system.
  • the present invention is a hydrogen that can use a practical and lightweight hydrogen storage tank (hereinafter referred to as a hydrogen storage cartridge) even when using a hydrogen storage material that requires high pressure during hydrogen storage. It is an object of the present invention to provide a storage device and a hydrogen storage method.
  • the present inventors have been able to withstand the hydrogen filling pressure when storing hydrogen, even when using a hydrogen storage cartridge with low pressure resistance that can be reduced in weight. It is possible to store a hydrogen storage cartridge in a pressure vessel and apply hydrogen pressure to the hydrogen storage capacity cartridge, and the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge should not exceed the design pressure of the hydrogen storage cartridge. By using a device capable of controlling the pressure at the same time, we have obtained the knowledge that hydrogen can be stored in the hydrogen storage material filled in the hydrogen storage cartridge and requiring high pressure when storing hydrogen. The present invention has been completed.
  • the present invention provides the following (1) to (9).
  • a hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure, a pressure-resistant container capable of withstanding the hydrogen filling pressure, and the pressure resistance
  • the hydrogen storage cartridge housed in a container, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a pipe for introducing gas into the gap between the pressure-resistant container and the hydrogen storage cartridge.
  • a hydrogen storage device comprising a mechanism for controlling a pressure difference between an internal pressure and an external pressure of a cartridge.
  • a hydrogen storage device that stores hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, and can withstand the hydrogen charging pressure and is heated to the outside
  • a pressure-resistant and heat-resistant container having a device, and housed in the pressure-resistant and heat-resistant container
  • a hydrogen storage device comprising a mechanism for controlling a pressure difference between external pressures.
  • a hydrogen storage device that stores hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, and can withstand a hydrogen filling pressure and a hydrogen filling temperature.
  • a hydrogen storage method in which hydrogen is stored in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure, wherein the hydrogen is stored in a pressure resistant container capable of withstanding the hydrogen filling pressure.
  • Store the storage cartridge introduce hydrogen into the hydrogen storage cartridge, apply pressure, and control the pressure so that the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge
  • a hydrogen storage method wherein the hydrogen storage material in the hydrogen storage cartridge stores hydrogen.
  • a hydrogen storage method in which hydrogen is stored in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, which can withstand the hydrogen charging pressure and is heated to the outside.
  • the hydrogen storage cartridge is housed in a pressure and heat resistant container having a device, and hydrogen is introduced into the hydrogen storage cartridge while applying pressure to the hydrogen storage cartridge while heating the pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge
  • the hydrogen storage method is characterized in that hydrogen is stored in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so as not to exceed the design pressure of the hydrogen storage cartridge.
  • Hydrogen storage filled with a hydrogen storage material capable of storing hydrogen by pressure and heating
  • a hydrogen storage method for storing hydrogen in a storage cartridge wherein the hydrogen storage cartridge is housed in a pressure and heat resistant container capable of withstanding a hydrogen filling pressure and a hydrogen filling temperature, and a heat transfer site provided in the pressure and heat resistant container While the hydrogen storage material filled in the hydrogen storage cartridge is heated by introducing hydrogen into the hydrogen storage cartridge and applying pressure, the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is
  • a hydrogen storage method comprising storing hydrogen in a hydrogen storage material in a hydrogen storage cartridge while controlling the pressure so as not to exceed a design pressure of the cartridge.
  • the pressure is adjusted so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 80% of the design pressure of the hydrogen storage cartridge.
  • a hydrogen storage method wherein hydrogen is stored in the hydrogen storage material in the hydrogen storage cartridge while being controlled.
  • the hydrogen storage cartridge is characterized in that the design pressure of the hydrogen storage cartridge is 0.1 MPa or more and less than IMPa.
  • the weight of the hydrogen storage cartridge filled with the hydrogen storage material can be significantly reduced, so that the hydrogen weight density per weight of the hydrogen storage cartridge can be maintained high.
  • the lightweight storage of the hydrogen storage cartridge makes it easier to transport and greatly reduces the energy and cost of transport per unit weight.
  • FIG. 1 The main structure of the hydrogen storage device according to the present invention shown in FIG. 1
  • the system consists of a pressure-resistant and heat-resistant container 2, a hydrogen introduction pipe 3, a pressure controller 4, a heating device 5, and a temperature controller 6.
  • the system is simple.
  • the hydrogen storage cartridge 1 is a cartridge with a low design pressure, and can be reduced in weight by thinning the material.
  • a hydrogen introduction side connector 8 and a hydrogen release side connector 9 are incorporated in the lid portion 7. These connectors are designed to allow hydrogen to flow in only one direction. It does not open unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied.
  • When filling the hydrogen storage material open the lid 7 and fill it.
  • the hydrogen storage cartridge 1 filled with the hydrogen storage material is housed inside the pressure-resistant and heat-resistant container 2 and is fixed with tension by a screw method or the like.
  • the pressure-resistant and heat-resistant container 2 has a structure capable of withstanding the pressure and temperature during hydrogen storage.
  • an external pressure gas introduction connector 10 is installed. This connector has no direction for gas flow.
  • a thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.
  • the hydrogen introduction pipe 3 is connected to each connector. Hydrogen is gradually introduced through the inlet connector 8 while being adjusted to a predetermined pressure by the pressure control valve 12. The pressure is measured with a pressure gauge 13.
  • the pipe for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and the pipe for introducing hydrogen into the outside, that is, the gap between the hydrogen storage cartridge 1 and the pressure-resistant and heat-resistant container 2, are connected, and the internal pressure and the external pressure of the hydrogen storage cartridge 1 are connected. No pressure difference is generated.
  • a heating device 5 such as a heater is installed outside the pressure and heat resistant container 2.
  • the measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature.
  • the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
  • the main structure of the hydrogen storage device according to the present invention shown in FIG. 2 is as follows: hydrogen storage cartridge 1, pressure-resistant and heat-resistant container 2, hydrogen introduction pipe 3, external pressure gas introduction pipe 14, pressure controller 4, heating device 5
  • the system consists of a temperature controller 6 and a pipe for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and a pipe for introducing gas into the gap between the hydrogen storage cartridge 1 and the pressure-resistant and heat-resistant container 2 separately. This is the case.
  • the hydrogen storage cartridge 1 is a cartridge with a low design pressure, and can be reduced in weight by thinning the material.
  • a connector 19 including a valve for opening and closing is installed on the lid portion 7. The valve is normally closed and is opened when hydrogen is stored or released. This connector has no directionality.
  • An internal pressure gauge 15 for measuring the pressure inside the hydrogen storage cartridge 1 is installed.
  • a safety valve 20 is installed in the pipe connected to the internal pressure gauge 15. The safety valve 20 will not open unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied. When the pressure is increased, the valve is completely closed by the outer valve. When filling the hydrogen storage material, open the lid 7 and fill it.
  • the hydrogen storage cartridge 1 filled with the hydrogen storage material is housed inside the pressure-resistant and heat-resistant container 2, and is fixed by tension using a screw method or the like.
  • the pressure-resistant and heat-resistant container 2 has a structure that can withstand the pressure and temperature during hydrogen storage.
  • an external pressure gas introduction connector 10 and an external pressure gauge 16 for measuring the external pressure of the hydrogen storage cartridge 1 are installed. This connector does not have directionality for gas in and out.
  • a thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.
  • a hydrogen introduction pipe 3 equipped with an internal pressure control valve 17 is connected to the valve connector 19.
  • an external pressure gas introduction pipe 14 provided with an external pressure control valve 18 is connected to the external pressure gas introduction connector 10.
  • Hydrogen for storage is introduced from the valve connector 19 and gas is introduced from the external pressure gas introduction pipe 14.At this time, the internal pressure and the external pressure are detected by the internal pressure gauge 15 and the external pressure gauge 16. The pressure difference is controlled so as not to become larger than the design pressure of the hydrogen storage cartridge 1.
  • the gas for introducing the external pressure is not particularly limited, but nitrogen, argon or air is used.
  • a heating device 5 such as a heater is installed outside the pressure and heat resistant container 2.
  • the measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature.
  • the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
  • the number of hydrogen storage cartridges housed in the pressure and heat resistant container is one, but a plurality of hydrogen storage cartridges may be used.
  • Fig. 3 shows a hydrogen storage device that can accommodate seven hydrogen storage cartridges.
  • Fig. 3a is a plan view showing the arrangement of the hydrogen storage cartridge in a pressure-resistant and heat-resistant container, and
  • Fig. 3b is a hydrogen storage device. It is a schematic diagram which shows the structure of these.
  • the hydrogen storage cartridge housed in the pressure-resistant heat-resistant container in Embodiment 1 is made into a single force.
  • Seven valve connectors 19 are built in the upper part of the lid 7 so that they can be connected to the hydrogen introduction pipe 3. Noreb connector 19 has no direction in the gas flow.
  • a pressure gauge 21 for confirming the pressure of gas introduced into each hydrogen storage cartridge 31 is installed in the vicinity of the connection portion of the hydrogen introduction pipe 3 with the valve connector 19.
  • a safety valve 20 is installed in the hydrogen introduction pipe 3 in case the pressure of the introduced hydrogen gas increases abnormally.
  • Seven pressure-resistant and heat-resistant container-side connectors 22 are incorporated in the lower portion of the lid portion 7, and can be connected to a hydrogen storage cartridge 31 having a cartridge-side connector 23. These connectors preferably have a mechanism for closing the opening when the connection is released.
  • the cartridge side connector 23 is connected to the cartridge lid 25, and a force cartridge container is fixed to the cartridge lid 25 by a screw method or the like and sealed.
  • the pressure-resistant and heat-resistant container 2 is provided with an external pressure gas introduction valve connector 26 including a valve for opening and closing.
  • the valve connector 26 has no directionality in the gas flow.
  • a thermometer 11 for measuring the temperature of the hydrogen storage cartridge 31 and an external pressure gauge 16 for confirming the gas pressure in the pressure-resistant heat-resistant container 2 are attached.
  • a hydrogen storage cartridge 31 filled with a hydrogen storage material is connected to the lid portion 7 via the connector 24, and the lid portion 7 is set to the pressure and heat resistant container 2.
  • the hydrogen introduction pipe 3 is connected to each connector of the valve connector 19 and the external pressure gas introduction valve connector 26. At this time, all valves of the valve connector 19 are closed.
