JP2008133834A - Hydrogen storage device and hydrogen storage method - Google Patents

Hydrogen storage device and hydrogen storage method Download PDF

Info

Publication number
JP2008133834A
JP2008133834A JP2005055253A JP2005055253A JP2008133834A JP 2008133834 A JP2008133834 A JP 2008133834A JP 2005055253 A JP2005055253 A JP 2005055253A JP 2005055253 A JP2005055253 A JP 2005055253A JP 2008133834 A JP2008133834 A JP 2008133834A
Authority
JP
Japan
Prior art keywords
hydrogen storage
pressure
hydrogen
storage cartridge
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005055253A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuura
茂 松浦
Toyoyuki Kubokawa
豊之 窪川
Akimoto Hosoda
晶基 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2005055253A priority Critical patent/JP2008133834A/en
Priority to PCT/JP2006/303623 priority patent/WO2006093094A1/en
Publication of JP2008133834A publication Critical patent/JP2008133834A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage device and a hydrogen storage method capable of using a practicable and a lightweight hydrogen storage cartridge, even if using a hydrogen storage material requiring high pressure when storing hydrogen. <P>SOLUTION: This hydrogen storage device stores the hydrogen in the hydrogen storage cartridge 1 filled with the hydrogen storage material capable of storing the hydrogen by pressure, and has a pressure vessel 2 endurable against hydrogen filling pressure, the hydrogen storage cartridge stored in its pressure vessel, a pipe 3 introducing the hydrogen into its hydrogen storage cartridge, and a pipe 14 introducing gas into a clearance between the pressure vessel and the hydrogen storage cartridge, and has a mechanism for controlling a pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,高圧下で水素を吸蔵する水素貯蔵材料の水素吸蔵装置及び水素吸蔵方法に関する。   The present invention relates to a hydrogen storage device and a hydrogen storage method for a hydrogen storage material that stores hydrogen under high pressure.

水素貯蔵材料としては古くから水素吸蔵合金が検討され開発が進められてきたが、単位重量あたりの水素吸蔵率が低く、いまだに実用化には至っていないのが現状である。水素吸蔵合金を使用した水素貯蔵タンクについては、特開2000−120996号公報,特開2002−122294号公報,特開2002−221297号公報,特開2002−340430号公報などにおいていろいろと検討されている。   As a hydrogen storage material, hydrogen storage alloys have been studied and developed for a long time, but the hydrogen storage rate per unit weight is low, and it has not yet been put into practical use. Various hydrogen storage tanks using hydrogen storage alloys have been studied in Japanese Patent Application Laid-Open Nos. 2000-120996, 2002-122294, 2002-221297, 2002-340430, and the like. Yes.

一般に検討されている水素吸蔵合金を中心とする水素貯蔵材料が充填された水素貯蔵タンクは、基本的に車載用のタンクが多く、この場合、水素貯蔵タンクは車に固定されており、水素は直接タンクに充填される。水素を吸蔵する際の化学反応は発熱反応であるため、水素吸蔵合金の場合でも、水素吸蔵の際には水素貯蔵材料を冷却するシステムが必要となる。また、実用性を考えた場合は水素充填速度が重要視されるが、水素充填速度を上げていくと単位時間当たりの発熱量は多くなり、効率的な冷却システムが重要となる。   In general, hydrogen storage tanks filled with hydrogen storage materials centered on hydrogen storage alloys, which are generally considered, are mostly on-vehicle tanks. In this case, the hydrogen storage tank is fixed to the vehicle, The tank is filled directly. Since the chemical reaction when storing hydrogen is an exothermic reaction, even in the case of a hydrogen storage alloy, a system for cooling the hydrogen storage material is required when storing hydrogen. In consideration of practicality, the hydrogen filling rate is regarded as important. However, as the hydrogen filling rate is increased, the amount of heat generated per unit time increases, and an efficient cooling system becomes important.

一方、水素貯蔵タンクの様式として、タンクごと詰め替える方法も可能性がある。この場合、タンクごと入れ替えるため、出し入れのハンドリングを考えた場合、水素貯蔵材料を含めた水素貯蔵タンクの大きさは小さく、軽い方が好ましい。また、水素の充填はあらかじめ別の場所で実施できることから、車載固定タンクの場合に比べ、水素の充填時間に厳しい制約はない。   On the other hand, there is a possibility of refilling the entire tank as a form of the hydrogen storage tank. In this case, since the entire tank is replaced, when handling in and out is considered, the size of the hydrogen storage tank including the hydrogen storage material is small and preferably light. In addition, since the hydrogen filling can be performed in another place in advance, there is no strict restriction on the hydrogen filling time compared to the case of the on-vehicle fixed tank.

