WO2006090719A1 - Agent and method for preventing attachment of marine organism - Google Patents

Agent and method for preventing attachment of marine organism Download PDF

Info

Publication number
WO2006090719A1
WO2006090719A1 PCT/JP2006/303127 JP2006303127W WO2006090719A1 WO 2006090719 A1 WO2006090719 A1 WO 2006090719A1 JP 2006303127 W JP2006303127 W JP 2006303127W WO 2006090719 A1 WO2006090719 A1 WO 2006090719A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble polymer
gum
aqueous solution
acid
Prior art date
Application number
PCT/JP2006/303127
Other languages
French (fr)
Japanese (ja)
Inventor
Jian Ping Gong
Yoshihito Osada
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Priority to JP2007504735A priority Critical patent/JPWO2006090719A1/en
Publication of WO2006090719A1 publication Critical patent/WO2006090719A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance

Definitions

  • the present invention is a marine organism adhesion prevention capable of effectively preventing marine organisms from adhering to an object (for example, fish net, bottom net, nuclear power plant intake, ship bottom) disposed in the marine environment. It relates to the agent.
  • antifouling agents drugs called antifouling agents (anti-adhesive agents) are applied to fishing nets and ship bottoms in order to prevent fouling organisms from attaching.
  • This drug is composed mainly of organic nitrogen sulfur or inorganic copper compounds that have a herbicidal effect, and when it is immersed in seawater, it gradually dissolves and exhibits a herbicidal effect. In other words, this means that it also has an indiscriminate effect on edible marine products such as kombu and useful seaweed that live near the surface such as nets.
  • kombu and useful seaweed that live near the surface such as nets.
  • this antifouling agent has been continuously improved in consideration of its low impact on the environment and its long-lasting effect, but in order to be relatively resistant to poisons and effective against shellfish, A certain amount of high toxicity is still necessary.
  • the use of controlled-release antifouling agents that cause marine pollution should be permanently banned as a result of the enormous impact on the ecosystem.
  • Patent Document 1 WO03 / 067990
  • the Hyde Mouth Gel itself has an effect of preventing the adhesion of marine organisms, it has an adhesive strength that can withstand even in an actual field (underwater). In fact, it was found that it was extremely difficult to attach the id gel to the surface of the object to be applied. In particular, in order to ensure the effect of preventing the adhesion of marine organisms over the medium to long term, it is necessary to attach a certain degree of hyde mouth gel to the surface. As described below, it was extremely difficult.
  • the present inventors examined a method of polymerizing and cross-linking after applying a monomer solution such as acrylic acid to the surface of the object to be applied as the next method.
  • a monomer solution such as acrylic acid
  • the radical polymerization is performed in the field (outdoor) according to the method described in Example 1 of Patent Document 1 (acrylic acid as a monomer, methylene bisacrylamide as a crosslinking agent, and potassium persulfate as a polymerization initiator).
  • the radical reaction was inhibited by oxygen in the air, and as a result, a satisfactory gel could not be formed on the surface of the object to be applied.
  • radical polymerization there are a method of heating at 60 ° C or higher for several hours and a method of irradiating with ultraviolet light (UV). It is neither technically easy nor practical to apply to.
  • the liquid may be partially dried. Assumption (For example, summer).
  • the molecules in order to polymerize the monomers, the molecules must collide with each other. Therefore, a high monomer concentration and monomer mobility are required for the reaction. The gel does not progress and falls into a state where no gel is formed.
  • the present invention can fix a hyde mouth gel effective for preventing marine organism adhesion to the surface of an object to be applied with a simple and sufficient adhesive strength, and can easily adjust the gel thickness.
  • the purpose of the present invention is to provide an extremely practical marine organism adhesion preventive agent that can achieve low cost and high environmental safety, and does not require special equipment or equipment.
  • the present invention (1) is based on a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group (for example, a water-soluble polymer that can be ionically cross-linked with a polyvalent metal ion to form a gel).
  • a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group for example, a water-soluble polymer that can be ionically cross-linked with a polyvalent metal ion to form a gel.
  • a marine organism that is capable of forming a water-soluble polymer hydrogen film on the surface of the object by ionic crosslinking after being applied in the form of an aqueous solution to the surface of the object distributed in the marine environment. It is an anti-adhesive agent.
  • the water-soluble polymer may be polyacrylic acid (PAA), polymethacrylic acid (PMAA), poly-2-acrylamide-2-methylpropanesulfonic acid (PAMPS), polyvinylphenol, Polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl metatalylate, alginic acid, dielan gum, carboxymethyl cellulose, xanthan gum, natural gum, agar, agarose, force ragenan, fucodyne, fulselaran, laminaran, ibaranoli Said invention (1), which is one or more compounds or salts selected from the group consisting of giraffe, gum arabic, gum arabic, gala rubber, tragacanth gum, locust bean gum, arabinogalatatan, pectin and amylopectin Is a marine organism anti-adhesion agent .
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • the present invention (3) is a method for preventing adhesion of an object placed in a marine environment by marine organisms, Applying an aqueous solution mainly composed of a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group to the surface of the object to form a film of the aqueous solution;
  • a second step optionally drying said aqueous solution film to form said water-soluble polymer film
  • the water-soluble polymer may be polyacrylic acid (PAA), polymethacrylic acid (PMAA), poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinylphenol, Polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl metatalylate, alginic acid, dielan gum, carboxymethyl cellulose, xanthan gum, natural gum, agar, agarose, force ragenan, fucodyne, fulselaran, laminaran, ibaranoli Said invention (3) which is one or more compounds or salts selected from the group consisting of giraffe, gum arabic, gum arabic, gala rubber, tragacanth rubber, locust bean gum, arabinogalatatan, pectin and amylopectin This is the method.
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • PAMPS poly-2-acryla
  • the present invention (5) is the method of the above invention (3) or (4), wherein the polyvalent metal ion-containing aqueous solution is seawater.
  • the object in which the aqueous film or the water-soluble polymer film is formed on the surface of the object is immersed in seawater. This is the method of the invention (5).
  • a hide-mouthed gel effective in preventing marine organism adhesion can be fixed to the surface of an object to be applied with a simple and sufficient adhesive strength, and the gel thickness can be easily adjusted.
  • when such gel is applied to the bottom of a ship, the side of a ship, etc. Is more effective because it has the effect of reducing frictional resistance (see Japanese Patent Application 2001-13617).
  • the non-use of expendable drugs is expected to reduce the financial burden on fishery workers.
  • Figures 1 (a) to 1 (d) show test solution 1 applied sample 1 (a), test solution 2 applied sample 1 (b), test solution 3 applied sample 1 (c) at the initial stage of the outdoor test. As a control, the surface condition of the test solution non-applied block (d) is shown.
  • Figures 2 (a) to (d) show test solution 1 applied sample 1 (a), test solution 2 applied sample 1 (b), and test solution 3 three months after the start of the field test. It shows the surface condition of applied sample 1 (c) and control solution non-applied block (d) as a control.
  • Fig. 3 show test solution 1 applied sample 2 (a-1 and a-2), test solution 2 applied sample 2 (b), It shows the surface state of test solution 3 applied sample 2 (c) and, as a control, a block with expanded metal with no test solution applied (d-1 and d-2).
  • Fig.4 [Fig.4] Fig.4 (& 1) to ((1 2) shows test solution 1 applied sample 2 (a-1 and a-2), test solution 2 applied one month after starting outdoor test. The surface condition of Sample 2 (b), Test Solution 3 applied sample 2 (c), and a block with expanded metal (d-1 and d-2) without test solution as a control is shown.
  • FIG. 5 Fig. 5 (& —1) to ( ( : -2) are test solution 1 applied sample 2 (a-1 and a-2), test solution 3 months after starting outdoor test. 2 shows the surface conditions of sample 2 (b 1 and b-2) and test solution 3 sample 2 (c-1 and c 2).
  • Fig. 6 shows test solution 1 applied sample 2 (a-1 and a-2), test solution 4 months after starting outdoor test. It shows the surface condition of 2 sample 2 (b 1 and b-2) and test solution 3 sample 2 (c-1 and c 2).
  • FIG. 7 shows the state of the metal disk surface coated with the polymer once according to Example 4 (in the figure, the region A is a gel region and the region B is untreated). Area).
  • FIG. 8 shows the state of the surface of the metal plate coated with the polymer three times according to Example 4 (in the figure, the region A is the gel region and the region B is untreated). Area).
  • FIG. 9 shows the state of the surface of the metal disk coated with a single monomer according to Example 4 (in the figure, the region A is the gel region and the region B is untreated). Area).
  • FIG. 10 shows a state of the surface of the metal disk coated with a single polymer according to Example 5 (in the figure, the area A is the application area and the area B is the untreated area). Is).
  • FIG. 11 shows the state of the surface of a metal plate coated with a polymer three times according to Example 5 (in the figure, the area A is the application area, and the area B is the untreated area). Is).
  • This marine organism adhesion inhibitor is characterized by containing a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group as a main component.
  • a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group as a main component.
  • the water-soluble polymer will be described in detail.
  • the “ionic crosslinkable group” of the water-soluble polymer means that the ion crosslinkable groups are multivalent metal ions ⁇ for example, divalent and trivalent metal ions (for example, Mg 2+ , Ca 2+ , Cu 2+, Zn 2 +, although Fe 3+) is not particularly limited as long as ionic crosslinking group capable of being in ⁇ , when performing I O emissions crosslinked using seawater, seawater pH (e.g., 8-8 It is preferred that the group is ionized or ionizable in 5). Examples of such a group include a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group.
  • multivalent metal ions for example, divalent and trivalent metal ions (for example, Mg 2+ , Ca 2+ , Cu 2+, Zn 2 +, although Fe 3+) is not particularly limited as long as ionic crosslinking group capable of being in ⁇ , when performing I O emissions crosslinked using seawater,
  • ionic crosslinkable group it may have a functional group (for example, amine or OH group) capable of coordinating with a metal ion.
  • water-soluble means that 0.01% by mass (wt%) or more dissolves in water at 25 ° C.
  • the water-soluble polymer may or may not have a functional group other than the ion crosslinkable group.
  • the first group is a homopolymer or copolymer having an unsaturated organic acid as an essential component and an unsaturated compound as an optional component, or a salt thereof.
  • examples of unsaturated organic acids as essential components include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic acid, oleic acid, itaconic acid, cinnamic acid, propiolic acid; Unsaturated acids having a hydroxyl group bonded to the aromatic ring of, for example, vinylphenol; unsaturated sulfonic acids, for example, 2-methyl group pen senorephonic acid, vinylolacenorephonic acid, arinolacenorephonic acid, Nonsulphonic acid, a methyl styrene sulfonic acid; unsaturated phosphoric acid such as burric acid, phosphate s Tell.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic acid, oleic acid, itaconic acid, cinnamic acid, propiolic acid
  • an unsaturated compound as an optional component is acrylamide.
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • PAMPS poly-2-acrylamide-2-methylpropanesulfonic acid
  • the second group is a homopolymer or copolymer of an unsaturated carboxylic acid ester having a hydroxyl group as a bridging group, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate. It is a coalescence.
  • the third group consists of ionic polysaccharides such as alginate, dielan gum, carboxymethylcellulose, xanthan gum, natural gum, agar, agarose, force laganin, fucodyne, flucellaran, laminaran, ibaranori, giraffe, gum arabic, gum Chigum, Karaa gum, tragacanth gum, locust bean gum, arabinogalatatan, pectin and amylopectin.
  • ionic polysaccharides such as alginate, dielan gum, carboxymethylcellulose, xanthan gum, natural gum, agar, agarose, force laganin, fucodyne, flucellaran, laminaran, ibaranori, giraffe, gum arabic, gum Chigum, Karaa gum, tragacanth gum, locust bean gum, arabinogalatatan, pectin and amylopectin.