  • the pressure-resistant and heat-resistant container has no air. Therefore, it is necessary to remove the air sufficiently by introducing a vacuum or introducing an inert gas. If the design pressure of the hydrogen storage cartridge is less than 0. IMPa, it is desirable to evacuate the hydrogen storage cartridge at the same time. In addition, when the hydrogen storage cartridge is recycled, if the atmosphere in the hydrogen storage cartridge is other than the hydrogen atmosphere or if impure gas is mixed, the inside of the hydrogen storage cartridge is evacuated, It is preferable to prevent other gases from entering when hydrogen is introduced. Even in this case, the pressure difference between the internal pressure of the hydrogen storage cartridge and the internal pressure of the pressure and heat resistant container is adjusted so as not to exceed the design pressure of the hydrogen storage cartridge. In addition, it is preferable to evacuate the hydrogen storage cartridge, the pressure and heat resistant container, and the piping connected to them before introducing hydrogen.
  • Hydrogen is gradually introduced through the valve connector 19 while being adjusted to a predetermined pressure by the pressure control valve 12.
  • the pressure is measured with a pressure gauge 13.
  • the pipe that introduces hydrogen into the hydrogen storage cartridge 31 and the pipe that introduces hydrogen into the gap between the hydrogen storage cartridge 31 and the pressure-resistant and heat-resistant container 2 are connected to each other. There is no difference.
  • hydrogen is introduced only into the hydrogen storage cartridge, and inert gas or the like may be used in the pressure and heat resistant container. ⁇ ⁇ .
  • a heating device 5 such as a heater is installed outside the pressure and heat resistant container 2.
  • the measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature.
  • the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
  • the pressure in the hydrogen storage cartridge 31 is set to a positive pressure in the range of normal pressure to the design pressure of the cartridge.
  • a plurality of light-weight hydrogen storage cartridges can be manufactured in one operation, and the efficiency can be increased.
  • the heating device is provided outside the pressure and heat resistant container.
  • the heat transfer site for heating the hydrogen storage material filled in the hydrogen storage cartridge is provided in the pressure and heat resistant container.
  • Fig. 4 shows a hydrogen storage device that can store 24 triangular prismatic hydrogen storage cartridges.
  • Fig. 4a is a plan view showing the arrangement of hydrogen storage cartridges in a pressure-resistant and heat-resistant container
  • Fig. 4b is Fig. 4a.
  • the external configuration of the pressure and heat resistant container is the same as that of Embodiment 3 except that there is no heating device installed outside the pressure and heat resistant container. .
  • a description of the external configuration of the pressure and heat resistant container is omitted.
  • the heating method is performed by installing a heat medium pipe 27 around the hydrogen storage cartridge 41 and circulating the heat medium therein.
  • the heat transfer tube 27 in the center in Fig. 4a uses a double heat transfer tube (the structure is shown in Fig. 4c). Do).
  • the circulation of the heat medium is not shown, but It is performed by a heat medium heating mechanism and a heat medium circulation mechanism installed outside.
  • the hydrogen storage cartridge 41 filled with the hydrogen storage material is set in the pressure and heat resistant container 2 in the same manner as in Embodiment 3, and the temperature inside the pressure and heat resistant container 2 is set. And while controlling the pressure of hydrogen introduced into the hydrogen storage cartridge 41 and the pressure and heat resistant container 2.
  • a plurality of lightweight hydrogen storage cartridges can be manufactured in a single operation, and the efficiency can be increased.
  • the heat transfer site for heating the hydrogen storage material filled in the hydrogen storage capacity cartridge is provided in the pressure-resistant and heat-resistant container, the hydrogen storage conditions of a plurality of hydrogen storage cartridges can be made more uniform. It becomes possible.
  • the hydrogen storage cartridge into a triangular prism shape, it is possible to arrange it in such a way that dead space is not generated as much as possible when it is loaded into devices of various shapes and on the side from which hydrogen is released. There are also advantages.
  • the hydrogen storage method according to the present invention can be realized by using a hydrogen storage device having the mechanism exemplified above. That is, the hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, and hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge This is a method of storing hydrogen while controlling the pressure so that the design pressure of the cartridge is not exceeded.
  • an external heating device is further provided.
  • a pressure-resistant and heat-resistant container having a heat transfer site is prepared in the pressure-resistant and heat-resistant container, and the hydrogen storage material filled in the hydrogen storage cartridge housed in the container is heated while being stored in the hydrogen storage cartridge. While introducing hydrogen and applying pressure, the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge stores hydrogen while controlling the pressure so that it does not exceed the design pressure of the hydrogen storage cartridge.
  • the weight of the hydrogen storage cartridge filled with the hydrogen storage material is significantly reduced, and the lightweight storage of the hydrogen storage cartridge facilitates transportation.
  • the energy and cost per unit weight can be greatly reduced.
  • the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is controlled within a range not exceeding 100% of the design pressure of the hydrogen storage cartridge. It is preferably controlled within 80%. If it exceeds 100%, the hydrogen storage cartridge may be damaged, and if it exceeds 80% of the design pressure, hydrogen such as a safety valve will be released to the outside, which is not preferable for safety.
  • the design pressure of the hydrogen storage cartridge to be used is preferably 0. IMPa or more and less than IMPa. If the design pressure is less than IMPa, the choices of materials that can be used as the material for the hydrogen storage cartridge are widened, the degree of light weight is increased, and the effect of the hydrogen storage method of the present invention can be sufficiently obtained. .
  • the lower limit of the design pressure is atmospheric pressure. 0. IMPa is the lower limit.
  • a small-scale test device was produced and examined.
  • a hydrogen storage cartridge a container with a capacity of 1 L, a weight of 1.8 kg (including the lid), and a design pressure of 0.3 MPa was used.
  • This container was filled with 500 g of an alkali metal aluminum hydride hydrogen storage material.
  • the pressure and heat-resistant container use a container with a normal pressure resistance of 10 MPa and heat resistance of 200 ° C, and the hydrogen storage conditions are 170 ° C and 9 MPa for 2 hours. . Occlude hydrogen by controlling it to be within 2MPa. It was. Thereafter, the pressure and temperature were lowered to normal temperature and pressure. As a result, the hydrogen storage amount was 24 g (4.8% by mass per storage material).
  • the container is not a double structure as in the present invention
  • the design pressure is 10 MPa and the heat resistance is 200 ° C. Therefore, the weight of the hydrogen storage container is 7. Okg.
  • the hydrogen storage cartridge (including the lid) according to this example can be reduced in weight by about a quarter compared to this hydrogen storage container.
  • FIG. 1 is an example (simple system) of a configuration of a hydrogen storage device according to the present invention. (Embodiment 1)
  • FIG. 2 is another example of the configuration of the hydrogen storage device according to the present invention. (Embodiment 2)
  • FIG. 3a is a plan view showing the arrangement of a hydrogen storage cartridge in a pressure and heat resistant container in Embodiment 3.
  • FIG. 3b is a schematic diagram showing a configuration of a hydrogen storage device in Embodiment 3.
  • FIG. 4 a is a plan view showing the arrangement of hydrogen storage cartridges in a pressure and heat resistant container in Embodiment 4.
  • FIG. 4b is a cross-sectional view taken along the line AA ′ in FIG. 4a in the fourth embodiment.
  • FIG. 4c is a view showing the structure of the heat medium pipe at the center in FIG. 4a in Embodiment 4. Explanation of symbols

Abstract

A hydrogen occlusion device and a hydrogen occlusion method, where, even if a hydrogen occlusion material requiring high pressure in hydrogen occlusion is used, a hydrogen storage cartridge with a thin wall thickness can be used. The hydrogen occlusion device is a device where hydrogen is occluded in a hydrogen storage cartridge (1) in which a hydrogen occlusion material capable of occluding hydrogen under pressure is filled. The hydrogen occlusion device has a pressure resistant container (2) resistant to hydrogen filling pressure, the hydrogen storage cartridge (1) received in the pressure resistant container (2), piping (3) for introducing hydrogen into the hydrogen storage cartridge (1), piping (14) for introducing gas into a space between the pressure resistant container (2) and the hydrogen storage cartridge (1), and a mechanism (4) for controlling a pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge (1). The hydrogen occlusion method uses the hydrogen occlusion device and causes hydrogen occlusion while controlling pressure so that the pressure difference between the internal pressure and the external pressure does not exceed design pressure of the hydrogen storage cartridge (1).

Description

明 細 書  Specification
水素吸蔵装置及び水素吸蔵方法  Hydrogen storage device and hydrogen storage method
技術分野  Technical field
[0001] 本発明は、高圧下で水素を吸蔵する水素貯蔵材料の水素吸蔵装置及び水素吸蔵 方法に関する。  [0001] The present invention relates to a hydrogen storage device and a hydrogen storage method for a hydrogen storage material that stores hydrogen under high pressure.
背景技術  Background art
[0002] 水素貯蔵材料としては古くから水素吸蔵合金が検討され開発が進められてきた力 単位重量あたりの水素吸蔵率が低く、いまだに実用化には至っていないのが現状で ある。水素吸蔵合金を使用した水素貯蔵タンクについては、特開 2000— 120996号 公報,特開 2002— 122294号公報,特開 2002— 221297号公報,特開 2002— 3 40430号公報などにぉ 、て 、ろ 、ろと検討されて!、る。  [0002] As a hydrogen storage material, hydrogen storage alloys have been studied and developed for a long time. The hydrogen storage rate per unit weight is low, and the present situation is that the hydrogen storage material has not yet been put into practical use. Regarding hydrogen storage tanks using hydrogen storage alloys, see JP-A-2000-120996, JP-A-2002-122294, JP-A-2002-221297, JP-A-2002-340430, etc. Being considered! RU
[0003] 一般に検討されている水素吸蔵合金を中心とする水素貯蔵材料が充填された水素 貯蔵タンクは、基本的に車載用のタンクが多ぐこの場合、水素貯蔵タンクは車に固 定されており、水素は直接タンクに充填される。水素を吸蔵する際の化学反応は発 熱反応であるため、水素吸蔵合金の場合でも、水素吸蔵の際には水素貯蔵材料を 冷却するシステムが必要となる。また、実用性を考えた場合は水素充填速度が重要 視されるが、水素充填速度を上げていくと単位時間当たりの発熱量は多くなり、効率 的な冷却システムが重要となる。  [0003] In general, hydrogen storage tanks filled with hydrogen storage materials mainly composed of hydrogen storage alloys, which are generally studied, have many in-vehicle tanks. In this case, the hydrogen storage tank is fixed to the vehicle. Hydrogen is charged directly into the tank. Since the chemical reaction when storing hydrogen is an exothermic reaction, even in the case of hydrogen storage alloys, a system for cooling the hydrogen storage material is required when storing hydrogen. Also, considering the practicality, the hydrogen filling rate is regarded as important, but as the hydrogen filling rate is increased, the amount of heat generated per unit time increases, and an efficient cooling system becomes important.
