WO2006090913A1 - Method for degrading aromatic polyester using microorganism - Google Patents
Method for degrading aromatic polyester using microorganism Download PDFInfo
- Publication number
- WO2006090913A1 WO2006090913A1 PCT/JP2006/304041 JP2006304041W WO2006090913A1 WO 2006090913 A1 WO2006090913 A1 WO 2006090913A1 JP 2006304041 W JP2006304041 W JP 2006304041W WO 2006090913 A1 WO2006090913 A1 WO 2006090913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microorganism
- aromatic polyester
- ability
- okh
- degrade
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/105—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/38—Pseudomonas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/41—Rhizobium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a method for decomposing aromatic polyester using microorganisms.
- aliphatic polyesters have been produced by known enzymes such as common soil microorganisms and lipases.
- a heat treatment method is generally used under strong basicity as typified by a high concentration aqueous sodium hydroxide solution.
- An object of the present invention is to provide a microorganism that activates a microorganism having the ability to decompose an aromatic polyester, and a method for decomposing an aromatic polyester using the microorganism group.
- the present inventors have made aromatic polyesters by biological functions. As a result of diligent investigations on the method of disassembling the lysozyme s p. OKH— 03 (FERM P— 19483), it is possible to dramatically improve the lysozyme s p. As a result, the present inventors have succeeded in isolating and identifying bacteria capable of realizing the degradation of aromatic polyester, thereby completing the present invention.
- the above object of the present invention is
- Rhizobium s p. OKH- 03 (FERM P— 19483), Pigmenty Fager s p. (NI TE P— 65), Bacillus Megaterum (NI TE P— 67), Siyudomonas s p. (NI TE P— 64)
- NI TE P— 65 Pigmenty Fager s p.
- NI TE P— 67 Bacillus Megaterum
- Siyudomonas s p. NI TE P— 64
- Decomposing an aromatic polyester characterized by decomposing the aromatic polyester by contacting the aromatic polyester with at least one microorganism selected from the group consisting of NITE P-66 Achieved by the method.
- FIG. 1 is an overall photograph of the film after the decomposition experiment according to Example 1.
- Fig. 2 is a photograph (500x magnification) of the surface of the PET film finally obtained by the operation of Comparative Example 1 taken with a scanning electron microscope ("SEM-2400" manufactured by Hitachi, Ltd.).
- SEM-2400 scanning electron microscope
- the aromatic polyester to be decomposed is a polyester containing 50% by weight or more of a repeating unit comprising an aromatic dicarboxylic acid and an aliphatic diol component.
- Particularly preferred are aromatic polyesters containing 85% by weight or more of ethylene terephthalate repeat units.
- the components that may be copolymerized at this time include, for example, fragrances such as phthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxy dicarboxylic acid, and 2,6-naphthalenedicarboxylic acid as dicarboxylic acid components other than terephthalic acid.
- aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid, and derivatives thereof.
- diol components other than ethylene glycol include diethylene glycol, trimethylene glycol, tetramethylene glycol, propylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol and the like.
- the aromatic polyester may have any form such as a fiber, a film, a lump, or a mixture thereof at the time of decomposition.
- the microorganism of the present invention may be any microorganism belonging to the genus Pigmentifaga, Bacillus, Syudomonas, and Alphaproteobacteria, and having the ability to improve the degradation ability of the aromatic polyester of Rhizobium sp. ⁇ KH-03. Anything is acceptable.
- Pigmenti Ferga sp. N ITE P—65
- Bacillus Megaterium NI TE P—67
- Shumonas sp. NI TE P_64
- Alpha Proteobacteria NI TE P-66
- the above strain group is a strain newly isolated by the present inventors from soil in Japan and has the following mycological properties.
- table 1 The above strain group is a strain newly isolated by the present inventors from soil in Japan and has the following mycological properties.
- Rhizobium sp. OKH-03 The bacteriological properties of Rhizobium sp. OKH-03 are shown in Table 2, and the chemical taxonomic properties of the liposomal DNA are as shown in the attached SEQ ID NO: 5.
- Table 2 The bacteriological properties of Rhizobium sp. OKH-03 are shown in Table 2, and the chemical taxonomic properties of the liposomal DNA are as shown in the attached SEQ ID NO: 5.
- Rhizobium sp. OKH-03 as of August 1, 2003, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (Tsukuba Ito, Ibaraki Pref. 1 1 1 1 Central 6) (Accession number is FERM P—19483 is there).
- Each of the fungi of the present invention can enhance its degradability by complementing the ability to degrade aromatic polyester of Rhizobium sp. OKH-03, but, for example, Pigmentifera sp. (NITEP- 65) ) Has the ability to decompose oligomers and monomers, especially terephthalic acid, which are generated during decomposition, so that the resolution of polyester can be increased.
- Microorganisms that specifically degrade aromatic polyesters are isolated by sampling soil, rainwater, etc., and selecting them appropriately by known methods.
- the soil, rainwater, etc. used at this time are particularly preferably sampled from a waste bin or the like where the aromatic polyester waste is collected.
- a medium containing an aromatic polyester as a sole carbon source is used as the medium (hereinafter, this medium may be referred to as an aromatic polyester medium).
- nitrogen sources and mineral sources include inorganic ammonium salts such as ammonium sulfate and ammonium nitrate, metal salts such as iron sulfate, copper sulfate, zinc sulfate, manganese sulfate, and magnesium sulfate, and hydrates thereof. Can be used.
- Examples of the culture method include shaking culture and stationary culture, but shaking culture is preferable for obtaining specific microorganisms from a mixed system of microorganisms. It is particularly preferable to use the methods together.
- a sample sampled from soil or the like is cultured in the medium, and the medium is changed every predetermined period to accumulate useful bacteria.
- the culture period is not particularly limited, but for example, about 1 to 2 months is preferable. Then, collect the aromatic polyester in the enriched culture solution and evaluate the aromatic polyester degradation activity of the microorganisms.
- the evaluation method is not particularly limited, but for example, surface observation with a scanning electron microscope is preferable because it is simple and highly reliable.
- Pigmentiferga sp. (NI TE-65) grows the primary selected strain to the logarithmic growth phase, and collects a large amount of the collected cells in a bishydroxichtil terephthalate medium.
- the bishydroxyterephthalate resolution or terephthalic acid resolution can be confirmed.
- the strains of the present invention Bacillus megateleum (NITE P-67), Syudomonas sp. (N ITE P-64), and Alphaproteobacteria (NITE P-66) are grown to the logarithmic growth phase. After cultivating a large number of collected cells in an aromatic polyester medium by inoculating with Rhizobium sp. OKH-03, etc., by confirming their biofilm-producing ability, Rhizobium s p. A strain capable of improving the ability of decomposing aromatic polyester of OKH-03 can be obtained.
- the decomposition method of the present invention uses a group of microorganisms in combination with one or more strains of the present invention for a strain having an aromatic polyester resolving power, so that the aromatic polyester can be safely and even reduced to carbon dioxide. It can be reliably decomposed at a high speed.
- the aqueous solution only aromatic polyester is essentially the only organic nutrient source. It is preferable to use such a medium, and there is no particular restriction. It is preferable to use LE medium in which the amount of organic nutrients other than aromatic polyester is 0.2% by weight or less, and it is more preferable to use a medium in which an inorganic compound is added to this LE medium.