  • the water-soluble polymer according to the present invention may be a synthetic polymer or a natural polymer, as can be seen from the above examples.
  • the water-soluble polymer is preferably a polymer having a polymerization degree of 1000 or more.
  • polyacrylic acid is not particularly limited in terms of its molecular weight, linear or branched shape, etc.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) force in terms of polystyrene is usually from 0,000 to 1, About 500,000.
  • the water-soluble polymer can be produced by a well-known method and is also sold.
  • polyacrylic acid for example, Viscomate (registered trademark) series manufactured by Showa Denko KK (for example, NP-600, NP-700, NP-800; SL-104Y as partially neutralized products) , Aquaric (registered trademark) L and H series manufactured by Nippon Shokubai Co., Ltd., and Jurimer (trademark) series manufactured by Nippon Pure Chemical Co., Ltd.
  • the present inhibitor which is a composition
  • the present inhibitor contains the water-soluble polymer as a main component.
  • the “main component” means that the component occupies a majority (for example, weight) in the entire composition (dried product).
  • the composition is used in the form of an aqueous solution at the time of use. At this time, if the blending amount of the water-soluble polymer is too small, the viscosity becomes small, so that a sufficiently thick film may not be formed.
  • the blending amount of the water-soluble polymer is appropriately determined so as to obtain a suitable viscosity in accordance with the type and molecular weight of the polymer to be used.
  • the viscosity (dynamic viscosity) is preferably lOPa's or more.
  • the upper limit is not particularly limited, but is, for example, 10 7 Pa's or less.
  • a more preferred viscosity range is 10 2 to 10 6 Pa's.
  • Measurement conditions refer to values measured with a rotary rheometer (ARES-lOOFRTNl) under specified conditions (temperature: 27.0 ° C, Frequency: 0.01 rad / s, Strain: 1%).
  • the content of the water-soluble polymer is not particularly limited.
  • the water-soluble polymer is polyacrylic acid, it is 10% by weight or more based on the total weight (more preferably 20 to 50). % By weight) is preferred.
  • the marine organism adhesion inhibitor according to the present invention is a force in the form of an aqueous solution as described above when used, and is not limited to this. And types that are concentrated and diluted with water during use.
  • the “aqueous solution” in this specification is not limited to the case where the water-soluble polymer is completely dissolved, but also includes the case where the water-soluble polymer is partially dispersed (that is, the portion is not completely dissolved).
  • the "marine organism” in the present invention is not particularly limited as long as it is a plant inhabiting the ocean.
  • marine plants such as kombu, barnacles, Kasane Kanzashi, Murasakigi, sea squirt, etc. List marine animals.
  • object distributed in the marine environment means any object that is distributed in the marine environment.
  • underwater structures such as boats (especially ship bottoms), seawater intake channels, wave-dissipating blocks, drainage channels, tetrapots, aquaculture nets, buoys and stationary nets, etc.
  • marine facilities such as boats (especially ship bottoms), seawater intake channels, wave-dissipating blocks, drainage channels, tetrapots, aquaculture nets, buoys and stationary nets, etc.
  • objects placed in a simulated marine environment such as aquariums and live aquariums also fall under “objects placed in the marine environment”.
  • a method of using the marine organism adhesion inhibitor according to the present invention (a method of forming a hyde mouth gel on an object placed in the marine environment) will be described.
  • an aqueous polymer solution having a suitable viscosity is prepared by adding a predetermined amount of water (step 0).
  • polyvalent metal ion water for example, polyvalent metal ion water
  • the polymer in the polymer aqueous solution may be incompletely (weakly) ion-crosslinked by adding a solution (step 0, step 2).
  • the equivalent of the polyvalent metal ion to be added is set to be smaller than the equivalent of the ionic crosslinking group of the polymer existing in the system.
  • a part or all of the polyvalent metal ion aqueous solution may be seawater.
  • an aqueous polymer solution (in some cases, a weakly ion-crosslinked polymer aqueous solution) is applied to the material (first step).
  • the application method include a method of immersing the object in an aqueous polymer solution, a method of applying the object to the object with a brush, and a method of spraying the object by spraying.
  • the application thickness when a polymer aqueous solution is used as in the present invention, it is usually possible to construct a thickness of several nanometers to several micrometers per application.
  • the object to which the polymer aqueous solution is applied may be dried (second step).
  • the drying conditions are not particularly limited, and examples thereof include an aspect in which the drying conditions are left for several days at an outside temperature.
  • the effect of dripping the polymer aqueous solution can be prevented and the polymer aqueous solution adheres to a person or a carrier. This is convenient for handling.
  • an ionic cross-linking agent is applied to the film-forming object (the object on which the aqueous polymer film or the water-soluble polymer film is formed).
  • the ionic crosslinking agent as described above, multivalent (e.g., divalent, trivalent) cation (e.g., Mg 2+, Ca 2 +, Cu 2+, Zn 2+, Fe 3+) is Fe 3+ is more preferable from the viewpoint of making the formed hydrated gel high strength.
  • multivalent (e.g., divalent, trivalent) cation e.g., Mg 2+, Ca 2 +, Cu 2+, Zn 2+, Fe 3+
  • Fe 3+ is more preferable from the viewpoint of making the formed hydrated gel high strength.
  • Fe (SO) FeCl
  • CaCl CaCl
  • MgCl multivalent (e.g., divalent, trivalent) cation
  • the amount of the ionic cross-linking agent is preferably an equivalent amount sufficient for ionic cross-linking of the ionic cross-linkable group present in the system.
  • 20 to 50% by weight of an aqueous polyacrylic acid solution is added.
  • the preferred concentration of Fe 3+ aqueous solution is at 1 X 10 _3 M or more, more preferably in 5 X 10 _3 M ⁇ 1 X 10 _1 M.
  • the concentration in the aqueous solution is at least 1M, more preferably 1M ⁇ : a L0M.
  • these polyvalent metal ions trivalent cations such as Fe 3+ , Mg 2+ , C It is advantageous to use seawater containing divalent cations such as a2 + , Cu2 + and Zn2 + . That is, the ability to sink the film-forming object into the sea By spraying seawater on the object, the polymer is ionically crosslinked, resulting in the formation of a hide mouth gel that exhibits the effect of preventing marine organism adhesion.
  • a hyde-mouth gel having a thickness of several nanometers and a thickness of several nanometers is usually formed by a single operation (the above-mentioned first process force up to the third process). Is possible. However, if it is necessary to form a thicker mouth-mouthed gel (e.g., several tens of micrometers, millimeters), e.g. to ensure long-term durability, the above operation is repeated many times.
  • the thickness of the water-soluble polymer can be adjusted as appropriate by increasing the viscosity of the water-soluble polymer by repeating the treatment or increasing the concentration of the water-soluble polymer or increasing the molecular weight.
  • the hide mouth gel formed through the above-described operation is preferably a hide mouth gel having a swelling degree of 1.5 to 500, and particularly preferably a swelling degree of 2 to: LOO Hyde mouth gel.
  • the degree of swelling refers to a value obtained by dividing the sum of the weight of water and the weight of polymer in the hydrated gel by the weight of the polymer.
  • the formed hide-mouthed gel is capable of releasing protons. More specifically, (and most preferably, 10- 2 mol / L ⁇ lmol / L) proton concentration force 10- 6 mol / L ⁇ 5mol / L is preferably those which are.
  • the proton concentration in the hyde mouth gel can be determined according to the method described in Macromol. Rapid Commun. 16, 713-716 (1995).
  • the “proton concentration” is a value obtained by dividing the number of moles of protons originally held by the water-soluble polymer by the volume of the hydose mouth gel, that is, the number of moles of protons dissociated from the water-soluble polymer column. And the number of moles of undissociated protons still bound to the water-soluble polymer divided by the volume of the gel.
  • a white PAA nodrogel was formed on the concrete block and the concrete block with expanded metal.
  • Concrete objects and concrete blocks with expanded metal were used as objects.
  • a concrete block and a concrete block with expanded metal were immersed in a PAA aqueous solution (35 wt% aqueous solution, Aldrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa-s).
  • PAA aqueous solution 35 wt% aqueous solution, Aldrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa-s.
  • the PAA aqueous solution force also pulled out the concrete block and the concrete block with expanded metal, followed by Fe (SO) aqueous solution (4.4 X 10
  • Example 3 field test, test example
  • a PAA aqueous solution 35 wt%, manufactured by Ardrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa's
  • sample 1 concrete block tied with rope
  • sample 2 concrete block with expanded metal tied with rope
  • FIGS. 3 (a-1) to (b-2) are photographs of sample 2 (test solution applied) and control (no test solution applied) at the start of the test, respectively.
  • Figures 4 (a-l) to (b-2) are photographs of sample 2 (test solution applied) and control (no test solution applied) one month after the start, respectively.
  • a large amount of marine organisms mainly barnacles
  • Figures 5 (a-l) to (a-2) are photographs of sample 2 to which the test solution was applied, 3 months after the start.
  • Figures 6 (a-1) to (a-2) are photographs of Sample 2 to which the test solution was applied, with the starting force also after 4 months.
  • a water-soluble polymer aqueous solution is applied and ion-crosslinked to form a hydration gel on the surface of the metal substrate, and an aqueous monomer solution constituting the polymer is applied and polymerized and ion-crosslinked.
  • a comparative test was conducted on the peelability of the substrate when a hydose gel was formed on the surface of the metal substrate.
  • the aluminum base is used as the metal base
  • the polyacrylic acid made by Ardrich, weight average molecular weight 250, 000
  • the water-soluble polymer aqueous solution is 35 wt% aqueous solution (dynamic viscosity: 1.02 X 10 6 Pa 's).
  • a monomer aqueous solution a 35 wt% acrylic acid aqueous solution is used.
  • a 10 wt% aqueous solution was used.
  • the application is: (1) Apply the monomer solution to the surface of the half of the aluminum substrate using Kimwipe (registered trademark), (2) Then immerse in the solution of the cross-linking agent, (3) Cross-linking agent after 5 minutes The procedure was to lift the substrate from the solution and dry. A series of steps (1) to (3) performed once was defined as a single monomer coating.
  • Fig. 9 shows the appearance of an aluminum substrate coated with a single monomer (in the figure, the area A is the application area and the area B is the untreated area).
  • the monomer on the substrate diffused into the solution in the cross-linking agent solution, and the gelation on the substrate was extremely powerful.
  • FIG. 11 shows the appearance of the aluminum disk surface with three coatings of polymer (in the figure, area A is the application area and area B is the untreated area). It is. As can be seen from these figures, it was confirmed that both “single polymer coating” and “three polymer coatings” remained as they were, although there was some peeling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A marine organism attachment preventive agent which comprises, as a main component, a multi-functional water-soluble polymer having an ion-crosslinkable group as a functional group, and can form a hydrogel film of the above water-soluble polymer on the surface of an article to be exposed to the marine circumstance, when it is applied to the surface of the above article in the form of an aqueous solution and then is ion-crosslinked. Further, a method for preventing the attachment of a marine organism to an article to be exposed to the marine circumstance, which comprises a first step of applying an aqueous solution containing, as a main component, a multi-functional water-soluble polymer having an ion-crosslinkable group as a functional group on the surface of the above article, to form a coating film of the above aqueous solution, an optional second step of drying the above coating film to form a coating film of the above water-soluble polymer, and, a third step of applying an aqueous solution containing a multi-valent metal ion, such as sea water, to the above coating film of the aqueous solution or the above coating film of the water-soluble polymer formed on the surface of the above article, to thereby subject the water-soluble polymer to the ion-crosslinking and form a hydrogel film on the surface of the above article.

