WO2006091190A1 - Circuit de refrigeration avec recepteur ameliore de liquide/vapeur - Google Patents

Circuit de refrigeration avec recepteur ameliore de liquide/vapeur Download PDF

Info

Publication number
WO2006091190A1
WO2006091190A1 PCT/US2005/005411 US2005005411W WO2006091190A1 WO 2006091190 A1 WO2006091190 A1 WO 2006091190A1 US 2005005411 W US2005005411 W US 2005005411W WO 2006091190 A1 WO2006091190 A1 WO 2006091190A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
heat exchanger
compressor
refrigeration circuit
heat
Prior art date
Application number
PCT/US2005/005411
Other languages
English (en)
Inventor
Neelkanth S. Gupte
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to US11/816,327 priority Critical patent/US20090019878A1/en
Priority to PCT/US2005/005411 priority patent/WO2006091190A1/fr
Priority to CN200580048414A priority patent/CN100590372C/zh
Priority to JP2007556125A priority patent/JP2008530511A/ja
Priority to MX2007010002A priority patent/MX2007010002A/es
Priority to EP05723391.8A priority patent/EP1848934B1/fr
Priority to AU2005327954A priority patent/AU2005327954A1/en
Publication of WO2006091190A1 publication Critical patent/WO2006091190A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • This invention relates to a refrigeration circuit
  • a refrigeration circuit comprising a first compressor device, a heat-rejecting heat exchanger, a first expansion device, a receiver having an upper portion and a lower portion, a second expansion device, and a first evaporator.
  • the refrigeration circuit further comprises a flow path between the upper portion of the receiver and a compressor, the pressure side of which is in flow communication with the entrance of the heat-rejecting heat exchanger.
  • the refrigeration circuit preferably is of the type designed for CO 2 as a refrigerant, but is not limited thereto.
  • the refrigeration circuit is of the two stage expansion type, wherein the refrigerant first is expanded in first stage expansion.
  • the first stage expansion provides cooling to complete condensation of the refrigerant in the receiver.
  • the section of the refrigeration circuit extending from the receiver to the compressor device is at a substantially lower pressure level than the remaining section of the refrigeration circuit extending from the compressor device to first expansion device.
  • a refrigeration circuit for circulating a refrigerant in a predetermined flow direction comprising in flow direction a first compressor device, a heat-rejecting heat exchanger, a first expansion device, a receiver having in its interior an upper portion, being in flow communication with the first expansion device, and a lower portion, a second expansion device being in flow communication with the lower portion of the receiver, and a first evaporator; and comprising a further flow path between the upper portion of the receiver and the suction side of a compressor, the pressure.side of which is in flow communication with the entrance of said heat- rejecting heat exchanger; wherein at least one element of the group consisting of the following elements (a) and (b) is provided: (a) a second heat exchanger is arranged in said upper portion of said receiver, the entrance of the second heat exchanger being in flow communication with the exit
  • the second heat exchanger arranged in the upper portion of the receiver exchanges heat against the vapour contained in the upper portion of the receiver. Any liquid droplets that may be present in the upper portion of the receiver will be evaporated and entrained into the further flow path.
  • the third expansion device and the third heat exchanger arranged in lower portion of the receiver provide sub-cooling the liquid in the lower portion of the receiver.
  • Such sub-cooled liquid refrigerant results in more efficient cooling effect by the first evaporator and reduces the formation of refrigerant vapour in the section of the circuit extending from the receiver to the second expansion device.
  • Ail in all the improved receiver provides for a more perfect separation into a gaseous phase of the refrigerant having substantially no content of liquid droplets, and a liquid phase that is sub-cooled and has less tendency to vapour formation.
  • the first compressor device may be a single compressor or a parallel group of several compressors.
  • the compressor device may be of the type comprising a control of its performance, for example by way of controlling its rotational speed dependent on the pressure level of the compressed gaseous refrigerant to be achieved.
  • the compressor associated to the further flow path starting from the upper portion of the receiver may be a further compressor.
  • the suction side of such further compressor may be at a higher pressure level than the suction side of the first- mentioned compressor device, or may be a substantially the same pressure level as the first-mentioned compressor device. It is possible to combine the compressor, that is associated to the further flow path, with the first-mentioned compressor device, either by using one and the same compressor for compressing the gaseous refrigerant coming from the second expansion device as well as the gaseous refrigerant coming from the upper portion of the receiver, or by combining the further compressor, that is associated to the further flow path, into a parallel group of compressors forming the first compressor device.
  • the refrigeration circuit further comprises a branch circuit, branching off from a location located in a section of said circuit which section extends from said lower portion of said receiver to the entrance of said second expansion device; the branch circuit comprising in flow direction a fourth expansion device, a second evaporator, and a second compressor device; and the branch circuit, at its downstream end, being in flow communication with the suction side of said first compressor device.