最近、いくつかの高容量の新規水素吸蔵材料が提案されており、特許文献1では高い圧力下で高吸蔵量を示す材料が見出されている。
特開2004−196634号公報
Recently, several new high-capacity hydrogen storage materials have been proposed, and Patent Document 1 has found a material that exhibits a high storage capacity under a high pressure.
JP 2004-196634 A

しかしながら、上記特許文献1で示されるような材料を使用する場合は、水素充填圧力に耐えうるよう水素貯蔵タンクの肉厚は厚く設計されなければならず、結果として重い水素貯蔵タンクにならざるを得ない。このため、水素貯蔵材料としては高容量であっても、タンクシステムとしては有効な水素貯蔵密度が得られないという問題があった。   However, when using a material as shown in Patent Document 1, the thickness of the hydrogen storage tank must be designed to be thick enough to withstand the hydrogen filling pressure, resulting in a heavy hydrogen storage tank. I don't get it. For this reason, even if the capacity of the hydrogen storage material is high, there is a problem that an effective hydrogen storage density cannot be obtained as a tank system.

本発明はこの点を鑑み、水素吸蔵時に高い圧力が必要となる水素貯蔵材料を使用した場合でも、実用可能な軽量の水素貯蔵タンク(以下、水素貯蔵カートリッジと呼ぶ)を利用できる水素吸蔵装置及び水素吸蔵方法を提供することを目的とする。   In view of this point, the present invention provides a hydrogen storage device that can use a practical and lightweight hydrogen storage tank (hereinafter referred to as a hydrogen storage cartridge) even when using a hydrogen storage material that requires a high pressure during storage. It aims at providing the hydrogen storage method.

本発明者等は、上記課題を解決するため鋭意研究した結果、軽量化が可能な耐圧性能が低い水素貯蔵カートリッジを用いた場合でも、水素を吸蔵させる時に水素充填圧力に耐えうる耐圧容器内に水素貯蔵カートリッジを収納し、その水素貯蔵カートリッジ内に水素圧をかけることが可能で、なおかつ、水素貯蔵カートリッジの内圧と外圧の圧力差が水素貯蔵カートリッジの設計圧力を超えないように圧力を制御することが可能な装置を用いることによって、水素貯蔵カートリッジ内に充填された、水素吸蔵時に高い圧力が必要となる水素貯蔵材料に水素を吸蔵させることができるとの知見を得て本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that even when using a hydrogen storage cartridge with low pressure resistance that can be reduced in weight, the hydrogen can be stored in a pressure resistant container that can withstand the hydrogen filling pressure when storing hydrogen. It is possible to store a hydrogen storage cartridge and apply a hydrogen pressure in the hydrogen storage cartridge, and control the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge. The present invention is completed by obtaining knowledge that a hydrogen storage material filled in a hydrogen storage cartridge and requiring a high pressure when storing hydrogen can be used to store hydrogen. It came to.

すなわち、本発明は、以下の(1)〜(6)を提供する。
(1)圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、
水素充填圧力に耐えうる耐圧容器と、該耐圧容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸蔵装置。
(2)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器と、該耐圧耐熱容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧耐熱容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸蔵装置。
(3)圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、
水素充填圧力に耐えうる耐圧容器内に前記水素貯蔵カートリッジを収納し、該水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。
(4)圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器に前記水素貯蔵カートリッジを収納し、該水素貯蔵カートリッジを加熱しながら該水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。
(5)上記(3)、(4)において、前記水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力の80%以内になるように圧力を制御しながら前記水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させていくことを特徴とする水素吸蔵方法。
(6)上記(3)、(4)において、前記水素貯蔵カートリッジの設計圧力が0.1MPa以上1MPa未満であることを特徴とする水素吸蔵方法。
That is, the present invention provides the following (1) to (6).
(1) A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure,
A pressure vessel that can withstand the hydrogen filling pressure, the hydrogen storage cartridge housed in the pressure vessel, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a gas in a gap between the pressure vessel and the hydrogen storage cartridge A hydrogen storage device, comprising: a pipe to be introduced; and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
(2) A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating,
A pressure- and heat-resistant container that can withstand the hydrogen filling pressure and has an external heating device; the hydrogen storage cartridge housed in the pressure- and heat-resistant container; a pipe for introducing hydrogen into the hydrogen storage cartridge; A hydrogen storage device comprising: a container and a pipe for introducing a gas into a gap between the hydrogen storage cartridge; and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
(3) A hydrogen storage method for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure,
The hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, and hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is A hydrogen storage method, wherein hydrogen is stored in a hydrogen storage material in a hydrogen storage cartridge while controlling the pressure so as not to exceed a design pressure of the cartridge.
(4) A hydrogen storage method for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating,
The hydrogen storage cartridge is housed in a pressure and heat-resistant container that can withstand the hydrogen filling pressure and has a heating device outside, and while introducing the hydrogen into the hydrogen storage cartridge while heating the hydrogen storage cartridge, pressure is applied. The hydrogen storage material stores the hydrogen in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge. Method.
(5) In the above (3) and (4), the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 80% of the design pressure of the hydrogen storage cartridge. A hydrogen storage method comprising storing hydrogen in a hydrogen storage material therein.
(6) In the above (3) and (4), the hydrogen storage method is characterized in that the design pressure of the hydrogen storage cartridge is 0.1 MPa or more and less than 1 MPa.