Description

明 細 書  Specification
海洋生物付着防止剤及びその方法  Marine organism adhesion inhibitor and method thereof
技術分野  Technical field
[0001] 本発明は、海洋環境に配される物体 (例えば、魚網、底引網、原子力発電所の取 水口、船底)に海洋生物が付着することを有効に防止可能な、海洋生物付着防止剤 に関する。  [0001] The present invention is a marine organism adhesion prevention capable of effectively preventing marine organisms from adhering to an object (for example, fish net, bottom net, nuclear power plant intake, ship bottom) disposed in the marine environment. It relates to the agent.
背景技術  Background art
[0002] 現在、漁網や船底には、汚損生物が付着するのを防ぐため、防汚剤 (抗付着剤)と 呼ばれる薬物が塗布されている。この薬剤は、除草効果のある有機窒素硫黄または 無機銅系化合物を主成分としており、海水中に浸漬されると徐々に溶け出し除草効 果を示すというものである。つまりこれは、網などの表面だけでなぐ付近に棲息する 有用海藻のコンブやゥ-'ァヮビ等の食用海産物にも無差別的に影響を与えることを 意味しており、実際にこうした薬剤を使用し続けた結果、日本の沿岸各地で雌の貝に 雄の生殖器が発現する奇形が数多く見られるようになった。近年、この防汚剤は、環 境に対する影響の低さと効果の持続性を考慮して改良が続けられているが、毒物に 対する耐性が比較的高 、貝類にも効果を示すためには、やはりある程度の高 ヽ毒性 が必要となる。しなしながら、結果的に生態系に多大な影響を与えるため、海洋汚染 の原因となる薬物徐放型の防汚剤の使用は恒久的に禁止すべきである。  [0002] Currently, drugs called antifouling agents (anti-adhesive agents) are applied to fishing nets and ship bottoms in order to prevent fouling organisms from attaching. This drug is composed mainly of organic nitrogen sulfur or inorganic copper compounds that have a herbicidal effect, and when it is immersed in seawater, it gradually dissolves and exhibits a herbicidal effect. In other words, this means that it also has an indiscriminate effect on edible marine products such as kombu and useful seaweed that live near the surface such as nets. As a result, many malformations in which male reproductive organs appear in female shellfish have been found throughout the coast of Japan. In recent years, this antifouling agent has been continuously improved in consideration of its low impact on the environment and its long-lasting effect, but in order to be relatively resistant to poisons and effective against shellfish, A certain amount of high toxicity is still necessary. However, the use of controlled-release antifouling agents that cause marine pollution should be permanently banned as a result of the enormous impact on the ecosystem.
[0003] そこで、本発明者らは、従来の防汚剤に取って代わる、生態系や自然環境への影 響のな 、防汚処理技術を研究した結果、海洋生物の付着を防止するためにある種 のハイド口ゲルが有効であるという知見を得、当該成果を特許出願した (特許文献 1) 特許文献 1: WO03/067990  [0003] Therefore, the present inventors have studied antifouling treatment technology that does not affect the ecosystem and the natural environment, replacing the conventional antifouling agent. And obtained a patent application for the result (Patent Document 1) Patent Document 1: WO03 / 067990
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、その後の本発明者らによる研究の結果、ハイド口ゲル自体は海洋生 物付着防止効果を奏するものの、実際のフィールド (海中)でも耐え得る程の接着強 度でノ、イド口ゲルを適用対象物の表面に付着させることが、実は極めて困難であるこ とが判明した。特に、中長期に亘る海洋生物付着防止効果を担保するためにはある 程度の厚さのハイド口ゲルを当該表面に付着させる必要があるところ、所望の厚さで かつ高強度で接着させることは、以下で述べるように困難を極めた。 [0004] However, as a result of subsequent studies by the present inventors, although the Hyde Mouth Gel itself has an effect of preventing the adhesion of marine organisms, it has an adhesive strength that can withstand even in an actual field (underwater). In fact, it was found that it was extremely difficult to attach the id gel to the surface of the object to be applied. In particular, in order to ensure the effect of preventing the adhesion of marine organisms over the medium to long term, it is necessary to attach a certain degree of hyde mouth gel to the surface. As described below, it was extremely difficult.
[0005] まず、本発明者らは、ハイド口ゲルを調製し、当該ゲルを適用対象物の表面に接着 する各種手法を試みた。しかしながら、いずれの手法においても満足のいく強度で接 着することが困難であったことに加え、仮に十分な強度で接着できたとしても、複雑の 形状を持つ適用対象物の場合、当該表面の被覆が非常に困難であるという別の問 題も抱えている。このように、含水のゲルを適用対象物の表面に接着させること、まし てやある程度の厚さのゲルを複雑な形状の適用対象物の表面に接着させること、更 には、海中において中長期的に接着状態を維持できる程、十分な強度で接着させる ことは、極めて困難であるという結論に至った。  [0005] First, the present inventors tried various methods for preparing a hide-mouthed gel and bonding the gel to the surface of an object to be applied. However, in addition to being difficult to adhere with satisfactory strength in any of the methods, even if it can be bonded with sufficient strength, in the case of an application object having a complicated shape, Another problem is that coating is very difficult. In this way, the water-containing gel is adhered to the surface of the object to be applied, and the gel of a certain thickness is adhered to the surface of the object to be complicatedly shaped. It was concluded that it was extremely difficult to bond with sufficient strength to maintain the adhesive state.
[0006] そこで、本発明者らは、次の手法として、アクリル酸等のモノマー溶液を適用対象物 の表面に塗布した後、重合'架橋する手法を検討した。しかしながら、例えば、特許 文献 1の実施例 1に記載された手法 (モノマーとしてアクリル酸、架橋剤としてメチレン ビスアクリルアミド、重合開始剤として過硫酸カリウム)に従ってフィールド (屋外)でラ ジカル重合を実施した場合には、ラジカル反応が空気中の酸素によって阻害される 結果、適用対象物の表面に満足のいくゲルを形成させることができな力つた。ここで、 ラジカル重合に際しては、 60°C以上で数時間加熱する方法や紫外光 (UV)を照射 する手法があるが、いずれの手法も、大型の船や排水口、直径数十メートルの網に 適用することは技術的にも容易でなく現実的でない。  [0006] Therefore, the present inventors examined a method of polymerizing and cross-linking after applying a monomer solution such as acrylic acid to the surface of the object to be applied as the next method. However, for example, when radical polymerization is performed in the field (outdoor) according to the method described in Example 1 of Patent Document 1 (acrylic acid as a monomer, methylene bisacrylamide as a crosslinking agent, and potassium persulfate as a polymerization initiator). As a result, the radical reaction was inhibited by oxygen in the air, and as a result, a satisfactory gel could not be formed on the surface of the object to be applied. Here, in radical polymerization, there are a method of heating at 60 ° C or higher for several hours and a method of irradiating with ultraviolet light (UV). It is neither technically easy nor practical to apply to.
[0007] カロえて、本発明者らの試験の結果、モノマー溶液を塗布する手法の場合には、乾 燥する過程で海島状になる傾向があることが判明した。海島状になると、均一な層が 形成できないことに加え、形成された薄ゲルは剥離し易ぐ所望のゲル厚にすること もできない。カロえて、以下の実施例 4のくモノマー水溶液〉のような手法の場合には、 モノマー自体が溶液中に拡散してしまうため、薄ゲルすら出来ないことも判明した。  [0007] As a result of the present inventors' tests, it has been found that the technique of applying a monomer solution tends to form a sea-island during the drying process. When it becomes a sea-island shape, a uniform layer cannot be formed, and the formed thin gel cannot easily be peeled to a desired gel thickness. In the case of a technique such as the monomer aqueous solution of Example 4 below, it was found that the monomer itself diffuses into the solution, so that even a thin gel cannot be formed.
[0008] 更には、実際に使用する際、モノマー溶液を適用対象物の表面に塗布した後、重 合 ·架橋工程まで時間をあけてしまうと、当該液が部分的に乾燥してしまうことが想定 される(例えば夏場)。この場合、モノマーを重合するためには分子同士が衝突しなく てはならず、そのため、高いモノマー濃度とモノマー運動性が当該反応に要求される ところ、部分的にでも乾燥すると当該乾燥部で反応が進まずゲルが形成されない事 態に陥る。 [0008] Furthermore, in actual use, if the monomer solution is applied to the surface of the object to be applied and then a time is passed until the polymerization / crosslinking step, the liquid may be partially dried. Assumption (For example, summer). In this case, in order to polymerize the monomers, the molecules must collide with each other. Therefore, a high monomer concentration and monomer mobility are required for the reaction. The gel does not progress and falls into a state where no gel is formed.
[0009] 更に、モノマーを適用対象物の表面に塗布する手法の場合、未反応のモノマーが 多少なりとも残存するところ、一般的にモノマーは生物に有害であるため、周囲の海 洋環境に悪影響を及ぼす。  [0009] Furthermore, in the method of applying the monomer to the surface of the object to be applied, some unreacted monomer remains, but since the monomer is generally harmful to living organisms, it adversely affects the surrounding marine environment. Effect.
[0010] そこで、本発明は、海洋生物付着防止に有効なハイド口ゲルを適用対象物の表面 に簡単かつ十分な接着強度で固定させることができ、かつ、ゲル厚の調整も容易で あると共に、低コスト'高環境安全性を達成でき、かつ、特殊な設備や装置も不要で ある、極めて実用的な海洋生物付着防止剤を提供することを目的とする。  [0010] Therefore, the present invention can fix a hyde mouth gel effective for preventing marine organism adhesion to the surface of an object to be applied with a simple and sufficient adhesive strength, and can easily adjust the gel thickness. The purpose of the present invention is to provide an extremely practical marine organism adhesion preventive agent that can achieve low cost and high environmental safety, and does not require special equipment or equipment.
課題を解決するための手段  Means for solving the problem
[0011] 本発明(1)は、イオン架橋性基を官能基とする多官能性水溶性ポリマー (例えば、 多価金属イオンでイオン架橋してゲルを形成し得る水溶性ポリマー)を主成分として 含有することを特徴とする、海洋環境に配される物体の表面に水溶液の形態で適用 した後、イオン架橋させることにより当該物体表面に前記水溶性ポリマーのハイドロゲ ル膜を形成し得る、海洋生物付着防止剤である。  [0011] The present invention (1) is based on a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group (for example, a water-soluble polymer that can be ionically cross-linked with a polyvalent metal ion to form a gel). A marine organism that is capable of forming a water-soluble polymer hydrogen film on the surface of the object by ionic crosslinking after being applied in the form of an aqueous solution to the surface of the object distributed in the marine environment. It is an anti-adhesive agent.
[0012] 本発明(2)は、前記水溶性ポリマーが、ポリアクリル酸 (PAA)、ポリメタクリル酸 (P MAA)、ポリ 2—アクリルアミドー 2—メチルプロパンスルホン酸(PAMPS)、ポリビ- ルフエノール、ポリマレイン酸、ヒドロキシェチルアタリレート、ヒドロキシェチルメタタリ レート、ヒドロキシプロピルメタタリレート、アルギン酸、ジエランガム、カルボキシメチル セルロース、キサンタンガム、天然ガム、寒天、ァガロース、力ラゲナン、フコダイン、フ ルセララン、ラミナラン、イバラノリ、キリンサイ、アラビアゴム、ガッチゴム、カラャゴム、 トラガカントゴム、ローカストビーンゴム、ァラビノガラタタン、ぺクチン及びアミロぺクチ ンカもなる群より選択される一種以上の化合物又は塩である、前記発明(1)の海洋 生物付着防止剤である。  [0012] In the present invention (2), the water-soluble polymer may be polyacrylic acid (PAA), polymethacrylic acid (PMAA), poly-2-acrylamide-2-methylpropanesulfonic acid (PAMPS), polyvinylphenol, Polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl metatalylate, alginic acid, dielan gum, carboxymethyl cellulose, xanthan gum, natural gum, agar, agarose, force ragenan, fucodyne, fulselaran, laminaran, ibaranoli Said invention (1), which is one or more compounds or salts selected from the group consisting of giraffe, gum arabic, gum arabic, gala rubber, tragacanth gum, locust bean gum, arabinogalatatan, pectin and amylopectin Is a marine organism anti-adhesion agent .