  • the branch circuit provides low temperature cooling, for example for deep-freezing purposes.
  • the second expansion device and the first evaporator provide for medium temperature cooling, for example for keeping food and beverages at a temperature level of O to 10 0 C.
  • the refrigeration circuit may comprise one or several second expansion devices/first evaporators, arranged in parallel, and one or several fourth expansion devices/second evaporators, arranged in parallel, if any.
  • the refrigerant in the refrigeration circuit may be a one-component refrigerant or a multiple-components refrigerant.
  • various expansion devices In the preceding description, reference has been made to various expansion devices. It should be stressed that expansion devices of various constructions and designs may be provided. A quite common form of expansion device is an expansion valve.
  • the expansion device may be a throttling device or a throttle valve.
  • the expansion device depending on its location, the temperature level, and the pressure level, may serve to expand liquid refrigerant to gaseous refrigerant or may expand gaseous refrigerant from a higher pressure level to a lower pressure level.
  • This invention further relates to a refrigeration apparatus comprising a refrigeration circuit as disclosed in the present application.
  • the refrigeration apparatus of this invention may be provided as a heat pump.
  • the technical elements of cooling apparatus and heat pumps are the same.
  • the purpose of cooling is the primary purpose, and the related generation of heat is normally a side effect.
  • heat pumps the generation of heat is the desired purpose, whereas the related cooling effect of the evaporator(s) is normally considered a less useful side effect.
  • This invention also discloses a heat pump having a circuit as disclosed in the present application. Such circuit may be designated a refrigeration circuit because it contains a refrigerant undergoing condensation and evaporation. Some times people prefer to use the term working fluid rather than to use the term refrigerant when describing a heat pump.
  • a refrigeration circuit containing CO 2 as a refrigerant may be a circuit operated in transcritical cycle, or may be a circuit operated in subcritical cycle, or may be a circuit operable in transcritical cycle or in subcritical cycle depending on parameters such as environmental temperature and pressure level after the compressor device.
  • the refrigeration circuit does not reach a subcritical temperature level at the heat-rejecting heat exchanger, at least in summer time season; the circuit is operated in transcritical cycle.
  • the heat-rejecting heat exchanger operates as a gas cooler.
  • the heat-rejecting heat exchanger operates as a combined gas cooler and condenser.
  • the main functions of the receiver are to permanently keep available a sufficient quantity of liquid refrigerant and to provide a separation between liquid refrigerant and gaseous refrigerant (vapour).
  • the condensation of refrigerant by means of flash cooling provided by the first expansion device is a further function.
  • the refrigeration apparatus/heat pump of this invention has a number of preferred fields of application. The most important are cooling food and beverages in shops, restaurants or other locations of storage; cooling other temperature-sensitive products such as pharmaceuticals; deep-freezing; cooling buildings of any sort; cooling cars and any other type of vehicles in the broad sense, such as aircrafts, ships, railway cars etc.
  • This invention further relates to a refrigeration method.
  • the refrigeration method comprises at least one step of the group of steps consisting of (i) operating a heat source in said upper portion of said receiver, (ii) operating a heat sink in said lower portion of said receiver.
  • Fig. 1 shows a diagram of a refrigeration circuit for elucidating the basic configuration of such a circuit
  • Fig. 2 shows a receiver/separator on a larger scale, which may be incorporated in the refrigeration circuit of Fig. 1.
  • the total refrigeration circuit shown in Fig. 1 comprises a first-described (basic) circuit, a second-described further flow path, and a third-described branch circuit, and some additional elements.
  • the basic circuit when beginning with a compressor device 6 and progressing in flow direction of the CC ⁇ -refrigerant, comprises the following elements: compressor device 6 or 6 and 6'; conduit 7; heat-rejecting heat exchanger 1 (gas cooler and/or condenser); conduit 2; first expansion valve a; receiver 3; conduit 4; two parallel second expansion valves b and c; two parallel evaporators E2 and E3; conduit 5 back to compressor device 6.
  • the compressor device 6 comprises three parallel compressors and a further compressor 6' to be described in more detail further below.
  • the suction sides of the three compressors are supplied by a common supply space 20.
  • the compressor device 6 compresses the supplied gaseous CO 2 to a pressure in the range of 50 to 120 bar, whereby the temperature of the gaseous compressed CO 2 is increased to about 50 to 15O 0 C.
  • the pressure of the compressed gaseous CO 2 would typically be in the range of 40 to 70 bar.
  • the heat-rejecting heat exchanger removes heat from the CO 2 .
  • the CO 2 is typically cooled to 10 to 30 0 C and condensed in the heat- rejecting heat exchanger 1; in this case heat exchanger 1 works as a combined gas cooler and condenser.
  • the CO 2 is typically cooled to a temperature of 25 to 45°C, without condensation of a substantial part of the CO 2 , in the heat-rejecting heat exchanger; in this case it works as a gas cooler.