- the LE medium here is a medium consisting of lettuce and egg yolk extract, which can be prepared by the following method. 1 3 g of lettuce leaves dried at 10 ° C for 5 hours and 3 g of boiled egg yolk are separately decocted with 1 L of ion-exchanged water for 10 minutes, cooled to room temperature, and filtered through filter paper. The mixture of these filtrates is used as LE medium.
- Examples of the inorganic compound added here include inorganic ammonium salts such as ammonium sulfate and ammonium nitrate, metal salts such as iron sulfate, copper sulfate, zinc sulfate, manganese sulfate, and magnesium sulfate, and hydrates thereof.
- inorganic ammonium salts such as ammonium sulfate and ammonium nitrate
- metal salts such as iron sulfate, copper sulfate, zinc sulfate, manganese sulfate, and magnesium sulfate, and hydrates thereof.
- the temperature at which the microorganism and the aromatic polyester are brought into contact is preferably in the range of 20 to 37 ° C, more preferably 25 to 35 ° C (: particularly preferably 30 ° C).
- the pH when contacting is preferably in the range of 5-9.
- an inorganic acid such as hydrochloric acid or sulfuric acid, sodium hydroxide, potassium hydroxide is added to the aqueous solution.
- an inorganic base such as sulfur and an aqueous solution thereof, and it is also preferable to use various buffer solutions such as a phosphate buffer solution.
- the microorganism of the present invention is contacted with an aromatic polyester in LE medium having a temperature of 20 to 37 ° C and a pH of 5 to 9.
- LE medium having a temperature of 20 to 37 ° C and a pH of 5 to 9.
- other methods can be used as long as the microorganisms can be brought into contact with the aromatic polyester and the aromatic polyester can be decomposed.
- the microorganism of the present invention when brought into contact with the aromatic polyester, it is preferable to adsorb the microorganism to the aromatic polyester to form a biofilm on the surface of the aromatic polyester.
- the biofilm here is a layered substance consisting of microorganisms and their discharges, and this forms a place where the microorganisms adhere firmly to the aromatic polyester and decompose the aromatic polyester. It will be.
- the period for contacting the microorganism of the present invention with the aromatic polyester may be at least 24 hours, but any period can be set according to the target amount of degradation of the aromatic polyester. If the contact period lasts for more than 2 weeks, it is desirable to replace the aqueous solution with a new one every two weeks.
- the aromatic polyester which hardly decomposes in nature, can be decomposed in a short period of about 0.5 to 4 months.
- the PET film was immersed in a 0.1 N aqueous hydrochloric acid solution for 3 hours, then immersed in a 70% by weight aqueous ethanol solution for 12 hours or more, and dried under aseptic conditions.
- a sterilized PET film having dimensions of 1.4 cm ⁇ 2.0 cm and a weight of 68.6 mg was prepared. 10 ml of aqueous solution medium with pH 7.0 consisting of the ingredients listed in Table 3, Rhizopium spp. OKH-03 (deposit number FERM P— 1948 3), Pigmenty Ferga sp. (NI TE P—65), Combined with lml culture medium containing Bacillus megaterium (NITE P-67), Shudomonas sp. (NI TE P_64), and alpha proteobacteria (NI TE P-66), a silicon stopper was attached. It was enclosed in a test tube with an inner diameter of 18 mm.
- the weight of the PET film after the decomposition treatment was 35.7 mg, and the weight loss rate was 48.0%.
- the degradation rate was 0.34 mg / cm 2 ⁇ day based on the area of one side.
- Isophthalic acid copolymer PET film was immersed in 0.1 N aqueous hydrochloric acid solution for 3 hours, then immersed in 70% ethanol aqueous solution for 12 hours or more, and dried under aseptic conditions.
- a 10% isophthalic acid copolymer PET film having dimensions of 1.2 cm ⁇ l. 5 cm and a weight of 66.3 mg was prepared.
- 10 ml 1 aqueous solution medium with pH 7.0 consisting of the components listed in Table 2, Rhizobium sp. OKH-03 (Deposit Number FERM P-19483), Pigmenti Ferga sp.
- NI TE P-67 Megaterium
- NI TE P-64 Shudomonas sp.
- NI TE P-66 Alpha Proteobacteria
- Isophthalic acid copolymerized PET film was taken out from the test tube and sonicated in 70% by weight ethanol aqueous solution for 20 minutes, leaving behind the cells and cells discharged from the film surface.
- this isophthalic acid copolymer PET film was dried at room temperature under vacuum for 24 hours or more, and then the weight was measured.
- the weight of the film after the decomposition treatment was 40.6 mg, and the weight loss rate was 39%.
- the degradation rate based on the area of one side of the film was 0.48 mg / cm 2 ⁇ day.
- Example 1 using a PET film with dimensions of 1.4 cmX 2. O cm, an initial weight of 60.7 mg, and containing only Rhizobium sp. OKH-03 (deposit number FE RM P-19483)
- the weight of the PET film was 56.2 mg in 55 days, the weight loss rate was 7.4%, based on the area of one side of the film
- the degradation rate was 0.029 mg / cm 2 ⁇ day.
- Example 1 the same operation was performed except that the dimensions were 1.4 cmX 2. O cm, PET film having an initial weight of 60.7 mg was used, and no culture medium containing bacteria was added. However, the weight of the PET film is 60.7 mg No significant weight loss was observed. In addition, as shown in Fig. 2, it was confirmed by visual observation with an electron microscope that the surface was not decomposed.
- Example 3 the same operation was carried out except that Pigmentia ferga was not included, and TLC detected the same concentration of terephthalic acid as in the initial culture.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
It is intended to provide a microorganism which belongs to the genus Pigmentiphaga and has an ability to specifically degrade terephthalic acid; a microorganism which belongs to the genus Bacillus and has an ability to produce an extracellular polysaccharide with an ability to adhere to an aromatic polyester; a microorganism which belongs to the genus Pseudomonas and has an ability to specifically degrade bishydroxyethyl terephthalate; a microorganism which belongs to the class Alphaproteobacteria and has an ability to accelerate the ability to degrade an aromatic polyester; a microorganism which enhances the ability of Rhizobium sp. OKH-3 to degrade an aromatic polyester; and a method for degrading an aromatic polyester using a group of these microorganisms.
Description
微生物を用いた芳香族ポリエステルの分解方法 Decomposition method of aromatic polyester using microorganisms
技術分野 Technical field
本発明は、 微生物を用いた芳香族ポリエステルの分解方法に関する。 The present invention relates to a method for decomposing aromatic polyester using microorganisms.
背景技術 Background art
明 Light
近年、 脂肪族ポリエステルは一般的な土壌微生物やリパ一ゼ等の既知酵素によ 田 In recent years, aliphatic polyesters have been produced by known enzymes such as common soil microorganisms and lipases.