[0004] 一方、水素貯蔵タンクの様式として、タンクごと詰め替える方法も可能性がある。こ の場合、タンクごと入れ替えるため、出し入れのハンドリングを考えた場合、水素貯蔵 材料を含めた水素貯蔵タンクの大きさは小さぐ軽い方が好ましい。また、水素の充 填はあら力じめ別の場所で実施できることから、車載固定タンクの場合に比べ、水素 の充填時間に厳し ヽ制約はな 、。  [0004] On the other hand, there is a possibility of refilling the entire tank as a form of the hydrogen storage tank. In this case, since the entire tank is replaced, considering the handling of loading and unloading, the size of the hydrogen storage tank including the hydrogen storage material is preferably small and light. In addition, since hydrogen can be refilled at a different location, there is no strict restriction on the time for filling hydrogen compared to the case of onboard fixed tank.
[0005] 最近、いくつかの高容量の新規水素吸蔵材料が提案されており、特許文献 1では 高い圧力下で高吸蔵量を示す材料が見出されている。  Recently, several new high-capacity hydrogen storage materials have been proposed, and Patent Document 1 has found a material that exhibits a high storage capacity under high pressure.
特許文献 1:特開 2004— 196634号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-196634
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] しカゝしながら、上記特許文献 1で示されるような材料を使用する場合は、水素充填 圧力に耐えうるよう水素貯蔵タンクの肉厚は厚く設計されなければならず、結果として 重い水素貯蔵タンクにならざるを得ない。このため、水素貯蔵材料としては高容量で あっても、タンクシステムとしては有効な水素貯蔵密度が得られないという問題があつ た。  [0006] However, when using a material as shown in Patent Document 1 above, the thickness of the hydrogen storage tank must be designed to be thick enough to withstand the hydrogen filling pressure, resulting in heavy weight. It must be a hydrogen storage tank. For this reason, even if the capacity of the hydrogen storage material is high, an effective hydrogen storage density cannot be obtained for the tank system.
[0007] 本発明はこの点を鑑み、水素吸蔵時に高い圧力が必要となる水素貯蔵材料を使用 した場合でも、実用可能な軽量の水素貯蔵タンク (以下、水素貯蔵カートリッジと呼ぶ )を利用できる水素吸蔵装置及び水素吸蔵方法を提供することを目的とする。  [0007] In view of this point, the present invention is a hydrogen that can use a practical and lightweight hydrogen storage tank (hereinafter referred to as a hydrogen storage cartridge) even when using a hydrogen storage material that requires high pressure during hydrogen storage. It is an object of the present invention to provide a storage device and a hydrogen storage method.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者等は、上記課題を解決するため鋭意研究した結果、軽量化が可能な耐 圧性能が低い水素貯蔵カートリッジを用いた場合でも、水素を吸蔵させる時に水素 充填圧力に耐えうる耐圧容器内に水素貯蔵カートリッジを収納し、その水素貯蔵力 ートリッジ内に水素圧をかけることが可能で、なおかつ、水素貯蔵カートリッジの内圧 と外圧の圧力差が水素貯蔵カートリッジの設計圧力を超えないように圧力を制御する ことが可能な装置を用いることによって、水素貯蔵カートリッジ内に充填された、水素 吸蔵時に高い圧力が必要となる水素貯蔵材料に水素を吸蔵させることができるとの 知見を得て本発明を完成するに至った。  [0008] As a result of diligent research to solve the above problems, the present inventors have been able to withstand the hydrogen filling pressure when storing hydrogen, even when using a hydrogen storage cartridge with low pressure resistance that can be reduced in weight. It is possible to store a hydrogen storage cartridge in a pressure vessel and apply hydrogen pressure to the hydrogen storage capacity cartridge, and the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge should not exceed the design pressure of the hydrogen storage cartridge. By using a device capable of controlling the pressure at the same time, we have obtained the knowledge that hydrogen can be stored in the hydrogen storage material filled in the hydrogen storage cartridge and requiring high pressure when storing hydrogen. The present invention has been completed.
[0009] すなわち、本発明は、以下の(1)〜(9)を提供する。  That is, the present invention provides the following (1) to (9).
[0010] (1)圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カー トリッジに水素を吸蔵させる水素吸蔵装置であって、水素充填圧力に耐えうる耐圧容 器と、該耐圧容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリツ ジ内に水素を導入する配管と、前記耐圧容器と前記水素貯蔵カートリッジの隙間に 気体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を 制御する機構を有することを特徴とする水素吸蔵装置。  (1) A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure, a pressure-resistant container capable of withstanding the hydrogen filling pressure, and the pressure resistance The hydrogen storage cartridge housed in a container, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a pipe for introducing gas into the gap between the pressure-resistant container and the hydrogen storage cartridge. A hydrogen storage device comprising a mechanism for controlling a pressure difference between an internal pressure and an external pressure of a cartridge.
[0011] (2)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯 蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、水素充填圧力に耐えうる 、かつ外部に加熱装置を有する耐圧耐熱容器と、該耐圧耐熱容器内に収納された 前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前 記耐圧耐熱容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備 え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制御する機構を有することを 特徴とする水素吸蔵装置。 [0011] (2) A hydrogen storage device that stores hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, and can withstand the hydrogen charging pressure and is heated to the outside A pressure-resistant and heat-resistant container having a device, and housed in the pressure-resistant and heat-resistant container The hydrogen storage cartridge, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a pipe for introducing gas into the gap between the pressure-resistant heat-resistant container and the hydrogen storage cartridge, and the internal pressure of the hydrogen storage cartridge A hydrogen storage device comprising a mechanism for controlling a pressure difference between external pressures.
[0012] (3)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯 蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、水素充填圧力および水 素充填温度に耐えうる耐圧耐熱容器と、該耐圧耐熱容器内に収納された前記水素 貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧耐 熱容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、前記耐圧耐熱 容器内に設けられた、前記水素貯蔵カートリッジ内に充填された水素貯蔵材料をカロ 熱することが可能な伝熱部位と、を備え、前記水素貯蔵カートリッジの内圧と外圧の 圧力差を制御する機構を有することを特徴とする水素吸蔵装置。  [0012] (3) A hydrogen storage device that stores hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, and can withstand a hydrogen filling pressure and a hydrogen filling temperature. Introducing a gas into a pressure-resistant and heat-resistant container, the hydrogen storage cartridge housed in the pressure-resistant and heat-resistant container, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a gap between the pressure-resistant and heat-resistant container and the hydrogen storage cartridge A pipe, and a heat transfer portion provided in the pressure- and heat-resistant container and capable of heating the hydrogen storage material filled in the hydrogen storage cartridge by calorie, the internal pressure and the external pressure of the hydrogen storage cartridge A hydrogen storage device having a mechanism for controlling a pressure difference.
[0013] (4)上記(1)、(2)、(3)において、前記水素貯蔵カートリッジが複数であることを特 徴とする水素吸蔵装置。  [0013] (4) In the above (1), (2), (3), a hydrogen storage device characterized in that a plurality of the hydrogen storage cartridges are provided.
[0014] (5)圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カー トリッジに水素を吸蔵させる水素吸蔵方法であって、水素充填圧力に耐えうる耐圧容 器内に前記水素貯蔵カートリッジを収納し、該水素貯蔵カートリッジ内に水素を導入 して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素 貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリツ ジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。  (5) A hydrogen storage method in which hydrogen is stored in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure, wherein the hydrogen is stored in a pressure resistant container capable of withstanding the hydrogen filling pressure. Store the storage cartridge, introduce hydrogen into the hydrogen storage cartridge, apply pressure, and control the pressure so that the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge A hydrogen storage method, wherein the hydrogen storage material in the hydrogen storage cartridge stores hydrogen.
[0015] (6)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯 蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、水素充填圧力に耐えうる 、かつ外部に加熱装置を有する耐圧耐熱容器に前記水素貯蔵カートリッジを収納し 、該水素貯蔵カートリッジを加熱しながら該水素貯蔵カートリッジ内に水素を導入して 圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯 蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ 内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。  (6) A hydrogen storage method in which hydrogen is stored in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating, which can withstand the hydrogen charging pressure and is heated to the outside. The hydrogen storage cartridge is housed in a pressure and heat resistant container having a device, and hydrogen is introduced into the hydrogen storage cartridge while applying pressure to the hydrogen storage cartridge while heating the pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge However, the hydrogen storage method is characterized in that hydrogen is stored in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so as not to exceed the design pressure of the hydrogen storage cartridge.
[0016] (7)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯 蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、水素充填圧力および水 素充填温度に耐えうる耐圧耐熱容器に前記水素貯蔵カートリッジを収納し、前記耐 圧耐熱容器内に設けられた伝熱部位により前記水素貯蔵カートリッジ内に充填され た水素貯蔵材料を加熱しながら、該水素貯蔵カートリッジ内に水素を導入して圧力を かけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カート リッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ内の水 素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。 (7) Hydrogen storage filled with a hydrogen storage material capable of storing hydrogen by pressure and heating. A hydrogen storage method for storing hydrogen in a storage cartridge, wherein the hydrogen storage cartridge is housed in a pressure and heat resistant container capable of withstanding a hydrogen filling pressure and a hydrogen filling temperature, and a heat transfer site provided in the pressure and heat resistant container While the hydrogen storage material filled in the hydrogen storage cartridge is heated by introducing hydrogen into the hydrogen storage cartridge and applying pressure, the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is A hydrogen storage method comprising storing hydrogen in a hydrogen storage material in a hydrogen storage cartridge while controlling the pressure so as not to exceed a design pressure of the cartridge.
[0017] (8)上記(5)、(6)、(7)において、前記水素貯蔵カートリッジの内圧と外圧の圧力 差が、該水素貯蔵カートリッジの設計圧力の 80%以内になるように圧力を制御しなが ら前記水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させていくことを特徴と する水素吸蔵方法。  (8) In the above (5), (6), and (7), the pressure is adjusted so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 80% of the design pressure of the hydrogen storage cartridge. A hydrogen storage method, wherein hydrogen is stored in the hydrogen storage material in the hydrogen storage cartridge while being controlled.