  • the heat exchanger 1 is gas cooled or liquid (water) cooled.
  • the vapour or liquid/vapour mixture or liquid CO 2 in subcritical operation is expanded by the expansion valve a provided next to the receiver 3, thereby providing flash gas in an upper portion of the receiver 3.
  • the pressure level in the interior of the receiver 3 is 30 to 40 bar.
  • a lower portion of the receiver 3 contains liquid CO 2 -
  • the receiver 3 also acts as a separator of liquid CO 2 and CO 2 vapour.
  • the liquid CO 2 is expanded to typically a temperature of minus 15 to O 0 C, resulting in a pressure level of typically 20 to 35 bar.
  • the evaporators E2 and E3 next to the expansion valves b and c serve to allow for a complete evaporation of the CO 2 and provide large cool surfaces, from where the cooling proper originates, typically by air moving by the "cool air is heavier than warm air" principle or moving by forced ventilation.
  • the compressor device 6 and the receiver 3 are typically mounted in a common metal frame, also supporting the control equipment of the refrigeration apparatus.
  • the remaining section of the basic circuit extending from the exit side of the expansion valve a to the suction side of the compressor device 6 is at two substantially lower pressure levels, namely typically 30 to 40 bar in front of the expansion valves b and c and typically 25 to 30 bar in front of the compressor device 6.
  • the second- mentioned section of the basic circuit may be designed for such lower pressure levels, i.e. by using tubes having thinner walls, by using less sophisticated connections where CO 2 is flowing, and by using evaporators adapted to the relatively low pressure level.
  • the expansion valve e serve to reduce the pressure of the gaseous CO 2 to the level existing at the suction side of the compressor device 6.
  • the expansion valve e may be dispensed with, and there is just a conduit 12, 15 from the upper portion of the receiver 3 to the further compressor 6'.
  • the suction side of such further compressor 6' is at a higher pressure level that the suction side 20 of the compressor device 6.
  • the pressure sides of all the compressors 6 and 6' have the same pressure level.
  • Fig. 1 shows a branch circuit comprising the following: A conduit 8 branches off from the conduit 4 upstream of the expansion valves b and c; a (fourth) expansion valve d; a second evaporator E4; a conduit 9; a second compressor device 10, and a conduit 11 providing fluid flow connection with the suction side of the first compressor device 6.
  • the expansion valve d and the second evaporator E4 are designed to provide an expansion of the liquid CO2 to a lower pressure level than existing at the suction side 20 of the compressor device 6.
  • the temperature level reached at the evaporator E4 is lower than the temperature level reached at the evaporators E2 and E3, thereby providing means for deep-freezing or storing at deep-freezing temperature.
  • Typical values are 7 to 15 bar and minus 50 to minus 25 0 C in the evaporator E4.
  • FIG. 1 shows a conduit 13 branching off the conduit 2 (that leads from the first heat exchanger 1 to the first expansion valve a) to a heat exchanger E1, an expansion valve f being provided in such conduit 13.
  • a conduit 14 leads from the heat exchanger E1 to the suction side of the further compressor 6'. The heat exchanger E1 exchanges heat against the CO2 flowing through the conduit 2.
  • the expansion valve f provides cool gaseous CO 2 , the CO 2 flowing through the conduit 2 is cooled, thereby either assisting in condensation of CO 2 or in sub- cooling of liquid CO 2 .
  • Fig. 2 shows a schematically sectional view of the receiver 3 at a larger scale than in Fig. 1.
  • the receiver 3 has in its interior an upper portion 3a and a lower portion 3b.
  • a quantity of liquid CO 2 is contained in the receiver 3, filling the interior of the receiver 3 up to a level ) 22.
  • the level 22 may be higher or lower than shown in Fig. 2.
  • the line 2 (providing a fluid flow connection between the exit of the heat exchanger 1 and the expansion valve a, cf. Fig. 1) extends into the receiver 3 and is connected to a second heat exchanger 24 arranged in the upper portion 3a of the receiver 3.
  • a further conduit 26 extending outside the receiver 3 and connecting the downstream end of the second heat exchanger 24 to the interior of the upper portion 3a of the receiver 3, an expansion valve 28 being provided in such conduit 26.
  • the expansion valve 28 produces flash gas in the upper portion 3a, which as a consequence is at a lower temperature level than the CO2 flowing through the second heat exchanger 24. Any droplets of liquid CO 2 that may be present in the upper portion 3a, are evaporated. This minimizes the potential for erosion of the expansion valve 34 described in the following paragraph.
  • the expansion valve 28 has the same function as the expansion valve a shown in Fig. 1. The difference is that the conduit 2 does not lead directly to the expansion valve 28, but there is the second heat exchanger 24 upstream of the expansion valve 28. By means of the second heat exchanger 24, the gaseous CO 2 exiting the upper portion 3a contains less condensed CO 2 than without the provision of the second heat exchanger 24.
  • the CO 2 By passing through the expansion valve 34 the CO 2 becomes cooler, and the third heat exchanger 32 provides sub-cooling of the liquid CO 2 accumulated in the lower portion 3b of the receiver 3.
  • the liquid, sub-cooled CO 2 exits the lower portion 3b via conduit 4, as shown in Fig. 1.
  • the gaseous CO 2 flowing through the third heat exchanger 32 gets a certain overheating which reduces the risk of entrainment of liquid CO 2 into the compressor device 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