つて分解されることから、 生分解性のポリマ一として研究開発が行われている。 また、 テレフタル酸、 p—ヒドロキシ安息香酸等の芳香族成分を有するポリエ ステルであっても、 含有される芳香族成分が少量であったり、 耐熱性が著しく低 下していたりする場合には、 一般土壌中や活性汚泥中の微生物や既知酵素により 生分解可能であることが知られている。 しかしながら、 ポリエチレンテレフタレ ート (以下、 PETと略記することがある。) のように芳香族成分を主成分とす る芳香族ポリエステルを分解する微生物及ぴ¾素はほとんど知られておらず、 わ ずかに、 PET繊維や PET織布を酵素で処理することにより、 親水性の向上な どの表面改質を行うことが提案されているが (特表 2000— 502412号公 報および特表 2001-502014号公報参照)、 P ETが分解されているこ とを明確に示すデータはない。 Therefore, it is being researched and developed as a biodegradable polymer. Even if the polyester has an aromatic component such as terephthalic acid or p-hydroxybenzoic acid, if the amount of the aromatic component is small or the heat resistance is significantly reduced, It is known to be biodegradable by microorganisms and known enzymes in general soil and activated sludge. However, there are few known microorganisms and polymers that degrade aromatic polyesters that contain aromatic components as the main component, such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET). Although it has been proposed that surface treatments such as improving hydrophilicity be performed by treating PET fibers or PET woven fabrics with enzymes, it has been proposed (Special Table 2000- 502412) and Special Table 2001. -502014), there is no data that clearly shows that PET has been decomposed.
このようなことから、 P ETを分解する際には高濃度の水酸化ナトリゥム水溶 液に代表される強塩基性下で加熱処理する方法が一般的である。 For this reason, when PET is decomposed, a heat treatment method is generally used under strong basicity as typified by a high concentration aqueous sodium hydroxide solution.
発明の開示 Disclosure of the invention
本発明の目的は、 芳香族ポリエステルを分解する能力を有する微生物をより活 性化させる微生物と、 該微生物群を用いた芳香族ポリエステルの分解方法を提供 することにある。 An object of the present invention is to provide a microorganism that activates a microorganism having the ability to decompose an aromatic polyester, and a method for decomposing an aromatic polyester using the microorganism group.
本発明者らは、 上記の目的を達成すべく、 生物機能によって芳香族ポリエステ
ルを分解する方法について鋭意検討した結果、 リゾビゥム s p. OKH— 03 (FERM P— 19483) と共存させることにより、 同リゾビゥム s p. O KH-03の分解能力を飛躍的に高め、 高速度で芳香族ポリエステルの分解を実 現できる菌の単離、 同定に成功し、 本発明を完成するに至った。 In order to achieve the above object, the present inventors have made aromatic polyesters by biological functions. As a result of diligent investigations on the method of disassembling the lysozyme s p. OKH— 03 (FERM P— 19483), it is possible to dramatically improve the lysozyme s p. As a result, the present inventors have succeeded in isolating and identifying bacteria capable of realizing the degradation of aromatic polyester, thereby completing the present invention.
すなわち、 本発明によれば、 本発明の上記目的は、 That is, according to the present invention, the above object of the present invention is
ビグメンティファーガ属に属する微生物および、 バシラス属に属する微生物お よび、 シユードモナス属にする微生物および、 アルファプロテオバクテリァ綱に 属する微生物であり、 リゾピウム s p. OKH- 03 (FERM P— 1948 3) の芳香族ポリエステル分解能を加速させる能力を有する微生物およびその微 生物群によって達成される。 A microorganism belonging to the genus Pigmenthifera, a microorganism belonging to the genus Bacillus, a microorganism belonging to the genus Syudumonas, and a microorganism belonging to the class of alphaproteobacteria, Rhizopium sp. This is achieved by microorganisms and their microbes that have the ability to accelerate the degradation of aromatic polyesters.
さらに本発明によれば、 本発明の上記目的は、 Furthermore, according to the present invention, the above object of the present invention is
リゾビゥム s p. OKH- 03 (FERM P— 19483)、 ピグメンティ ファ一ガ s p. (N I TE P— 65)、 バシラス メガテリューム (N I TE P— 67)、 シユードモナス s p. (N I TE P— 64)、 アルファプロテオパ クテリア綱 (NITE P— 66) よりなる群から選ばれる少なくとも 1種の微 生物を芳香族ポリエステルに接触させて該芳香族ポリエステルを分解させること を特徴とする、 芳香族ポリエステルの分解方法によつて達成される。 図面の簡単な説明 Rhizobium s p. OKH- 03 (FERM P— 19483), Pigmenty Fager s p. (NI TE P— 65), Bacillus Megaterum (NI TE P— 67), Siyudomonas s p. (NI TE P— 64) Decomposing an aromatic polyester, characterized by decomposing the aromatic polyester by contacting the aromatic polyester with at least one microorganism selected from the group consisting of NITE P-66 Achieved by the method. Brief Description of Drawings
図 1は実施例 1による分解実験後のフィルムの全体写真である。 FIG. 1 is an overall photograph of the film after the decomposition experiment according to Example 1.
図 2は比較例 1の操作によって最終的に得られた P E Tフィルムの表面を走査 型電子顕微鏡 (株式会社日立製作所製 「SEM— 2400」) により撮影した写 真図 (倍率 500倍) である。 発明を実施するための最良の形態 Fig. 2 is a photograph (500x magnification) of the surface of the PET film finally obtained by the operation of Comparative Example 1 taken with a scanning electron microscope ("SEM-2400" manufactured by Hitachi, Ltd.). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明において、 分解の対象となる芳香族ポリエステルとは、 芳香族ジカルポ ン酸と脂肪族ジオール成分からなる繰り返し単位を 50重量%以上含むポリエス
テルである。 特にエチレンテレフ夕レート繰り返し単位を 85重量%以上含む芳 香族ポリエステルが好ましい。 この時に、 共重合してよい成分としては、 例えば テレフタル酸以外のジカルボン酸成分としてフタル酸、 イソフタル酸、 ジフエ二 ルジカルボン酸、 ジフエノキシェ夕ンジカルボン酸、 2, 6—ナフタレンジカル ボン酸等の芳香族ジカルボン酸及びその誘導体、 コハク酸、 アジピン酸、 ァゼラ イン酸、 セバチン酸、 デカンジカルボン酸等の脂肪族ジカルボン酸及びその誘導 体が挙げられる。 In the present invention, the aromatic polyester to be decomposed is a polyester containing 50% by weight or more of a repeating unit comprising an aromatic dicarboxylic acid and an aliphatic diol component. Tell. Particularly preferred are aromatic polyesters containing 85% by weight or more of ethylene terephthalate repeat units. The components that may be copolymerized at this time include, for example, fragrances such as phthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxy dicarboxylic acid, and 2,6-naphthalenedicarboxylic acid as dicarboxylic acid components other than terephthalic acid. And aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid, and derivatives thereof.
また、 エチレングリコール以外のジオール成分としては、 例えばジエチレング リコール、 トリメチレングリコール、 テトラメチレングリコール、 プロピレング リコール、 ペンタメチレングリコール、 へキサメチレングリコール、 デカメチレ ングリコール等が例示される。 Examples of diol components other than ethylene glycol include diethylene glycol, trimethylene glycol, tetramethylene glycol, propylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol and the like.
この芳香族ポリエステルは、 分解時において、 例えば繊維状、 フィルム状、 塊 状、 これらの混合体など、 どのような形態をもっていてもよい。 The aromatic polyester may have any form such as a fiber, a film, a lump, or a mixture thereof at the time of decomposition.
本発明の微生物は、 ピグメンティファ一ガ属、 バシラス属、 シユードモナス属、 アルファプロテオバクテリア綱に属し、 リゾビゥム s p. 〇KH— 03の芳香族 ポリエステル分解能力を向上させる能力を有する微生物であればどのようなもの でも良い。 特に、 ピグメンティファーガ s p. (N ITE P— 65)、 バシラス メガテリューム (N I TE P— 67)、 シュ一ドモナス s p. (N I TE P_ 64)、 アルファプロテオバクテリア綱 (N I TE P-66) であることが好 ましい。 The microorganism of the present invention may be any microorganism belonging to the genus Pigmentifaga, Bacillus, Syudomonas, and Alphaproteobacteria, and having the ability to improve the degradation ability of the aromatic polyester of Rhizobium sp. 〇KH-03. Anything is acceptable. In particular, Pigmenti Ferga sp. (N ITE P—65), Bacillus Megaterium (NI TE P—67), Shumonas sp. (NI TE P_64), Alpha Proteobacteria (NI TE P-66) ) Is preferred.