本発明により、水素貯蔵材料を充填した水素貯蔵カートリッジの重量の大幅な軽量化が図られることから、タンク重量当りの水素重量密度を高く維持することが可能となる。また、タンクの軽量化により搬送が楽になり、単位重量当りの搬送エネルギー、費用が大幅に低減可能となる。   According to the present invention, since the weight of the hydrogen storage cartridge filled with the hydrogen storage material can be significantly reduced, the hydrogen weight density per tank weight can be maintained high. In addition, the weight reduction of the tank facilitates the transportation, and the transportation energy and cost per unit weight can be greatly reduced.

本発明による実施形態の例を図1、図2に示し、それに基づいて説明する。図1、図2ともに、耐圧(耐熱)容器の外部に加熱装置を備える例を示す。   Examples of embodiments according to the present invention are shown in FIG. 1 and FIG. 1 and 2 both show an example in which a heating device is provided outside a pressure-resistant (heat-resistant) container.

図1に示される本発明に係る水素吸蔵装置の主な構成は、水素貯蔵カートリッジ1、耐圧耐熱容器2、水素導入用配管3、圧力制御計4、加熱装置5、温度制御計6からなり、簡易なシステムとなっている。   The main structure of the hydrogen storage device according to the present invention shown in FIG. 1 includes a hydrogen storage cartridge 1, a pressure and heat resistant container 2, a hydrogen introduction pipe 3, a pressure controller 4, a heating device 5, and a temperature controller 6. It is a simple system.

まず、水素貯蔵カートリッジ1は設計圧力が低いカートリッジでよく、材質の薄肉化による軽量化が可能である。蓋部7の部分には水素の導入側コネクタ8、水素の放出側コネクタ9が組みこまれている。これらのコネクタは水素が一方向にのみ流れる構造になっており、水素貯蔵カートリッジ1の設計圧力の80%以上の圧力が負荷されないと開放しない。水素貯蔵材料を充填する場合は蓋部7を開けて充填する。水素貯蔵材料が充填された水素貯蔵カートリッジ1は、耐圧耐熱容器2の内部に納められ、ネジ方式などでしっかり固定される。   First, the hydrogen storage cartridge 1 may be a cartridge with a low design pressure, and can be reduced in weight by thinning the material. A hydrogen introduction side connector 8 and a hydrogen discharge side connector 9 are incorporated in the lid portion 7. These connectors have a structure in which hydrogen flows only in one direction, and do not open unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied. When filling the hydrogen storage material, the lid portion 7 is opened for filling. The hydrogen storage cartridge 1 filled with the hydrogen storage material is housed in the pressure and heat resistant container 2 and is firmly fixed by a screw method or the like.

耐圧耐熱容器2は、水素吸蔵時の圧力、温度に耐えうる構造を有する。また、外圧ガス導入用コネクタ10が設置されている。本コネクタはガスの出入りに方向性は有していない。また、水素貯蔵カートリッジ1の温度を測定する温度計11が取り付けられている。   The pressure and heat resistant container 2 has a structure that can withstand the pressure and temperature during hydrogen storage. Further, an external pressure gas introduction connector 10 is provided. This connector does not have directionality for gas in and out. A thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.

水素貯蔵カートリッジ1と耐圧耐熱容器2が接続された後、水素導入用配管3が各コネクタに接続される。水素は圧力制御バルブ12により所定の圧力に調整されながら導入側コネクタ8を通って徐々に導入される。圧力は圧力計13で測定される。水素貯蔵カートリッジ1の内側に水素を導入する配管と、外側すなわち水素貯蔵カートリッジ1と耐圧耐熱容器2の隙間に水素を導入する配管とは繋がっており、水素貯蔵カートリッジ1の内圧と外圧の圧力差が発生しないようになっている。   After the hydrogen storage cartridge 1 and the pressure-resistant and heat-resistant container 2 are connected, a hydrogen introduction pipe 3 is connected to each connector. Hydrogen is gradually introduced through the introduction connector 8 while being adjusted to a predetermined pressure by the pressure control valve 12. The pressure is measured with a pressure gauge 13. A pipe for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and a pipe for introducing hydrogen into the gap between the hydrogen storage cartridge 1 and the pressure and heat resistant container 2 are connected to each other, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge 1 Does not occur.