La présente invention décrit un circuit de réfrigération comprenant un compresseur, un échangeur thermique rejetant de la chaleur, une vanne d'expansion, un récepteur (3) ainsi qu'une autre vanne d'expansion/évaporateur pour assurer un refroidissement. Un deuxième échangeur thermique (24) est placé dans une partie de gaz supérieure du récepteur et/ou un troisième échangeur thermique (34) est placé dans une partie de liquide inférieure du récepteur. Il est ainsi possible d'obtenir une meilleure séparation entre liquide et vapeur pour le réfrigérant, de sous-refroidir le réfrigérant du liquide ou les deux.
PCT/US2005/005411 2005-02-18 2005-02-18 Circuit de refrigeration avec recepteur ameliore de liquide/vapeur WO2006091190A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/816,327 US20090019878A1 (en) 2005-02-18 2005-02-18 Refrigeration circuit with improved liquid/vapour receiver
PCT/US2005/005411 WO2006091190A1 (fr) 2005-02-18 2005-02-18 Circuit de refrigeration avec recepteur ameliore de liquide/vapeur
CN200580048414A CN100590372C (zh) 2005-02-18 2005-02-18 具有改进的液体/蒸汽接收器的制冷回路
JP2007556125A JP2008530511A (ja) 2005-02-18 2005-02-18 改善された液体/蒸気レシーバを備えた冷凍回路
MX2007010002A MX2007010002A (es) 2005-02-18 2005-02-18 Circuito de refrigeracion con receptor de liquido/vapor mejorado.
EP05723391.8A EP1848934B1 (fr) 2005-02-18 2005-02-18 Circuit de réfrigération avec récepteur amélioré de liquide/vapeur
AU2005327954A AU2005327954A1 (en) 2005-02-18 2005-02-18 Refrigeration circuit with improved liquid/vapour receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/005411 WO2006091190A1 (fr) 2005-02-18 2005-02-18 Circuit de refrigeration avec recepteur ameliore de liquide/vapeur