上記の菌株群は、 本発明者らが日本国内の土壌から新たに分離した菌株であり、 以下の菌学的性質を有する。
表 1 The above strain group is a strain newly isolated by the present inventors from soil in Japan and has the following mycological properties. table 1
また、 化学分類学的性質 · リポソ一マル DN Aの配列は別添の配列番号 1、· 2、 3、 4に示すとおりである。 Further, the chemical taxonomic properties of the liposomal DNA are as shown in the attached SEQ ID Nos. 1, 2, 3, and 4.
なお、 リゾビゥム s p. OKH— 03の菌学的性質を表 2に、 また、 その化学 分類学的性質 · リポソ一マル DNAの配列は別添の配列番号 5に示すとおりであ
表 2 The bacteriological properties of Rhizobium sp. OKH-03 are shown in Table 2, and the chemical taxonomic properties of the liposomal DNA are as shown in the attached SEQ ID NO: 5. Table 2
表 1に示す性質に基づき、 パージエイズ ·マニュアル ·ォブ ·システマティッ クバクテリォロジ一等と照らし合わせた結果、 それぞれ、 バシラス属、 ピグメン ティファ一ガ属、 シユードモナス属、 アルファプロテオバクテリア綱に属する微 生物であることが確認されたが、 同属に属する公知の菌株に該当しなかったので、 これらの菌株を新規な菌株として、 平成 17年 1月 14日付けで、 独立行政法人 製品評価技術基盤機構特許微生物寄託センタ一 (千葉県木更津巿かずさ鎌足2— 5-8) に寄託し、 受領された (受託番号はそれぞれ、 N I TE P— 65、 N I TE P— 67、 NI TE P— 64、 NI TE P— 66である。)。 これら の微生物はバイオセーフティーレベル Iであり病原性が無いことから、 この菌株 を用いることにより、 生物学的にも安全に作業を行うことが可能である。 Based on the properties shown in Table 1, the results of comparison with Purge Aids, Manual, Ob, Systematic Bacteriology, etc., are the microorganisms belonging to the genus Bacillus, Pigmentifa genus, Syudomonas, and Alphaproteobacteria, respectively. However, these strains were not identified as known strains belonging to the same genus, and these strains were designated as new strains as of January 14, 2005. center one (Chiba Kisarazu巿Kazusa legs bowed in 2 - 5-8) deposited in each been received (accession number, NI TE P- 65, NI TE P- 67, NI TE P- 64, NI TE P — 66.) Since these microorganisms are at biosafety level I and are not pathogenic, it is possible to work safely biologically by using this strain.
また、 リゾビゥム s p. OKH— 03については、 平成 15年 8月 1 1日付け で、 独立行政法人産業技術総合研究所特許生物寄託センター (茨城県つくば巿東 1一 1一 1中央第 6) に寄託している (受託番号は FERM P— 19483で
ある)。 In addition, about Rhizobium sp. OKH-03 as of August 1, 2003, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (Tsukuba Ito, Ibaraki Pref. 1 1 1 1 1 Central 6) (Accession number is FERM P—19483 is there).
本発明の菌類はそれぞれ、 リゾビゥム s p . OKH- 0 3の芳香族ポリエステ ル分解能力を補完することによってその分解性を高めることが出来るが、 例えば、 ピグメンティファ一ガ s p . (N I T E P— 6 5 ) は、 特に分解時に発生する オリゴマ一やモノマー、 特にテレフタル酸を分解する能力を有するのでポリエス テルの分解能を高めることが出来る。 Each of the fungi of the present invention can enhance its degradability by complementing the ability to degrade aromatic polyester of Rhizobium sp. OKH-03, but, for example, Pigmentifera sp. (NITEP- 65) ) Has the ability to decompose oligomers and monomers, especially terephthalic acid, which are generated during decomposition, so that the resolution of polyester can be increased.
次に本発明の、 リゾビゥム s p . O KH— 0 3の芳香族ポリエステルを特異的 に分解する能力を著しく向上させる微生物の単離方法について説明する。 Next, a method for isolating microorganisms according to the present invention that significantly improves the ability to specifically degrade the aromatic polyester of lysozyme sp.O KH-03 will be described.
芳香族ポリエステルを特異的に分解する微生物は、 土壌、 雨水等をサンプリン グし、 これを公知の方法で適宜選別することで単離される。 このとき用いる土壌、 雨水などは特に、 芳香族ポリエステル廃棄物集積所ゃゴミ箱などからサンプリン グすることが好ましい。 Microorganisms that specifically degrade aromatic polyesters are isolated by sampling soil, rainwater, etc., and selecting them appropriately by known methods. The soil, rainwater, etc. used at this time are particularly preferably sampled from a waste bin or the like where the aromatic polyester waste is collected.
ついで、 培地としては芳香族ポリエステルを唯一の炭素源として含有するもの を用いる (以下、 この培地を芳香族ポリエステル培地と記載することがある。)。 他の窒素源、 ミネラル源等としては、 例えば、 硫酸アンモニゥム、 硝酸アンモ ニゥム等の無機アンモニゥム塩、 硫酸鉄、 硫酸銅、 硫酸亜鉛、 硫酸マンガン、 硫 酸マグネシウム等の金属塩及びその水和物を用いることができる。 Next, a medium containing an aromatic polyester as a sole carbon source is used as the medium (hereinafter, this medium may be referred to as an aromatic polyester medium). Examples of other nitrogen sources and mineral sources include inorganic ammonium salts such as ammonium sulfate and ammonium nitrate, metal salts such as iron sulfate, copper sulfate, zinc sulfate, manganese sulfate, and magnesium sulfate, and hydrates thereof. Can be used.
培養の方法としては、 例えば振盪培養、 静置培養等が挙げられるが、 微生物の 混合系から特定の微生物を取得するには振盪培養が好ましく、 なかでも栄養源を 限定して培養を行う集積培養法を併用するのが特に好ましい。 Examples of the culture method include shaking culture and stationary culture, but shaking culture is preferable for obtaining specific microorganisms from a mixed system of microorganisms. It is particularly preferable to use the methods together.
土壌等からサンプリングしたサンプルを、 前記培地で培養し、 所定期間毎に培 地を交換して有用細菌を集積させる。 A sample sampled from soil or the like is cultured in the medium, and the medium is changed every predetermined period to accumulate useful bacteria.
培養期間に特に制限はないが、 例えば 1〜2ヶ月程度が好ましい。 次いで集積 培養液中の芳香族ポリエステルを採取し、 微生物の芳香族ポリエステル分解活性 を評価する。 評価方法としては特に制限はないが、 例えば走査型電子顕微鏡によ る表面観察は簡便で確実性も高いため好ましい。 The culture period is not particularly limited, but for example, about 1 to 2 months is preferable. Then, collect the aromatic polyester in the enriched culture solution and evaluate the aromatic polyester degradation activity of the microorganisms. The evaluation method is not particularly limited, but for example, surface observation with a scanning electron microscope is preferable because it is simple and highly reliable.