耐圧耐熱容器2の外部には、ヒーターなどの加熱装置5が設置される。温度計11での測定値は温度制御計6に伝達され、所定の温度になるよう制御される。これによって内部の水素貯蔵材料を好適な温度に制御して、水素充填を円滑に行うことができる。   A heating device 5 such as a heater is installed outside the pressure and heat resistant container 2. The measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature. Accordingly, the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.

所定の温度、圧力で水素貯蔵カートリッジ1の内部の水素貯蔵材料に水素の吸蔵が終了した後は、圧力制御バルブ12によって徐々に圧力を緩め、さらに温度を低下させ、常圧、常温とする。この場合、水素貯蔵カートリッジ1中の過剰圧の水素は放出側コネクタ9から放出される。   After the occlusion of hydrogen in the hydrogen storage material inside the hydrogen storage cartridge 1 is completed at a predetermined temperature and pressure, the pressure is gradually relaxed by the pressure control valve 12, and the temperature is lowered to normal pressure and normal temperature. In this case, excessive pressure hydrogen in the hydrogen storage cartridge 1 is released from the discharge-side connector 9.

図2に示される本発明に係る水素吸蔵装置の主な構成は、水素貯蔵カートリッジ1、耐圧耐熱容器2、水素導入用配管3、外圧ガス導入用配管14、圧力制御計4、加熱装置5、温度制御計6からなり、水素貯蔵カートリッジ1の内側に水素を導入する配管と、外側すなわち水素貯蔵カートリッジ1と耐圧耐熱容器2の隙間にガスを導入する配管との系統が別になっている場合である。   The main structure of the hydrogen storage device according to the present invention shown in FIG. 2 is as follows: a hydrogen storage cartridge 1, a pressure and heat resistant container 2, a hydrogen introduction pipe 3, an external pressure gas introduction pipe 14, a pressure controller 4, a heating device 5, When the system comprising the temperature controller 6 and the piping for introducing hydrogen into the inside of the hydrogen storage cartridge 1 and the piping for introducing gas into the gap between the hydrogen storage cartridge 1 and the pressure and heat resistant container 2 are separated. is there.

水素貯蔵カートリッジ1は設計圧力が低いカートリッジでよく、材質の薄肉化による軽量化が可能である。蓋部7の部分には開閉用のバルブを含むコネクタ19が設置されている。バルブは通常は閉じられており、水素の吸蔵、放出の際に開けられる。なお、本コネクタは方向性を有しない。また、水素貯蔵カートリッジ1の内部の圧力を測定する内圧力計15が設置されている。内圧力計15に繋がる配管には安全バルブ20が設置されている。安全バルブ20は水素貯蔵カートリッジ1の設計圧力の80%以上の圧力が負荷されないと開放しない。なお、圧力が高くなる吸蔵時には外バルブにより完全に閉じられる。水素貯蔵材料を充填する場合は蓋部7を開けて充填する。水素貯蔵材料が充填された水素貯蔵カートリッジ1は、耐圧耐熱容器2の内部に納められ、ネジ方式などでしっかり固定される。   The hydrogen storage cartridge 1 may be a cartridge having a low design pressure, and can be reduced in weight by thinning the material. A connector 19 including a valve for opening and closing is installed on the lid portion 7. The valve is normally closed and is opened when hydrogen is stored or released. In addition, this connector does not have directionality. In addition, an internal pressure gauge 15 for measuring the pressure inside the hydrogen storage cartridge 1 is installed. A safety valve 20 is installed in the pipe connected to the internal pressure gauge 15. The safety valve 20 is not opened unless a pressure of 80% or more of the design pressure of the hydrogen storage cartridge 1 is applied. When the pressure is increased, the outer valve is completely closed. When filling the hydrogen storage material, the lid portion 7 is opened for filling. The hydrogen storage cartridge 1 filled with the hydrogen storage material is housed in the pressure and heat resistant container 2 and is firmly fixed by a screw method or the like.

耐圧耐熱容器2は、水素吸蔵時の圧力、温度に耐えうる構造を有する。また、外圧ガス導入用コネクタ10、水素貯蔵カートリッジ1の外圧力を測定する外圧力計16が設置されている。本コネクタはガスの出入りに方向性は有していない。また、水素貯蔵カートリッジ1の温度を測定する温度計11が取り付けられている。   The pressure and heat resistant container 2 has a structure that can withstand the pressure and temperature during hydrogen storage. Further, an external pressure gas introduction connector 10 and an external pressure gauge 16 for measuring the external pressure of the hydrogen storage cartridge 1 are installed. This connector does not have directionality for gas in and out. A thermometer 11 for measuring the temperature of the hydrogen storage cartridge 1 is attached.