Publications (1)

Publication Number Publication Date
WO2006091190A1 true WO2006091190A1 (fr) 2006-08-31

Family

ID=34993425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/005411 WO2006091190A1 (fr) 2005-02-18 2005-02-18 Circuit de refrigeration avec recepteur ameliore de liquide/vapeur

Country Status (7)

Country Link
US (1) US20090019878A1 (fr)
EP (1) EP1848934B1 (fr)
JP (1) JP2008530511A (fr)
CN (1) CN100590372C (fr)
AU (1) AU2005327954A1 (fr)
MX (1) MX2007010002A (fr)
WO (1) WO2006091190A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008019689A2 (fr) * 2006-08-18 2008-02-21 Knudsen Køling A/S Système de réfrigération transcritique doté d'un surpresseur
EP2068095A1 (fr) * 2006-09-11 2009-06-10 Daikin Industries, Ltd. Dispositif de réfrigération
EP2147269A1 (fr) * 2007-04-24 2010-01-27 Carrier Corporation Système de compression de vapeur de réfrigérant transcritique à gestion de charge
CH703290A1 (de) * 2010-09-29 2011-12-15 Erik Vincent Granwehr Wärmepumpe.
WO2012126635A3 (fr) * 2011-03-24 2013-03-07 Airbus Operations Gmbh Contenant à réfrigérant multifonctionnel et procédé de fonctionnement d'un tel contenant à réfrigérant
WO2012176072A3 (fr) * 2011-06-16 2013-07-18 Advansor A/S Système de réfrigération
EP2503265A3 (fr) * 2011-03-24 2014-04-02 Airbus Operations GmbH Procédé pour faire fonctionner un système de refroidissement
WO2017136174A1 (fr) * 2016-02-03 2017-08-10 Carrier Corporation Accumulateur de liquide pour système d'échange de chaleur, système frigorifique comportant ledit accumulateur, système frigorifique en cascade et procédé de commande associé
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
US10690389B2 (en) 2008-10-23 2020-06-23 Toromont Industries Ltd CO2 refrigeration system
US11029068B2 (en) 2013-05-03 2021-06-08 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
WO2021209099A1 (fr) * 2020-04-15 2021-10-21 B Cool A/S Procédé pour garantir une température prédéfinie dans une chambre de congélation et dans une chambre de refroidissement, et installation de refroidissement, ainsi qu'utilisation d'une installation de refroidissement à bord d'un navire
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
WO2023039445A1 (fr) * 2021-09-07 2023-03-16 Hill Phoenix, Inc. Gestion d'huile dans des systèmes de réfrigération
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8631666B2 (en) 2008-08-07 2014-01-21 Hill Phoenix, Inc. Modular CO2 refrigeration system
CA2724255C (fr) * 2010-09-28 2011-09-13 Serge Dube Systeme de refrigeration au co2 pour surfaces de sports sur glace
NZ702745A (en) * 2012-05-11 2016-07-29 Hill Phoenix Inc Co2 refrigeration system with integrated air conditioning module
US9657969B2 (en) 2013-12-30 2017-05-23 Rolls-Royce Corporation Multi-evaporator trans-critical cooling systems
EP3163217B1 (fr) * 2014-06-27 2022-08-17 Mitsubishi Electric Corporation Dispositif à cycle frigorifique
WO2016096051A1 (fr) * 2014-12-19 2016-06-23 Carrier Corporation Système de réfrigération et de chauffage
JP6925528B2 (ja) * 2018-06-15 2021-08-25 三菱電機株式会社 冷凍サイクル装置