上記芳香族ポリエステル分解能力を有するサンプルを適宜希釈し、 L E寒天培 地 (L E培地に更に寒天を添加した培地) 等に塗末し、 コロニーを形成して単離
フ The above sample with the ability to decompose aromatic polyester is diluted as appropriate and applied to LE agar medium (medium in which LE agar is further added to agar), etc. to form colonies and isolated F
を行う (一次選別)。 (Primary sorting).
次いで、 一次選別された菌株から、 リゾビゥム s p. OKH— 03の芳香族ポ リエステル分解能に関与する菌株を選別する (二次選別)。 リゾビゥム s p.OK H— 03が芳香族ポリエステルを分解するためには、 1) 芳香族ポリエステルへ の菌の付着、 2) 芳香族ポリエステル鎖の分解、 3) 芳香族ポリエステルオリゴ マ一およびモノマーの分解、 という過程を経ると推測される。 これらの各段階に おいてリゾビゥム s p. OKH- 03の分解能力を補佐する菌株を二次選別によ り得ることが出来る。 Next, from the primary selection strains, a strain involved in the resolution of lysozyme sp. OKH-03 aromatic polyester is selected (secondary selection). In order for Rhizobium sp.OK H—03 to degrade aromatic polyesters, 1) bacteria adherence to aromatic polyesters, 2) aromatic polyester chain degradation, 3) aromatic polyester oligomers and monomers It is presumed that it goes through the process of decomposition. At each of these stages, a strain that supports the degradation ability of Rhizobium sp. OKH-03 can be obtained by secondary selection.
本発明の菌株であるビグメンティファーガ s p. (N I TE ー65) は、 一次選別した菌株を対数増殖期まで増殖させ、 集菌した大量の菌体をビスヒドロ キシェチルテレフ夕レ一ト培地中、 またはテレフタル酸培地中に植菌する等の方 法で培養した後、 これらのビスヒドロキシテレフタレ一ト分解能または、 テレフ タル酸分解能を確認することにより、 得ることが出来る。 As a strain of the present invention, Pigmentiferga sp. (NI TE-65) grows the primary selected strain to the logarithmic growth phase, and collects a large amount of the collected cells in a bishydroxichtil terephthalate medium. Alternatively, after culturing by a method such as inoculation in a terephthalic acid medium, the bishydroxyterephthalate resolution or terephthalic acid resolution can be confirmed.
本発明の菌株であるバシラス メガテリューム (NITE P— 67)、 シユー ドモナス s p. (N ITE P—64)、 アルファプロテオバクテリア綱 (N I T E P-66) は、 一次選別した菌株を対数増殖期まで増殖させ、 集菌した大量 の菌体を芳香族ポリエステル培地中にリゾビゥム s p. OKH-03とともに植 菌する等の方法で培養した後、 これらのバイオフィルム生成能を確認することに より、 リゾビゥム s p. OKH—03の芳香族ポリエステル分解能力を向上させ る菌株を得ることができる。 The strains of the present invention, Bacillus megateleum (NITE P-67), Syudomonas sp. (N ITE P-64), and Alphaproteobacteria (NITE P-66) are grown to the logarithmic growth phase. After cultivating a large number of collected cells in an aromatic polyester medium by inoculating with Rhizobium sp. OKH-03, etc., by confirming their biofilm-producing ability, Rhizobium s p. A strain capable of improving the ability of decomposing aromatic polyester of OKH-03 can be obtained.
本発明の分解方法は、 芳香族系ポリエステル分解能を有する菌株に対して、 本 発明の菌株 1種以上とを組み合わせてなる微生物群を用いることで、 芳香族ポリ エステルを安全にかつ二酸化炭素までより高速度で確実に分解することが出来る。 本発明の分解方法では、 前記微生物群と芳香族ポリエステルが確実に接触し、 且つ、 微生物群が維持される状態が形成されればよいが、 特に、 本発明の微生物 群が存在する水溶液中に分解対象とする芳香族ポリエステルを浸漬させることに より行うことが好ましい。 The decomposition method of the present invention uses a group of microorganisms in combination with one or more strains of the present invention for a strain having an aromatic polyester resolving power, so that the aromatic polyester can be safely and even reduced to carbon dioxide. It can be reliably decomposed at a high speed. In the decomposition method of the present invention, it is sufficient that the microorganism group and the aromatic polyester are reliably in contact with each other and the state in which the microorganism group is maintained is formed. In particular, in the aqueous solution in which the microorganism group of the present invention exists. This is preferably performed by immersing the aromatic polyester to be decomposed.
該水溶液としては、 芳香族ポリエステルのみが実質的に唯一の有機栄養源とな
るような培地を用いることが好ましく、 特段制限を設けるものではない。 芳香族 ポリエステル以外の有機栄養源の存在量が 0 . 2重量%以下である L E培地を用 いることが好ましく、 この L E培地に無機化合物を添加した培地を用いることが より好ましい。 ここでいう L E培地とはレタスと卵の黄味の抽出液からなる培地 であり、 次の方法で作成することができる。 1 1 0 °Cで 5時間乾燥させたレタス の葉 3 gと、 ゆで卵の卵黄 3 gを別々にイオン交換水 1 Lで 1 0分間煎じ、 室温 まで冷却した後に、 濾紙で濾過する。 これらの濾液を混合したものを L E培地と する。 As the aqueous solution, only aromatic polyester is essentially the only organic nutrient source. It is preferable to use such a medium, and there is no particular restriction. It is preferable to use LE medium in which the amount of organic nutrients other than aromatic polyester is 0.2% by weight or less, and it is more preferable to use a medium in which an inorganic compound is added to this LE medium. The LE medium here is a medium consisting of lettuce and egg yolk extract, which can be prepared by the following method. 1 3 g of lettuce leaves dried at 10 ° C for 5 hours and 3 g of boiled egg yolk are separately decocted with 1 L of ion-exchanged water for 10 minutes, cooled to room temperature, and filtered through filter paper. The mixture of these filtrates is used as LE medium.
ここで添加する無機化合物としては、 例えば硫酸アンモニゥム、 硝酸アンモニ ゥム等の無機アンモニゥム塩、 硫酸鉄、 硫酸銅、 硫酸亜鉛、 硫酸マンガン、 硫酸 マグネシゥム等の金属塩及びその水和物が挙げられる。 Examples of the inorganic compound added here include inorganic ammonium salts such as ammonium sulfate and ammonium nitrate, metal salts such as iron sulfate, copper sulfate, zinc sulfate, manganese sulfate, and magnesium sulfate, and hydrates thereof.
また、 微生物と芳香族ポリエステルとを接触させる温度としては、 2 0〜3 7 °Cの範囲が好ましく、 更に好ましくは 2 5〜3 5 ° (:、 特に好ましくは 3 0 °Cで ある。 The temperature at which the microorganism and the aromatic polyester are brought into contact is preferably in the range of 20 to 37 ° C, more preferably 25 to 35 ° C (: particularly preferably 30 ° C).