[0013] 本発明(3)は、海洋環境に配される物体の、海洋生物による付着を防止する方法 において、 イオン架橋性基を官能基とする多官能性水溶性ポリマーを主成分とする水溶液を 前記物体の表面に適用し、前記水溶液の被膜を形成する第一工程; [0013] The present invention (3) is a method for preventing adhesion of an object placed in a marine environment by marine organisms, Applying an aqueous solution mainly composed of a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group to the surface of the object to form a film of the aqueous solution;
場合により存在していてもよい、前記水溶液の被膜を乾燥させ、前記水溶性ポリマ 一の被膜を形成させる第二工程;及び  A second step optionally drying said aqueous solution film to form said water-soluble polymer film; and
前記物体の表面に形成された前記水溶液の被膜又は前記水溶性ポリマーの被膜 に、多価金属イオン含有水溶液を適用し、前記水溶性ポリマーをイオン架橋してハイ ドロゲル膜を前記物体の表面に形成させる第三工程  Applying a polyvalent metal ion-containing aqueous solution to the aqueous film or the water-soluble polymer film formed on the surface of the object, and ion-crosslinking the water-soluble polymer to form a hydrogel film on the surface of the object Third process
を有することを特徴とする方法である。  It is the method characterized by having.
[0014] 本発明(4)は、前記水溶性ポリマーが、ポリアクリル酸 (PAA)、ポリメタクリル酸 (P MAA)、ポリ 2—アクリルアミドー 2—メチルプロパンスルホン酸(PAMPS)、ポリビ- ルフエノール、ポリマレイン酸、ヒドロキシェチルアタリレート、ヒドロキシェチルメタタリ レート、ヒドロキシプロピルメタタリレート、アルギン酸、ジエランガム、カルボキシメチル セルロース、キサンタンガム、天然ガム、寒天、ァガロース、力ラゲナン、フコダイン、フ ルセララン、ラミナラン、イバラノリ、キリンサイ、アラビアゴム、ガッチゴム、カラャゴム、 トラガカントゴム、ローカストビーンゴム、ァラビノガラタタン、ぺクチン及びアミロぺクチ ンカもなる群より選択される一種以上の化合物又は塩である、前記発明(3)の方法で ある。  [0014] In the present invention (4), the water-soluble polymer may be polyacrylic acid (PAA), polymethacrylic acid (PMAA), poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinylphenol, Polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl metatalylate, alginic acid, dielan gum, carboxymethyl cellulose, xanthan gum, natural gum, agar, agarose, force ragenan, fucodyne, fulselaran, laminaran, ibaranoli Said invention (3) which is one or more compounds or salts selected from the group consisting of giraffe, gum arabic, gum arabic, gala rubber, tragacanth rubber, locust bean gum, arabinogalatatan, pectin and amylopectin This is the method.
[0015] 本発明(5)は、前記多価金属イオン含有水溶液が、海水である、前記発明(3)又 は (4)の方法である。  [0015] The present invention (5) is the method of the above invention (3) or (4), wherein the polyvalent metal ion-containing aqueous solution is seawater.
[0016] 本発明(6)は、前記第三工程が、前記水溶液の被膜又は前記水溶性ポリマーの被 膜が前記物体の表面に形成された前記物体を、海水に浸漬させるものである、前記 発明(5)の方法である。  [0016] In the present invention (6), in the third step, the object in which the aqueous film or the water-soluble polymer film is formed on the surface of the object is immersed in seawater. This is the method of the invention (5).
発明の効果  The invention's effect
[0017] 本発明によれば、海洋生物付着防止に有効なハイド口ゲルを適用対象物の表面に 簡単かつ十分な接着強度で固定させることができ、かつ、ゲル厚の調整も容易であ ると共に、低コスト'高環境安全性を達成でき、かつ、特殊な設備や装置も不要である 、極めて実用的な海洋生物付着防止剤を提供することが可能になるという効果を奏 する。更に、このようなゲルを船底、船側面などに塗布、コート、被覆して用いた場合 には、摩擦抵抗を低減する効果がある (特願 2001— 13617参照)ことから、一層効 果的である。また、消耗型薬剤の不使用によって、漁業就業者の金銭的負担が軽減 されるという効果も期待される。 [0017] According to the present invention, a hide-mouthed gel effective in preventing marine organism adhesion can be fixed to the surface of an object to be applied with a simple and sufficient adhesive strength, and the gel thickness can be easily adjusted. At the same time, it is possible to provide an extremely practical marine organism adhesion preventive agent that can achieve low cost, high environmental safety, and does not require special equipment or equipment. In addition, when such gel is applied to the bottom of a ship, the side of a ship, etc. Is more effective because it has the effect of reducing frictional resistance (see Japanese Patent Application 2001-13617). In addition, the non-use of expendable drugs is expected to reduce the financial burden on fishery workers.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1 (a)〜(d)は、屋外試験の初期における、試験溶液 1適用サンプル 1 (a)、 試験溶液 2適用サンプル 1 (b)、試験溶液 3適用サンプル 1 (c)及び対照として試験 溶液無適用ブロック (d)の表面状態を示したものである。 [Figure 1] Figures 1 (a) to 1 (d) show test solution 1 applied sample 1 (a), test solution 2 applied sample 1 (b), test solution 3 applied sample 1 (c) at the initial stage of the outdoor test. As a control, the surface condition of the test solution non-applied block (d) is shown.
[図 2]図 2 (a)〜(d)は、屋外試験を開始して 3ヶ月後における、試験溶液 1適用サン プル 1 (a)、試験溶液 2適用サンプル 1 (b)、試験溶液 3適用サンプル 1 (c)及び対照 として試験溶液無適用ブロック (d)の表面状態を示したものである。  [Figure 2] Figures 2 (a) to (d) show test solution 1 applied sample 1 (a), test solution 2 applied sample 1 (b), and test solution 3 three months after the start of the field test. It shows the surface condition of applied sample 1 (c) and control solution non-applied block (d) as a control.
[図 3]図 3 (a— l)〜(d 2)は、屋外試験の初期における、試験溶液 1適用サンプル 2 (a— 1及び a— 2)、試験溶液 2適用サンプル 2 (b)、試験溶液 3適用サンプル 2 (c) 及び対照として試験溶液無適用エキスパンドメタル付ブロック(d— 1及び d— 2)の表 面状態を示したものである。 [Fig. 3] Fig. 3 (a-l) to (d 2) show test solution 1 applied sample 2 (a-1 and a-2), test solution 2 applied sample 2 (b), It shows the surface state of test solution 3 applied sample 2 (c) and, as a control, a block with expanded metal with no test solution applied (d-1 and d-2).
[図4]図4 (& 1)〜((1 2)は、屋外試験を開始して 1ヶ月後における、試験溶液 1適 用サンプル 2 (a- 1及び a— 2)、試験溶液 2適用サンプル 2 (b)、試験溶液 3適用サ ンプル 2 (c)及び対照として試験溶液無適用エキスパンドメタル付ブロック(d— 1及び d- 2)の表面状態を示したものである。  [Fig.4] Fig.4 (& 1) to ((1 2) shows test solution 1 applied sample 2 (a-1 and a-2), test solution 2 applied one month after starting outdoor test. The surface condition of Sample 2 (b), Test Solution 3 applied sample 2 (c), and a block with expanded metal (d-1 and d-2) without test solution as a control is shown.
[図5]図5 (&—1)〜((:ー2)は、屋外試験を開始して 3ヶ月後における、試験溶液 1適 用サンプル 2 (a- 1及び a— 2)、試験溶液 2適用サンプル 2 (b 1及び b— 2)及び試 験溶液 3適用サンプル 2 (c— 1及び c 2)の表面状態を示したものである。 [Fig. 5] Fig. 5 (& —1) to ( ( : -2) are test solution 1 applied sample 2 (a-1 and a-2), test solution 3 months after starting outdoor test. 2 shows the surface conditions of sample 2 (b 1 and b-2) and test solution 3 sample 2 (c-1 and c 2).
[図6]図6 (&—1)〜((:ー2)は、屋外試験を開始して 4ヶ月後における、試験溶液 1適 用サンプル 2 (a- 1及び a— 2)、試験溶液 2適用サンプル 2 (b 1及び b— 2)及び試 験溶液 3適用サンプル 2 (c— 1及び c 2)の表面状態を示したものである。 [Fig. 6] Fig. 6 (& —1) to ( ( : -2) shows test solution 1 applied sample 2 (a-1 and a-2), test solution 4 months after starting outdoor test. It shows the surface condition of 2 sample 2 (b 1 and b-2) and test solution 3 sample 2 (c-1 and c 2).
[図 7]図 7は、実施例 4に係る、ポリマー 1回塗の金属盤表面の様子を示したものであ る(図中、 Aの領域がゲル領域であり、 Bの領域が無処理領域である)。  [FIG. 7] FIG. 7 shows the state of the metal disk surface coated with the polymer once according to Example 4 (in the figure, the region A is a gel region and the region B is untreated). Area).
[図 8]図 8は、実施例 4に係る、ポリマー 3回塗の金属盤表面の様子を示したものであ る(図中、 Aの領域がゲル領域であり、 Bの領域が無処理領域である)。 [図 9]図 9は、実施例 4に係る、モノマー 1回塗の金属盤表面の様子を示したものであ る(図中、 Aの領域がゲル領域であり、 Bの領域が無処理領域である)。 [FIG. 8] FIG. 8 shows the state of the surface of the metal plate coated with the polymer three times according to Example 4 (in the figure, the region A is the gel region and the region B is untreated). Area). [Fig. 9] Fig. 9 shows the state of the surface of the metal disk coated with a single monomer according to Example 4 (in the figure, the region A is the gel region and the region B is untreated). Area).
[図 10]図 10は、実施例 5に係る、ポリマー 1回塗の金属盤表面の様子を示したもので ある(図中、 Aの領域が適用領域であり、 Bの領域が無処理領域である)。  [FIG. 10] FIG. 10 shows a state of the surface of the metal disk coated with a single polymer according to Example 5 (in the figure, the area A is the application area and the area B is the untreated area). Is).
[図 11]図 11は、実施例 5に係る、ポリマー 3回塗の金属盤表面の様子を示したもので ある(図中、 Aの領域が適用領域であり、 Bの領域が無処理領域である)。  [FIG. 11] FIG. 11 shows the state of the surface of a metal plate coated with a polymer three times according to Example 5 (in the figure, the area A is the application area, and the area B is the untreated area). Is).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] まず、本発明に係る海洋生物付着防止剤について説明する。本海洋生物付着防 止剤は、イオン架橋性基を官能基とする多官能性水溶性ポリマーを主成分として含 有することを特徴とする。以下、まず、当該水溶性ポリマーについて詳述する。  [0019] First, the marine organism adhesion inhibitor according to the present invention will be described. This marine organism adhesion inhibitor is characterized by containing a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group as a main component. Hereinafter, first, the water-soluble polymer will be described in detail.
[0020] まず、当該水溶性ポリマーが有する「イオン架橋性基」とは、イオン架橋基同士が多 価金属イオン {例えば、二価、三価の金属イオン (例えば、 Mg2+、 Ca2+、 Cu2+、 Zn2 +、 Fe3+) }でイオン架橋され得る基であれば特に限定されないが、海水を用いてィォ ン架橋を行う場合には、海水の pH (例えば 8〜8. 5)においてイオンィ匕されているか イオン化され得る基であることが好適である。このような基として、例えば、カルボキシ ル基、水酸基、スルホン酸基、リン酸基等を挙げることができる。尚、この「イオン架橋 性基」の他に、金属イオンと配位結合し得る官能基 (例えば、アミンゃ OH基等)を有 していてもよい。また、「水溶性」とは、 25°Cの水に 0. 01質量%(wt%)以上溶解す ることを意味する。更に、当該水溶性ポリマーは、イオン架橋性基以外の官能基を有 していてもいなくともよい。 First, the “ionic crosslinkable group” of the water-soluble polymer means that the ion crosslinkable groups are multivalent metal ions {for example, divalent and trivalent metal ions (for example, Mg 2+ , Ca 2+ , Cu 2+, Zn 2 +, although Fe 3+) is not particularly limited as long as ionic crosslinking group capable of being in}, when performing I O emissions crosslinked using seawater, seawater pH (e.g., 8-8 It is preferred that the group is ionized or ionizable in 5). Examples of such a group include a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group. In addition to the “ionic crosslinkable group”, it may have a functional group (for example, amine or OH group) capable of coordinating with a metal ion. In addition, “water-soluble” means that 0.01% by mass (wt%) or more dissolves in water at 25 ° C. Furthermore, the water-soluble polymer may or may not have a functional group other than the ion crosslinkable group.