US11209199B2 (en) * 2019-02-07 2021-12-28 Heatcraft Refrigeration Products Llc Cooling system
CN110940119B (zh) * 2019-12-16 2021-09-17 宁波奥克斯电气股份有限公司 一种制冷模式下冷媒循环系统及空调器
CN111023362B (zh) * 2019-12-16 2021-12-14 宁波奥克斯电气股份有限公司 一种制热模式下冷媒循环系统及空调器
CN117073256A (zh) * 2023-08-07 2023-11-17 同方智慧能源有限责任公司 雪场双温区制冷系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2537707A1 (fr) * 1982-12-14 1984-06-15 Luft U Kaeltetechnik Veb K Regulation de temperatures de differences de temperatures ou de niveaux dans des circuits de fluide frigorigene
EP0142209A2 (fr) * 1983-11-11 1985-05-22 Grasso's Koninklijke Machinefabrieken N.V. Installation telle qu' installation frigorifique ou pompe à chaleur
US4748831A (en) * 1985-05-09 1988-06-07 Svenska Rotor Maskiner Ab Refrigeration plant and rotary positive displacement machine
EP0541343A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Systèmes de réfrigération
JPH09196480A (ja) * 1996-01-12 1997-07-31 Hitachi Ltd 冷凍装置用液冷却器
JPH10288407A (ja) * 1997-04-16 1998-10-27 Yanmar Diesel Engine Co Ltd 過冷却サイクル
EP0964156A2 (fr) * 1998-06-12 1999-12-15 Linde Aktiengesellschaft Procédé d'opération d'une pompe pour réfrigérants au point d'ébullition
EP1033541A1 (fr) * 1997-11-17 2000-09-06 Daikin Industries, Limited Appareil refrigerant
JP2000283583A (ja) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd ヒートポンプ
JP2000304374A (ja) * 1999-04-22 2000-11-02 Yanmar Diesel Engine Co Ltd エンジンヒートポンプ
EP1162414A1 (fr) * 1999-02-17 2001-12-12 Yanmar Diesel Engine Co. Ltd. Circuit de refroidissement a refrigerant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833209C1 (fr) * 1988-09-30 1990-03-29 Danfoss A/S, Nordborg, Dk
US4945733A (en) * 1989-11-22 1990-08-07 Labrecque James C Refrigeration
DE69827110T2 (de) * 1998-02-23 2006-02-23 Mitsubishi Denki K.K. Klimaanlage
US7131294B2 (en) * 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2537707A1 (fr) * 1982-12-14 1984-06-15 Luft U Kaeltetechnik Veb K Regulation de temperatures de differences de temperatures ou de niveaux dans des circuits de fluide frigorigene
EP0142209A2 (fr) * 1983-11-11 1985-05-22 Grasso's Koninklijke Machinefabrieken N.V. Installation telle qu' installation frigorifique ou pompe à chaleur
US4748831A (en) * 1985-05-09 1988-06-07 Svenska Rotor Maskiner Ab Refrigeration plant and rotary positive displacement machine
EP0541343A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Systèmes de réfrigération
JPH09196480A (ja) * 1996-01-12 1997-07-31 Hitachi Ltd 冷凍装置用液冷却器
JPH10288407A (ja) * 1997-04-16 1998-10-27 Yanmar Diesel Engine Co Ltd 過冷却サイクル
EP1033541A1 (fr) * 1997-11-17 2000-09-06 Daikin Industries, Limited Appareil refrigerant
EP0964156A2 (fr) * 1998-06-12 1999-12-15 Linde Aktiengesellschaft Procédé d'opération d'une pompe pour réfrigérants au point d'ébullition
EP1162414A1 (fr) * 1999-02-17 2001-12-12 Yanmar Diesel Engine Co. Ltd. Circuit de refroidissement a refrigerant
JP2000283583A (ja) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd ヒートポンプ
JP2000304374A (ja) * 1999-04-22 2000-11-02 Yanmar Diesel Engine Co Ltd エンジンヒートポンプ