また、 接触させるときの p Hは 5〜9の範囲が好ましい。 p Hをこの範囲に調 整するためには、 例えば水溶液に芳香族ポリエステルを浸漬させて接触させる場 合には、 該水溶液中に、 塩酸、 硫酸等の無機酸、 水酸化ナトリウム、 水酸化カリ ゥム等の無機塩基及びその水溶液を用いるのが好ましく、 また、 りん酸緩衝液等 の各種緩衝液を用いるのも好ましい。 Further, the pH when contacting is preferably in the range of 5-9. In order to adjust pH within this range, for example, when an aromatic polyester is immersed in an aqueous solution and brought into contact with the aqueous solution, an inorganic acid such as hydrochloric acid or sulfuric acid, sodium hydroxide, potassium hydroxide is added to the aqueous solution. It is preferable to use an inorganic base such as sulfur and an aqueous solution thereof, and it is also preferable to use various buffer solutions such as a phosphate buffer solution.
最も好ましいのは、 2 0〜3 7 °C、 p Hが5〜9の範囲にぁるL E培地中で本 発明の微生物を芳香族ポリエステルとを接触させることである。 しかし、 その他 の方法であっても微生物と芳香族ポリエステルとが接触し、 芳香族ポリエステル が分解されうる方法であれば採用することができる。 Most preferably, the microorganism of the present invention is contacted with an aromatic polyester in LE medium having a temperature of 20 to 37 ° C and a pH of 5 to 9. However, other methods can be used as long as the microorganisms can be brought into contact with the aromatic polyester and the aromatic polyester can be decomposed.
また、 本発明の微生物と芳香族ポリエステルとの接触の際に、 微生物を芳香族 ポリエステルに吸着させ、 芳香族ポリエステル表面にバイオフィルムを形成させ ることが好ましい。 ここでいうバイオフィルムとは微生物とその排出物からなる 層状物質のことであり、 これによつて本微生物が芳香族ポリエステルに強固に接 着し、 且つ、 芳香族ポリエステルを分解する場を形成することになる。
また、 本発明の微生物と芳香族ポリエステルとを接触させる期間は少なくとも 24時間あればよいが、 目標とする芳香族ポリエステルの分解量に応じて、 任意 の期間を設定することができる。 なお、 接触期間が 2週間以上に及ぶ場合には 2 週間ごとに水溶液を新しいものに交換することが望ましい。 Further, when the microorganism of the present invention is brought into contact with the aromatic polyester, it is preferable to adsorb the microorganism to the aromatic polyester to form a biofilm on the surface of the aromatic polyester. The biofilm here is a layered substance consisting of microorganisms and their discharges, and this forms a place where the microorganisms adhere firmly to the aromatic polyester and decompose the aromatic polyester. It will be. Further, the period for contacting the microorganism of the present invention with the aromatic polyester may be at least 24 hours, but any period can be set according to the target amount of degradation of the aromatic polyester. If the contact period lasts for more than 2 weeks, it is desirable to replace the aqueous solution with a new one every two weeks.
このような方法により、 自然界においてはほとんど分解することの無い芳香族 ポリエステルの分解を 0. 5〜 4ヶ月程度の短期間で行うことができる。 By such a method, the aromatic polyester, which hardly decomposes in nature, can be decomposed in a short period of about 0.5 to 4 months.
以上のとおり、 本発明の芳香族ポリエステルを特異的に分解する能力を有する 微生物を用いれば、 安全かつ安価で比較的速やかに、 芳香族ポリエステルを温和 な条件で分解することができる。 実施例 As described above, if a microorganism having the ability to specifically decompose the aromatic polyester of the present invention is used, the aromatic polyester can be decomposed safely and inexpensively under mild conditions. Example
以下、 本発明を実施例により更に具体的に説明するが、 本発明はこれにより何 等限定を受けるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
実施例 1 Example 1
PETフィルムを、 0. 1規定の塩酸水溶液に 3時間浸漬した後、 70重量% エタノ一ル水溶液に 12時間以上浸漬し、 そして無菌状態下で乾燥させた。 この ようにして滅菌処理した寸法 1. 4 cmX 2. 0 cm、 重量 68. 6mgの P ETフィルムを準備した。 表 3に記載の成分よりなる pH7. 0の水溶液培地 1 0mlと、 リゾピウム s p. OKH- 03 (寄託番号 FERM P— 1948 3)、 ピグメンティファーガ s p. (N I TE P— 65)、 バシラス メガテリ ュ一ム (NITE P— 67)、 シュ一ドモナス s p. (N I TE P_64)、 アルファプロテオバクテリア綱 (NI TE P-66) を含む培養液 lmlとを 併せて、 シリコン栓をつけた内径 18 mmの試験管に封入した。 The PET film was immersed in a 0.1 N aqueous hydrochloric acid solution for 3 hours, then immersed in a 70% by weight aqueous ethanol solution for 12 hours or more, and dried under aseptic conditions. A sterilized PET film having dimensions of 1.4 cm × 2.0 cm and a weight of 68.6 mg was prepared. 10 ml of aqueous solution medium with pH 7.0 consisting of the ingredients listed in Table 3, Rhizopium spp. OKH-03 (deposit number FERM P— 1948 3), Pigmenty Ferga sp. (NI TE P—65), Combined with lml culture medium containing Bacillus megaterium (NITE P-67), Shudomonas sp. (NI TE P_64), and alpha proteobacteria (NI TE P-66), a silicon stopper was attached. It was enclosed in a test tube with an inner diameter of 18 mm.
好気条件を保った状態で、 横振り振盪培養機を用いて 30°C, 300ストロー ク /分の条件で振盪し、 2週間毎に試験管内の溶液を新規なものと交換しながら、 延べ 35日間振盪培養を行った。 While maintaining the aerobic condition, shake at 30 ° C, 300 strokes / min using a horizontal shaking incubator, and replace the solution in the test tube with a new one every 2 weeks. Shaking culture was performed for 35 days.
試験管内から PETフィルムを取り出し、 70重量%エタノール水溶液中で 2 0分間超音波処理することにより、 フィルム表面に付着した菌体及び菌体排出物
を除去した。 Remove the PET film from the test tube and sonicate it in a 70 wt% aqueous ethanol solution for 20 minutes. Was removed.
次いで、 この PETフィルムを室温、 真空下で 24時間以上乾燥させた後に、 重量を測定したところ、 分解処理後の PETフィルムの重量は 35. 7mgであ り、 減量率は 48. 0%、 フィルムの片面の面積を基準とした場合の分解速度は 0. 34mg/cm2 ·日であった。 Next, after the PET film was dried at room temperature under vacuum for 24 hours or more, the weight was measured. As a result, the weight of the PET film after the decomposition treatment was 35.7 mg, and the weight loss rate was 48.0%. The degradation rate was 0.34 mg / cm 2 · day based on the area of one side.
表 3 Table 3
実施例 2 Example 2
イソフタル酸共重合 PETフィルムを、 0. 1規定の塩酸水溶液に 3時間浸漬 した後、 70重量%エタノール水溶液に 12時間以上浸漬し、 無菌状態下で乾燥 させた。 このようにして滅菌処理した寸法 1. 2 cmX l. 5 cm、 重量 66. 3mgの 10%イソフタル酸共重合 PETフィルムを準備した。 表 2に記載の成 分よりなる pH 7. 0の水溶液培地 10m 1と、 リゾビゥム s p. OKH-03 (寄託番号 FERM P— 19483)、 ピグメンティファーガ s p . (NITE P— 65)、 バシラス メガテリューム (N I TE P—67)、 シュ一ドモナス s p. (N I TE P— 64)、 アルファプロテオバクテリア綱 (N I TE P— 66 ) を含む培養液 1 m 1とを併せて、 シリコン栓をつけた内径 18 mmの試験 管に封入した。 Isophthalic acid copolymer PET film was immersed in 0.1 N aqueous hydrochloric acid solution for 3 hours, then immersed in 70% ethanol aqueous solution for 12 hours or more, and dried under aseptic conditions. A 10% isophthalic acid copolymer PET film having dimensions of 1.2 cm × l. 5 cm and a weight of 66.3 mg was prepared. 10 ml 1 aqueous solution medium with pH 7.0 consisting of the components listed in Table 2, Rhizobium sp. OKH-03 (Deposit Number FERM P-19483), Pigmenti Ferga sp. (NITE P-65), Bacillus Combine with 1 ml of culture medium containing Megaterium (NI TE P-67), Shudomonas sp. (NI TE P-64), and Alpha Proteobacteria (NI TE P-66). The sample was sealed in a test tube having an inner diameter of 18 mm.