[0021] 次に、当該水溶性ポリマーの好適例を挙げる。まず、第一群は、不飽和有機酸を必 須成分とし不飽和化合物を任意成分とする単独重合体又は共重合体或いはそれら の塩である。ここで、必須成分としての不飽和有機酸の例は、不飽和カルボン酸、例 えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸、ォレイン酸、ィタコン酸、桂皮 酸、プロピオル酸;電子吸引性の芳香環に結合したヒドロキシル基を有する不飽和酸 、例えば、ビニルーフエノール;不飽和スルホン酸、例えば、 2—メチループ口ペン スノレホン酸、ビニノレースノレホン酸、ァリノレースノレホン酸、スチレンースノレホン酸、 a メチルスチレンスルホン酸;不飽和リン酸、例えば、ビュル リン酸、ホスフェートエス テルである。任意成分としての不飽和化合物の例は、アクリルアミドである。具体的に は、例えば、ポリアクリル酸(PAA)、ポリメタクリル酸(PMAA)、ポリ 2—アクリルアミド 2—メチルプロパンスルホン酸(PAMPS)、ポリビュルフエノール又はポリマレイン 酸或いはそれらの塩 (例えばナトリウム塩)である。次に、第二群は、ヒドロキシェチル アタリレート、ヒドロキシェチルメタタリレート、ヒドロキシプロピルメタタリレート等の、架 橋性基としての水酸基を有する不飽和カルボン酸エステルの単独重合体又は共重 合体である。次に、第三群は、イオン性多糖類、例えば、アルギン酸塩、ジエランガム 、カルボキシメチルセルロース、キサンタンガム、天然ガム、寒天、ァガロース、力ラゲ ナン、フコダイン、フルセララン、ラミナラン、イバラノリ、キリンサイ、アラビアゴム、ガッ チゴム、カラャゴム、トラガカントゴム、ローカストビーンゴム、ァラビノガラタタン、ぺク チン及びアミロぺクチンである。 [0021] Next, preferred examples of the water-soluble polymer will be given. First, the first group is a homopolymer or copolymer having an unsaturated organic acid as an essential component and an unsaturated compound as an optional component, or a salt thereof. Here, examples of unsaturated organic acids as essential components include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic acid, oleic acid, itaconic acid, cinnamic acid, propiolic acid; Unsaturated acids having a hydroxyl group bonded to the aromatic ring of, for example, vinylphenol; unsaturated sulfonic acids, for example, 2-methyl group pen senorephonic acid, vinylolacenorephonic acid, arinolacenorephonic acid, Nonsulphonic acid, a methyl styrene sulfonic acid; unsaturated phosphoric acid such as burric acid, phosphate s Tell. An example of an unsaturated compound as an optional component is acrylamide. Specifically, for example, polyacrylic acid (PAA), polymethacrylic acid (PMAA), poly-2-acrylamide-2-methylpropanesulfonic acid (PAMPS), polybufenol or polymaleic acid or a salt thereof (for example, sodium salt) It is. Next, the second group is a homopolymer or copolymer of an unsaturated carboxylic acid ester having a hydroxyl group as a bridging group, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate. It is a coalescence. Next, the third group consists of ionic polysaccharides such as alginate, dielan gum, carboxymethylcellulose, xanthan gum, natural gum, agar, agarose, force laganin, fucodyne, flucellaran, laminaran, ibaranori, giraffe, gum arabic, gum Chigum, Karaa gum, tragacanth gum, locust bean gum, arabinogalatatan, pectin and amylopectin.
[0022] ここで、本発明に係る水溶性ポリマーは、前記の例からも分力るように、合成高分子 でも天然高分子でもよい。ここで、水溶性ポリマーは、好適には重合度が 1000以上 の高分子である。例えば、ポリアクリル酸は、その分子量、直鎖状'分岐鎖状等の形 状等、特に限定されるものではなぐ例えば、通常、ポリスチレン換算重量平均分子 量(Mw)力 0, 000〜1, 500, 000程度である。  Here, the water-soluble polymer according to the present invention may be a synthetic polymer or a natural polymer, as can be seen from the above examples. Here, the water-soluble polymer is preferably a polymer having a polymerization degree of 1000 or more. For example, polyacrylic acid is not particularly limited in terms of its molecular weight, linear or branched shape, etc. For example, the weight average molecular weight (Mw) force in terms of polystyrene is usually from 0,000 to 1, About 500,000.
[0023] 尚、前記水溶性ポリマーは、周知の方法で製造可能であると共に巿販もされている 。例えば、ポリアクリル酸の市販品としては、例えば、昭和電工 (株)製のビスコメート( 登録商標)シリーズ(例えば、部分中和物として NP— 600、 NP— 700、 NP—800 ; SL— 104Y)、(株)日本触媒製のアクアリック (登録商標) L、Hシリーズ、日本純薬( 株)製のジュリマー(商標)シリーズ等を挙げることができる。  [0023] The water-soluble polymer can be produced by a well-known method and is also sold. For example, as a commercial product of polyacrylic acid, for example, Viscomate (registered trademark) series manufactured by Showa Denko KK (for example, NP-600, NP-700, NP-800; SL-104Y as partially neutralized products) , Aquaric (registered trademark) L and H series manufactured by Nippon Shokubai Co., Ltd., and Jurimer (trademark) series manufactured by Nippon Pure Chemical Co., Ltd.
[0024] 以上、本防止剤の構成成分につ!、て説明したので、続、て、組成物である本防止 剤について説明することとする。まず、本防止剤は、前記水溶性ポリマーを主成分と して含有する。ここで、「主成分」とは、全組成物(乾燥物)中の過半数 (例えば重量) を当該成分が占めることを指す。そして、本組成物は、使用時には水溶液の形態で 用いる。この際、当該水溶性ポリマーの配合量が少なすぎると、粘度が小さくなるの で十分な厚さの皮膜が形成されない事態が想定される一方、当該水溶性ポリマーの 配合量が多すぎると、粘度が高くなるので作業性が悪くなる事態が想定される。した がって、用いるポリマーの種類や分子量等に応じ、好適な粘度となるように適宜配合 量を決定する。ここで、粘度 (動的粘性率)は、 lOPa ' s以上であることが好適である。 上限は、特に限定されないが、例えば 107Pa' s以下である。より好適な粘度範囲は、 102〜106Pa' sである。尚、測定条件は、所定条件下(温度: 27. 0°C、 Frequency: 0. 01rad/s、 Strain : 1%) ,回転型レオメータ(ARES— lOOFRTNl)で測定した 値を指す。尚、当該水溶性ポリマーの含有量については、特に限定されないが、例 えば、水溶性ポリマーがポリアクリル酸である場合は、全重量に基づき、 10重量%以 上(より好適には 20〜50重量%)であることが好適である。 [0024] Since the constituent components of the present inhibitor have been described above, the present inhibitor, which is a composition, will be described. First, the present inhibitor contains the water-soluble polymer as a main component. Here, the “main component” means that the component occupies a majority (for example, weight) in the entire composition (dried product). The composition is used in the form of an aqueous solution at the time of use. At this time, if the blending amount of the water-soluble polymer is too small, the viscosity becomes small, so that a sufficiently thick film may not be formed. On the other hand, if the blending amount of the water-soluble polymer is too large, the viscosity It is assumed that the workability will deteriorate because of the increase of did Therefore, the blending amount is appropriately determined so as to obtain a suitable viscosity in accordance with the type and molecular weight of the polymer to be used. Here, the viscosity (dynamic viscosity) is preferably lOPa's or more. The upper limit is not particularly limited, but is, for example, 10 7 Pa's or less. A more preferred viscosity range is 10 2 to 10 6 Pa's. Measurement conditions refer to values measured with a rotary rheometer (ARES-lOOFRTNl) under specified conditions (temperature: 27.0 ° C, Frequency: 0.01 rad / s, Strain: 1%). The content of the water-soluble polymer is not particularly limited. For example, when the water-soluble polymer is polyacrylic acid, it is 10% by weight or more based on the total weight (more preferably 20 to 50). % By weight) is preferred.
[0025] 尚、本発明に係る海洋生物付着防止剤は、使用時においては、前記のように水溶 液の形態にある力 これに限定されるものではなぐ乾燥形態であり使用時に水を添 加するタイプや、濃縮状態にあり使用時に水で希釈するタイプも包含する。尚、本明 細書における「水溶液」とは、水溶性ポリマーが完全に溶解している場合に限られず 、部分的に分散状態にある場合 (即ち、一部溶けきつていない場合)も包含する。  [0025] It should be noted that the marine organism adhesion inhibitor according to the present invention is a force in the form of an aqueous solution as described above when used, and is not limited to this. And types that are concentrated and diluted with water during use. The “aqueous solution” in this specification is not limited to the case where the water-soluble polymer is completely dissolved, but also includes the case where the water-soluble polymer is partially dispersed (that is, the portion is not completely dissolved).
[0026] ここで、本発明における「海洋生物」とは、海洋に生息する植物 '動物であれば特に 限定されず、例えば、コンブ等の海洋植物や、フジッボ、カサネカンザシ、ムラサキガ ィ、ホヤ等の海洋動物を挙げることができる。  [0026] Here, the "marine organism" in the present invention is not particularly limited as long as it is a plant inhabiting the ocean. For example, marine plants such as kombu, barnacles, Kasane Kanzashi, Murasakigi, sea squirt, etc. List marine animals.
[0027] また、付着防止の対象である「海洋環境に配される物体」とは、海洋環境に配される いかなる物体をも意味し、例えば、海水中に沈められる物体や、海水付近に存在す ることにより海洋生物の付着が問題となる物体、例えば、船 (特に、船底)、海水取水 路、波消しブロック、排水路ゃテトラポット等の水中構築物、養殖網、ブイや定置網の 養殖漁業や海洋施設を包含する。更には、水族館、生簀ゃ家庭用の水槽のような、 擬似的な海洋環境に配される物体 (水槽自体も含む)も「海洋環境に配される物体」 に該当する。  [0027] The term "object distributed in the marine environment", which is the object of adhesion prevention, means any object that is distributed in the marine environment. For example, an object that is submerged in seawater or is present in the vicinity of seawater. For example, underwater structures such as boats (especially ship bottoms), seawater intake channels, wave-dissipating blocks, drainage channels, tetrapots, aquaculture nets, buoys and stationary nets, etc. And marine facilities. In addition, objects placed in a simulated marine environment (including aquarium itself) such as aquariums and live aquariums also fall under “objects placed in the marine environment”.
[0028] 次に、本発明に係る海洋生物付着防止剤の使用方法 (海洋環境に配される物体上 へのハイド口ゲルの形成方法)について説明する。まず、本海洋生物付着防止剤が 乾燥形態にある場合や濃縮形態にある場合には、所定量の水を添加することにより、 好適な粘度のポリマー水溶液を調製する (第 0工程)。  [0028] Next, a method of using the marine organism adhesion inhibitor according to the present invention (a method of forming a hyde mouth gel on an object placed in the marine environment) will be described. First, when the present marine organism adhesion inhibitor is in a dry form or a concentrated form, an aqueous polymer solution having a suitable viscosity is prepared by adding a predetermined amount of water (step 0).