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GIROTTO S ET AL: "Commercial refrigeration system using CO2 as the refrigerant", INTERNATIONAL JOURNAL OF REFRIGERATION, OXFORD, GB, vol. 27, no. 7, November 2004 (2004-11-01), pages 717 - 723, XP004605274, ISSN: 0140-7007 *
GOOSMANN J C ET AL: "RECENT IMPROVEMENTS IN CO2 EQUIPMENT", REFRIGERATING ENGINEERING, AMERICAN SOCIETY OF REFRIGERATING ENGINEERS, NEW YORK, NY, US, vol. 16, no. 1, July 1928 (1928-07-01), pages 1 - 10, XP008022716, ISSN: 0096-0470 *
HUFF H-J ET AL: "OPTIONS FOR A TWO-STAGE TRANSCRIPTIONAL CARBON DIOXIDE CYCLE", IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL WORKING FLUIDS. JOINT CONFERENCE OF THE INTERNATIONAL INSTITUTE OF REFRIGERATION SECTION B AND E, XX, XX, 17 September 2002 (2002-09-17), pages 158 - 164, XP001176579 *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11 28 November 1997 (1997-11-28) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 13 5 February 2001 (2001-02-05) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05) *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008019689A3 (fr) * 2006-08-18 2008-04-03 Knudsen Koeling As Système de réfrigération transcritique doté d'un surpresseur
WO2008019689A2 (fr) * 2006-08-18 2008-02-21 Knudsen Køling A/S Système de réfrigération transcritique doté d'un surpresseur
EP2068095A4 (fr) * 2006-09-11 2015-01-07 Daikin Ind Ltd Dispositif de réfrigération
EP2068095A1 (fr) * 2006-09-11 2009-06-10 Daikin Industries, Ltd. Dispositif de réfrigération
EP2147269A4 (fr) * 2007-04-24 2014-05-28 Carrier Corp Système de compression de vapeur de réfrigérant transcritique à gestion de charge
EP2147269A1 (fr) * 2007-04-24 2010-01-27 Carrier Corporation Système de compression de vapeur de réfrigérant transcritique à gestion de charge
US10690389B2 (en) 2008-10-23 2020-06-23 Toromont Industries Ltd CO2 refrigeration system
WO2012040864A1 (fr) * 2010-09-29 2012-04-05 Erik Vincent Granwehr Pompe à chaleur
CH703290A1 (de) * 2010-09-29 2011-12-15 Erik Vincent Granwehr Wärmepumpe.
WO2012126635A3 (fr) * 2011-03-24 2013-03-07 Airbus Operations Gmbh Contenant à réfrigérant multifonctionnel et procédé de fonctionnement d'un tel contenant à réfrigérant
EP2503265A3 (fr) * 2011-03-24 2014-04-02 Airbus Operations GmbH Procédé pour faire fonctionner un système de refroidissement
WO2012176072A3 (fr) * 2011-06-16 2013-07-18 Advansor A/S Système de réfrigération
US8966934B2 (en) 2011-06-16 2015-03-03 Hill Phoenix, Inc. Refrigeration system
US11029068B2 (en) 2013-05-03 2021-06-08 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11852391B2 (en) 2013-05-03 2023-12-26 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
WO2017136174A1 (fr) * 2016-02-03 2017-08-10 Carrier Corporation Accumulateur de liquide pour système d'échange de chaleur, système frigorifique comportant ledit accumulateur, système frigorifique en cascade et procédé de commande associé
US10823470B2 (en) 2016-02-03 2020-11-03 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11892217B2 (en) 2016-06-21 2024-02-06 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US11940186B2 (en) 2018-06-05 2024-03-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
WO2021209099A1 (fr) * 2020-04-15 2021-10-21 B Cool A/S Procédé pour garantir une température prédéfinie dans une chambre de congélation et dans une chambre de refroidissement, et installation de refroidissement, ainsi qu'utilisation d'une installation de refroidissement à bord d'un navire
WO2023039445A1 (fr) * 2021-09-07 2023-03-16 Hill Phoenix, Inc. Gestion d'huile dans des systèmes de réfrigération