水素貯蔵カートリッジ1と耐圧耐熱容器2が接続された後、内圧制御バルブ17を備えた水素導入用配管3がバルブコネクタ19に接続される。一方、外圧制御バルブ18を備えた外圧ガス導入用配管14が外圧ガス導入用コネクタ10に接続される。吸蔵用の水素がバルブコネクタ19から導入されると共に、外圧ガス導入用配管14からガスが導入されるが、この際、内圧力計15、外圧力計16により内圧力と外圧力が検知され、その圧力差が水素貯蔵カートリッジ1の設計圧力よりも大きくならないように制御される。外圧導入用のガスは、特に制限はないが、窒素、アルゴンあるいは空気などが使用される。   After the hydrogen storage cartridge 1 and the pressure and heat resistant container 2 are connected, the hydrogen introduction pipe 3 having the internal pressure control valve 17 is connected to the valve connector 19. On the other hand, the external pressure gas introduction pipe 14 provided with the external pressure control valve 18 is connected to the external pressure gas introduction connector 10. Occlusion hydrogen is introduced from the valve connector 19 and gas is introduced from the external pressure gas introduction pipe 14. At this time, the internal pressure and the external pressure are detected by the internal pressure gauge 15 and the external pressure gauge 16, The pressure difference is controlled so as not to become larger than the design pressure of the hydrogen storage cartridge 1. The gas for introducing the external pressure is not particularly limited, but nitrogen, argon, air or the like is used.

耐圧耐熱容器2の外部には、ヒーターなどの加熱装置5が設置される。温度計11での測定値は温度制御計6に伝達され、所定の温度になるよう制御される。これによって内部の水素貯蔵材料を好適な温度に制御して、水素充填を円滑に行うことができる。   A heating device 5 such as a heater is installed outside the pressure and heat resistant container 2. The measured value at the thermometer 11 is transmitted to the temperature controller 6 and controlled to reach a predetermined temperature. Accordingly, the hydrogen storage material can be smoothly filled by controlling the internal hydrogen storage material at a suitable temperature.

所定の温度、圧力で水素貯蔵カートリッジ1の内部の水素貯蔵材料に水素の吸蔵が終了した後は、温度を低下させると共に、内圧と外圧との圧力差が生じないように徐々に圧力を低下させる。   After the storage of hydrogen in the hydrogen storage material inside the hydrogen storage cartridge 1 is completed at a predetermined temperature and pressure, the temperature is decreased and the pressure is gradually decreased so as not to cause a pressure difference between the internal pressure and the external pressure. .

なお、加熱装置については、水素貯蔵カートリッジ内部の水素貯蔵材料が水素を吸蔵する際に加熱を必要とする場合、もしくは加熱することにより水素吸蔵性能が向上する場合等に設置が必要となり、圧力だけで十分水素を吸蔵できる水素貯蔵材料の場合は特に必要としない。それに伴い、水素貯蔵カートリッジを収納する耐圧耐熱容器についても、圧力だけで十分水素を吸蔵できる水素貯蔵材料の場合は、水素吸蔵の際に発生する反応熱等を勘案し、特に大きな耐熱性能を有しなくてもよい場合も多い。   Note that the heating device must be installed when the hydrogen storage material inside the hydrogen storage cartridge requires heating when storing hydrogen, or when the hydrogen storage performance is improved by heating. This is not particularly necessary for hydrogen storage materials that can sufficiently store hydrogen. As a result, the pressure-resistant and heat-resistant container that houses the hydrogen storage cartridge also has a particularly large heat-resistant performance in consideration of the heat of reaction generated during hydrogen storage in the case of hydrogen storage materials that can sufficiently store hydrogen only by pressure. In many cases, this is not necessary.

本発明に係る水素吸蔵方法は、上記で例示したような機構を有する水素吸蔵装置を用いることによって実現できる。すなわち、水素充填圧力に耐えうる耐圧容器内に水素貯蔵カートリッジを収納し、その水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、その水素貯蔵カートリッジの内圧と外圧の圧力差が、その水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素を吸蔵させる方法である。   The hydrogen storage method according to the present invention can be realized by using a hydrogen storage device having the mechanism exemplified above. That is, the hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, and hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is This is a method for storing hydrogen while controlling the pressure so as not to exceed the design pressure of the storage cartridge.

また、水素を吸蔵させるために、水素圧だけではなく水素貯蔵材料を加熱する必要がある場合、もしくは加熱することにより水素吸蔵性能が向上する場合は、さらに、外部に加熱装置を有する耐圧耐熱容器を準備し、その内部に収納した水素貯蔵カートリッジを加熱しながらその水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、その水素貯蔵カートリッジの内圧と外圧の圧力差が、その水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素を吸蔵させる。   In addition, when it is necessary to heat not only the hydrogen pressure but also the hydrogen storage material in order to occlude hydrogen, or when the hydrogen occlusion performance is improved by heating, a pressure-resistant and heat-resistant container having an external heating device is further provided. The hydrogen storage cartridge housed therein is heated to introduce hydrogen into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge The hydrogen is occluded while controlling the pressure so as not to exceed the design pressure.