好気条件を保った状態で、 横振り振盪培養機を用いて 30°C, 300ストロー
ク 分の条件で振盪し、 2週間毎に試験管内の溶液を新規なものと交換しながら、 延べ 30日間振盪培養を行った。 While maintaining aerobic conditions, use a side shaker incubator at 30 ° C, 300 straws The mixture was shaken under the condition of the sample and shake culture was performed for a total of 30 days, replacing the solution in the test tube with a new one every two weeks.
試験管内からイソフタル酸共重合 PETフィルムを取り出し、 70重量%エタ ノール水溶液中で 20分間超音波処理することにより、 フィルム表面に付着した 菌体及び菌体排出物を余去した。 Isophthalic acid copolymerized PET film was taken out from the test tube and sonicated in 70% by weight ethanol aqueous solution for 20 minutes, leaving behind the cells and cells discharged from the film surface.
次いで、 このイソフタル酸共重合 PETフィルムを室温、 真空下で 24時間以 上乾燥させた後に、 重量を測定したところ、 分解処理後のフィルムの重量は 40. 6mgであり、 減量率は 39%、 フィルムの片面の面積を基準とした場合の分解 速度は 0. 48mg/cm2 · 日であった。 Next, this isophthalic acid copolymer PET film was dried at room temperature under vacuum for 24 hours or more, and then the weight was measured. As a result, the weight of the film after the decomposition treatment was 40.6 mg, and the weight loss rate was 39%. The degradation rate based on the area of one side of the film was 0.48 mg / cm 2 · day.
実施例 3 Example 3
テレフタル酸ニナトリウム塩を 4. 8mM含む表 2記載の培地 1 Omlにピグ メンティファーガ s p. (N I TE P- 65) を含む培養液 1 m 1を併せて、 シリコン栓をつけた内径 18mmの試験管に封入した。 好気条件を保った状態で、 横振り振盪培養機を用いて 30T:、 300ストローク/分の条件で振盪し、 2日 間培養を行った。 Medium containing 4.8mM terephthalic acid disodium salt 1m1 culture medium containing Pigmenty Ferga sp. (NI TE P-65) in 1ml of Table 2 The test tube was sealed. While maintaining the aerobic condition, the mixture was shaken at 30 T: 300 stroke / min using a side-shaking shaker and cultured for 2 days.
試験管から培養液を取り出し、 T L Cを用いてテレフタル酸の検出を行つたと ころ、 テレフタル酸を示すスポットは確認されなかった。 When the culture solution was taken out of the test tube and terephthalic acid was detected using TLC, no spot showing terephthalic acid was found.
比較例 1 Comparative Example 1
実施例 1において、 寸法が 1. 4 cmX 2. O cmであり、 初期重量 60. 7mgの PETフィルムを用い、 リゾビゥム s p. OKH-03 (寄託番号 FE RM P— 19483) のみを含む培養液 1 m 1を添加した以外は、 同様の操作 を行ったところ、 55日間で PETフィルムの重量は 56. 2mgであり、 減量 率は 7. 4%、 フィルムの片面の面積を基準とした場合の分解速度は 0. 029 mg/cm2 ·日であった。 In Example 1, using a PET film with dimensions of 1.4 cmX 2. O cm, an initial weight of 60.7 mg, and containing only Rhizobium sp. OKH-03 (deposit number FE RM P-19483) When the same operation was performed except that 1 m 1 was added, the weight of the PET film was 56.2 mg in 55 days, the weight loss rate was 7.4%, based on the area of one side of the film The degradation rate was 0.029 mg / cm 2 · day.
比較例 2 Comparative Example 2
実施例 1において、 寸法が 1. 4 cmX 2. O cmであり、 初期重量 60. 7 m gの P E Tフィルムを用い、 菌を含む培養液を添加しなかったこと以外は、 同様の操作を行ったところ、 PETフィルムの重量は 60. 7mgであり、 有意
な重量減少は認められなかった。 また、 図 2に示すとおり、 電子顕微鏡による目 視観察でも表面は分解されていないことが確認された。 In Example 1, the same operation was performed except that the dimensions were 1.4 cmX 2. O cm, PET film having an initial weight of 60.7 mg was used, and no culture medium containing bacteria was added. However, the weight of the PET film is 60.7 mg No significant weight loss was observed. In addition, as shown in Fig. 2, it was confirmed by visual observation with an electron microscope that the surface was not decomposed.
比較例 3 Comparative Example 3
実施例 3において、 ピグメンティファーガを含まないこと以外は同様の操作を 行ったところ、 T L Cによって、 培養初期と同濃度のテレフタル酸が検出された。
In Example 3, the same operation was carried out except that Pigmentia ferga was not included, and TLC detected the same concentration of terephthalic acid as in the initial culture.
Claims
1. ピグメンティファーガ属に属し、 そしてリゾビゥム s p. OKH— 03 (FERM P— 19483) の芳香族ポリエステル分解能力を向上させうる能 力とテレフタル酸を分解する能力を有する微生物。 1. A microorganism belonging to the genus Pigmenthiferga and having the ability to improve the ability to degrade aromatic polyester of Rhizobium sp. OKH-03 (FERM P-19483) and the ability to degrade terephthalic acid.
2. ピグメンティファーガ属に属する微生物が、 受託番号 N I TE P— 6 5として寄託されたものである、 請求項 1記載の微生物。 2. The microorganism according to claim 1, wherein the microorganism belonging to the genus Pigmentifera has been deposited under the accession number N I TE P—65.
3. バシラス属に属し、 そしてリゾビゥム s p.OKH— 03の芳香族ポリ エステル分解能力を向上させうる能力を有する微生物。 3. A microorganism belonging to the genus Bacillus and capable of improving the ability to degrade aromatic polyester of Rhizobium sp.OKH-03.
4. バシラス属に属する微生物が、 受託番号 N I TE P— 67として寄託 されたものである、 請求項 3記載の微生物。 4. The microorganism according to claim 3, wherein the microorganism belonging to the genus Bacillus is deposited under the accession number N I TE P-67.
5. シユードモナス属に属し、 そしてリゾピウム s p.OKH— 03の芳香 族ボリエステル分解能力を向上させうる能力を有する微生物。 5. A microorganism belonging to the genus Pseudomonas and capable of improving the ability to degrade aromatic polyesters of Rhizopium sp.OKH-03.
6. シュ一ドモナス属に属する微生物が、 受領番号 N I TE P— 64とし て寄託されたものである、 請求項 5記載の微生物。 6. The microorganism according to claim 5, wherein the microorganism belonging to the genus Pseudomonas is deposited under the receipt number N I TE P-64.