Also Published As

Publication number Publication date
EP1848934B1 (fr) 2016-09-14
CN101124441A (zh) 2008-02-13
EP1848934A1 (fr) 2007-10-31
AU2005327954A1 (en) 2006-08-31
JP2008530511A (ja) 2008-08-07
CN100590372C (zh) 2010-02-17
US20090019878A1 (en) 2009-01-22
MX2007010002A (es) 2008-03-19

Similar Documents

Publication Publication Date Title
EP1848934B1 (fr) Circuit de réfrigération avec récepteur amélioré de liquide/vapeur
DK1895246T3 (da) Kølekredsløb og fremgangsmåde til drift af et kølekredsløb
US9068765B2 (en) Refrigeration storage in a refrigerant vapor compression system
US7574869B2 (en) Refrigeration system with flow control valve
US20080289350A1 (en) Two stage transcritical refrigeration system
EP2056043A1 (fr) Unité de réfrigération et échangeur de chaleur utilisé pour celle-ci
EP2663817B1 (fr) Système de réfrigération et procédé de fonctionnement d'un système de réfrigération
CN105008820A (zh) 空调装置
AU2005327835A1 (en) CO2-refrigeration device with heat reclaim
US20080307805A1 (en) Dual Temperature Refrigeration Circuit
CN104833122A (zh) 冷冻装置
CN104833124A (zh) 冷冻装置
US6145326A (en) Forced oil cooling for refrigeration compressor
JPWO2014038028A1 (ja) 冷凍装置
JP2023126427A (ja) 冷媒蒸気圧縮システム
WO2011072679A1 (fr) Système de compression de vapeur ayant un évaporateur divisé
CN105783318B (zh) 冷冻装置
JPH10160268A (ja) 空気調和機
KR100865842B1 (ko) 냉동장치
RU2375649C2 (ru) Схема охлаждения с приемником жидкости/пара
JP4798884B2 (ja) 冷凍システム
JP6860621B2 (ja) 冷凍サイクル装置
US20050126198A1 (en) Refrigeration system with reverse flow defrost
KR20080009062A (ko) 향상된 액체/증기 리시버를 구비한 냉각 회로
JPH0317053B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2005723391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005723391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005327954

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 6299/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/010002

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200580048414.0

Country of ref document: CN

Ref document number: 2007556125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005327954

Country of ref document: AU

Date of ref document: 20050218

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005327954

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077021133

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007134587

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005723391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816327

Country of ref document: US

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0520106

Country of ref document: BR

Kind code of ref document: A2

Free format text: PEDIDO RETIRADO, UMA VEZ QUE A EXIGENCIA PUBLICADA NA RPI 1999 DE 28/04/2009 NAO FOI DEVIDAMENTE ATENDIDA, E NAO HOUVE MANIFESTACAO DO REQUERENTE FRENTE A PUBLICACAO DO ARQUIVAMENTO DA PETICAO (11.6.1) NA RPI 2076 DE 19/10/2010.