[0029] ここで、当該ポリマー水溶液に前記物体を適用する前に、例えば多価金属イオン水 溶液を添加することにより、当該ポリマー水溶液中のポリマーを不完全に(弱く)ィォ ン架橋させてもよい (第 0工程の 2)。この場合、添加する多価金属イオンの当量が、 系内に存在するポリマーのイオン性架橋基の当量よりも少なくなるように設定する。こ の際、前記多価金属イオン水溶液の一部又は全部が海水であってもよ 、。 [0029] Here, before applying the object to the polymer aqueous solution, for example, polyvalent metal ion water The polymer in the polymer aqueous solution may be incompletely (weakly) ion-crosslinked by adding a solution (step 0, step 2). In this case, the equivalent of the polyvalent metal ion to be added is set to be smaller than the equivalent of the ionic crosslinking group of the polymer existing in the system. At this time, a part or all of the polyvalent metal ion aqueous solution may be seawater.
[0030] 次に、ポリマー水溶液 (場合により、弱くイオン架橋したポリマー水溶液)を前記物 体に適用する(第 1工程)。ここで、適用方法は、例えば、ポリマー水溶液に当該物体 を浸漬させる手法や、刷毛等で当該物体に塗布する手法、スプレー等により当該物 体に吹き付ける手法を挙げることができる。ここで、適用厚さは、本発明のようにポリマ 一水溶液を用いると、通常、一回の適用当たり、数ナノメートルから数マイクロメートル の厚さを構築することが可能である。  [0030] Next, an aqueous polymer solution (in some cases, a weakly ion-crosslinked polymer aqueous solution) is applied to the material (first step). Here, examples of the application method include a method of immersing the object in an aqueous polymer solution, a method of applying the object to the object with a brush, and a method of spraying the object by spraying. Here, as for the application thickness, when a polymer aqueous solution is used as in the present invention, it is usually possible to construct a thickness of several nanometers to several micrometers per application.
[0031] 次に、場合により、当該ポリマー水溶液が適用された前記物体を乾燥させてもよい( 第 2工程)。乾燥条件は特に限定されず、例えば、外気温下で数日放置する態様を 挙げることができる。尚、乾燥させること〖こより、第 3工程における、前記物体を海水中 に沈める際、当該ポリマー水溶液が滴り落ちることによる効果の低減を防止できると 共に、当該ポリマー水溶液が人や搬送体に付着することが無くなるので、取り扱い上 も好都合である。  [0031] Next, in some cases, the object to which the polymer aqueous solution is applied may be dried (second step). The drying conditions are not particularly limited, and examples thereof include an aspect in which the drying conditions are left for several days at an outside temperature. In addition, when the object is submerged in seawater in the third step, the effect of dripping the polymer aqueous solution can be prevented and the polymer aqueous solution adheres to a person or a carrier. This is convenient for handling.
[0032] 次に、前記被膜形成物体 (前記ポリマー水溶液の被膜又は前記水溶性ポリマーの 被膜が表面に形成された前記物体)にイオン架橋剤を適用する。ここで、イオン架橋 剤としては、前記のように、多価 (例えば、二価、三価)カチオン (例えば、 Mg2+、 Ca2 +、 Cu2+、 Zn2+、 Fe3+)が好適であり、形成されるハイド口ゲルを高強度にする観点 からは、 Fe3+がより好適である。例えば、 Fe (SO ) 、 FeCl、 CaCl及び MgClの [0032] Next, an ionic cross-linking agent is applied to the film-forming object (the object on which the aqueous polymer film or the water-soluble polymer film is formed). Here, the ionic crosslinking agent, as described above, multivalent (e.g., divalent, trivalent) cation (e.g., Mg 2+, Ca 2 +, Cu 2+, Zn 2+, Fe 3+) is Fe 3+ is more preferable from the viewpoint of making the formed hydrated gel high strength. For example, Fe (SO), FeCl, CaCl and MgCl
2 4 3 3 2 2 水溶液が使用可能である。この場合、イオン架橋剤の量は、系内に存在するイオン 架橋性基をイオン架橋するのに十分な当量であることが好適であり、例えば、 20〜5 0重量%のポリアクリル酸水溶液を用いた場合には、 Fe3+水溶液の好適濃度は、 1 X 10_3M以上であり、より好適には 5 X 10_3M〜1 X 10_1Mである。 Ca2+及び Mg2 +の場合、水溶液における好適濃度は、 1M以上であり、より好適には 1M〜: L0Mで ある。 2 4 3 3 2 2 Aqueous solution can be used. In this case, the amount of the ionic cross-linking agent is preferably an equivalent amount sufficient for ionic cross-linking of the ionic cross-linkable group present in the system. For example, 20 to 50% by weight of an aqueous polyacrylic acid solution is added. when using the preferred concentration of Fe 3+ aqueous solution is at 1 X 10 _3 M or more, more preferably in 5 X 10 _3 M~1 X 10 _1 M. For Ca 2+ and Mg 2 +, preferably the concentration in the aqueous solution is at least 1M, more preferably 1M~: a L0M.
[0033] 但し、実用的には、これらの多価金属イオン (Fe3+のような三価カチオン、 Mg2+、 C a2+、 Cu2+及び Zn2+のような二価カチオン)を含有する海水を利用することが好都合 である。即ち、被膜形成物体を海中に沈める力 海水を当該物体に吹き付けることに より、前記ポリマーがイオン架橋する結果、海洋生物付着防止効果を奏するハイド口 ゲルが形成される。 [0033] However, in practice, these polyvalent metal ions (trivalent cations such as Fe 3+ , Mg 2+ , C It is advantageous to use seawater containing divalent cations such as a2 + , Cu2 + and Zn2 + . That is, the ability to sink the film-forming object into the sea By spraying seawater on the object, the polymer is ionically crosslinked, resulting in the formation of a hide mouth gel that exhibits the effect of preventing marine organism adhesion.
[0034] ここで、前記のように、通常は一回の操作 (上記の第 1工程力 第 3工程までの操作 )で数ナノメートル力ゝら数マイクロメートルの厚さのハイド口ゲルが形成可能である。し 力しながら、例えば、長時間持続性を担保するため等、より厚いハイド口ゲル (例えば 、数十マイクロメートル、ミリメートル)を形成させる必要がある場合には、例えば、前記 操作を何回も繰返し行ったり、或いは、水溶性ポリマーの濃度を上げたり分子量を大 きくしたりすることにより、水溶性ポリマーの粘度を大きくすることを介して、ノ、イドロゲ ルの厚さは適宜調整可能である。  [0034] Here, as described above, a hyde-mouth gel having a thickness of several nanometers and a thickness of several nanometers is usually formed by a single operation (the above-mentioned first process force up to the third process). Is possible. However, if it is necessary to form a thicker mouth-mouthed gel (e.g., several tens of micrometers, millimeters), e.g. to ensure long-term durability, the above operation is repeated many times. The thickness of the water-soluble polymer can be adjusted as appropriate by increasing the viscosity of the water-soluble polymer by repeating the treatment or increasing the concentration of the water-soluble polymer or increasing the molecular weight.
[0035] 次に、前記のような操作を経て形成されるハイド口ゲルは、膨潤度が 1. 5〜500で あるハイド口ゲルが好適であり、特に好適には膨潤度が 2〜: LOOのハイド口ゲルである 。ここで、膨潤度とは、ハイド口ゲル中の水重量とポリマー重量との合計を、ポリマー 重量で除した値をいう。  [0035] Next, the hide mouth gel formed through the above-described operation is preferably a hide mouth gel having a swelling degree of 1.5 to 500, and particularly preferably a swelling degree of 2 to: LOO Hyde mouth gel. Here, the degree of swelling refers to a value obtained by dividing the sum of the weight of water and the weight of polymer in the hydrated gel by the weight of the polymer.
[0036] カロえて、形成されるハイド口ゲルは、プロトンを放出し得るものであることが好適であ る。具体的には、プロトン濃度力 10— 6mol/L〜5mol/L (最も好適には、 10— 2 mol/L〜 lmol/L)であるものが好適である。ここで、ハイド口ゲル中のプロトン濃度は、 Macrom ol. Rapid Commun. 16, 713-716(1995)に記載された方法に従って決定することがで きる。ここで、「プロトン濃度」とは、水溶性ポリマーがもともと保持していたプロトンのモ ル数をハイド口ゲルの体積で除した値、即ち、当該水溶性ポリマーカゝら解離したプロ トンのモル数と、未だ当該水溶性ポリマーに結合している非解離のプロトンのモル数 とを合わせたものを、ノ、イド口ゲルの体積で除した値を指す。 [0036] It is preferable that the formed hide-mouthed gel is capable of releasing protons. More specifically, (and most preferably, 10- 2 mol / L~ lmol / L) proton concentration force 10- 6 mol / L~5mol / L is preferably those which are. Here, the proton concentration in the hyde mouth gel can be determined according to the method described in Macromol. Rapid Commun. 16, 713-716 (1995). Here, the “proton concentration” is a value obtained by dividing the number of moles of protons originally held by the water-soluble polymer by the volume of the hydose mouth gel, that is, the number of moles of protons dissociated from the water-soluble polymer column. And the number of moles of undissociated protons still bound to the water-soluble polymer divided by the volume of the gel.
実施例  Example
[0037] 以下、実施例を参照しながら、本発明を具体的に説明する。尚、本発明は、以下の 実施例に何ら限定されるものではな 、。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to the following examples.
Figure imgf000012_0001
Figure imgf000012_0001
物体として、コンクリートブロックとエキスパンドメタル付コンクリートブロックを使用し た。最初に、コンクリートブロックとエキスパンドメタル付コンクリートブロックを PAA水 溶液(35重量%水溶液、 Aldrich製、重量平均分子量 250, 000、動的粘性率: 1. 02 X 106Pa- s)に浸漬させた。その後、 PAA水溶液力もコンクリートブロックとエキス パンドメタル付コンクリートブロックを引き出し、続いて、 CaCl水溶液(1. 9M)に浸 Use concrete blocks and concrete blocks with expanded metal as objects. It was. First, a concrete block and a concrete block with expanded metal were immersed in a PAA aqueous solution (35 wt% aqueous solution, Aldrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa-s). . After that, pull out the concrete block and the expanded concrete block with PAA aqueous solution, and then immerse it in CaCl aqueous solution (1.9 M).
2  2
漬させたことにより、コンクリートブロックとエキスパンドメタル付コンクリートブロック上 に白色の PAAノヽイド口ゲルが形成された。尚、 CaCl水溶液(2. 5M)及び MgCl水  By soaking, a white PAA nose mouth gel was formed on the concrete block and the concrete block with expanded metal. CaCl aqueous solution (2.5M) and MgCl water
2 2 溶液(1. 0M、 1. 4M)を CaCl水溶液(1. 9M)の代わりに使用した場合においても  Even when 2 2 solution (1.0M, 1.4M) is used instead of CaCl aqueous solution (1.9M)
2  2
、コンクリートブロックとエキスパンドメタル付コンクリートブロック上に白色の PAAノヽィ ドロゲルが形成された。  A white PAA nodrogel was formed on the concrete block and the concrete block with expanded metal.
[0039] i m)  [0039] i m)
物体として、コンクリートブロックとエキスパンドメタル付コンクリートブロックを使用し た。最初に、コンクリートブロックとエキスパンドメタル付コンクリートブロックを PAA水 溶液(35重量%水溶液、 Aldrich製、重量平均分子量 250, 000、動的粘性率: 1. 02 X 106Pa- s)に浸漬させた。その後、 PAA水溶液力もコンクリートブロックとエキス パンドメタル付コンクリートブロックを引き出し、続いて、 Fe (SO ) 水溶液 (4. 4 X 10 Concrete objects and concrete blocks with expanded metal were used as objects. First, a concrete block and a concrete block with expanded metal were immersed in a PAA aqueous solution (35 wt% aqueous solution, Aldrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa-s). . After that, the PAA aqueous solution force also pulled out the concrete block and the concrete block with expanded metal, followed by Fe (SO) aqueous solution (4.4 X 10
2 4 3  2 4 3
_3M)に浸漬させたことにより、コンクリートブロックとエキスパンドメタル付コンクリート ブロック上に赤みを帯びた PAAハイド口ゲルが形成された。尚、 Fe (SO ) 水溶液( _3 M), a reddish PAA Hyde Mouth Gel was formed on the concrete block and the concrete block with expanded metal. In addition, Fe (SO) aqueous solution (
2 4 3 2 4 3