[0018] (9)上記(5)、(6)、(7)において、前記水素貯蔵カートリッジの設計圧力が 0. 1M Pa以上 IMPa未満であることを特徴とする水素吸蔵方法。  [0018] (9) In the above (5), (6), and (7), the hydrogen storage cartridge is characterized in that the design pressure of the hydrogen storage cartridge is 0.1 MPa or more and less than IMPa.
発明の効果  The invention's effect
[0019] 本発明により、水素貯蔵材料を充填した水素貯蔵カートリッジの重量の大幅な軽量 化が図られることから、水素貯蔵カートリッジ重量当りの水素重量密度を高く維持する ことが可能となる。また、水素貯蔵カートリッジの軽量ィ匕により搬送が楽になり、単位 重量当りの搬送エネルギー、費用が大幅に低減可能となる。  [0019] According to the present invention, the weight of the hydrogen storage cartridge filled with the hydrogen storage material can be significantly reduced, so that the hydrogen weight density per weight of the hydrogen storage cartridge can be maintained high. In addition, the lightweight storage of the hydrogen storage cartridge makes it easier to transport and greatly reduces the energy and cost of transport per unit weight.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下に、本発明の実施形態を図面に基づいて説明する。なお、以下に示す実施形 態では、ともに、加熱装置を備える例を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments described below, an example including a heating device is shown.
[0021] (実施形態 1) [0021] (Embodiment 1)
図 1に示される本発明に係る水素吸蔵装置の主な構成は、水素貯蔵カートリッジ 1 The main structure of the hydrogen storage device according to the present invention shown in FIG.
、耐圧耐熱容器 2、水素導入用配管 3、圧力制御計 4、加熱装置 5、温度制御計 6か らなり、簡易なシステムとなっている。 It consists of a pressure-resistant and heat-resistant container 2, a hydrogen introduction pipe 3, a pressure controller 4, a heating device 5, and a temperature controller 6. The system is simple.
[0022] まず、水素貯蔵カートリッジ 1は設計圧力が低いカートリッジでよぐ材質の薄肉化 による軽量ィ匕が可能である。蓋部 7の部分には水素の導入側コネクタ 8、水素の放出 側コネクタ 9が組みこまれている。これらのコネクタは水素が一方向にのみ流れる構 造になっており、水素貯蔵カートリッジ 1の設計圧力の 80%以上の圧力が負荷されな いと開放しない。水素貯蔵材料を充填する場合は蓋部 7を開けて充填する。水素貯 蔵材料が充填された水素貯蔵カートリッジ 1は、耐圧耐熱容器 2の内部に納められ、 ネジ方式などでしつ力り固定される。 [0022] First, the hydrogen storage cartridge 1 is a cartridge with a low design pressure, and can be reduced in weight by thinning the material. A hydrogen introduction side connector 8 and a hydrogen release side connector 9 are incorporated in the lid portion 7. These connectors are designed to allow hydrogen to flow in only one direction. It does not open unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied. When filling the hydrogen storage material, open the lid 7 and fill it. The hydrogen storage cartridge 1 filled with the hydrogen storage material is housed inside the pressure-resistant and heat-resistant container 2 and is fixed with tension by a screw method or the like.
[0023] 耐圧耐熱容器 2は、水素吸蔵時の圧力、温度に耐えうる構造を有する。また、外圧 ガス導入用コネクタ 10が設置されている。本コネクタはガスの出入りに方向性は有し ていない。また、水素貯蔵カートリッジ 1の温度を測定する温度計 11が取り付けられ ている。 [0023] The pressure-resistant and heat-resistant container 2 has a structure capable of withstanding the pressure and temperature during hydrogen storage. In addition, an external pressure gas introduction connector 10 is installed. This connector has no direction for gas flow. A thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.
[0024] 水素貯蔵カートリッジ 1と耐圧耐熱容器 2が接続された後、水素導入用配管 3が各コ ネクタに接続される。水素は圧力制御バルブ 12により所定の圧力に調整されながら 導入側コネクタ 8を通って徐々に導入される。圧力は圧力計 13で測定される。水素 貯蔵カートリッジ 1の内側に水素を導入する配管と、外側すなわち水素貯蔵カートリツ ジ 1と耐圧耐熱容器 2の隙間に水素を導入する配管とは繋がっており、水素貯蔵カー トリッジ 1の内圧と外圧の圧力差が発生しな 、ようになって 、る。  [0024] After the hydrogen storage cartridge 1 and the pressure and heat resistant container 2 are connected, the hydrogen introduction pipe 3 is connected to each connector. Hydrogen is gradually introduced through the inlet connector 8 while being adjusted to a predetermined pressure by the pressure control valve 12. The pressure is measured with a pressure gauge 13. The pipe for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and the pipe for introducing hydrogen into the outside, that is, the gap between the hydrogen storage cartridge 1 and the pressure-resistant and heat-resistant container 2, are connected, and the internal pressure and the external pressure of the hydrogen storage cartridge 1 are connected. No pressure difference is generated.
[0025] 耐圧耐熱容器 2の外部には、ヒーターなどの加熱装置 5が設置される。温度計 11で の測定値は温度制御計 6に伝達され、所定の温度になるよう制御される。これによつ て内部の水素貯蔵材料を好適な温度に制御して、水素充填を円滑に行うことができ る。  A heating device 5 such as a heater is installed outside the pressure and heat resistant container 2. The measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature. Thereby, the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
[0026] 所定の温度、圧力で水素貯蔵カートリッジ 1の内部の水素貯蔵材料に水素の吸蔵 が終了した後は、圧力制御バルブ 12によって徐々に圧力を緩め、さらに温度を低下 させ、常圧、常温とする。この場合、水素貯蔵カートリッジ 1中の過剰圧の水素は放出 側コネクタ 9から放出される。  [0026] After the storage of hydrogen in the hydrogen storage material inside the hydrogen storage cartridge 1 is completed at a predetermined temperature and pressure, the pressure is gradually reduced by the pressure control valve 12, and the temperature is further reduced to normal pressure and room temperature. And In this case, the overpressure hydrogen in the hydrogen storage cartridge 1 is released from the discharge side connector 9.
[0027] (実施形態 2)  [Embodiment 2]
図 2に示される本発明に係る水素吸蔵装置の主な構成は、水素貯蔵カートリッジ 1 、耐圧耐熱容器 2、水素導入用配管 3、外圧ガス導入用配管 14、圧力制御計 4、加 熱装置 5、温度制御計 6からなり、水素貯蔵カートリッジ 1の内側に水素を導入する配 管と、外側すなわち水素貯蔵カートリッジ 1と耐圧耐熱容器 2の隙間にガスを導入す る配管との系統が別になつている場合である。 [0028] 水素貯蔵カートリッジ 1は設計圧力が低いカートリッジでよぐ材質の薄肉化による 軽量ィ匕が可能である。蓋部 7の部分には開閉用のバルブを含むコネクタ 19が設置さ れている。バルブは通常は閉じられており、水素の吸蔵、放出の際に開けられる。な お、本コネクタは方向性を有しない。また、水素貯蔵カートリッジ 1の内部の圧力を測 定する内圧力計 15が設置されている。内圧力計 15に繋がる配管には安全バルブ 2 0が設置されている。安全バルブ 20は水素貯蔵カートリッジ 1の設計圧力の 80%以 上の圧力が負荷されないと開放しない。なお、圧力が高くなる吸蔵時には外バルブ により完全に閉じられる。水素貯蔵材料を充填する場合は蓋部 7を開けて充填する。 水素貯蔵材料が充填された水素貯蔵カートリッジ 1は、耐圧耐熱容器 2の内部に納 められ、ネジ方式などでしつ力り固定される。 The main structure of the hydrogen storage device according to the present invention shown in FIG. 2 is as follows: hydrogen storage cartridge 1, pressure-resistant and heat-resistant container 2, hydrogen introduction pipe 3, external pressure gas introduction pipe 14, pressure controller 4, heating device 5 The system consists of a temperature controller 6 and a pipe for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and a pipe for introducing gas into the gap between the hydrogen storage cartridge 1 and the pressure-resistant and heat-resistant container 2 separately. This is the case. [0028] The hydrogen storage cartridge 1 is a cartridge with a low design pressure, and can be reduced in weight by thinning the material. A connector 19 including a valve for opening and closing is installed on the lid portion 7. The valve is normally closed and is opened when hydrogen is stored or released. This connector has no directionality. An internal pressure gauge 15 for measuring the pressure inside the hydrogen storage cartridge 1 is installed. A safety valve 20 is installed in the pipe connected to the internal pressure gauge 15. The safety valve 20 will not open unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied. When the pressure is increased, the valve is completely closed by the outer valve. When filling the hydrogen storage material, open the lid 7 and fill it. The hydrogen storage cartridge 1 filled with the hydrogen storage material is housed inside the pressure-resistant and heat-resistant container 2, and is fixed by tension using a screw method or the like.
[0029] 耐圧耐熱容器 2は、水素吸蔵時の圧力、温度に耐えうる構造を有する。また、外圧 ガス導入用コネクタ 10、水素貯蔵カートリッジ 1の外圧力を測定する外圧力計 16が 設置されている。本コネクタはガスの出入りに方向性は有していない。また、水素貯 蔵カートリッジ 1の温度を測定する温度計 11が取り付けられている。  [0029] The pressure-resistant and heat-resistant container 2 has a structure that can withstand the pressure and temperature during hydrogen storage. In addition, an external pressure gas introduction connector 10 and an external pressure gauge 16 for measuring the external pressure of the hydrogen storage cartridge 1 are installed. This connector does not have directionality for gas in and out. A thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.