これらの水素吸蔵方法を用いることにより、水素貯蔵材料を充填した水素貯蔵カートリッジの重量の大幅な軽量化が図られ、その水素貯蔵カートリッジの軽量化により搬送が楽になり、単位重量当りの搬送エネルギー、費用が大幅に低減可能となる。   By using these hydrogen storage methods, the weight of the hydrogen storage cartridge filled with the hydrogen storage material can be significantly reduced, and the weight reduction of the hydrogen storage cartridge makes it easier to transport, the transport energy per unit weight, Cost can be greatly reduced.

また、上記の水素吸蔵方法において、水素貯蔵カートリッジの内圧と外圧の圧力差は、水素貯蔵カートリッジの設計圧力の100%を超えない範囲で制御されることが必須であり、さらにはその80%以内に制御されることが好ましい。100%を超えた場合は水素貯蔵カートリッジの破損の可能性があり、また設計圧力の80%を超えた場合は安全バルブなどから水素が外へ放出されてしまうため、安全上好ましくない。   In the above hydrogen storage method, it is essential that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge be controlled within a range not exceeding 100% of the design pressure of the hydrogen storage cartridge, and within 80% thereof. It is preferable to be controlled. If it exceeds 100%, the hydrogen storage cartridge may be damaged, and if it exceeds 80% of the design pressure, hydrogen will be discharged from a safety valve or the like, which is not preferable for safety.

また、上記の水素吸蔵方法において、使用する水素貯蔵カートリッジの設計圧力は0.1MPa以上1MPa未満であることが望ましい。設計圧力が1MPa未満であれば、水素貯蔵カートリッジの材質として使用できる材料の選択肢が広がり、軽量化の度合いも大きくなり、本発明である水素吸蔵方法の効果を十分に得ることが可能である。また、設計圧力の下限は大気圧である0.1MPaが下限となる。   In the above hydrogen storage method, the design pressure of the hydrogen storage cartridge to be used is preferably 0.1 MPa or more and less than 1 MPa. If the design pressure is less than 1 MPa, the choices of materials that can be used as the material of the hydrogen storage cartridge are widened, the degree of weight reduction is increased, and the effect of the hydrogen storage method of the present invention can be sufficiently obtained. The lower limit of the design pressure is 0.1 MPa, which is atmospheric pressure.

本発明の水素吸蔵装置を検証するため、小規模の試験装置を作製し、検討を実施した。水素貯蔵カートリッジとして、容量1L、重量1.8kg(蓋部含む)、設計圧力0.3MPaの容器を使用した。この容器にアルカリ金属アルミニウム水素化物系の水素貯蔵材料500gを充填した。そして、耐圧耐熱容器として、常用耐圧10MPa、耐熱200℃の容器を使用し、水素吸蔵時の条件を170℃、9MPa、2時間とし、水素貯蔵カートリッジの内圧と外圧の圧力差を0.2MPa以内となるように制御して水素を吸蔵させた。その後、圧力と温度を常温常圧まで下げた。その結果、水素の吸蔵量は24g(貯蔵材料当り4.8質量%)であった。   In order to verify the hydrogen storage device of the present invention, a small-scale test device was produced and examined. As a hydrogen storage cartridge, a container having a capacity of 1 L, a weight of 1.8 kg (including a lid), and a design pressure of 0.3 MPa was used. This container was filled with 500 g of an alkali metal aluminum hydride-based hydrogen storage material. And, as a pressure and heat resistant container, use a container with a normal pressure resistance of 10 MPa and a heat resistance of 200 ° C., the conditions at the time of hydrogen storage are 170 ° C., 9 MPa and 2 hours, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 0.2 MPa The hydrogen was occluded by controlling so that. Thereafter, the pressure and temperature were lowered to normal temperature and pressure. As a result, the occlusion amount of hydrogen was 24 g (4.8% by mass per storage material).

一方、本発明のように容器が二重構造でない場合、今回の水素吸蔵条件を考慮すると、容量1Lの耐圧耐熱容器を作製した場合、設計圧力は10MPa、耐熱は200℃の設計条件となり、水素貯蔵容器の重量は7.0kgとなる。本実施例による水素貯蔵カートリッジ(蓋部含む)は、この水素貯蔵容器と比べ、約4分の1に重量を削減可能となった。   On the other hand, when the container is not a double structure as in the present invention, considering the current hydrogen storage conditions, when a pressure-resistant heat-resistant container with a capacity of 1 L is produced, the design pressure is 10 MPa and the heat resistance is 200 ° C. The weight of the storage container is 7.0 kg. The hydrogen storage cartridge (including the lid) according to this example can be reduced in weight by about a quarter compared to the hydrogen storage container.