1. 75 X 10_2M)を使用した場合においても、コンクリートブロックとエキスパンドメタ ル付コンクリートブロック上に赤みを帯びた PAAノヽイド口ゲルが形成された。 1. When using 75 X 10 _2 M), a reddish PAA nod mouth gel was formed on the concrete block and the concrete block with expanded metal.
[0040] 実施例 3 (フィールド試,験例)  [0040] Example 3 (field test, test example)
抗付着剤として、 PAA水溶液(35重量%)と海水とを所定容量比で混合して得られ た混合溶液を、また、物体として、コンクリートブロックとエキスパンドメタル付コンクリ ートブロックを使用して、長期屋外試験を実施した。  Using a mixed solution obtained by mixing PAA aqueous solution (35% by weight) and seawater at a specified volume ratio as an anti-adhesive agent, and using concrete blocks and concrete blocks with expanded metal as objects, The test was conducted.
[0041] 最初に、 PAA水溶液(35重量%、 Ardrich製、重量平均分子量 250, 000、動的 粘性率:1. 02 X 106Pa' s)を濃縮溶液として用いた。そして、この濃縮溶液を所定容 量比で海水と混合することにより、希釈溶液 (試験溶液)を調整した (濃縮溶液:海水 = 2 : 1、動的粘性率: 6. 5 X 104Pa' s)。次に、サンプル 1 (ロープで結ばれたコンクリ ートブロック)及びサンプル 2 (ロープで結ばれた、エキスパンドメタル付コンクリートブ ロック)に関し、両サンプルを試験溶液に浸漬した後、乾燥した(3回繰返し)。その後 、サンプル 1、サンプル 2及び対照 (試験液非適用)を所定期間海水中に沈めた (サ ンプル 1及び対照に関しては 3ヶ月;サンプル 2及び対照に関しては 4ヶ月)。図 1 (a) 及び (b)は、夫々、試験開始時におけるサンプル 1 (試験液適用)及び対照 (試験液 非適用)の写真である。図 2 (a)及び (b)は、夫々、開始から 3ヶ月後におけるサンプ ル 1 (試験液適用)及び対照 (試験液非適用)の写真である。これら写真から明らかな ように、試験溶液が適用されたサンプル 1に関しては、殆ど海洋生物の付着は確認さ れな力つた。一方、対照に関しては、多量の海洋生物(主にフジッボ)の付着が確認 された。 [0041] First, a PAA aqueous solution (35 wt%, manufactured by Ardrich, weight average molecular weight 250, 000, dynamic viscosity: 1.02 X 10 6 Pa's) was used as a concentrated solution. The diluted solution (test solution) was prepared by mixing this concentrated solution with seawater at a predetermined volume ratio (concentrated solution: seawater = 2: 1, dynamic viscosity: 6.5 X 10 4 Pa ' s). Next, sample 1 (concrete block tied with rope) and sample 2 (concrete block with expanded metal tied with rope). For rock, both samples were immersed in the test solution and then dried (repeated 3 times). Thereafter, Sample 1, Sample 2 and the control (no test solution applied) were submerged in sea water for a predetermined period (3 months for sample 1 and control; 4 months for sample 2 and control). Figures 1 (a) and (b) are photographs of sample 1 (test solution applied) and control (no test solution applied), respectively, at the start of the test. Figures 2 (a) and (b) are photographs of sample 1 (test solution applied) and control (no test solution applied), respectively, 3 months after the start. As is clear from these photographs, the adhesion of marine organisms was almost unrecognized for Sample 1 to which the test solution was applied. On the other hand, the attachment of a large amount of marine organisms (mainly barnacles) was confirmed for the control.
[0042] 次に、図 3 (a— l)〜(b— 2)は、夫々、試験開始時におけるサンプル 2 (試験液適 用)及び対照 (試験液非適用)の写真である。図 4 (a— l)〜(b— 2)は、夫々、開始か ら 1ヶ月後におけるサンプル 2 (試験液適用)及び対照 (試験液非適用)の写真である 。ここで、対照にはこの段階で多量の海洋生物(主にフジッボ)が付着したので、これ 以上当該試験を継続することが不可能になった。図 5 (a— l)〜(a— 2)は、開始から 3ヶ月後における、試験液が適用されたサンプル 2の写真である。図 6 (a— 1)〜(a— 2)は、開始力も 4ヶ月後における、試験液が適用されたサンプル 2の写真である。こ れら写真力も明らかなように、試験溶液が適用されたサンプル 2に関しては、試験開 始カも 4ヶ月後ですら、殆ど海洋生物の付着は確認されな力 た。一方、対照に関し ては、試験開始から 1ヶ月後に、多量の海洋生物(主にフジッボ)の付着が確認され た。  Next, FIGS. 3 (a-1) to (b-2) are photographs of sample 2 (test solution applied) and control (no test solution applied) at the start of the test, respectively. Figures 4 (a-l) to (b-2) are photographs of sample 2 (test solution applied) and control (no test solution applied) one month after the start, respectively. Here, a large amount of marine organisms (mainly barnacles) were attached to the control at this stage, making it impossible to continue the test any further. Figures 5 (a-l) to (a-2) are photographs of sample 2 to which the test solution was applied, 3 months after the start. Figures 6 (a-1) to (a-2) are photographs of Sample 2 to which the test solution was applied, with the starting force also after 4 months. As is clear from these photographic powers, with regard to Sample 2 to which the test solution was applied, the adhesion of marine organisms was hardly confirmed even after 4 months from the start of the test. On the other hand, regarding the control, a large amount of marine organisms (mainly barnacles) was confirmed one month after the start of the test.
[0043] 実施例 4 (某盤剥離試験)  [0043] Example 4 (grid peeling test)
本実施例では、水溶性ポリマー水溶液を塗布してイオン架橋させることによりハイド 口ゲルを金属基盤表面に形成させた場合と、当該ポリマーを構成するモノマー水溶 液を塗布して重合'イオン架橋させることによりハイド口ゲルを金属基盤表面に形成さ せた場合との、基盤剥離性についての比較試験を行った。ここで、金属基盤としては アルミ基盤を、水溶性ポリマー水溶液としてはポリアクリル酸 (Ardrich製、重量平均 分子量 250, 000) 35wt%水溶液(動的粘性率: 1. 02 X 106Pa' s)を、モノマー水 溶液としてはアクリル酸 35wt%水溶液を、イオン架橋剤としては塩ィ匕アルミニウム(III ) 10wt%水溶液を用いた。 In this example, a water-soluble polymer aqueous solution is applied and ion-crosslinked to form a hydration gel on the surface of the metal substrate, and an aqueous monomer solution constituting the polymer is applied and polymerized and ion-crosslinked. A comparative test was conducted on the peelability of the substrate when a hydose gel was formed on the surface of the metal substrate. Here, the aluminum base is used as the metal base, and the polyacrylic acid (made by Ardrich, weight average molecular weight 250, 000) as the water-soluble polymer aqueous solution is 35 wt% aqueous solution (dynamic viscosity: 1.02 X 10 6 Pa 's). As a monomer aqueous solution, a 35 wt% acrylic acid aqueous solution is used. ) A 10 wt% aqueous solution was used.
[0044] く水溶性ポリマー水溶液〉  [0044] Water-soluble polymer aqueous solution>
まず、適用(塗布)は、(1)アルミ基盤半分の表面に筆を用いてポリマー溶液を塗布 、(2)その後、架橋剤の溶液に浸漬、(3) 5分後架橋剤溶液より基盤を引き上げ乾燥 、という手順で実施した。そして、この(1)から(3)までの一連の工程を 1回行ったもの を、ポリマー 1回塗、 3回行ったものをポリマー 3回塗と定義した。ここで、図 7にポリマ 一 1回塗のアルミ基盤の様子(図中、 Aの領域がゲル領域であり、 Bの領域が無処理 領域である)を、図 8にポリマー 3回塗のアルミ基盤の様子(図中、 Aの領域がゲル領 域であり、 Bの領域が無処理領域である)を示す。このように、ポリマーを塗布した基 盤に関しては、溶液中にポリマーが拡散することなぐ基盤上でポリマーが重合しゲ ルイ匕している様子が観察された。また、作業工程を繰り返すことによりゲルの厚みは 増した。  First, application (coating): (1) Apply the polymer solution with a brush on the surface of the half of the aluminum substrate, (2) Then immerse in the solution of the cross-linking agent, (3) After 5 minutes, the base from the cross-linking agent solution The procedure was pulled up and dried. A series of steps (1) to (3) that were performed once was defined as one polymer coating, and three times as a polymer three times. Here, Fig. 7 shows the appearance of an aluminum substrate with a single coating of polymer (in the figure, region A is the gel region and region B is the untreated region). Shows the appearance of the substrate (in the figure, the region A is the gel region and the region B is the untreated region). Thus, with respect to the substrate coated with the polymer, it was observed that the polymer was polymerized and gelled on the substrate where the polymer did not diffuse into the solution. Moreover, the thickness of the gel increased by repeating the work process.
[0045] 〈モノマー水溶液〉  <Monomer aqueous solution>
まず、適用(塗布)は、(1)アルミ基盤半分の表面にキムワイプ (登録商標)を用いて モノマー溶液を塗布、(2)その後、架橋剤の溶液に浸漬、(3) 5分後架橋剤溶液より 基盤を引き上げ乾燥、という手順で実施した。そして、この(1)から(3)までの一連の 工程を 1回行ったものを、モノマー 1回塗と定義した。ここで、図 9にモノマー 1回塗の アルミ基盤の様子(図中、 Aの領域が適用領域であり、 Bの領域が無処理領域である )を示す。このように、モノマーを塗布した基盤では、架橋剤溶液中で基盤上のモノマ 一が溶液中に拡散してしまい、基盤上でのゲル化には至らな力 た。  First, the application (coating) is: (1) Apply the monomer solution to the surface of the half of the aluminum substrate using Kimwipe (registered trademark), (2) Then immerse in the solution of the cross-linking agent, (3) Cross-linking agent after 5 minutes The procedure was to lift the substrate from the solution and dry. A series of steps (1) to (3) performed once was defined as a single monomer coating. Here, Fig. 9 shows the appearance of an aluminum substrate coated with a single monomer (in the figure, the area A is the application area and the area B is the untreated area). Thus, on the substrate coated with the monomer, the monomer on the substrate diffused into the solution in the cross-linking agent solution, and the gelation on the substrate was extremely powerful.
[0046] 実施例 5 (海 71 ^剥離而 験)  [0046] Example 5 (sea 71 ^ exfoliation experiment)
実施例 4のく水溶性ポリマー水溶液〉に係る「ポリマー 1回塗」及び「ポリマー 3回塗」 の夫々力 生海水内でどの程度の剥離耐久性を有しているかについて試験を実施し た。具体的には、塩濃度 3. 5%の生海水が入った恒温漕内を流速約 10cm/s、水温 2 7. 0°Cに設定し、当該「ポリマー 1回塗」及び「ポリマー 3回塗」が適用されたアルミ基 盤の夫々を、流れの向きに垂直に 72時間静置した後、基盤表面のゲルの剥離度合 いを観察した。その結果を図 10及び図 11に示す。ここで、図 10は、ポリマー 1回塗 のアルミ盤表面の様子(図中、 Aの領域が適用領域であり、 Bの領域が無処理領域で ある)を示したものであり、図 11は、ポリマー 3回塗のアルミ盤表面の様子(図中、 Aの 領域が適用領域であり、 Bの領域が無処理領域である)を示したものである。これら図 からも分かるように、「ポリマー 1回塗」 ·「ポリマー 3回塗」共に、若干の剥離はあるもの の大部分がそのまま残存することが確認された。 A test was conducted as to how much the peel durability was in fresh seawater according to “Water-soluble polymer aqueous solution of Example 4”. Specifically, a constant temperature bath containing 3.5% salt water is set at a flow rate of about 10 cm / s and a water temperature of 27.0 ° C. Each of the aluminum substrates to which “Coating” was applied was allowed to stand for 72 hours perpendicular to the direction of flow, and then the degree of gel peeling on the substrate surface was observed. The results are shown in FIGS. Here, Fig. 10 shows the appearance of the surface of the aluminum board coated with a single polymer (in the figure, area A is the application area and area B is the untreated area. Fig. 11 shows the appearance of the aluminum disk surface with three coatings of polymer (in the figure, area A is the application area and area B is the untreated area). It is. As can be seen from these figures, it was confirmed that both “single polymer coating” and “three polymer coatings” remained as they were, although there was some peeling.