[0030] 水素貯蔵カートリッジ 1と耐圧耐熱容器 2が接続された後、内圧制御ノ レブ 17を備 えた水素導入用配管 3がバルブコネクタ 19に接続される。一方、外圧制御バルブ 18 を備えた外圧ガス導入用配管 14が外圧ガス導入用コネクタ 10に接続される。吸蔵 用の水素がバルブコネクタ 19から導入されると共に、外圧ガス導入用配管 14からガ スが導入されるが、この際、内圧力計 15、外圧力計 16により内圧力と外圧力が検知 され、その圧力差が水素貯蔵カートリッジ 1の設計圧力よりも大きくならないように制 御される。外圧導入用のガスは、特に制限はないが、窒素、アルゴンあるいは空気な どが使用される。  After the hydrogen storage cartridge 1 and the pressure and heat resistant container 2 are connected, a hydrogen introduction pipe 3 equipped with an internal pressure control valve 17 is connected to the valve connector 19. On the other hand, an external pressure gas introduction pipe 14 provided with an external pressure control valve 18 is connected to the external pressure gas introduction connector 10. Hydrogen for storage is introduced from the valve connector 19 and gas is introduced from the external pressure gas introduction pipe 14.At this time, the internal pressure and the external pressure are detected by the internal pressure gauge 15 and the external pressure gauge 16. The pressure difference is controlled so as not to become larger than the design pressure of the hydrogen storage cartridge 1. The gas for introducing the external pressure is not particularly limited, but nitrogen, argon or air is used.
[0031] 耐圧耐熱容器 2の外部には、ヒーターなどの加熱装置 5が設置される。温度計 11で の測定値は温度制御計 6に伝達され、所定の温度になるよう制御される。これによつ て内部の水素貯蔵材料を好適な温度に制御して、水素充填を円滑に行うことができ る。  A heating device 5 such as a heater is installed outside the pressure and heat resistant container 2. The measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature. Thereby, the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
[0032] 所定の温度、圧力で水素貯蔵カートリッジ 1の内部の水素貯蔵材料に水素の吸蔵 が終了した後は、温度を低下させると共に、内圧と外圧との圧力差が生じないように 徐々に圧力を低下させる。 [0032] After the storage of hydrogen in the hydrogen storage material in the hydrogen storage cartridge 1 is completed at a predetermined temperature and pressure, the temperature is decreased and a pressure difference between the internal pressure and the external pressure is not generated. Gradually reduce pressure.
[0033] (実施形態 3)  [0033] (Embodiment 3)
上記の実施形態では、耐圧耐熱容器に収納される水素貯蔵カートリッジは単数で あるが、複数にしてもよい。図 3は、 7本の水素貯蔵カートリッジを収納できる水素吸 蔵装置を示したものであり、図 3aは耐圧耐熱容器内での水素貯蔵カートリッジの配 置を示す平面図、図 3bは水素吸蔵装置の構成を示す模式図である。  In the above embodiment, the number of hydrogen storage cartridges housed in the pressure and heat resistant container is one, but a plurality of hydrogen storage cartridges may be used. Fig. 3 shows a hydrogen storage device that can accommodate seven hydrogen storage cartridges. Fig. 3a is a plan view showing the arrangement of the hydrogen storage cartridge in a pressure-resistant and heat-resistant container, and Fig. 3b is a hydrogen storage device. It is a schematic diagram which shows the structure of these.
[0034] この実施形態は、実施形態 1における耐圧耐熱容器に収納される水素貯蔵カートリ ッジを単数力 複数にしたものである。蓋部 7の上部には 7つのバルブコネクタ 19が 組みこまれており、水素導入用配管 3と接続できるようになつている。ノ レブコネクタ 1 9はガスの流れに方向性を有しない。水素導入用配管 3の、バルブコネクタ 19との接 続部分の付近にはそれぞれ、各水素貯蔵カートリッジ 31への導入ガス圧力を確認す るための圧力計 21が設置されている。また、水素導入用配管 3には安全バルブ 20が 設置されており、導入される水素ガスの圧力が異常に増大した場合に備えている。  [0034] In this embodiment, the hydrogen storage cartridge housed in the pressure-resistant heat-resistant container in Embodiment 1 is made into a single force. Seven valve connectors 19 are built in the upper part of the lid 7 so that they can be connected to the hydrogen introduction pipe 3. Noreb connector 19 has no direction in the gas flow. A pressure gauge 21 for confirming the pressure of gas introduced into each hydrogen storage cartridge 31 is installed in the vicinity of the connection portion of the hydrogen introduction pipe 3 with the valve connector 19. In addition, a safety valve 20 is installed in the hydrogen introduction pipe 3 in case the pressure of the introduced hydrogen gas increases abnormally.
[0035] 蓋部 7の下部には 7つの耐圧耐熱容器側コネクタ 22が組みこまれており、カートリツ ジ側コネクタ 23を有する水素貯蔵カートリッジ 31と接続できるようになつている。これ らのコネクタは、接続を解除すると開口部が閉じるしくみのものが好ましい。カートリツ ジ側コネクタ 23はカートリッジ蓋部 25に繋がっており、そのカートリッジ蓋部 25に、力 ートリッジ容器がネジ方式などで固定され密閉される。  [0035] Seven pressure-resistant and heat-resistant container-side connectors 22 are incorporated in the lower portion of the lid portion 7, and can be connected to a hydrogen storage cartridge 31 having a cartridge-side connector 23. These connectors preferably have a mechanism for closing the opening when the connection is released. The cartridge side connector 23 is connected to the cartridge lid 25, and a force cartridge container is fixed to the cartridge lid 25 by a screw method or the like and sealed.
[0036] 耐圧耐熱容器 2には、開閉用のバルブを含む外圧ガス導入用バルブコネクタ 26が 設置されている。本バルブコネクタ 26はガスの流れに方向性を有しない。また、水素 貯蔵カートリッジ 31の温度を測定する温度計 11および耐圧耐熱容器 2内のガス圧力 を確認するための外圧力計 16が取り付けられている。  [0036] The pressure-resistant and heat-resistant container 2 is provided with an external pressure gas introduction valve connector 26 including a valve for opening and closing. The valve connector 26 has no directionality in the gas flow. A thermometer 11 for measuring the temperature of the hydrogen storage cartridge 31 and an external pressure gauge 16 for confirming the gas pressure in the pressure-resistant heat-resistant container 2 are attached.
[0037] この水素吸蔵装置を用いた水素吸蔵方法は、まず、水素貯蔵材料を充填した水素 貯蔵カートリッジ 31を蓋部 7にコネクタ 24を介して接続し、耐圧耐熱容器 2に蓋部 7を セットし、しつ力りと固定した後、水素導入用配管 3がバルブコネクタ 19および外圧ガ ス導入用バルブコネクタ 26の各コネクタに接続される。この際、バルブコネクタ 19の バルブはすべて閉じられている。  [0037] In the hydrogen storage method using this hydrogen storage device, first, a hydrogen storage cartridge 31 filled with a hydrogen storage material is connected to the lid portion 7 via the connector 24, and the lid portion 7 is set to the pressure and heat resistant container 2. After the fixing, the hydrogen introduction pipe 3 is connected to each connector of the valve connector 19 and the external pressure gas introduction valve connector 26. At this time, all valves of the valve connector 19 are closed.
[0038] なお、これらの一連の操作を外気中で行った場合には、耐圧耐熱容器内には空気 が混在しているので、真空引きや不活性ガスを導入し十分に空気を除去することが 必要となる。水素貯蔵カートリッジの設計圧力が 0. IMPa未満の場合には、水素貯 蔵カートリッジ内も同時に真空引きをすることが望ましい。また、水素貯蔵カートリッジ を再生使用する場合に、水素貯蔵カートリッジ内の雰囲気が水素雰囲気以外となつ ている場合や、不純ガスが混入している場合には、水素貯蔵カートリッジ内も真空引 きし、水素導入時に他のガスが混入しないようにすることが好ましい。この場合でも、 水素貯蔵カートリッジの内圧と耐圧耐熱容器の内圧との圧力差が、水素貯蔵カートリ ッジの設計圧力を超えない程度に調整しながら行う。また、水素導入前に水素貯蔵 カートリッジ並びに耐圧耐熱容器やそれらに繋がる配管内を真空引きしておくことが 好ましい。 [0038] When these series of operations are performed in the outside air, the pressure-resistant and heat-resistant container has no air. Therefore, it is necessary to remove the air sufficiently by introducing a vacuum or introducing an inert gas. If the design pressure of the hydrogen storage cartridge is less than 0. IMPa, it is desirable to evacuate the hydrogen storage cartridge at the same time. In addition, when the hydrogen storage cartridge is recycled, if the atmosphere in the hydrogen storage cartridge is other than the hydrogen atmosphere or if impure gas is mixed, the inside of the hydrogen storage cartridge is evacuated, It is preferable to prevent other gases from entering when hydrogen is introduced. Even in this case, the pressure difference between the internal pressure of the hydrogen storage cartridge and the internal pressure of the pressure and heat resistant container is adjusted so as not to exceed the design pressure of the hydrogen storage cartridge. In addition, it is preferable to evacuate the hydrogen storage cartridge, the pressure and heat resistant container, and the piping connected to them before introducing hydrogen.
[0039] 水素は圧力制御バルブ 12により所定の圧力に調整されながらバルブコネクタ 19を 通って徐々に導入される。圧力は圧力計 13で測定される。水素貯蔵カートリッジ 31 の内側に水素を導入する配管と、外側すなわち水素貯蔵カートリッジ 31と耐圧耐熱 容器 2の隙間に水素を導入する配管とは繋がっており、水素貯蔵カートリッジ 31の内 圧と外圧の圧力差が発生しないようになっている。なお、水素貯蔵カートリッジ内と耐 圧耐熱容器内の圧力差を圧力制御計で調整する場合は、水素貯蔵カートリッジにの み水素を導入し、耐圧耐熱容器内には不活性ガスなどを用いてもょ ヽ。  Hydrogen is gradually introduced through the valve connector 19 while being adjusted to a predetermined pressure by the pressure control valve 12. The pressure is measured with a pressure gauge 13. The pipe that introduces hydrogen into the hydrogen storage cartridge 31 and the pipe that introduces hydrogen into the gap between the hydrogen storage cartridge 31 and the pressure-resistant and heat-resistant container 2 are connected to each other. There is no difference. When adjusting the pressure difference between the hydrogen storage cartridge and the pressure and heat resistant container with a pressure controller, hydrogen is introduced only into the hydrogen storage cartridge, and inert gas or the like may be used in the pressure and heat resistant container.ヽ ヽ.
[0040] 耐圧耐熱容器 2の外部には、ヒーターなどの加熱装置 5が設置される。温度計 11で の測定値は温度制御計 6に伝達され、所定の温度になるよう制御される。これによつ て内部の水素貯蔵材料を好適な温度に制御して、水素充填を円滑に行うことができ る。  A heating device 5 such as a heater is installed outside the pressure and heat resistant container 2. The measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature. Thereby, the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.