本発明に係る水素吸蔵装置の構成の一例(簡易システム)である。It is an example (simple system) of the structure of the hydrogen storage apparatus which concerns on this invention. 本発明に係る水素吸蔵装置の構成の別の例である。It is another example of a structure of the hydrogen storage apparatus which concerns on this invention.

符号の説明Explanation of symbols

1;水素貯蔵カートリッジ
2;耐圧耐熱容器
3;水素導入用配管
4;圧力制御計
5;加熱装置
6;温度制御計
7;蓋部
8;導入側コネクタ
9;放出側コネクタ
10;外圧ガス導入用コネクタ
11;温度計
12;圧力制御バルブ
13;圧力計
14;外圧ガス導入用配管
15;内圧力計
16;外圧力計
17;内圧制御バルブ
18;外圧制御バルブ
19;バルブコネクタ
20;安全バルブ
DESCRIPTION OF SYMBOLS 1; Hydrogen storage cartridge 2; Pressure-resistant heat-resistant container 3; Hydrogen introduction piping 4; Pressure control meter 5; Heating device 6; Temperature control meter 7; Lid 8: Inlet side connector 9; Connector 11; Thermometer 12; Pressure control valve 13; Pressure gauge 14; Piping for introducing external pressure gas 15; Internal pressure gauge 16; External pressure gauge 17; Internal pressure control valve 18; External pressure control valve 19; Valve connector 20;

Claims (6)

圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、
水素充填圧力に耐えうる耐圧容器と、該耐圧容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸蔵装置。
A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure,
A pressure vessel that can withstand the hydrogen filling pressure, the hydrogen storage cartridge housed in the pressure vessel, a pipe for introducing hydrogen into the hydrogen storage cartridge, and a gas in a gap between the pressure vessel and the hydrogen storage cartridge A hydrogen storage device, comprising: a pipe to be introduced; and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵装置であって、
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器と、該耐圧耐熱容器内に収納された前記水素貯蔵カートリッジと、該水素貯蔵カートリッジ内に水素を導入する配管と、前記耐圧耐熱容器と前記水素貯蔵カートリッジの隙間に気体を導入する配管と、を備え、前記水素貯蔵カートリッジの内圧と外圧の圧力差を制御する機構を有することを特徴とする水素吸蔵装置。
A hydrogen storage device for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating,
A pressure- and heat-resistant container that can withstand the hydrogen filling pressure and has an external heating device; the hydrogen storage cartridge housed in the pressure- and heat-resistant container; a pipe for introducing hydrogen into the hydrogen storage cartridge; A hydrogen storage device comprising: a container and a pipe for introducing a gas into a gap between the hydrogen storage cartridge; and a mechanism for controlling a pressure difference between an internal pressure and an external pressure of the hydrogen storage cartridge.
圧力により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、
水素充填圧力に耐えうる耐圧容器内に前記水素貯蔵カートリッジを収納し、該水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。
A hydrogen storage method for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure,
The hydrogen storage cartridge is housed in a pressure-resistant container that can withstand the hydrogen filling pressure, and hydrogen is introduced into the hydrogen storage cartridge to apply pressure, and the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is A hydrogen storage method, wherein hydrogen is stored in a hydrogen storage material in a hydrogen storage cartridge while controlling the pressure so as not to exceed a design pressure of the cartridge.
圧力と加熱により水素を吸蔵することができる水素貯蔵材料を充填した水素貯蔵カートリッジに水素を吸蔵させる水素吸蔵方法であって、
水素充填圧力に耐えうる、かつ外部に加熱装置を有する耐圧耐熱容器に前記水素貯蔵カートリッジを収納し、該水素貯蔵カートリッジを加熱しながら該水素貯蔵カートリッジ内に水素を導入して圧力をかけるとともに、該水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力を超えないように圧力を制御しながら水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させることを特徴とする水素吸蔵方法。
A hydrogen storage method for storing hydrogen in a hydrogen storage cartridge filled with a hydrogen storage material capable of storing hydrogen by pressure and heating,
The hydrogen storage cartridge is housed in a pressure and heat-resistant container that can withstand the hydrogen filling pressure and has a heating device outside, and while introducing the hydrogen into the hydrogen storage cartridge while heating the hydrogen storage cartridge, pressure is applied. The hydrogen storage material stores the hydrogen in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge does not exceed the design pressure of the hydrogen storage cartridge. Method.
前記水素貯蔵カートリッジの内圧と外圧の圧力差が、該水素貯蔵カートリッジの設計圧力の80%以内になるように圧力を制御しながら前記水素貯蔵カートリッジ内の水素貯蔵材料に水素を吸蔵させていくことを特徴とする請求項3または請求項4に記載の水素吸蔵方法。   Storing hydrogen in the hydrogen storage material in the hydrogen storage cartridge while controlling the pressure so that the pressure difference between the internal pressure and the external pressure of the hydrogen storage cartridge is within 80% of the design pressure of the hydrogen storage cartridge. The hydrogen storage method according to claim 3 or 4, wherein: 前記水素貯蔵カートリッジの設計圧力が0.1MPa以上1MPa未満であることを特徴とする請求項3または請求項4に記載の水素吸蔵方法。   The hydrogen storage method according to claim 3 or 4, wherein a design pressure of the hydrogen storage cartridge is 0.1 MPa or more and less than 1 MPa.
JP2005055253A 2005-03-01 2005-03-01 Hydrogen storage device and hydrogen storage method Pending JP2008133834A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005055253A JP2008133834A (en) 2005-03-01 2005-03-01 Hydrogen storage device and hydrogen storage method
PCT/JP2006/303623 WO2006093094A1 (en) 2005-03-01 2006-02-27 Hydrogen occlusion device and hydrogen occlusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055253A JP2008133834A (en) 2005-03-01 2005-03-01 Hydrogen storage device and hydrogen storage method