Claims

請求の範囲 The scope of the claims
[1] イオン架橋性基を官能基とする多官能性水溶性ポリマーを主成分として含有するこ とを特徴とする、海洋環境に配される物体の表面に水溶液の形態で適用した後、ィ オン架橋させることにより当該物体表面に前記水溶性ポリマーのノ、イド口ゲル膜を形 成し得る、海洋生物付着防止剤。  [1] A polyfunctional water-soluble polymer containing an ionic crosslinkable group as a main component is contained as a main component. A marine organism adhesion inhibitor capable of forming a water-soluble polymer gel film on the surface of the object by on-crosslinking.
[2] 前記水溶性ポリマーが、ポリアクリル酸、ポリメタクリル酸、ポリ 2—アクリルアミド— 2 メチルプロパンスルホン酸、ポリビュルフエノール、ポリマレイン酸、ヒドロキシェチ ルアタリレート、ヒドロキシェチルメタタリレート、ヒドロキシプロピルメタタリレート、アル ギン酸、ジエランガム、カルボキシメチルセルロース、キサンタンガム、天然ガム、寒天 、ァガロース、力ラゲナン、フコダイン、フルセララン、ラミナラン、イバラノリ、キリンサイ 、アラビアゴム、ガッチゴム、カラャゴム、トラガカントゴム、ローカストビーンゴム、ァラ ピノガラクタン、ぺクチン及びアミロぺクチン力 なる群より選択される一種以上の化 合物又は塩である、請求項 1記載の海洋生物付着防止剤。  [2] The water-soluble polymer may be polyacrylic acid, polymethacrylic acid, poly-2-acrylamide-2-methylpropanesulfonic acid, polybutanol, polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate. Talylate, alginic acid, dielan gum, carboxymethylcellulose, xanthan gum, natural gum, agarose, agarose, power ragenan, fucodyne, flucellaran, laminaran, ibaranori, giraffe, gum arabic, gatch gum, cara gum, tragacanth gum, locust bean gum, arapino The marine organism adhesion inhibitor according to claim 1, which is one or more compounds or salts selected from the group consisting of galactan, pectin and amylopectin.
[3] 海洋環境に配される物体の、海洋生物による付着を防止する方法において、 イオン架橋性基を官能基とする多官能性水溶性ポリマーを主成分とする水溶液を 前記物体の表面に適用し、前記水溶液の被膜を形成する第一工程; [3] In a method for preventing adhesion of an object placed in a marine environment by marine organisms, an aqueous solution mainly composed of a polyfunctional water-soluble polymer having an ionic crosslinkable group as a functional group is applied to the surface of the object. And a first step of forming a film of the aqueous solution;
場合により存在していてもよい、前記水溶液の被膜を乾燥させ、前記水溶性ポリマ 一の被膜を形成させる第二工程;及び  A second step optionally drying said aqueous solution film to form said water-soluble polymer film; and
前記物体の表面に形成された前記水溶液の被膜又は前記水溶性ポリマーの被膜 に、多価金属イオン含有水溶液を適用し、前記水溶性ポリマーをイオン架橋してハイ ドロゲル膜を前記物体の表面に形成させる第三工程  Applying a polyvalent metal ion-containing aqueous solution to the aqueous film or the water-soluble polymer film formed on the surface of the object, and ion-crosslinking the water-soluble polymer to form a hydrogel film on the surface of the object Third process
を有することを特徴とする方法。  A method characterized by comprising:
[4] 前記水溶性ポリマーが、ポリアクリル酸、ポリメタクリル酸、ポリ 2—アクリルアミド— 2 メチルプロパンスルホン酸、ポリビュルフエノール、ポリマレイン酸、ヒドロキシェチ ルアタリレート、ヒドロキシェチルメタタリレート、ヒドロキシプロピルメタタリレート、アル ギン酸、ジエランガム、カルボキシメチルセルロース、キサンタンガム、天然ガム、寒天 、ァガロース、力ラゲナン、フコダイン、フルセララン、ラミナラン、イバラノリ、キリンサイ 、アラビアゴム、ガッチゴム、カラャゴム、トラガカントゴム、ローカストビーンゴム、ァラ ピノガラクタン、ぺクチン及びアミロぺクチン力 なる群より選択される一種以上の化 合物又は塩である、請求項 3記載の方法。 [4] The water-soluble polymer may be polyacrylic acid, polymethacrylic acid, poly-2-acrylamide-2-methylpropanesulfonic acid, polybutanol, polymaleic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate. Talylate, alginic acid, dielan gum, carboxymethylcellulose, xanthan gum, natural gum, agarose, agarose, force ragenan, fucodyne, fulseraran, laminaran, ibaranori, giraffe, gum arabic, gatch gum, cara gum, tragacanth gum, locust bean gum, ara 4. The method according to claim 3, which is one or more compounds or salts selected from the group consisting of pinogalactin, pectin and amylopectin.
[5] 前記多価金属イオン含有水溶液が、海水である、請求項 3又は 4記載の方法。 5. The method according to claim 3 or 4, wherein the aqueous solution containing polyvalent metal ions is seawater.
[6] 前記第三工程が、前記水溶液の被膜又は前記水溶性ポリマーの被膜が表面に形 成された前記物体を、海水に浸漬させるものである、請求項 5記載の方法。 6. The method according to claim 5, wherein the third step is to immerse the object in which the aqueous solution film or the water-soluble polymer film is formed in seawater.
PCT/JP2006/303127 2005-02-22 2006-02-22 Agent and method for preventing attachment of marine organism WO2006090719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504735A JPWO2006090719A1 (en) 2005-02-22 2006-02-22 Marine organism adhesion preventive agent and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-046212 2005-02-22
JP2005046212 2005-02-22

Publications (1)

Publication Number Publication Date
WO2006090719A1 true WO2006090719A1 (en) 2006-08-31

Family

ID=36927357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303127 WO2006090719A1 (en) 2005-02-22 2006-02-22 Agent and method for preventing attachment of marine organism

Country Status (2)

Country Link
JP (1) JPWO2006090719A1 (en)
WO (1) WO2006090719A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140135726A (en) * 2012-02-07 2014-11-26 케메탈 게엠베하 Method for coating metallic surfaces of substrates, and objects coated according to said method
JP2016534219A (en) * 2013-07-18 2016-11-04 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method for coating a metal surface of a substrate and articles coated by this method
WO2017110896A1 (en) * 2015-12-25 2017-06-29 中国塗料株式会社 Coating composition for forming frictional resistance-reducing coating film, coating film, and coating film-provided base material
CN113234362A (en) * 2021-04-26 2021-08-10 青岛职业技术学院 Photosensitive antifouling coating based on alginate gel-sol and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249905A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Method of preventing adhesion of organism in water
JPS61250071A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Antifouling process
JPS6268863A (en) * 1985-09-19 1987-03-28 Sumitomo Chem Co Ltd Antifouling agent for fishing net
JPH06320106A (en) * 1992-06-22 1994-11-22 Takuya Kitami Ship bottom paint
JP2000239572A (en) * 1999-02-17 2000-09-05 Nippon Light Metal Co Ltd Underwater antifouling coating material composition and underwater antifouling film comprising the same composition
JP2002192187A (en) * 2000-12-27 2002-07-10 Apio Club:Kk Treatment agent for polluted environment
WO2003067990A1 (en) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Marine growth preventive agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249905A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Method of preventing adhesion of organism in water
JPS61250071A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Antifouling process
JPS6268863A (en) * 1985-09-19 1987-03-28 Sumitomo Chem Co Ltd Antifouling agent for fishing net
JPH06320106A (en) * 1992-06-22 1994-11-22 Takuya Kitami Ship bottom paint
JP2000239572A (en) * 1999-02-17 2000-09-05 Nippon Light Metal Co Ltd Underwater antifouling coating material composition and underwater antifouling film comprising the same composition
JP2002192187A (en) * 2000-12-27 2002-07-10 Apio Club:Kk Treatment agent for polluted environment
WO2003067990A1 (en) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Marine growth preventive agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140135726A (en) * 2012-02-07 2014-11-26 케메탈 게엠베하 Method for coating metallic surfaces of substrates, and objects coated according to said method
KR102116280B1 (en) * 2012-02-07 2020-05-29 케메탈 게엠베하 Method for coating metallic surfaces of substrates, and objects coated according to said method
JP2016534219A (en) * 2013-07-18 2016-11-04 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method for coating a metal surface of a substrate and articles coated by this method
WO2017110896A1 (en) * 2015-12-25 2017-06-29 中国塗料株式会社 Coating composition for forming frictional resistance-reducing coating film, coating film, and coating film-provided base material
CN108368383A (en) * 2015-12-25 2018-08-03 中国涂料株式会社 It is used to form coating composition, film and the base material with film of the film for reducing frictional resistance
JPWO2017110896A1 (en) * 2015-12-25 2018-10-18 中国塗料株式会社 COATING COMPOSITION FOR FORMING COATING WITH FRICTION RESISTANCE
CN113234362A (en) * 2021-04-26 2021-08-10 青岛职业技术学院 Photosensitive antifouling coating based on alginate gel-sol and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2006090719A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
KR0136283B1 (en) Antifouling coatings
US3575123A (en) Marine structure coated with an acrylic insoluble water-swellable polymer
KR101047642B1 (en) Biological antifouling agent, antifouling paint, antifouling method and antifouling article
ES2853073T3 (en) Gel particles charged for antifouling compositions
Chen et al. Synthesis of zinc-based acrylate copolymers and their marine antifouling application
CN112513207B (en) Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, method for producing same, and method for repairing same
WO2006090719A1 (en) Agent and method for preventing attachment of marine organism
WO2018088377A1 (en) Antifouling coating material composition, antifouling coating film, substrate provided with antifouling coating film, and production methods therefor, and antifouling method
US4407997A (en) Marine paint
TW201617418A (en) Fouling control coating compostion comprising a polymer containing silyl ester groups, and a polymer comprising quaternary ammonium/phosphonium sulphonate groups
JPH0765008B2 (en) Surface treatment agent to prevent the attachment of aquatic organisms
JP2005060510A (en) Coating material composition, antifouling coating film, antifouling underwater structure, and antifouling method
AU2002354925B2 (en) A method of preparing an anti-fouling coating
JP6596802B2 (en) COATING COMPOSITION FOR COATING FORM WITH REDUCED FRICTION RESISTANCE, COATING AND SUBSTRATE WITH COATING
JP3330345B2 (en) Antifouling paint composition
TWI618764B (en) Microcapsule structure containing antibacterial agent which can be used for paint
JP2833493B2 (en) Antifouling coating material
WO2003067990A1 (en) Marine growth preventive agent
CN111574662A (en) Preparation method of dimethyldiallylammonium chloride-unsaturated anhydride copolymer, antifouling agent and preparation method thereof, and antifouling paint
JP3273033B2 (en) Antifouling paint composition
KR102168854B1 (en) Antifouling apparatus with self-healing function
KR100943828B1 (en) Composition for promoting attachment and growth of marine organisms to be applied to marine artificial structure containing fatty acids
KR20090053524A (en) Composition for promoting attachment and growth of marine organisms to be applied to marine artificial structure containing amino acids
ES2811952T3 (en) Antifouling coating composition and its use on artificial structures
KR102263211B1 (en) Antifouling paint composition, coating film, and base material with coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007504735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714267

Country of ref document: EP

Kind code of ref document: A1