[0041] 所定の温度、圧力で水素貯蔵カートリッジ 31の内部の水素貯蔵材料に水素の吸 蔵が終了した後は、圧力制御バルブ 12によって徐々に圧力を緩め、さらに温度を低 下させ、常圧、常温とする。この場合、水素貯蔵カートリッジ 31中の過剰圧の水素は バルブコネクタ 19から放出される。その際、水素貯蔵カートリッジ 31内への外気から の空気等の侵入を防ぐために、水素貯蔵カートリッジ 31内の水素圧は、常圧〜カー トリッジの設計圧力の範囲で陽圧とする。  [0041] After the storage of hydrogen in the hydrogen storage material inside the hydrogen storage cartridge 31 is completed at a predetermined temperature and pressure, the pressure is gradually reduced by the pressure control valve 12, and the temperature is further decreased to normal pressure. Let it be at room temperature. In this case, the overpressure hydrogen in the hydrogen storage cartridge 31 is released from the valve connector 19. At that time, in order to prevent intrusion of air or the like from the outside air into the hydrogen storage cartridge 31, the hydrogen pressure in the hydrogen storage cartridge 31 is set to a positive pressure in the range of normal pressure to the design pressure of the cartridge.
[0042] その後、バルブコネクタ 19のバルブをすベて閉じ、安全性確保のため耐圧耐熱容 器 2内のガスを不活性ガスに置換してから、水素導入用配管 3をバルブコネクタ 19お よび外圧ガス導入用バルブコネクタ 26の各コネクタからはずし、蓋部 7を耐圧耐熱容 器 2からはずしてから、水素貯蔵カートリッジ 31を蓋部 7からはずす。 [0042] After that, all the valves of the valve connector 19 are closed to ensure safety. After replacing the gas in vessel 2 with inert gas, disconnect hydrogen introduction pipe 3 from each connector of valve connector 19 and external pressure gas introduction valve connector 26, and remove lid 7 from pressure-resistant and heat-resistant vessel 2. Then, remove the hydrogen storage cartridge 31 from the lid 7.
[0043] このような水素吸蔵装置を用いることにより、一度の操作で、軽量な、水素貯蔵カー トリッジを複数製造することができ、効率を上げることが可能となる。  [0043] By using such a hydrogen storage device, a plurality of light-weight hydrogen storage cartridges can be manufactured in one operation, and the efficiency can be increased.
[0044] (実施形態 4)  [0044] (Embodiment 4)
上記の実施形態ではすべて、加熱装置は耐圧耐熱容器の外部に設けられていた 力 この実施形態では、水素貯蔵カートリッジ内に充填された水素貯蔵材料を加熱 するための伝熱部位が耐圧耐熱容器内に設けられている。図 4は、三角柱形状の水 素貯蔵カートリッジを 24本収納できる水素吸蔵装置を示したものであり、図 4aは耐圧 耐熱容器内での水素貯蔵カートリッジの配置を示す平面図、図 4bは図 4aでの A— A ,断面図である。なお、図 4bでは、耐圧耐熱容器の外部の構成について、耐圧耐熱 容器の外部に設置された加熱装置がないこと以外は実施形態 3と同様であるため、 耐圧耐熱容器の外部の図示は省略した。また、耐圧耐熱容器の外部の構成に関す る説明も省略する。  In all of the above embodiments, the heating device is provided outside the pressure and heat resistant container. In this embodiment, the heat transfer site for heating the hydrogen storage material filled in the hydrogen storage cartridge is provided in the pressure and heat resistant container. Is provided. Fig. 4 shows a hydrogen storage device that can store 24 triangular prismatic hydrogen storage cartridges. Fig. 4a is a plan view showing the arrangement of hydrogen storage cartridges in a pressure-resistant and heat-resistant container, and Fig. 4b is Fig. 4a. A-A in FIG. In FIG. 4b, the external configuration of the pressure and heat resistant container is the same as that of Embodiment 3 except that there is no heating device installed outside the pressure and heat resistant container. . Also, a description of the external configuration of the pressure and heat resistant container is omitted.
[0045] この実施形態の説明では、実施形態 3と異なる部分である、水素貯蔵カートリッジ内 に充填された水素貯蔵材料を加熱する方法を中心に行う。その加熱方法は、水素貯 蔵カートリッジ 41の周辺に熱媒管 27を設置し、その中に熱媒体を循環させることによ り行うものである。  In the description of this embodiment, a method for heating the hydrogen storage material filled in the hydrogen storage cartridge, which is different from the third embodiment, will be mainly described. The heating method is performed by installing a heat medium pipe 27 around the hydrogen storage cartridge 41 and circulating the heat medium therein.
[0046] 耐圧耐熱容器 2の底部より熱媒管 27を挿入し、水素貯蔵カートリッジ 41の上部付 近で折り返し、再び耐圧耐熱容器 2の底部より外部に出るようにし、それを複数組設 置する。それぞれの熱媒管 27は熱交換フィン 28により接続されており、水素貯蔵力 ートリッジ 41が収まるようにスペースが形成される。なお、図 4a中の熱媒管 27の表示 において、「參:黒丸」での表示は熱媒体が耐圧耐熱容器 2の底部より上部に向かつ て流れていることを示しており、逆に、「〇:白丸」での表示は熱媒体が耐圧耐熱容器 2の上部より底部に向力つて流れていることを示している。今回の場合は、図 4aでの 中心部の熱媒管 27 (「◎:二重丸」で表示)のみ、二重構造の熱媒管を使用して 、る (その構造を図 4cに図示する)。熱媒体の循環は、図示しないが、耐圧耐熱容器 2の 外部に設置した熱媒体加熱機構および熱媒体循環機構により行う。 [0046] Insert the heat transfer medium tube 27 from the bottom of the pressure-resistant and heat-resistant container 2, and turn it back near the top of the hydrogen storage cartridge 41 so that it comes out from the bottom of the pressure-resistant and heat-resistant container 2 again. . Each heat medium pipe 27 is connected by heat exchange fins 28, and a space is formed so that the hydrogen storage capacity cartridge 41 can be accommodated. In addition, in the display of the heat transfer medium tube 27 in FIG. 4a, the display of “參: black circle” indicates that the heat transfer medium flows upward from the bottom of the pressure and heat resistant container 2, and conversely, The indication “◯: White circle” indicates that the heat medium is flowing from the top of the pressure-resistant and heat-resistant container 2 toward the bottom. In this case, only the heat transfer tube 27 in the center in Fig. 4a (indicated by "◎: double circle") uses a double heat transfer tube (the structure is shown in Fig. 4c). Do). The circulation of the heat medium is not shown, but It is performed by a heat medium heating mechanism and a heat medium circulation mechanism installed outside.
[0047] この水素吸蔵装置を用いた水素の吸蔵は、実施形態 3と同様に、水素貯蔵材料を 充填した水素貯蔵カートリッジ 41を耐圧耐熱容器 2の中にセットし、耐圧耐熱容器 2 内部の温度と、水素貯蔵カートリッジ 41および耐圧耐熱容器 2へ導入する水素の圧 力を制御しながら行う。  [0047] In the hydrogen storage using this hydrogen storage device, the hydrogen storage cartridge 41 filled with the hydrogen storage material is set in the pressure and heat resistant container 2 in the same manner as in Embodiment 3, and the temperature inside the pressure and heat resistant container 2 is set. And while controlling the pressure of hydrogen introduced into the hydrogen storage cartridge 41 and the pressure and heat resistant container 2.
[0048] このような水素吸蔵装置を用いることにより、一度の操作で、軽量な、水素貯蔵カー トリッジを複数製造することができ、効率を上げることが可能となる。また、水素貯蔵力 ートリッジ内に充填された水素貯蔵材料を加熱するための伝熱部位が耐圧耐熱容器 内に設けられているため、複数の水素貯蔵カートリッジの水素吸蔵条件をより均一に することが可能となる。また、水素貯蔵カートリッジを三角柱形状にすることにより、さ まざまな形状の、水素を放出させる側の装置に装填する際、なるべくデットスペース が生じな!/、ように配置することが可能となる利点もある。  [0048] By using such a hydrogen storage device, a plurality of lightweight hydrogen storage cartridges can be manufactured in a single operation, and the efficiency can be increased. In addition, since the heat transfer site for heating the hydrogen storage material filled in the hydrogen storage capacity cartridge is provided in the pressure-resistant and heat-resistant container, the hydrogen storage conditions of a plurality of hydrogen storage cartridges can be made more uniform. It becomes possible. In addition, by making the hydrogen storage cartridge into a triangular prism shape, it is possible to arrange it in such a way that dead space is not generated as much as possible when it is loaded into devices of various shapes and on the side from which hydrogen is released. There are also advantages.
[0049] なお、上記の実施形態ではすべて加熱装置を備える例を示したが、加熱装置につ いては、水素貯蔵カートリッジ内部の水素貯蔵材料が水素を吸蔵する際に加熱を必 要とする場合、もしくは加熱することにより水素吸蔵性能が向上する場合等に設置が 必要となり、圧力だけで十分水素を吸蔵できる水素貯蔵材料の場合は特に必要とし ない。それに伴い、水素貯蔵カートリッジを収納する耐圧耐熱容器についても、圧力 だけで十分水素を吸蔵できる水素貯蔵材料の場合は、水素吸蔵の際に発生する反 応熱等を勘案し、特に大きな耐熱性能を有しなくてもよ!ヽ場合も多 ヽ。  [0049] In the above embodiment, an example in which all the heating devices are provided has been described. However, for the heating devices, the hydrogen storage material inside the hydrogen storage cartridge needs to be heated when storing the hydrogen. Alternatively, installation is necessary when the hydrogen storage performance is improved by heating, etc., and it is not particularly necessary for hydrogen storage materials that can store hydrogen sufficiently by pressure alone. Along with this, with regard to pressure-resistant and heat-resistant containers that store hydrogen storage cartridges, in the case of hydrogen storage materials that can store hydrogen sufficiently only by pressure, particularly high heat resistance performance is taken into account by taking into account the reaction heat generated during hydrogen storage. You don't have to!