7. アルファプロテオバクテリア綱に属し、 リゾビゥム s p. OKH— 03 の芳香族ポリエステル分解能力を向上させうる微生物。 7. A microorganism belonging to the class of alphaproteobacteria and capable of improving the ability of lysobium sp. OKH-03 to degrade aromatic polyester.
8. アルファプロテオバクテリア綱に属する微生物が、 受領番号 N I TE P— 66として寄託されたものである、 請求項 7記載の微生物。 8. The microorganism according to claim 7, wherein the microorganism belonging to the class Alphaproteobacteria is deposited under the receipt number N I TE P-66.
9. リゾビゥム s p. OKH- 03 (FERM P— 19483)、 及び請
求項:!〜 8に記載の微生物よりなる群から選ばれる少なくとも 1つの微生物を芳 香族ポリエステルに接触させて該芳香族ポリエステルを分解させることを特徴と する、 芳香族ポリエステルの分解方法。 9. Rhizobium s p. OKH-03 (FERM P—19483), and Claims: A method for decomposing an aromatic polyester, comprising decomposing the aromatic polyester by contacting at least one microorganism selected from the group consisting of the microorganisms described in! To 8 with the aromatic polyester.
0. 芳香族ポリエステルが、 エチレンテレフタレート繰り返し単位を 95重 %以上含むポリエステルである、 請求項 9記載の分解方法。 0. The decomposition method according to claim 9, wherein the aromatic polyester is a polyester containing 95% by weight or more of ethylene terephthalate repeating units.
11. 微生物と芳香族ポリエステルとの接触を LE培地中で行う、 請求項 9記 載の分解方法。 11. The degradation method according to claim 9, wherein the microorganism and the aromatic polyester are contacted in LE medium.
12. 微生物と芳香族ポリエステルとの接触を 20° (:〜 37 °Cの範囲で行う、 請求項 9記載の分解方法。 12. The decomposition method according to claim 9, wherein the contact between the microorganism and the aromatic polyester is performed in a range of 20 ° (: to 37 ° C).
13. 微生物と芳香族ポリエステルとの接触を pH5〜9の範囲で行う、 請求 項 9記載の分解方法。 13. The decomposition method according to claim 9, wherein the contact between the microorganism and the aromatic polyester is carried out in the range of pH 5-9.
14. 微生物と芳香族ポリエステルとの接触を、 微生物を芳香族ポリエステル に吸着させ、 バイオフィルムを形成させることにより行う、 請求項 9記載の分解 方法。
14. The decomposition method according to claim 9, wherein the contact between the microorganism and the aromatic polyester is carried out by adsorbing the microorganism to the aromatic polyester to form a biofilm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007504845A JP4753210B2 (en) | 2005-02-24 | 2006-02-24 | Decomposition method of aromatic polyester using microorganisms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-049063 | 2005-02-24 | ||
JP2005049063 | 2005-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006090913A1 true WO2006090913A1 (en) | 2006-08-31 |
Family
ID=36927535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/304041 WO2006090913A1 (en) | 2005-02-24 | 2006-02-24 | Method for degrading aromatic polyester using microorganism |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4753210B2 (en) |
WO (1) | WO2006090913A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008199957A (en) * | 2007-02-20 | 2008-09-04 | Kyoto Institute Of Technology | Aromatic polyester-degrading bacterium and method for degrading aromatic polyester using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065539A1 (en) * | 2020-09-23 | 2022-03-31 | 한국화학연구원 | Novel pigmentiphaga kullae strain having polycyclic aromatic hydrocarbon decomposition activity, and use thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019439A1 (en) * | 2003-08-22 | 2005-03-03 | Teijin Limited | Microorganism capable of degrading aromatic polyester and method of degrading aromatic polyester using the same |
-
2006
- 2006-02-24 WO PCT/JP2006/304041 patent/WO2006090913A1/en active Application Filing
- 2006-02-24 JP JP2007504845A patent/JP4753210B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019439A1 (en) * | 2003-08-22 | 2005-03-03 | Teijin Limited | Microorganism capable of degrading aromatic polyester and method of degrading aromatic polyester using the same |
Non-Patent Citations (2)
Title |
---|
CERDA-CUELLAR M. ET AL.: "Biodegradability of aromatic building blocks for poly(ethylene terephthalate) copolyesters", POLYMER DEGRADATION AND STABILITY, vol. 85, 2004, pages 865 - 871, XP004518304 * |
KAWAI F. AND ENOKIBARA S.: "Symbiotic Degradation of Polyethylene Glycol (PEG) 20,000-Phthalate Polyester by Phthalate Ester- and PEG 20,000-Utilizing Bacteria", JOURNAL OF FERMENTATION AND BIOENGINEERING, vol. 82, 1996, pages 575 - 579, XP003000027 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008199957A (en) * | 2007-02-20 | 2008-09-04 | Kyoto Institute Of Technology | Aromatic polyester-degrading bacterium and method for degrading aromatic polyester using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4753210B2 (en) | 2011-08-24 |
JPWO2006090913A1 (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5685596B2 (en) | Bacterial strain capable of degrading polylactic acid and variants thereof, and use thereof | |
Nair et al. | Augmentation of a microbial consortium for enhanced polylactide (PLA) degradation | |
Eubeler | Biodegradation of synthetic polymers in the aquatic environment | |
KR100761339B1 (en) | -2Novel strain Pseudomonas sp. KS-2P useful for degradation of endosulfan and toxic endosulfan sulfate | |
JP4753210B2 (en) | Decomposition method of aromatic polyester using microorganisms | |
JP4397652B2 (en) | Microorganism having ability to decompose aromatic polyester and method for decomposing aromatic polyester using the same | |
JP4707251B2 (en) | Activated sludge and wastewater treatment method | |
CN114410521B (en) | Gordonia with polyethylene degradation function and application thereof | |
JP2002125659A (en) | New microorganism and method for treating drain | |
JP2008199957A (en) | Aromatic polyester-degrading bacterium and method for degrading aromatic polyester using the same | |
JP2006180706A (en) | New polyvinyl alcohol-degrading bacterium | |
JP2005261234A (en) | New microorganism and method for removing arsenic by microorganism | |
JP3692455B2 (en) | Novel microorganism having polylactic acid resin resolution and method for decomposing polylactic acid resin | |
CN115216425B (en) | Flavobacterium nepalensis and application thereof in degradation of plastics | |
JP4146961B2 (en) | Novel microorganism and terephthalic acid-containing waste liquid treatment method using the same | |
WO2023286593A1 (en) | Aromatic polyester decomposing bacteria | |
JPH0739369A (en) | Isolation of plastic-degradative bacteria | |
JP3774774B2 (en) | Novel formaldehyde-decomposing microorganism and method for decomposing formaldehyde using the microorganism | |
CN118853437A (en) | Novel bacteria P53 of steroid bacillus and application thereof | |
JPH11155562A (en) | Microorganism having low-density polyethylene decomposing ability | |
JP3598347B2 (en) | Polyamide-decomposing bacteria and method for decomposing polyamides | |
JPWO2005045017A1 (en) | Method for decomposing polyhydroxyalkanoate resin | |
JPH11127850A (en) | Degradation of polylactic acid | |
CN118048263A (en) | Bacterial cellulose viable bacteria material, preparation method and application thereof in artificial sewage | |
TWI307715B (en) | A culture medium composition and method for screening polyester-degrading microorganisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007504845 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06728603 Country of ref document: EP Kind code of ref document: A1 |