Publications (1)

Publication Number Publication Date
JP2008133834A true JP2008133834A (en) 2008-06-12

Family

ID=36941123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055253A Pending JP2008133834A (en) 2005-03-01 2005-03-01 Hydrogen storage device and hydrogen storage method

Country Status (2)

Country Link
JP (1) JP2008133834A (en)
WO (1) WO2006093094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490227B2 (en) 2020-07-14 2024-05-27 国立研究開発法人宇宙航空研究開発機構 Gas supply and propulsion systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281105A (en) * 2007-05-10 2008-11-20 Toyota Industries Corp Hydrogen gas storage device
WO2013063169A1 (en) * 2011-10-26 2013-05-02 Eveready Battery Company, Inc. Hydrogen generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267399A (en) * 1985-09-20 1987-03-27 Sanyo Electric Co Ltd Vessel for metal hydride
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP4686865B2 (en) * 2001-02-05 2011-05-25 ソニー株式会社 Hydrogen storage / release device
JP2004196634A (en) * 2002-12-20 2004-07-15 Honda Motor Co Ltd Hydride powder used for hydrogen storing/discharging system
JP2004293784A (en) * 2003-03-11 2004-10-21 Showa Denko Kk Pressure vessel, fuel tank and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490227B2 (en) 2020-07-14 2024-05-27 国立研究開発法人宇宙航空研究開発機構 Gas supply and propulsion systems

Also Published As

Publication number Publication date
WO2006093094A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
US8636834B2 (en) Adiabatic tank for metal hydride
US6651701B2 (en) Hydrogen storage apparatus and charging method therefor
JP5993307B2 (en) Hydrogen release system
TWI302974B (en) Dual-flow valve and internal processing vessel isolation system
KR20170089344A (en) Solid state hydrogen storage device and solid state hydrogen storage system
US20110138748A1 (en) Method for manufacturing a hydrogen tank with metal hydrides
US20050145378A1 (en) Hydrogen-storage container and method of occluding hydrogen
JP2008133834A (en) Hydrogen storage device and hydrogen storage method
JP2007327534A (en) Hydrogen storage container and hydrogen occlusion/release device
JP2002228098A (en) Hydrogen occlusion device for hydrogen occlusion alloy, and device for detecting degradation of hydrogen occlusion alloy utilizing the device
JP2008045650A (en) Hydrogen storage device
WO2014083810A1 (en) Refrigerant cooling device and method
Heung Tritium transport vessel using depleted uranium
TW201620605A (en) Leak hydrogen absorbing device, hydrogen energy utilization system and leak hydrogen absorbing method
JP2007321878A (en) Hydrogen storage device and hydrogen storage method
JP2011169350A (en) Hydrogen supply system
Loh et al. Parametric studies of charging and discharging in adsorbed natural gas vessel using activated carbon
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
JP2001289397A (en) Hydrogen storage alloy storing container
JP2013112576A (en) Method and apparatus for generating hydrogen
Strickland et al. Operating manual for the PSE and G hydrogen reservoir containing iron titanium hydride
JP6803813B2 (en) Hydrogen storage method
CN106195626B (en) Ammonia storage material force control method, container design and manufacturing method and application
Klein A 1600 liter tritium hydride storage vessel
Heung Developments in tritium storage and transportation at the Savannah River Site