[0050] 本発明に係る水素吸蔵方法は、上記で例示したような機構を有する水素吸蔵装置 を用いることによって実現できる。すなわち、水素充填圧力に耐えうる耐圧容器内に 水素貯蔵カートリッジを収納し、その水素貯蔵カートリッジ内に水素を導入して圧力を かけるとともに、その水素貯蔵カートリッジの内圧と外圧の圧力差力 その水素貯蔵 カートリッジの設計圧力を超えないように圧力を制御しながら水素を吸蔵させる方法 である。  [0050] The hydrogen storage method according to the present invention can be realized by using a hydrogen storage device having the mechanism exemplified above. That is, the hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, and hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge This is a method of storing hydrogen while controlling the pressure so that the design pressure of the cartridge is not exceeded.
[0051] また、水素を吸蔵させるために、水素圧だけではなく水素貯蔵材料を加熱する必要 力 Sある場合、もしくは加熱することにより水素吸蔵性能が向上する場合は、さらに、外 部に加熱装置を有する耐圧耐熱容器を準備し、その内部に収納した水素貯蔵カート リッジを加熱しながらその水素貯蔵カートリッジ内に水素を導入して圧力をかけるとと もに、その水素貯蔵カートリッジの内圧と外圧の圧力差力 その水素貯蔵カートリッジ の設計圧力を超えないように圧力を制御しながら水素を吸蔵させる。 [0051] Further, in the case where there is a force S for heating not only the hydrogen pressure but also the hydrogen storage material in order to occlude hydrogen, or when the hydrogen occlusion performance is improved by heating, an external heating device is further provided. A hydrogen storage cart with a pressure and heat resistant container While the ridge is heated, hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is set so as not to exceed the design pressure of the hydrogen storage cartridge. Storage of hydrogen while controlling.
[0052] または、耐圧耐熱容器内に伝熱部位を有する耐圧耐熱容器を準備し、その内部に 収納した水素貯蔵カートリッジ内に充填された水素貯蔵材料を加熱しながら、その水 素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、その水素貯蔵カートリ ッジの内圧と外圧の圧力差力 その水素貯蔵カートリッジの設計圧力を超えないよう に圧力を制御しながら水素を吸蔵させる。  [0052] Alternatively, a pressure-resistant and heat-resistant container having a heat transfer site is prepared in the pressure-resistant and heat-resistant container, and the hydrogen storage material filled in the hydrogen storage cartridge housed in the container is heated while being stored in the hydrogen storage cartridge. While introducing hydrogen and applying pressure, the pressure difference between the internal pressure and external pressure of the hydrogen storage cartridge stores hydrogen while controlling the pressure so that it does not exceed the design pressure of the hydrogen storage cartridge.
[0053] これらの水素吸蔵方法を用いることにより、水素貯蔵材料を充填した水素貯蔵カー トリッジの重量の大幅な軽量ィ匕が図られ、その水素貯蔵カートリッジの軽量ィ匕により搬 送が楽になり、単位重量当りの搬送エネルギー、費用が大幅に低減可能となる。  [0053] By using these hydrogen storage methods, the weight of the hydrogen storage cartridge filled with the hydrogen storage material is significantly reduced, and the lightweight storage of the hydrogen storage cartridge facilitates transportation. The energy and cost per unit weight can be greatly reduced.
[0054] また、上記の水素吸蔵方法において、水素貯蔵カートリッジの内圧と外圧の圧力差 は、水素貯蔵カートリッジの設計圧力の 100%を超えない範囲で制御されることが必 須であり、さらにはその 80%以内に制御されることが好ましい。 100%を超えた場合 は水素貯蔵カートリッジの破損の可能性があり、また設計圧力の 80%を超えた場合 は安全バルブなど力 水素が外へ放出されてしまうため、安全上好ましくない。  [0054] Further, in the above hydrogen storage method, it is essential that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is controlled within a range not exceeding 100% of the design pressure of the hydrogen storage cartridge. It is preferably controlled within 80%. If it exceeds 100%, the hydrogen storage cartridge may be damaged, and if it exceeds 80% of the design pressure, hydrogen such as a safety valve will be released to the outside, which is not preferable for safety.
[0055] また、上記の水素吸蔵方法において、使用する水素貯蔵カートリッジの設計圧力は 0. IMPa以上 IMPa未満であることが望ましい。設計圧力が IMPa未満であれば、 水素貯蔵カートリッジの材質として使用できる材料の選択肢が広がり、軽量ィ匕の度合 いも大きくなり、本発明である水素吸蔵方法の効果を十分に得ることが可能である。 また、設計圧力の下限は大気圧である 0. IMPaが下限となる。  [0055] In the hydrogen storage method described above, the design pressure of the hydrogen storage cartridge to be used is preferably 0. IMPa or more and less than IMPa. If the design pressure is less than IMPa, the choices of materials that can be used as the material for the hydrogen storage cartridge are widened, the degree of light weight is increased, and the effect of the hydrogen storage method of the present invention can be sufficiently obtained. . The lower limit of the design pressure is atmospheric pressure. 0. IMPa is the lower limit.
実施例 1  Example 1
[0056] 本発明の水素吸蔵装置を検証するため、小規模の試験装置を作製し、検討を実施 した。水素貯蔵カートリッジとして、容量 1L、重量 1. 8kg (蓋部含む)、設計圧力 0. 3 MPaの容器を使用した。この容器にアルカリ金属アルミニウム水素化物系の水素貯 蔵材料 500gを充填した。そして、耐圧耐熱容器として、常用耐圧 10MPa、耐熱 200 °Cの容器を使用し、水素吸蔵時の条件を 170°C、 9MPa、 2時間とし、水素貯蔵カー トリッジの内圧と外圧の圧力差を 0. 2MPa以内となるように制御して水素を吸蔵させ た。その後、圧力と温度を常温常圧まで下げた。その結果、水素の吸蔵量は 24g (貯 蔵材料当り 4. 8質量%)であった。 [0056] In order to verify the hydrogen storage device of the present invention, a small-scale test device was produced and examined. As a hydrogen storage cartridge, a container with a capacity of 1 L, a weight of 1.8 kg (including the lid), and a design pressure of 0.3 MPa was used. This container was filled with 500 g of an alkali metal aluminum hydride hydrogen storage material. As the pressure and heat-resistant container, use a container with a normal pressure resistance of 10 MPa and heat resistance of 200 ° C, and the hydrogen storage conditions are 170 ° C and 9 MPa for 2 hours. . Occlude hydrogen by controlling it to be within 2MPa. It was. Thereafter, the pressure and temperature were lowered to normal temperature and pressure. As a result, the hydrogen storage amount was 24 g (4.8% by mass per storage material).
[0057] 一方、本発明のように容器が二重構造でない場合、今回の水素吸蔵条件を考慮す ると、容量 1Lの耐圧耐熱容器を作製した場合、設計圧力は 10MPa、耐熱は 200°C の設計条件となり、水素貯蔵容器の重量は 7. Okgとなる。本実施例による水素貯蔵 カートリッジ (蓋部含む)は、この水素貯蔵容器と比べ、約 4分の 1に重量を削減可能 となった。 [0057] On the other hand, when the container is not a double structure as in the present invention, considering the current hydrogen storage conditions, when a pressure-resistant heat-resistant container with a capacity of 1L is produced, the design pressure is 10 MPa and the heat resistance is 200 ° C. Therefore, the weight of the hydrogen storage container is 7. Okg. The hydrogen storage cartridge (including the lid) according to this example can be reduced in weight by about a quarter compared to this hydrogen storage container.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]本発明に係る水素吸蔵装置の構成の一例 (簡易システム)である。(実施形態 1 )  FIG. 1 is an example (simple system) of a configuration of a hydrogen storage device according to the present invention. (Embodiment 1)
[図 2]本発明に係る水素吸蔵装置の構成の別の例である。(実施形態 2)  FIG. 2 is another example of the configuration of the hydrogen storage device according to the present invention. (Embodiment 2)
[図 3a]実施形態 3における、耐圧耐熱容器内での水素貯蔵カートリッジの配置を示 す平面図である。  FIG. 3a is a plan view showing the arrangement of a hydrogen storage cartridge in a pressure and heat resistant container in Embodiment 3.
[図 3b]実施形態 3における、水素吸蔵装置の構成を示す模式図である。  FIG. 3b is a schematic diagram showing a configuration of a hydrogen storage device in Embodiment 3.
[図 4a]実施形態 4における、耐圧耐熱容器内での水素貯蔵カートリッジの配置を示 す平面図である。  FIG. 4 a is a plan view showing the arrangement of hydrogen storage cartridges in a pressure and heat resistant container in Embodiment 4.
[図 4b]実施形態 4における、図 4aでの A— A'断面図である。  FIG. 4b is a cross-sectional view taken along the line AA ′ in FIG. 4a in the fourth embodiment.
[図 4c]実施形態 4における、図 4aでの中心部の熱媒管の構造を示す図である。 符号の説明  FIG. 4c is a view showing the structure of the heat medium pipe at the center in FIG. 4a in Embodiment 4. Explanation of symbols
[0059] 1, 31, 41 ;水素貯蔵カートリッジ [0059] 1, 31, 41; Hydrogen storage cartridge
2 ;耐圧耐熱容器  2; Pressure and heat resistant container
3 ;水素導入用配管  3; Pipe for introducing hydrogen
4 ;圧力制御計  4; Pressure controller
5 ;加熱装置  5; Heating device
6 ;温度制御計  6; Temperature controller
7 ;蓋部  7; Lid
8 ;導人側コネクタ  8; Conductor side connector
9 ;放出側コネクタ 10 外圧ガス導入用コネクタ9; discharge connector 10 Connector for introducing external pressure gas
11 温度計 11 Thermometer
12 圧力制御バルブ  12 Pressure control valve
13 21 ;圧力計  13 21; Pressure gauge
14 外圧ガス導入用配管 14 Piping for introducing external pressure gas
15 内圧力計 15 Internal pressure gauge
16 外圧力計 16 External pressure gauge
17 内圧制御バルブ 17 Internal pressure control valve
18 外圧制御バルブ 18 External pressure control valve
19 バルブコネクタ19 Valve connector
0 安全バルブ 0 Safety valve
2 耐圧耐熱容器側コネクタ 3 カートリッジ側コネクタ 2 Pressure and heat resistant container side connector 3 Cartridge side connector
4 コネクタ 4 Connector
5 カートリッジ蓋部 5 Cartridge cover
6 外圧ガス導入用バルブコネクタ 7 6 Valve connector for introducing external pressure gas 7
8 熱交換フィン  8 Heat exchange fin

Claims

請求の範囲 The scope of the claims
[1] 圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリ ッジに水素を吸蔵させる水素吸蔵装置であって、  [1] A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure,
水素充填圧力に耐えうる耐圧容器と、該耐圧容器内に収納された前記水素貯蔵力 ートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧容器と前 記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備え、前記水素貯蔵カー トリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸蔵装 置。  A pressure vessel capable of withstanding the hydrogen filling pressure; the hydrogen storage cartridge stored in the pressure vessel; a pipe for introducing hydrogen into the hydrogen storage cartridge; and a gap between the pressure vessel and the hydrogen storage cartridge. And a pipe for introducing a gas, and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
[2] 圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵力 ートリッジに水素を吸蔵させる水素吸蔵装置であって、  [2] A hydrogen storage device that stores hydrogen in a hydrogen storage capacity cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating.
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器と、該耐圧 耐熱容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に 水素を導入する配管と、前記耐圧耐熱容器と前記水素貯蔵カートリッジの隙間に気 体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制 御する機構を有することを特徴とする水素吸蔵装置。  A pressure- and heat-resistant container that can withstand the hydrogen filling pressure and has an external heating device; the hydrogen storage cartridge housed in the pressure- and heat-resistant container; a pipe for introducing hydrogen into the hydrogen storage cartridge; A hydrogen storage device comprising: a container and a pipe for introducing a gas into a gap between the hydrogen storage cartridge; and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
[3] 圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵力 ートリッジに水素を吸蔵させる水素吸蔵装置であって、  [3] A hydrogen storage device that stores hydrogen in a hydrogen storage capacity cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating.
水素充填圧力および水素充填温度に耐えうる耐圧耐熱容器と、該耐圧耐熱容器 内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導 入する配管と、前記耐圧耐熱容器と前記水素貯蔵カートリッジの隙間に気体を導入 する配管と、前記耐圧耐熱容器内に設けられた、前記水素貯蔵カートリッジ内に充 填された水素貯蔵材料を加熱することが可能な伝熱部位と、を備え、前記水素貯蔵 カートリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸 蔵装置。  A pressure and heat resistant container capable of withstanding a hydrogen filling pressure and a hydrogen filling temperature; the hydrogen storage cartridge housed in the pressure and heat resistant container; a pipe for introducing hydrogen into the hydrogen storage cartridge; the pressure and heat resistant container; A pipe for introducing a gas into the gap of the hydrogen storage cartridge; and a heat transfer portion provided in the pressure-resistant heat-resistant container and capable of heating the hydrogen storage material filled in the hydrogen storage cartridge. A hydrogen storage device comprising a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
[4] 前記水素貯蔵カートリッジが複数であることを特徴とする請求項 1から請求項 3のい ずれかに記載の水素吸蔵装置。  [4] The hydrogen storage device according to any one of claims 1 to 3, wherein a plurality of the hydrogen storage cartridges are provided.
[5] 圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリ ッジに水素を吸蔵させる水素吸蔵方法であって、 水素充填圧力に耐えうる耐圧容器内に前記水素貯蔵カートリッジを収納し、該水素 貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジ の内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えな!/ヽように圧力 を制御しながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特 徴とする水素吸蔵方法。 [5] A hydrogen storage method for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure, The hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, hydrogen is introduced into the hydrogen storage cartridge and pressure is applied, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is Do not exceed the cartridge design pressure! / Hydrogen storage method characterized in that hydrogen is stored in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure.
[6] 圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵力 ートリッジに水素を吸蔵させる水素吸蔵方法であって、  [6] A hydrogen storage method in which hydrogen is stored in a hydrogen storage material filled with a hydrogen storage material capable of storing hydrogen by pressure and heating.
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器に前記水 素貯蔵カートリッジを収納し、該水素貯蔵カートリッジを加熱しながら該水素貯蔵カー トリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と 外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御し ながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする 水素吸蔵方法。  The hydrogen storage cartridge is housed in a pressure and heat-resistant container that can withstand the hydrogen filling pressure and has an external heating device, and hydrogen is introduced into the hydrogen storage cartridge while applying pressure to the hydrogen storage cartridge while heating the hydrogen storage cartridge. And storing hydrogen in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge. Hydrogen storage method.
[7] 圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵力 ートリッジに水素を吸蔵させる水素吸蔵方法であって、  [7] A hydrogen storage method in which hydrogen is stored in a hydrogen storage material cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating.
水素充填圧力および水素充填温度に耐えうる耐圧耐熱容器に前記水素貯蔵カー トリッジを収納し、前記耐圧耐熱容器内に設けられた伝熱部位により前記水素貯蔵力 ートリッジ内に充填された水素貯蔵材料を加熱しながら、該水素貯蔵カートリッジ内 に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧 力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水 素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵 方法。  The hydrogen storage cartridge is housed in a pressure and heat resistant container that can withstand a hydrogen filling pressure and a hydrogen filling temperature, and the hydrogen storage material filled in the hydrogen storage power cartridge by a heat transfer portion provided in the pressure and heat resistant container. While heating, hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure is controlled so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge. A hydrogen storage method, wherein the hydrogen storage material in the hydrogen storage cartridge stores hydrogen.
[8] 前記水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設 計圧力の 80%以内になるように圧力を制御しながら前記水素貯蔵カートリッジ内の 水素貯蔵材料に水素を吸蔵させて 、くことを特徴とする請求項 5から請求項 7の 、ず れかに記載の水素吸蔵方法。  [8] Occlusion of hydrogen in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 80% of the design pressure of the hydrogen storage cartridge The hydrogen storage method according to any one of claims 5 to 7, wherein:
[9] 前記水素貯蔵カートリッジの設計圧力が 0. IMPa以上 IMPa未満であることを特 徴とする請求項 5から請求項 7のいずれかに記載の水素吸蔵方法。  [9] The hydrogen storage method according to any one of claims 5 to 7, wherein a design pressure of the hydrogen storage cartridge is not less than 0.1 IMPa and less than IMPa.
PCT/JP2006/303623 2005-03-01 2006-02-27 Hydrogen occlusion device and hydrogen occlusion method WO2006093094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005055253A JP2008133834A (en) 2005-03-01 2005-03-01 Hydrogen storage device and hydrogen storage method
JP2005-055253 2005-03-01

Publications (1)

Publication Number Publication Date
WO2006093094A1 true WO2006093094A1 (en) 2006-09-08

Family

ID=36941123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303623 WO2006093094A1 (en) 2005-03-01 2006-02-27 Hydrogen occlusion device and hydrogen occlusion method

Country Status (2)

Country Link
JP (1) JP2008133834A (en)
WO (1) WO2006093094A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140047A1 (en) * 2007-05-10 2008-11-20 Kabushiki Kaisha Toyota Jidoshokki Hydrogen gas storing device
WO2013063169A1 (en) * 2011-10-26 2013-05-02 Eveready Battery Company, Inc. Hydrogen generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267399A (en) * 1985-09-20 1987-03-27 Sanyo Electric Co Ltd Vessel for metal hydride
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002228099A (en) * 2001-02-05 2002-08-14 Sony Corp Hydrogen occlusion and emission device
JP2004196634A (en) * 2002-12-20 2004-07-15 Honda Motor Co Ltd Hydride powder used for hydrogen storing/discharging system
JP2004293784A (en) * 2003-03-11 2004-10-21 Showa Denko Kk Pressure vessel, fuel tank and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267399A (en) * 1985-09-20 1987-03-27 Sanyo Electric Co Ltd Vessel for metal hydride
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002228099A (en) * 2001-02-05 2002-08-14 Sony Corp Hydrogen occlusion and emission device
JP2004196634A (en) * 2002-12-20 2004-07-15 Honda Motor Co Ltd Hydride powder used for hydrogen storing/discharging system
JP2004293784A (en) * 2003-03-11 2004-10-21 Showa Denko Kk Pressure vessel, fuel tank and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140047A1 (en) * 2007-05-10 2008-11-20 Kabushiki Kaisha Toyota Jidoshokki Hydrogen gas storing device
WO2013063169A1 (en) * 2011-10-26 2013-05-02 Eveready Battery Company, Inc. Hydrogen generator
US9543604B2 (en) 2011-10-26 2017-01-10 Intelligent Energy Inc. Hydrogen generator

Also Published As

Publication number Publication date
JP2008133834A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US6651701B2 (en) Hydrogen storage apparatus and charging method therefor
EP1803620B1 (en) Hydrogen station, hydrogen filling method, and vehicle
US8636834B2 (en) Adiabatic tank for metal hydride
JP5234898B2 (en) Hydrogen supply device for fuel cell
EP2163805A2 (en) Apparatus for gas storage
JP5993307B2 (en) Hydrogen release system
CN108428910B (en) Thermal management system for fuel cell vehicle
US8191584B2 (en) Method and device for filling pressure containers with low-boiling permanent gases or gas mixtures
US7147690B2 (en) Method for replenishing hydrogen to compressed hydrogen tank and hydrogen replenishing device
US20080202629A1 (en) Two-Step-Process for Filling Gas Containers for Airbag Systems and Gas Filling Device for a Two-Step-Filling Process
JP2022528829A (en) Equipment and methods for storing and supplying fluid fuel
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
CN108426169A (en) A kind of hydrogen dynamical system based on heat self-balancing type solid hydrogen source reactor
JP2007303625A (en) Hydrogen-filling method, hydrogen-filling device, and vehicle mounted with hydrogen-filling device
WO2006093094A1 (en) Hydrogen occlusion device and hydrogen occlusion method
US20030192779A1 (en) Device for charging and activating hydrogen storage canister
JP2007327534A (en) Hydrogen storage container and hydrogen occlusion/release device
US20070186991A1 (en) Process and arrangement for filling high pressure gas containers using a filling tube
CN112361210A (en) Hydrogen storage system
JP2007315546A (en) Hydrogen storage vessel and hydrogen absorption and desorption device
US11506343B2 (en) System for storing solid state hydrogen
JP5061529B2 (en) High pressure hydrogen storage container
EP1813853B1 (en) High pressure gas container with an auxiliary valve and process for filling it
EP3567664B1 (en) Metal hydride hydrogen storage arrangement for use in a fuel cell utility vehicle and method of manufacturing the same
JP2007321878A (en) Hydrogen storage device and hydrogen storage method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP