WO2006090657A1 - Process for producing boron tetrafluoride, boron tetrafluoride produced by said process, electrolysis solution for electric double layer capacitor using said boron tetrafluoride, and process for producing said electrolysis solution - Google Patents

Process for producing boron tetrafluoride, boron tetrafluoride produced by said process, electrolysis solution for electric double layer capacitor using said boron tetrafluoride, and process for producing said electrolysis solution Download PDF

Info

Publication number
WO2006090657A1
WO2006090657A1 PCT/JP2006/302933 JP2006302933W WO2006090657A1 WO 2006090657 A1 WO2006090657 A1 WO 2006090657A1 JP 2006302933 W JP2006302933 W JP 2006302933W WO 2006090657 A1 WO2006090657 A1 WO 2006090657A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
boron tetrafluoride
producing
boron
double layer
Prior art date
Application number
PCT/JP2006/302933
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Kanbara
Kenji Morohashi
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to JP2007504696A priority Critical patent/JP5029353B2/en
Publication of WO2006090657A1 publication Critical patent/WO2006090657A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/061Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5442Aromatic phosphonium compounds (P-C aromatic linkage)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for producing boron tetrafluoride salt (hereinafter sometimes referred to as BF salt),
  • Electric double layer capacitors are attracting attention as power storage systems that have excellent characteristics, such as high-speed charging / discharging, cycle characteristics, and low environmental load.
  • An electrolytic solution for an electric double layer capacitor is usually composed of an electrolyte salt and a solvent.
  • the withstand voltage is limited to the electrolysis voltage of water, but when a non-aqueous solvent is used, it can be used at a voltage higher than that of water, and the electric power stored in the electric double layer capacitor Due to the large amount, non-aqueous electrolytes are mainly used for large electric double layer capacitors with large storage capacity. Electric double layer capacitors that use non-aqueous electrolytes are required to have particularly high purity because trace amounts of moisture and impurities such as halogens affect the characteristics.
  • Onium BF salt is changed to propylene carbonate (PC).
  • Dissolved products are mainly used.
  • Patent Document 1 discloses an organic salt (quaternary).
  • a method for producing a corresponding inorganic acid salt by carrying out anion exchange between an ammonium salt and an inorganic acid is described, and a BF salt can be produced by using an aqueous borofluoric acid solution as the inorganic acid.
  • this method is relatively expensive.
  • the raw material is hydrofluoric acid.
  • borohydrofluoric acid which is a super strong acid, it is necessary to configure the apparatus with a high-priced, corrosion-resistant material.
  • borohydrofluoric acid is usually marketed as an aqueous solution of about 50% and becomes a reaction in water, in order to recrystallize and purify BF salt with high solubility in water, it is heated and concentrated to a solvent with low solubility. Etc. Is necessary. At this time, borohydrofluoric acid and BF salt are decomposed in an aqueous solution.
  • Patent Document 2 when concentrated by heating,
  • BF is expensive to withstand high pressures that are highly toxic with gases at room temperature.
  • Patent Literature a method in which an alkynoleamine and an organic acid ester such as dialkyl carbonate or formic acid ester or hydroxycarboxylic acid ester are subjected to a quaternization reaction to obtain an alkyl ammonium alkyl carbonate or organic acid salt
  • Patent Literature 1, Patent Document 3 and Patent Document 4
  • the latter method using an organic acid ester is a method for reacting an alkylamine and an alkyl halide, which is a general method for producing an alkyl ammonium salt. It is an excellent method with no contamination.
  • the method has problems such as using expensive and highly toxic BF gas as a raw material.
  • the conventional BF BF
  • Patent Document 1 Japanese Patent Publication No. 7-116113
  • Patent Document 2 JP 2000-315630 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-96031
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-212828
  • the object of the present invention has been made in view of the above-mentioned problems in the prior art, and a high-purity BF salt used in an electrolytic solution for an electric double layer capacitor is expensive and highly toxic.
  • BF salt obtained by this method is a good non-aqueous electrolyte for electric double layer capacitors
  • BF salt can be produced in a non-aqueous system that does not by-produce water in the system by using a borate ester compound as a boron source.
  • the present invention provides the following BF salt production method, BF salt and electric double layer capacitor
  • Q + represents an ion or metal ion
  • X— represents an inorganic acid ion excluding BF—
  • R 1 represents an alkyl group having from 10 to 10 carbon atoms
  • R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 1 , R 2 and R 3 are the same or different. May be
  • Q + is one or more ions selected from the group consisting of lithium ions, alkylammonium ions, alkylphosphonium ions, and imidazolium ions.
  • Component strength S The method for producing a boron tetrafluoride salt according to any one of the above 1 to 4, which is obtained by reacting an alkylamine with an organic acid ester or dialkyl carbonate.
  • a boron tetrafluoride salt produced by any one of the methods 1 to 10 above.
  • a nonaqueous electrolytic solution for an electric double layer capacitor comprising the boron tetrafluoride salt described in 11 above.
  • the method for producing a boron tetrafluoride salt of the present invention comprises a salt compound represented by the general formula (1) of the component (A), a boron compound of the component (B) and hydrogen fluoride of the component (C). It is characterized by producing a boron tetrafluoride salt represented by the general formula (3) by reaction.
  • Q + represents an ion ion or a metal ion
  • X— represents an inorganic acid ion, an organic acid ion or a hydroxide ion excluding BF—
  • Q + in the general formulas (1) and (3) represents an onion ion or a metal ion.
  • ion ions include ammonium ion, phosphonium ion, sulfoyuumion, oxonium ion, arsonium ion, selenonium ion, stibonium ion, stanoyuum ion, odonium ion, diazonium ion, Examples include imidazolium ion and nitronium ion.
  • the bonding group bonded to the central element of these onium salt compounds include hydrogen, an aliphatic group, an aromatic group, and an alkyl group including an alicyclic group. The alkyl group includes nitrile, amide, ether, ester.
  • a substituent such as alcohol, halogen, etc. It may be replaced.
  • a plurality of linking groups may be different or the same, or these may be bonded to form a ring, or a nitrogen atom or an amidine ring having an unsaturated bond may be formed.
  • two or more kinds of onion ions may be bonded even if two or more kinds of onion ions are bonded.
  • the metal ions are not particularly limited, but alkali metal ions such as lithium ions, sodium ions and potassium ions, alkaline earth metal ions such as magnesium ions and calcium ions, zinc ions, silver ions and copper ions.
  • alkali metal ions such as lithium ions, sodium ions and potassium ions, alkaline earth metal ions such as magnesium ions and calcium ions, zinc ions, silver ions and copper ions.
  • Metal cations that bind to BF such as nickel ions and force-donium ions.
  • lithium ion is particularly useful as an electrolytic solution for electric double layer capacitors.
  • those particularly useful as an electrolytic solution for electric double layer capacitors include alkyl ammonium ions, alkyl phosphonium ions, and imidazolium ions.
  • alkyl ammonium ions and alkyl phosphonium ions are those in which alkyl is symmetrically arranged on the nitrogen atom or phosphorus atom, in which alkyl is asymmetrically arranged, in which alkyl is arranged in a ring, or partial force of alkyl. Even those substituted with a nitrile group, an ether group, an alcohol group, an ester group or a halogen group are acceptable.
  • Compounds having an imidazolium ion include amidine compounds such as 1,3-dimethylimidazolium, 1-methinoleol 3-ethenoreyl imidazolium, 1,2,3-trimethinoremitita, and imidazolium salts. Etc.
  • tetraethylammonium, trimethylethylammonium or jetyldimethylammonium, which is an alkylammonium ion, and an imidazolium ion are particularly preferably used.
  • Specific examples of the compound having an alkylammonium ion and an alkylphosphonium ion include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetraptylammonium, tetrapentylammonium, tetrahetero Symmetric alkyl ammonium salts such as xynormonium, tetraisopropylammonium, tetratertiary butylammonium; triethylmethylammonium, jetyldimethylammonium, trimethylethylammonium, trimethylpropylammonium, trimme Butylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, heptylammonium, dimethyldihexylammonium, dimethylethylpropylammonium, dimethylethylbuty
  • X— include inorganic acid ions and hydroxide ions, halogen ions such as fluorine, chlorine, bromine and iodine, CIO—, CIO—, NO—, SO 2 —, HCO—, CO 2 —, PO 3 —, H
  • Carbonate ions such as formate ion, acetate ion, propionate ion, isobutyrate ion, oxalate ion, acrylate ion, methacrylate ion, lactate ion, 2-hydroxyisobutyrate ion, and monomethyl carbonate ion ( CH CO-), monoethyl acetate (CHC)
  • organic acid ions are preferred in view of the ease of purification after the reaction and the effects of residual residues.
  • an alkyl ammonium organic acid salt may be used in the salt compound represented by the general formula (1).
  • alkylammonium organic acid salt can be produced by using a quaternization reaction between alkylamine and organic acid ester S, and BF with high purity can be easily obtained.
  • organic acid ester or a dialkyl carbonate is used.
  • organic acid esters include methyl formate, methyl acetate, methyl propionate, methyl isobutyrate, dimethyl oxalate, methyl acrylate, methyl methacrylate, methyl lactate, methyl 2-hydroxyisobutyrate, and the like.
  • dialkyl carbonate examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate, dibutyl carbonate, methyl ethyl carbonate and the like.
  • dimethyl carbonate and methyl 2-hydroxyisobutyrate are preferable from the viewpoint of reaction rate, availability of raw materials, and stability.
  • Methyl 2-hydroxyisobutyrate is produced in large quantities as an intermediate for the production of methyl methacrylate, called the new ACH (aceton cyanohydrin) method, and is not decomposed during the production of BF salts. Since it can be reused in the recycle reaction, it is particularly preferably used.
  • Examples of the alkylamine in this quaternization reaction include symmetric trialkylamines such as trimethylamine, triethylamine, tripropynoleamine, and tributylamine, dimethylethanolamine, dimethylpropylamine, dimethylbutylamine, Jetylmethylamine, Jetylpropylamine, Jetylbutylamine, Dipropylmethylamine, Dipropylethanolamine, Dipropylbutylamine, Dibutylmethylamine, Dibutylethylamine, Dibutylpropylamine, Examples include asymmetric amines such as methylethylpropylamine, methylethylbutylamine, methylbutylpropylamine, and ethylpropylbutylamine. Among them, symmetric trialkylamines with the same three alkyl groups are produced in large quantities. Is available at a low price , Especially Toryechiruamin is preferable.
  • the reaction conditions for the quaternization reaction are usually carried out by charging an alkylamine and an organic acid ester into a reaction vessel and heating.
  • the amount of the organic acid ester used is usually from 0.01 to 100 monoles, preferably from 0.1 to 10 monoles per alkylamine 1 monole.
  • the reaction temperature varies depending on the type and composition of raw materials used, reaction time, etc. It is in the range of 300 ° C, preferably in the range of 80-200 ° C. When the reaction temperature is lower than 50 ° C, the reaction is not completed, and when it is higher than 300 ° C, there is a concern about decomposition.
  • the reaction pressure is not particularly limited, but it can be suitably carried out at a self-pressure (usually about 0 to 5 MPa (gauge pressure)) at the reaction temperature of the reaction solution.
  • the reaction time varies depending on the type and composition of the raw materials used, the reaction temperature, etc., and cannot be generally stated, but is usually in the range of 0.5 to 50 hours.
  • the quaternization reaction proceeds favorably without a solvent
  • the reaction can also be carried out using an arbitrary solvent including a polar solvent such as alcohol or an additive such as carboxylic acid. If necessary, it can be carried out in an atmosphere that does not affect the reaction of nitrogen, argon, helium, etc.
  • the alkylammonium organic acid salt produced in the quaternization reaction is distilled by a conventional method, for example, distilling a low-boiling fraction. If necessary, it can be easily separated and recovered from the reaction product solution by recrystallization. In addition, alkylammonium organic acid salts are not separated and recovered, and used as they are for the production of BF salts.
  • the boron compound (B) in the production of the BF salt of the present invention includes orthoboric acid (H B
  • the boric acid ester represented by the general formula (2) is trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, trito borate Butyl, trioctyl borate, trinonyl borate, tridecyl borate, triisobutyl borate, tri-tert-butyl borate, triallyl borate, tricyclohexyl borate, triphenyl borate, ethyl dimethyl borate, cetylmethyl borate, And ethyl dibutyl borate. It is also acceptable if the alkyl groups of the borate ester are bonded to the alkyl group in the same molecule
  • the borate ester represented by the general formula (2) generates water by reaction.
  • boric acid esters can be synthesized separately.
  • Boric acid esters can be produced by heating boric acid compounds such as orthoboric acid, metaboric acid, boric anhydride, etc. and alcohol. What was manufactured in this way can also be used conveniently.
  • the residue of the kettle obtained by reacting a boric acid compound in an alcohol-excess system with an alcohol having a boiling point higher than that of water or an azeotropic composition having a higher boiling point and distilling off the generated water should be used as the alcohol solution.
  • a boric acid ester having a boiling point lower than that of water can be separated by distillation and used.
  • Hydrogen fluoride of component (C) in the method for producing a BF salt of the present invention can be used as an aqueous solution, but anhydrous hydrogen fluoride is preferably used in order to be able to produce a non-aqueous electrolyte. It is done.
  • the reaction can be carried out without a solvent or in a solvent.
  • Non-aqueous solvents are preferred as the solvent species when using the solvent, for example, methanolol, ethanol, propanol, isopropanol, butanol, tertiary butanol, ethylene glycol, propylene glycol, glycerin and other alcohols, methyl formate, Acetic acid methylol, ethyl acetate, butyl acetate, methyl 2-hydroxyisobutyrate, esters such as ⁇ -butyrolatatane, ketones such as acetone and methyl ethyl ketone, ethers such as jetyl ether, dimethoxetane, dioxane, tetrahydrofuran, Hydrocarbons such as hexane, benzene, toluene, xylene, carbonates such as dimethyl carbonate, jetyl carbonate, propylene carbonate, amides such as honremamide, ⁇ , ⁇ -di
  • the amount used is usually in the range of 0.001 to 1000 parts by mass, preferably in the range of 0.01 to 100 parts by mass, and more preferably in the range of 1 part by mass of the starting salt compound. It is the range of 1-50 mass parts. If the amount is less than this, the effect of using the solvent is not good.
  • the molar equivalent ratio of the raw materials used in the method for producing a BF salt of the present invention is usually in the range of salt compound: hydrogen fluoride: boron compound: 1: 0.1 to 100: 0.1 to L00 Yes, preferably 1 : 0.5 to 5: 0 ⁇ 5 to 50, more preferably 1: 0 ⁇ 8 to 2: 0 ⁇ 8 to 10 If excessive hydrogen fluoride is present, it will remain in the target BF salt to be produced and become an impurity.
  • the equivalent molar equivalent ratio is preferably around the same amount.
  • the molar equivalent ratio of the boron compound is preferably around the same amount, but when a boric acid ester is used, the boric acid ester can be added excessively to make a self-solvent without using the solvent.
  • the order of preparation is not particularly limited, but a method of adding a boron compound and hydrogen fluoride in the presence of a raw material salt compound is preferred.
  • reaction temperature in the production of the BF salt is usually in the range of -50 to 200 ° C, preferably -20 to
  • the reaction pressure is not limited, but is usually in the range of 0 to 10 MPaG, preferably in the range of 0.05 to 5 MPaG, more preferably atmospheric pressure. Since the reaction time varies depending on the raw materials used, it cannot be generally specified, but is usually in the range of 1 minute to 200 hours, preferably in the range of 3 minutes to 150 hours, and more preferably in the range of 5 minutes to 100 hours.
  • the method for producing the BF salt of the present invention is preferably either a batch method or a distribution method.
  • Separation and purification methods include filtration, recrystallization, extraction, evaporation to dryness, distillation, column separation and the like. If the BF salt is a solid, purification by recrystallization
  • the purification power S by extraction is preferable, and a high-purity product can be obtained at low cost.
  • the non-aqueous electrolyte for an electric double layer capacitor of the present invention comprises the components (A), (B) and
  • the BF salt as an electrolyte
  • non-aqueous solvent is not particularly limited as long as it contains 4, but when the BF salt is solid,
  • the electrolyte is composed of BF salt dissolved in non-aqueous solvent.
  • Non-aqueous solvents for non-aqueous electrolytes for electric double layer capacitors include, for example, ⁇ -petit-lactone, ⁇ -valerolatatone, esters such as ethyl acetate, ketones such as methyl ethyl ketone, dioxane, tetrahydrofuran, and dimethoxy ester.
  • Ethers such as tan, dimethyl carbonate, jetyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate, carbonate esters such as 1,3-dioxolan-2-one, honolemamide, ⁇ , ⁇ ⁇ ⁇ ⁇ -dimethylformamide, ⁇ , ⁇ ⁇ ⁇ -amides such as dimethylacetamide, acetonitrile, propionitryl, 3-methoxypropionitryl, fumaronitrile, glutaronitrile and other nitriles, nitromethane and other nitro compounds, 3_methyl_2_oxazolidinone, etc.
  • Urethanes trimethyl phosphate Phosphorus compounds, sulfolane, 3-methyl sulfolane, sulfur compounds such Jimechirusu sulfoxide.
  • These nonaqueous solvents can be used alone or in combination of two or more.
  • non-aqueous solvents can be used after removing impurities by precision distillation, column treatment, molecular sieve, extraction or the like.
  • the concentration of the BF salt in the non-aqueous electrolyte for an electric double layer capacitor of the present invention is usually from 0.:! To 1
  • Impurities can be further removed from the thus obtained non-aqueous electrolyte by column treatment, molecular sieve, extraction or the like.
  • an additive may be added to the electrolyte for the purpose of improving the withstand voltage or improving the safety.
  • the non-aqueous electrolyte for an electric double layer capacitor of the present invention contains an BF salt as long as it contains a BF salt.
  • an electric double layer capacitor is comprised from an exterior body, a polarizable electrode, a separator, and electrolyte solution.
  • the polarizable electrode is composed of activated carbon, a conductive additive, a binder, a collector electrode, and the like.
  • Examples of the activated carbon include those obtained by activating carbides such as coconut shell, phenol resin, and petroleum pitch with water vapor, carbon dioxide, zinc chloride, potassium hydroxide, and the like.
  • Examples of the conductive aid include carbon black such as acetylene black, or metal such as aluminum and copper.
  • binder examples include polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, and rubbers.
  • Examples of the collecting electrode include aluminum, stainless steel, copper, and conductive plastic.
  • a method for producing a polarizable electrode for example, activated carbon, a conductive aid, and a binder are mixed, and an appropriate solvent such as alcohol is added and kneaded to form a sheet, and the collector electrode is coated with a conductive adhesive or the like. Obtained by sheet molding method to obtain an electrode by pasting, activated carbon, conductive additive and binder mixed with a solvent such as N-methylpyrrolidone to form a slurry, and a thin film is formed on the collector electrode with a doctor blade etc. and dried. It can be manufactured by a coating method.
  • the mixing ratio of the activated carbon, the conductive additive, and the binder is usually 10: 0 ⁇ 01 to 5: 0.01 to 5 in mass ratio.
  • the polarizable electrode thus obtained is dried, it is placed inside the outer package so as to face each other with a separator interposed therebetween, and impregnated with an electrolytic solution and sealed to assemble an electric double layer capacitor.
  • the drying method and temperature of the electrode are not particularly limited, but are usually 50 to 400 ° C., and can be dried under vacuum.
  • the separator can be made of paper or plastic such as polyethylene, polypropylene, polyamide, polytetrafluoroethylene.
  • the mass ratio of the electrolyte solution of the present invention to the polarizable electrode in total of positive and negative electrodes is not limited, but is usually 0.:! To 5, preferably Or 0.5 to 2, particularly preferably 0.7 to 1.5.
  • the mass ratio is set to 0.1 or more, the electrolyte solution can be spread over the entire electrode, and the capacitance is not reduced and the internal resistance is not increased due to insufficient ions.
  • the mass ratio is 5 or less, the amount of the electrolyte does not increase and economic efficiency is obtained.
  • the electrolyte was evaluated using glassy carbon for the working electrode, platinum wire for the counter electrode, and silver wire for the reference electrode, and with a potentiostat, the positive and negative electrodes were swept at a sweep rate of 5 mV / sec to ⁇ 10 ⁇ ⁇ .
  • the measurement was performed by a “potential window” in which the absolute values of the reached potentials were summed.
  • the electric double layer capacitor was manufactured as follows.
  • a pressure sheet is formed. did.
  • the obtained sheet was punched out into a disk shape and then vacuum-dried at 200 ° C. for 12 hours to obtain a polarizable electrode (diameter 16 mm, thickness 0.4 mm).
  • the electrodes were placed in a stainless steel case facing each other through a paper separator. Thereafter, an electric double layer capacitor cell was prepared by impregnating with the electrolytic solution.
  • the electric double layer capacitor is evaluated by a charge / discharge test in which the cell is fully charged by applying a voltage of up to 2.7V at a constant current of 5mA at 25 ° C and then discharged to 0V at a constant current of 5mA.
  • the initial capacitance (F / cc) was obtained, and then, as an accelerated test, the charge / discharge cycle for 250 hours at 70 ° C was repeated to obtain the capacitance retention rate (%) after acceleration relative to the initial capacitance.
  • the capacitance was obtained from the discharge energy described in Ikuo Okamura and Nikkan Kogyo Shimbun “Electric Double Layer Capacitor and Storage System Second Edition”.
  • the purity of the 4 crystals was 99.8% by mass, and the yield was 75% by mole based on jetyldimethylammonium methyl carbonate.
  • the reaction was performed in the same manner as in Example 5 except that ethanol was not used and 73 g (0.5 mol) of triethyl borate was used as the self-solvent.
  • the purity of the DEDMA-BF crystal is 99.8% by mass.
  • the rate was 81 mol% based on DEDMA-HBA.
  • Example 2 the reaction was carried out in the same manner as in Example 2 except that the starting salt compound (DEDMA-HBA) was changed to that shown in Table 1.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Ph represents a phenol group
  • Example 1 except that 20% by weight triethylmethylammonium hydroxide (denoted as TEMA-OH) 133 g (0.2 monole) in place of DEDMA-HBA and ethanol 40 g in place of water The reaction was carried out in the same manner.
  • Triethylmethylammonium BF (T) 133 g (0.2 monole)
  • Example 11 The reaction was carried out in the same manner as in Example 11 except that TEMA-OH and orthoboric acid were added to ethanol and then 50% by mass of hydrogen fluoride was added dropwise. Precipitation occurred when TEMA OH and orthoboric acid were charged, and the precipitation disappeared when hydrogen fluoride was added dropwise.
  • the purity of TEMA—BF crystals is 99.8% by mass, and the yield is TEMA—OH group.
  • Example 11 The reaction was carried out in the same manner as in Example 11 except that TEMA-OH and 50% by mass hydrogen fluoride were added to ethanol in the order of addition of onoleboric acid.
  • the purity of TEMA-BF crystal was 99.8% by mass, and the yield was 71 mol% based on TEMA-OH.
  • DEDMA_HBA103g (0.5 mol) and ethanolol 88g (l.9 mol) were added to a 500 ml Hastelloy C reaction vessel with a mark to prepare an ethanolic solution of DEDMA-HBA.
  • DEDMA A propylene power-bonate (PC) that was brought into a glove box with a dew point of 30 ° C and precision-distilled was dissolved at a concentration of 1.8 mol / liter (hereinafter abbreviated as M / mol).
  • M / mol 1.8 mol / liter
  • Examples 22-24 Using the DEDMA-BF obtained in the examples and comparative examples shown in Table 2, a 1.8M DEDMA-BF / PC electrolyte was prepared in the same manner as in Example 21. The water content of the electrolyte was 20 ppm or less.
  • DMA-BF / PC electrolyte was prepared.
  • the water content of the electrolyte was 20 ppm or less.
  • a PC electrolyte solution having the concentration shown in Table 3 was prepared in the same manner as in Example 21.
  • the water content of the electrolyte was 20 ppm or less.
  • Table 3 shows the results of measuring the potential window of the prepared electrolyte.
  • Example 31 Using 1-ethyl-3-methylimidazolium BF obtained in Example 17, Example 21
  • the water content of the electrolyte was 20 ppm or less.
  • Table 4 shows the results of measuring the potential window of the prepared electrolyte.
  • the water content of the electrolyte was 20 ppm or less.
  • Table 4 shows the results of measuring the potential window of the prepared electrolyte. As shown in Table 4, 1_ethyl-3-methylimidazolium-BF electrolyte with a potential window equivalent to that of the conventional method is
  • Comparative Example 4 The method of Comparative Example 4 to be used is a non-aqueous reaction, and a high yield of BF salt is obtained, and the electrolyte is highly pure.
  • an electrolytic solution can be produced safely and inexpensively by using a boron compound containing boric acid.
  • boric acid ester by using boric acid ester, a non-aqueous and high-purity electrolyte can be obtained.
  • a high-purity BF salt used in an electrolytic solution for an electric double layer capacitor
  • an electric double layer capacitor is used.
  • alkylammonium organic acid salt obtained by the reaction of alkylamine and carboxylic acid ester obtained by the reaction of alkylamine and carboxylic acid ester as a raw material
  • the purification process can be simplified, and by using hydroxycarboxylic acid ester as carboxylic acid ester.
  • the by-produced hydroxycarboxylic acid can be esterified and recycled to the quaternization process, and the BF salt can be produced industrially very advantageously.
  • a BF salt having good physical properties as a non-aqueous electrolyte for an electric double layer capacitor can be produced industrially very advantageously, and the electric double layer carrier having high performance can be produced.
  • a non-aqueous electrolyte for pasita can be advantageously obtained economically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This invention provides a process for producing boron tetrafluoride represented by Q+BF4-. The production process is characterized by comprising reacting (A) a salt compound represented by Q+X- wherein Q+ represents an onium ion or a metal ion, X- represents an inorganic acid ion except for BF4-, an organic acid ion, or a hydroxide ion, (B) at least one boron compound selected from the group consisting of orthoboric acid, metaboric acid, tetraboric acid, boron oxide, and a boric ester represented by B(OR1)(OR2)(OR3) wherein R1 represents an alkyl group having 1 to 10 carbon atoms and R2 and R3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, provided that R1, R2, and R3 may be the same or different, and (C) hydrogen fluoride. There are also provided a boron tetrafluoride produced by the above process, an electrolysis solution for an electric double layer capacitor using said boron tetrafluoride, and a process for producing the electrolysis solution. The production process can produce high-purity boron tetrafluoride for use in an electrolysis solution for an electric double layer capacitor without using an expensive and highly toxic BF3 gas in an industrially advantageous manner. In particular, boron tetrafluoride having good properties as a nonaqueous electrolysis solution for an electric double layer capacitor can be produced in an industrially very advantageous manner, and, thus, a high-performance nonaqueous electrolysis solution for an electric double layer capacitor can be produced in a cost-effective manner.

Description

明 細 書  Specification
四フッ化ホウ素塩の製造方法、該方法により得られる四フッ化ホウ素塩、 これを用レ、る電気二重層キャパシタ用電解液およびその製造方法  Method for producing boron tetrafluoride salt, boron tetrafluoride salt obtained by the method, electrolytic solution for electric double layer capacitor and method for producing the same
技術分野  Technical field
[0001] 本発明は、四フッ化ホウ素塩 (以下、 BF塩と称することがある。 )の製造方法、該方  The present invention relates to a method for producing boron tetrafluoride salt (hereinafter sometimes referred to as BF salt),
4  Four
法により得られる BF塩および該 BF塩を用いた電気二重層キャパシタ用電解液とそ  BF salt obtained by the method, electrolyte solution for electric double layer capacitor using the BF salt, and
4 4  4 4
の製造方法に関する。電気二重層キャパシタは高速充放電、サイクル特性、環境に 対する負荷が小さレ、等、従来の二次電池になレ、優れた特性を有する蓄電システムと して注目されている。  It relates to the manufacturing method. Electric double layer capacitors are attracting attention as power storage systems that have excellent characteristics, such as high-speed charging / discharging, cycle characteristics, and low environmental load.
背景技術  Background art
[0002] 電気二重層キャパシタ用の電解液は通常、電解質である塩と溶媒とで構成される。  [0002] An electrolytic solution for an electric double layer capacitor is usually composed of an electrolyte salt and a solvent.
溶媒として水を使うと耐電圧は水の電気分解電圧が上限となるが、非水溶媒を使用 した場合には水よりも大きな電圧で使用することができ、電気二重層キャパシタに蓄 えられる電気量は大きくなるため、蓄電量の大きい大型の電気二重層キャパシタには 非水電解液が主に使われている。非水電解液を用いた電気二重層キャパシタは微 量の水分やハロゲン等の不純物が特性に影響を与えるため、特に高純度であること が求められている。  When water is used as the solvent, the withstand voltage is limited to the electrolysis voltage of water, but when a non-aqueous solvent is used, it can be used at a voltage higher than that of water, and the electric power stored in the electric double layer capacitor Due to the large amount, non-aqueous electrolytes are mainly used for large electric double layer capacitors with large storage capacity. Electric double layer capacitors that use non-aqueous electrolytes are required to have particularly high purity because trace amounts of moisture and impurities such as halogens affect the characteristics.
また、非水電解液としてはォニゥム BF塩をプロピレンカーボネート(PCと表す。)に  As non-aqueous electrolyte, Onium BF salt is changed to propylene carbonate (PC).
4  Four
溶解させたものが主に使われている。  Dissolved products are mainly used.
[0003] このような BF塩の製造方法としては、例えば特許文献 1には有機ォニゥム塩(四級 [0003] As a method for producing such a BF salt, for example, Patent Document 1 discloses an organic salt (quaternary).
4  Four
アンモニゥム塩)と無機酸とをァニオン交換して対応する無機酸塩を製造する方法が 記載されており、この方法において無機酸としてホウフッ化水素酸水溶液を用いれば BF塩を製造することができる。し力しながら、この方法では、比較的高価なホウフッ A method for producing a corresponding inorganic acid salt by carrying out anion exchange between an ammonium salt and an inorganic acid is described, and a BF salt can be produced by using an aqueous borofluoric acid solution as the inorganic acid. However, this method is relatively expensive.
4 Four
化水素酸を原料としている。また、超強酸であるホウフッ化水素酸を取り扱うために高 価な耐腐食性の材質で装置を構成する必要がある。さらに通常ホウフッ化水素酸が 50%程度の水溶液として市販されており水中での反応となるため、水への溶解度の 高い BF塩を再結晶精製するためには、加熱濃縮して溶解度の低い溶媒を加える等 の操作が必要である。この際に、ホウフッ化水素酸や BF塩は水溶液中で分解するこ The raw material is hydrofluoric acid. In addition, in order to handle borohydrofluoric acid, which is a super strong acid, it is necessary to configure the apparatus with a high-priced, corrosion-resistant material. Furthermore, since borohydrofluoric acid is usually marketed as an aqueous solution of about 50% and becomes a reaction in water, in order to recrystallize and purify BF salt with high solubility in water, it is heated and concentrated to a solvent with low solubility. Etc. Is necessary. At this time, borohydrofluoric acid and BF salt are decomposed in an aqueous solution.
4  Four
とが知られており(特許文献 2)、加熱濃縮した場合にはォニゥム BF塩が変質すると  (Patent Document 2), and when concentrated by heating,
4  Four
レ、う問題がある。  There is a problem.
[0004] また、前述したように電気二重層キャパシタ用の非水電解液中の水分は電気二重 層キャパシタの特性に悪影響を与えるため、水は極限まで減らす必要がある。このた め、水を使用しなレ、非水系で電解液が製造できれば電解液の精製工程の負担が軽 減されるので好ましい。このような目的で、非水系で反応を行なう方法も知られており 、特許文献 3では非水溶媒に BFおよびフッ化水素を吹き込みォニゥム塩と反応させ  [0004] In addition, as described above, water in the non-aqueous electrolyte for an electric double layer capacitor adversely affects the characteristics of the electric double layer capacitor, so water must be reduced to the limit. For this reason, it is preferable that the electrolyte can be produced in a non-aqueous system without using water since the burden of the electrolyte purification process is reduced. For this purpose, a non-aqueous reaction method is also known. In Patent Document 3, BF and hydrogen fluoride are blown into a non-aqueous solvent to react with an onium salt.
3  Three
て非水系で BF塩を得ている。この方法は水が存在しない点で優れている力 高価  And non-aqueous BF salt is obtained. This method is superior in the absence of water
4  Four
な BFを使用する。また、 BFは常温ではガスで毒性が高ぐ高圧に耐えられる高価 Use BF. In addition, BF is expensive to withstand high pressures that are highly toxic with gases at room temperature.
3 3 3 3
な装置や安全設備が必要である。さらに BFの反応性が高いので、原料や溶媒の副  Equipment and safety equipment are necessary. In addition, because of the high reactivity of BF,
3  Three
反応が懸念される。  There is concern about the reaction.
[0005] 一方、 BF塩の原料のォニゥム塩の一つであるアルキルアンモニゥム塩の製造方法  [0005] On the other hand, a method for producing an alkylammonium salt, which is one of the onium salts of BF salt
4  Four
として、アルキノレアミンと、炭酸ジアルキルあるいは蟻酸エステル、ヒドロキシカルボン 酸エステル等の有機酸エステルを四級化反応してアルキルアンモニゥムアルキル炭 酸塩あるいは有機酸塩を得る方法が知られている(特許文献 1、特許文献 3および特 許文献 4)。後者の有機酸エステルを用いる方法は、アルキルアンモニゥム塩の一般 的な製造法であるアルキルァミンとアルキルハライドとを反応させる方法に比べ、電 気二重層キャパシタとした場合に問題となるハライドイオンの混入がなく優れた方法 である。  For example, a method is known in which an alkynoleamine and an organic acid ester such as dialkyl carbonate or formic acid ester or hydroxycarboxylic acid ester are subjected to a quaternization reaction to obtain an alkyl ammonium alkyl carbonate or organic acid salt (Patent Literature). 1, Patent Document 3 and Patent Document 4). The latter method using an organic acid ester is a method for reacting an alkylamine and an alkyl halide, which is a general method for producing an alkyl ammonium salt. It is an excellent method with no contamination.
[0006] また、特許文献 1および特許文献 4に記載のように、炭酸ジアルキルとァミンの反応 により製造されるアルキルアンモニゥムアルキル炭酸塩を用いる場合には、 BF塩と  [0006] Further, as described in Patent Document 1 and Patent Document 4, when an alkyl ammonium alkyl carbonate produced by the reaction of dialkyl carbonate and amine is used,
4 同時に炭酸ガスとアルコールが副生し、炭酸ジアルキルは回収できない。これに対し て特許文献 3に記載のように、アルキルァミンとヒドロキシカルボン酸エステルとの四 級化は、良好に反応が進み、得られるアルキルアンモニゥムヒドロキシカルボン酸塩 力、らの BF塩合成では、 BF塩と同時に副生するヒドロキシカルボン酸は系内で安定  4 At the same time, carbon dioxide and alcohol are by-produced, and dialkyl carbonate cannot be recovered. On the other hand, as described in Patent Document 3, the quaternization of alkylamine and hydroxycarboxylic acid ester proceeds well, and the resulting alkylammonium hydroxycarboxylate power, in the synthesis of BF salts thereof. , Hydroxycarboxylic acid by-produced simultaneously with BF salt is stable in the system
4 4  4 4
に存在し、これをエステル化することにより四級化工程にリサイクルできるという利点 力 sある。 し力しながら、これらの特許文献に記載の方法により BF塩を製造する場合には、 It can be recycled to the quaternization process by esterifying it. However, when producing a BF salt by the method described in these patent documents,
4  Four
前述のように、非水系で製造できるものの、高価で毒性の高い BFを使用しており、  As mentioned above, although it can be manufactured non-aqueous, it uses expensive and highly toxic BF,
3  Three
高圧に耐えられる高価な装置や安全設備などが必要である。  Expensive equipment and safety equipment that can withstand high pressure are required.
[0007] 以上の如ぐ従来のホウフッ化水素酸を用いる BF塩の製造方法は高価で、超強酸 [0007] The conventional BF salt production method using borohydrofluoric acid as described above is expensive and super strong acid.
4  Four
であるホウフッ化水素酸水溶液を取り扱う必要がある上に高純度のォニゥム BF塩が  In addition to handling borohydrofluoric acid aqueous solution, high purity Onium BF salt
4 得にくい、非水系にできないという問題がある。また従来の非水系の BF塩の製造方  4 There are problems that it is difficult to obtain and cannot be made non-aqueous. In addition, conventional methods for producing non-aqueous BF salts
4  Four
法は高価で毒性の高い BFガスを原料としている等の問題がある。また、従来の BF  The method has problems such as using expensive and highly toxic BF gas as a raw material. In addition, the conventional BF
3 4 塩を電解質とした電気二重層キャパシタ用電解液は高価であるという問題がある。 特許文献 1:特公平 7 - 116113号公報  3 4 There is a problem that the electrolytic solution for an electric double layer capacitor using a salt as an electrolyte is expensive. Patent Document 1: Japanese Patent Publication No. 7-116113
特許文献 2 :特開 2000— 315630号公報  Patent Document 2: JP 2000-315630 A
特許文献 3 :特開 2003— 96031号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-96031
特許文献 4 :特開 2003— 212828号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-212828
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、上記の従来技術における諸問題に鑑みてなされたものであり、 電気二重層キャパシタ用の電解液に用いられる高純度の BF塩を、高価で毒性の高  [0008] The object of the present invention has been made in view of the above-mentioned problems in the prior art, and a high-purity BF salt used in an electrolytic solution for an electric double layer capacitor is expensive and highly toxic.
4  Four
レ、 BFガスを用いずに、工業的に有利に製造し、電気二重層キャパシタ用の電解液 Le, BF gas is not used, and it is industrially advantageous to produce an electrolytic solution for electric double layer capacitors
3 Three
を経済的に有利に得る方法を提供することである。  Is to provide an economically advantageous method.
[0009] 本発明者らは、上記の目的を達成するために鋭意検討を行った結果、ォニゥム塩 化合物または金属塩化合物と、特定のホウ素化合物およびフッ化水素を反応させる ことにより、高価で毒性の高い BFガスを用いずに、 BF塩が工業的に有利に得られ [0009] As a result of intensive studies to achieve the above object, the present inventors have made an expensive and toxic reaction by reacting an onium salt compound or a metal salt compound with a specific boron compound and hydrogen fluoride. BF salt can be obtained industrially without using high BF gas.
3 4  3 4
、該方法で得られる BF塩が電気二重層キャパシタ用の非水電解液として良好な物  BF salt obtained by this method is a good non-aqueous electrolyte for electric double layer capacitors
4  Four
性を有し、非水電解液を有利に製造できること、特に、ホウ酸エステル化合物をホウ 素源とすることにより系内で水の副生しない非水系で BF塩が製造でき、溶媒を不要  BF salt can be produced in a non-aqueous system that does not by-produce water in the system by using a borate ester compound as a boron source.
4  Four
とすることもできること、また、ォニゥム塩として、アルキルァミンと有機酸エステルの反 応によって得られるアルキルアンモニゥム有機酸塩を原料とした場合、製造プロセス 上、 BF塩が極めて有利に製造できること等を見出し本発明に到達した。  In addition, when an alkyl ammonium organic acid salt obtained by the reaction of an alkylamine and an organic acid ester is used as a raw material as an onium salt, a BF salt can be produced very advantageously in the manufacturing process. The present invention has been reached.
4  Four
即ち本発明は、以下の BF塩の製造方法、 BF塩および電気二重層キャパシタ用  That is, the present invention provides the following BF salt production method, BF salt and electric double layer capacitor
4 4  4 4
電解液とその製造方法を提供するものである。 [0010] 1. (A)—般式(1)で表される塩化合物、 An electrolytic solution and a manufacturing method thereof are provided. [0010] 1. (A) —a salt compound represented by the general formula (1),
Q+X— (1)  Q + X— (1)
(式中、 Q+はォニゥムイオンまたは金属イオンを表し、 X—は BF—を除く無機酸イオン、 (In the formula, Q + represents an ion or metal ion, X— represents an inorganic acid ion excluding BF—,
4  Four
有機酸イオンまたは水酸化物イオンを表す)  (Represents organic acid ion or hydroxide ion)
(B)オルトホウ酸、メタホウ酸、四ホウ酸、酸化ホウ素および一般式(2)で表されるホウ 酸エステルからなる群より選ばれた 1種以上のホウ素化合物および、  (B) one or more boron compounds selected from the group consisting of orthoboric acid, metaboric acid, tetraboric acid, boron oxide and a boric acid ester represented by the general formula (2), and
B (OR1) (OR2) (OR3) (2) B (OR 1 ) (OR 2 ) (OR 3 ) (2)
(式中、 R1は炭素数:!〜 10のアルキル基、 R2および R3は水素原子もしくは炭素数 1〜 10のアルキル基を表し、 R1, R2および R3は同一でも異なっていても良い) (Wherein R 1 represents an alkyl group having from 10 to 10 carbon atoms, R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 1 , R 2 and R 3 are the same or different. May be)
(C)フッ化水素を反応させることを特徴とする一般式(3)で表される四フッ化ホウ素塩 の製造方法。  (C) A process for producing a boron tetrafluoride salt represented by the general formula (3), characterized by reacting hydrogen fluoride.
Q+BF― (3)  Q + BF― (3)
4  Four
(式中、 Q+は一般式(1)と同様である。 ) (In the formula, Q + is the same as in general formula (1).)
[0011] 2. —般式(1)および(3)において、 Q+がリチウムイオン、アルキルアンモニゥムィォ ン、アルキルホスホニゥムイオンおよびイミダゾリウムイオンからなる群より選ばれた 1 種以上のイオンである上記 1の四フッ化ホウ素塩の製造方法。 [0011] 2. —In the general formulas (1) and (3), Q + is one or more ions selected from the group consisting of lithium ions, alkylammonium ions, alkylphosphonium ions, and imidazolium ions. The method for producing boron tetrafluoride salt according to 1 above.
3. 一般式(1)および(3)において、 Q+がテトラェチルアンモニゥムイオン、トリメチ ルェチルアンモニゥムイオンまたはジェチルジメチルアンモニゥムイオンである上記 2 の四フッ化ホウ素塩の製造方法。 3. The process for producing a boron tetrafluoride salt according to 2 above, wherein, in the general formulas (1) and (3), Q + is a tetraethylammonium ion, a trimethylammonium ion or a jetyldimethylammonium ion.
4. 一般式(1)および(3)において、 Q+がイミダゾリゥムイオンである上記 2の四フッ 化ホウ素塩の製造方法。 4. The process for producing a boron tetrafluoride salt according to 2 above, wherein in formulas (1) and (3), Q + is an imidazolium ion.
5. 一般式(1)において、 X—が有機酸イオンである上記 1〜4のいずれかの四フッ化 ホウ素塩の製造方法。  5. The method for producing a boron tetrafluoride salt according to any one of 1 to 4 above, wherein in the general formula (1), X— is an organic acid ion.
[0012] 6. (A)成分力 S、アルキルァミンと有機酸エステルまたは炭酸ジアルキルとの反応に よって得られたものである上記 1〜4のいずれかの四フッ化ホウ素塩の製造方法。 [0012] 6. (A) Component strength S, The method for producing a boron tetrafluoride salt according to any one of the above 1 to 4, which is obtained by reacting an alkylamine with an organic acid ester or dialkyl carbonate.
7. (A)成分が、アルキルァミンとヒドロキシカルボン酸エステルとの反応によって得 られたものである上記 6の四フッ化ホウ素塩の製造方法。 7. The method for producing a boron tetrafluoride salt according to 6 above, wherein the component (A) is obtained by reacting an alkylamine with a hydroxycarboxylic acid ester.
8. (A)成分、(B)成分および (C)成分を、非水溶媒の存在下で反応させる上記:!〜 7のレ、ずれかの四フッ化ホウ素塩の製造方法。 8. (A) component, (B) component and (C) component are reacted in the presence of a non-aqueous solvent. No. 7 or any method for producing a boron tetrafluoride salt.
9. (B)成分に一般式(2)で表されるホウ酸エステルを用いる上記 8の四フッ化ホウ 素塩の製造方法。  9. The method for producing a boron tetrafluoride salt according to 8 above, wherein the boric acid ester represented by the general formula (2) is used as the component (B).
10. 一般式(2)で表されるホウ酸エステルを溶媒として用レ、、 (A)成分、(B)成分お よび (C)成分を反応させる上記:!〜 7いずれかの四フッ化ホウ素塩の製造方法。  10. Using the borate ester represented by the general formula (2) as a solvent, reacting the components (A), (B) and (C) A method for producing a boron salt.
[0013] 11. 上記 1〜: 10のいずれかの方法によって製造されたことを特徴とする四フッ化ホ ゥ素塩。  [0013] 11. A boron tetrafluoride salt produced by any one of the methods 1 to 10 above.
12. 上記 11の四フッ化ホウ素塩を含有することを特徴とする電気二重層キャパシタ 用非水電解液。  12. A nonaqueous electrolytic solution for an electric double layer capacitor comprising the boron tetrafluoride salt described in 11 above.
13. 上記 11の四フッ化ホウ素塩を非水溶媒に溶解させることを特徴とする電気二 重層キャパシタ用非水電解液の製造方法。 発明を実施するための最良の形態  13. A method for producing a nonaqueous electrolytic solution for an electric double layer capacitor, wherein the boron tetrafluoride salt of 11 is dissolved in a nonaqueous solvent. BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を詳細に説明する。先ず、本発明の四フッ化ホウ素塩の製造方法は 、(A)成分の一般式(1)で表される塩化合物、(B)成分のホウ素化合物および (C)成 分のフッ化水素を反応させて一般式 (3)で表される四フッ化ホウ素塩を製造すること を特徴とするものである。 [0014] Hereinafter, the present invention will be described in detail. First, the method for producing a boron tetrafluoride salt of the present invention comprises a salt compound represented by the general formula (1) of the component (A), a boron compound of the component (B) and hydrogen fluoride of the component (C). It is characterized by producing a boron tetrafluoride salt represented by the general formula (3) by reaction.
Q+X— (1)  Q + X— (1)
(式中、 Q+はォニゥムイオンまたは金属イオンを表し、 X—は BF—を除く無機酸イオン、 有機酸イオンまたは水酸化物イオンを表す) (In the formula, Q + represents an ion ion or a metal ion, and X— represents an inorganic acid ion, an organic acid ion or a hydroxide ion excluding BF—)
Q+BF― (3)  Q + BF― (3)
(式中、 Q+は一般式(1)と同様である。 ) (In the formula, Q + is the same as in general formula (1).)
[0015] 一般式(1)および(3)の Q+はォニゥムイオンまたは金属イオンを表す。 [0015] Q + in the general formulas (1) and (3) represents an onion ion or a metal ion.
ォニゥムイオンとしては、アンモニゥムイオン、ホスホニゥムイオン、スルホユウムィォ ン、ォキソニゥムイオン、アルソニゥムイオン、セレノニゥムイオン、スチボニゥムイオン 、スタノユウムイオン、ョードニゥムイオン、ジァゾニゥムイオン、イミダゾリゥムイオン、 ニトロニゥムイオン等が挙げられる。これらのォニゥム塩ィ匕合物の中心元素に結合す る結合基は水素、脂肪族、芳香族、脂環族を含むアルキル基が挙げられ、該アルキ ル基は二トリル、アミド、エーテル、エステル、アルコール、ハロゲン等の置換基で置 換されていても良い。また、複数ある結合基は各々異なっていても同一であっても良 ぐこれらが結合して環状であっても、窒素原子や不飽和結合を持つアミジン環を形 成していても良い。また 1種類のォニゥムイオンが 2つ以上結合していても 2種類以上 のォニゥムイオンが 2つ以上結合していても良い。 Examples of ion ions include ammonium ion, phosphonium ion, sulfoyuumion, oxonium ion, arsonium ion, selenonium ion, stibonium ion, stanoyuum ion, odonium ion, diazonium ion, Examples include imidazolium ion and nitronium ion. Examples of the bonding group bonded to the central element of these onium salt compounds include hydrogen, an aliphatic group, an aromatic group, and an alkyl group including an alicyclic group. The alkyl group includes nitrile, amide, ether, ester. With a substituent such as alcohol, halogen, etc. It may be replaced. Further, a plurality of linking groups may be different or the same, or these may be bonded to form a ring, or a nitrogen atom or an amidine ring having an unsaturated bond may be formed. In addition, two or more kinds of onion ions may be bonded even if two or more kinds of onion ions are bonded.
[0016] 金属イオンとしては特に限定されなレ、が、リチウムイオン、ナトリウムイオン、カリウム イオン等のアルカリ金属イオン、マグネシウムイオン、カルシウムイオン等のアルカリ 土類金属イオン、亜鉛イオン、銀イオン、銅イオン、ニッケルイオン、力ドニゥムイオン 等の BFと結合する金属カチオンが挙げられる。これら金属イオンの中で、特に電気 二重層キャパシタ用電解液として有用なものはリチウムイオンである。 [0016] The metal ions are not particularly limited, but alkali metal ions such as lithium ions, sodium ions and potassium ions, alkaline earth metal ions such as magnesium ions and calcium ions, zinc ions, silver ions and copper ions. Metal cations that bind to BF, such as nickel ions and force-donium ions. Among these metal ions, lithium ion is particularly useful as an electrolytic solution for electric double layer capacitors.
[0017] これらのォニゥムイオンの中で、特に電気二重層キャパシタ用電解液として有用な ものとして、アルキルアンモニゥムイオン、アルキルホスホニゥムイオンおよびイミダゾ リウムイオンが挙げられる。 [0017] Among these ion ions, those particularly useful as an electrolytic solution for electric double layer capacitors include alkyl ammonium ions, alkyl phosphonium ions, and imidazolium ions.
上記のアルキルアンモニゥムイオンおよびアルキルホスホニゥムイオンは、窒素原 子やリン原子に対称にアルキルが配置したもの、非対称にアルキルが配置したもの、 環状にアルキルが配置したもの、或いはアルキルの一部力 二トリル基、エーテル基 、アルコール基、エステル基、ハロゲン基などで置換されたものでも良レ、。  The above-mentioned alkyl ammonium ions and alkyl phosphonium ions are those in which alkyl is symmetrically arranged on the nitrogen atom or phosphorus atom, in which alkyl is asymmetrically arranged, in which alkyl is arranged in a ring, or partial force of alkyl. Even those substituted with a nitrile group, an ether group, an alcohol group, an ester group or a halogen group are acceptable.
イミダゾリゥムイオンを有する化合物としては、アミジン化合物である 1 , 3—ジメチル イミダゾリウム、 1ーメチノレー 3—ェチノレイミダゾリクム、 1 , 2, 3—トリメチノレイミタ、、ゾリウ ム等のイミダゾリゥム塩等が挙げられる。  Compounds having an imidazolium ion include amidine compounds such as 1,3-dimethylimidazolium, 1-methinoleol 3-ethenoreyl imidazolium, 1,2,3-trimethinoremitita, and imidazolium salts. Etc.
本発明においては、アルキルアンモニゥムイオンのテトラエチルアンモニゥム、トリメ チルェチルアンモニゥムまたはジェチルジメチルアンモニゥムと、イミダゾリゥムイオン が特に好適に用いられる。  In the present invention, tetraethylammonium, trimethylethylammonium or jetyldimethylammonium, which is an alkylammonium ion, and an imidazolium ion are particularly preferably used.
[0018] アルキルアンモニゥムイオンおよびアルキルホスホニゥムイオンを有する化合物の 具体例としては、テトラメチルアンモニゥム、テトラエチルアンモニゥム、テトラプロピル アンモニゥム、テトラプチルアンモニゥム、テトラペンチルアンモニゥム、テトラへキシ ノレアンモニゥム、テトライソプロピルアンモニゥム、テトラターシャリーブチルアンモニゥ ム等の対称アルキルアンモニゥム塩;トリェチルメチルアンモニゥム、ジェチルジメチ ノレアンモニゥム、トリメチルェチルアンモニゥム、トリメチルプロピルアンモニゥム、トリメ チルブチルアンモニゥム、トリメチルペンチルアンモニゥム、トリメチルへキシルアンモ へプチルアンモニゥム、ジメチルジへキシルアンモニゥム、ジメチルェチルプロピルァ ンモニゥム、ジメチルェチルブチルアンモニゥム、ジメチルェチルへプチルアンモニ ゥム、ジメチルェチルへキシルアンモニゥム、ジメチルプロピルブチルアンモニゥム、 ジメチルプロピルへプチルアンモニゥム、ジメチルプロピルへキシルアンモニゥム、ジ メチルブチルプロピルアンモニゥム、ジメチルブチルへプチルアンモニゥム、ジメチノレ ブチルへキシルアンモニゥム、トリフエ二ルメチルアンモニゥム等の非対称アルキルァ ンモニゥム塩;ジメチルピペリジニゥム、ジェチルビペリジニゥム、ジプロピルピペリジ 二ゥム、ジブチルピペリジニゥム、ジペンチルピペリジニゥム、ジへキシルピペリジニゥ ム、メチルェチルピペリジニゥム、メチルプロピルピペリジニゥム、メチルブチルピペリ ジニゥム、メチルペンチルピペリジニゥム、メチルへキシルピペリジニゥム、ェチルプロ ピルピペリジニゥム、ェチルブチルピペリジニゥム、ェチルペンチルピペリジニゥム、 ェチルへキシルピペリジニゥム、プロピルブチルピペリジニゥム、プロピルペンチルピ ペリジニゥム、プロピルへキシルピペリジニゥム、ジメチルピロリジニゥム、ジェチルピ 口リジニゥム、ジプロピルピロリジニゥム、ジブチルピロリジニゥム、ジペンチルピロリジ 二ゥム、ジへキシルピロリジニゥム、メチルェチルピロリジニゥム、メチルプロピルピロリ ジニゥム、メチルブチルピロリジニゥム、メチルペンチルピロリジニゥム、メチルへキシ ルピロリジニゥム、ェチルプロピルピロリジニゥム、ェチルブチルピロリジニゥム、ェチ ルペンチルピロリジニゥム、ェチルへキシルピロリジニゥム、プロピルブチルピロリジニ ゥム、プロピルペンチルピロリジニゥム、プロピルへキシルピロリジニゥム、 1 , 4ーテトラ メチレンピロリジニゥム、 1, 5 _ペンタメチレンピロリジニゥム、 1, 6 _へキサメチレンピ 口リジニゥム、 1, 4—テトラメチレンピペリジニゥム、 1 , 5_ペンタメチレンピペリジニゥ ム、 1, 6 _へキサメチレンピベリジニゥム等の環状アンモニゥム塩;トリメチルシアノメ モニゥム、メチルェチルプロピルシアノエチルアンモニゥム等の二トリル基置換アンモ ンモニゥム、メチルェチルプロピルメトキシェチルアンモニゥム等のエーテル置換アン モニゥム、エステル、トリメチルヒドロキシェチルアンモニゥム、トリェチルヒドロキシェ チルアンモニゥム、ェチルメチルプロピルヒドロキシェチルアンモニゥム等のアルコー ノレ置換アンモニゥム、トリメチル 2—クロロェチルアンモニゥム、トリェチル 2—クロロェ チルアンモニゥム等のハロゲン置換アンモニゥム塩及びこれらの中心元素を Pとした ホスホニゥム塩が挙げられる。 [0018] Specific examples of the compound having an alkylammonium ion and an alkylphosphonium ion include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetraptylammonium, tetrapentylammonium, tetrahetero Symmetric alkyl ammonium salts such as xynormonium, tetraisopropylammonium, tetratertiary butylammonium; triethylmethylammonium, jetyldimethylammonium, trimethylethylammonium, trimethylpropylammonium, trimme Butylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, heptylammonium, dimethyldihexylammonium, dimethylethylpropylammonium, dimethylethylbutylbutylammonium, dimethylethylheptylammonium, dimethylethyl Hexyl ammonium, dimethyl propyl butyl ammonium, dimethyl propyl heptyl ammonium, dimethyl propyl hexyl ammonium, dimethyl butyl propyl ammonium, dimethyl butyl heptyl ammonium, dimethylolene butyl hexyl ammonium Asymmetric alkylammonium salts such as dimethyl, triphenylmethylammonium; dimethylpiperidinium, jetylbiperidinium, dipropylpiperidinium, dibutylpiperidinium, Pentylpiperidinium, dihexylpiperidinium, methylethylpiperidinium, methylpropylpiperidinium, methylbutylpiperidinium, methylpentylpiperidinium, methylhexylpiperidinium, methylhexylpiperidinium, Ethylpropylpiperidinium, Ethylbutylpiperidinium, Ethylpentylpiperidinium, Ethylhexylpiperidinium, Propylbutylpiperidinium, Propylpentylpiperidinium, Propylhexylpiperidinium , Dimethylpyrrolidinium, jetyl lysinium, dipropylpyrrolidinium, dibutylpyrrolidinium, dipentylpyrrolidinium, dihexylpyrrolidinium, methylethylpyrrolidinium, methylpropylpyrroline Dinium, methylbutylpyrrolidinium, methylpentylpi Lydinium, methylhexylpyrrolidinium, ethylpropylpyrrolidinium, ethylbutylpyrrolidinium, ethylpentylpyrrolidinium, ethylhexylpyrrolidinium, propylbutylpyrrolidinium, propylpentylpyrrole Dinium, Propylhexylpyrrolidinium, 1,4-Tetramethylenepyrrolidinium, 1,5_Pentamethylenepyrrolidinium, 1,6_Hexamethylenepirine Lidinium, 1,4-Tetramethylenepiperidinium Cyclic ammonium salts such as 1,5_pentamethylenepiperidinium and 1,6_hexamethylenepiberidinium; nitrile groups such as trimethylcyanomethyl and methylethylpropylcyanoethylammonium Ethers such as substituted ammonium and methylethylpropylmethoxyethyl ammonium Anne Alcohol substituted ammonium such as monium, ester, trimethylhydroxyethyl ammonium, triethyl hydroxyethyl ammonium, ethylmethylpropyl hydroxyammonium, trimethyl 2-chloroethyl ammonium, triethyl 2-chloroethyl ammonium And halogen-substituted ammonium salts such as phosphonium salts whose central element is P.
[0019] (A)成分の一般式(1)において、 X—は BF—を除くァニオンであれば反応は良好に  [0019] In the general formula (1) of the component (A), if X— is an anion excluding BF—, the reaction is good.
4  Four
進行し、一般式(3)で表される BF塩を得ること力できる。  It progresses and can obtain the BF salt represented by the general formula (3).
4  Four
X—の具体例としては無機酸イオンおよび水酸化物イオンとして、フッ素、塩素、臭素 、ヨウ素等のハロゲンイオン、 CIO―、 CIO―、 NO―、 SO 2—、 HCO―、 CO 2—、 PO 3—、 H Specific examples of X— include inorganic acid ions and hydroxide ions, halogen ions such as fluorine, chlorine, bromine and iodine, CIO—, CIO—, NO—, SO 2 —, HCO—, CO 2 —, PO 3 —, H
4 3 3 4 3 3 4 4 3 3 4 3 3 4
PO 2—、 H PO―、シァ人イソチオシアナト等が挙げられる。また、有機酸イオンとしてPO 2 —, H PO—, Shea isothiocyanate, etc. Also as organic acid ions
4 2 4 4 2 4
、ギ酸イオン、酢酸イオン、プロピオン酸イオン、イソ酪酸イオン、シユウ酸イオン、ァク リル酸イオン、メタクリル酸イオン、乳酸イオン、 2—ヒドロキシイソ酪酸イオン等のカル ボン酸イオンや、炭酸モノメチルイオン(CH CO―)、炭酸モノェチルイオン(C H C  , Carbonate ions such as formate ion, acetate ion, propionate ion, isobutyrate ion, oxalate ion, acrylate ion, methacrylate ion, lactate ion, 2-hydroxyisobutyrate ion, and monomethyl carbonate ion ( CH CO-), monoethyl acetate (CHC)
3 3 2 5 3 3 2 5
O―)、炭酸モノプロピルイオン(C H CO― )、炭酸モノブチルイオン(C H CO― )、等O-), monopropyl carbonate (C H CO-), monobutyl carbonate (C H CO-), etc.
3 3 7 3 4 9 3 の炭酸モノアルキルイオンが挙げられる。これらの中では反応後の精製の容易さ及 び残留した場合の影響を考慮すると有機酸イオンが好ましい。 3 3 7 3 4 9 3 monoalkyl carbonate ions. Of these, organic acid ions are preferred in view of the ease of purification after the reaction and the effects of residual residues.
[0020] 工業的に大量に電気二重層キャパシタ用電解液を製造する場合には、一般式(1) で表される塩ィ匕合物の中でアルキルアンモニゥム有機酸塩を用いることが好ましい。 また、アルキルアンモニゥム有機酸塩の製造方法としては、アルキルァミンと有機酸 エステルとの四級化反応による方法力 S、容易に高純度の BFが得られるので、製造  [0020] When an electrolyte for an electric double layer capacitor is industrially produced in large quantities, an alkyl ammonium organic acid salt may be used in the salt compound represented by the general formula (1). preferable. In addition, alkylammonium organic acid salt can be produced by using a quaternization reaction between alkylamine and organic acid ester S, and BF with high purity can be easily obtained.
4  Four
プロセスとして工業的に優れている。  Industrially superior as a process.
[0021] このような四級化反応には有機酸エステルまたは炭酸ジアルキルが用いられる。有 機酸エステルとしては、例えばギ酸メチル、酢酸メチル、プロピオン酸メチル、イソ酪 酸メチル、シユウ酸ジメチル、アクリル酸メチル、メタクリル酸メチル、乳酸メチル、 2 - ヒドロキシイソ酪酸メチル等および、これらのメチル基をェチル基、プロピル基、ブチ ル基等に代えたカルボン酸エステル類が挙げられる。一方、炭酸ジアルキルとしては 、炭酸ジメチル、炭酸ジェチル、炭酸ジプロピル、炭酸ジブチル、炭酸メチルェチル 等が挙げられる。 これらの中で、反応速度、原料の入手のしゃすさ、安定性から、炭酸ジメチルおよ び 2—ヒドロキシイソ酪酸メチルが好ましい。 2—ヒドロキシイソ酪酸メチルは ACH (ァ セトンシアンヒドリン)新法と呼ばれるメタクリル酸メチルの製造中間体として大量に製 造されており、また BF塩を製造する際に分解しないのでエステル化して四級化反応 に循環再使用が可能であることから、特に好ましく用レ、られる。 [0021] In such a quaternization reaction, an organic acid ester or a dialkyl carbonate is used. Examples of organic acid esters include methyl formate, methyl acetate, methyl propionate, methyl isobutyrate, dimethyl oxalate, methyl acrylate, methyl methacrylate, methyl lactate, methyl 2-hydroxyisobutyrate, and the like. Examples thereof include carboxylic acid esters in which the group is changed to an ethyl group, a propyl group, a butyl group, or the like. On the other hand, examples of the dialkyl carbonate include dimethyl carbonate, jetyl carbonate, dipropyl carbonate, dibutyl carbonate, methyl ethyl carbonate and the like. Among these, dimethyl carbonate and methyl 2-hydroxyisobutyrate are preferable from the viewpoint of reaction rate, availability of raw materials, and stability. Methyl 2-hydroxyisobutyrate is produced in large quantities as an intermediate for the production of methyl methacrylate, called the new ACH (aceton cyanohydrin) method, and is not decomposed during the production of BF salts. Since it can be reused in the recycle reaction, it is particularly preferably used.
[0022] この四級化反応におけるアルキルァミンとしては、例えばトリメチルァミン、トリェチル ァミン、トリプロピノレアミン、トリブチルァミン等の対称トリアルキルァミン、ジメチルェチ ノレアミン、ジメチルプロピルァミン、ジメチルブチルァミン、ジェチルメチルァミン、ジェ チルプロピルァミン、ジェチルブチルァミン、ジプロピルメチルァミン、ジプロピルェチ ノレアミン、ジプロピルブチルァミン、ジブチルメチルァミン、ジブチルェチルァミン、ジ ブチルプロピルァミン、メチルェチルプロピルァミン、メチルェチルブチルァミン、メチ ルブチルプロピルァミン、ェチルプロピルブチルァミン等の非対称ァミンが挙げられ、 中でも 3つのアルキル基が同じ対称トリアルキルアミンは大量に製造されており、安価 に入手でき、特にトリェチルァミンが好ましい。  [0022] Examples of the alkylamine in this quaternization reaction include symmetric trialkylamines such as trimethylamine, triethylamine, tripropynoleamine, and tributylamine, dimethylethanolamine, dimethylpropylamine, dimethylbutylamine, Jetylmethylamine, Jetylpropylamine, Jetylbutylamine, Dipropylmethylamine, Dipropylethanolamine, Dipropylbutylamine, Dibutylmethylamine, Dibutylethylamine, Dibutylpropylamine, Examples include asymmetric amines such as methylethylpropylamine, methylethylbutylamine, methylbutylpropylamine, and ethylpropylbutylamine. Among them, symmetric trialkylamines with the same three alkyl groups are produced in large quantities. Is available at a low price , Especially Toryechiruamin is preferable.
[0023] 特許文献 4に記載のように 1級ァミンあるいは 2級ァミン力らも四級化反応が良好に 進行する。このためアルキルァミンと有機酸エステルとの四級化反応によるアルキル ァミンとして 1級ァミンあるいは 2級ァミンを用いることができ、例えばメチルァミン、ェ チノレアミン、プロピルァミン、ブチルァミン等の 1級ァミン、ジメチルァミン、ジェチルァ ミン、ジプロピルァミン、ジブチルァミン、メチルェチルァミン、メチルプロピルァミン、メ チルブチルァミン、ェチルプロピルァミン、ェチルブチルァミン、プロピルブチルァミン 等の 2級ァミンが挙げられる。中でも工業的に大量に製造されている単一のアルキル 基を持つアミン、特にェチルァミン、ジェチルァミンが好ましい。  [0023] As described in Patent Document 4, the quaternization reaction proceeds well even with the primary amine amine or secondary amine amine force. For this reason, primary amines or secondary amines can be used as alkylamines by the quaternization reaction of alkylamines with organic acid esters. Secondary amines such as dipropylamine, dibutylamine, methylethylamine, methylpropylamine, methylbutylamine, ethylpropylamine, ethylbutylamine, propylbutylamine and the like can be mentioned. Of these, amines having a single alkyl group, particularly ethylamine and jetylamine, which are produced in large quantities on an industrial scale are preferred.
[0024] 四級化反応の反応条件としては、通常アルキルァミンと有機酸エステルを反応槽に 仕込み加熱することにより行なわれる。有機酸エステルの使用量はアルキルアミン 1 モノレ対して通常 0. 01〜: 100モノレ、好ましく ίま 0.:!〜 10モノレである。  [0024] The reaction conditions for the quaternization reaction are usually carried out by charging an alkylamine and an organic acid ester into a reaction vessel and heating. The amount of the organic acid ester used is usually from 0.01 to 100 monoles, preferably from 0.1 to 10 monoles per alkylamine 1 monole.
この際の原料の仕込み方法でバッチ操作の場合は、すべての原料を一括して仕込 むことができる。  In the case of batch operation with the raw material charging method at this time, all the raw materials can be charged all at once.
反応温度は用いる原料の種類及び組成、反応時間などにより異なるが、通常 50〜 300°Cの範囲、好ましくは 80〜200°Cの範囲である。反応温度が 50°Cより低い場合 、反応は完結せず、 300°Cより高い場合には分解が懸念される。反応圧力は特に制 限されないが、反応液の反応温度での自圧(通常、 0〜5MPa (ゲージ圧)程度)で好 適に行なうことができる。反応時間は用いる原料の種類及び組成、反応温度等により 異なり一概に言えないが、通常 0. 5〜50時間の範囲である。 The reaction temperature varies depending on the type and composition of raw materials used, reaction time, etc. It is in the range of 300 ° C, preferably in the range of 80-200 ° C. When the reaction temperature is lower than 50 ° C, the reaction is not completed, and when it is higher than 300 ° C, there is a concern about decomposition. The reaction pressure is not particularly limited, but it can be suitably carried out at a self-pressure (usually about 0 to 5 MPa (gauge pressure)) at the reaction temperature of the reaction solution. The reaction time varies depending on the type and composition of the raw materials used, the reaction temperature, etc., and cannot be generally stated, but is usually in the range of 0.5 to 50 hours.
四級化反応は溶媒なしで反応は好適に進むが、アルコール等の極性溶媒を含む 任意の溶媒やカルボン酸等の添加剤を用いて反応を行なうこともできる。必要に応じ て窒素、アルゴン、ヘリウム等の反応に影響を与えない雰囲気下で行なうこともできる 四級化反応で生成したアルキルアンモニゥム有機酸塩は常法、例えば低沸点留分 を留去、必要に応じて再結晶することにより容易に反応生成液から分離、回収できる 。またアルキルアンモニゥム有機酸塩を分離、回収せず、そのまま BF塩の製造に使  Although the quaternization reaction proceeds favorably without a solvent, the reaction can also be carried out using an arbitrary solvent including a polar solvent such as alcohol or an additive such as carboxylic acid. If necessary, it can be carried out in an atmosphere that does not affect the reaction of nitrogen, argon, helium, etc. The alkylammonium organic acid salt produced in the quaternization reaction is distilled by a conventional method, for example, distilling a low-boiling fraction. If necessary, it can be easily separated and recovered from the reaction product solution by recrystallization. In addition, alkylammonium organic acid salts are not separated and recovered, and used as they are for the production of BF salts.
4  Four
用することもできる。また、四級化反応は回分、流通どちらの方法でも実施できる。 本発明の BF塩の製造における(B)成分のホウ素化合物には、オルトホウ酸(H B It can also be used. Further, the quaternization reaction can be carried out by either a batch method or a distribution method. The boron compound (B) in the production of the BF salt of the present invention includes orthoboric acid (H B
4 3 4 3
O )、メタホウ酸 (HBO )、四ホウ酸(H B〇)、酸化ホウ素(B O )および一般式(2)O), metaboric acid (HBO), tetraboric acid (H B0), boron oxide (B 2 O) and general formula (2)
3 2 2 4 7 2 3 3 2 2 4 7 2 3
で表されるホウ酸エステルが用いられる。 A borate ester represented by
B (OR1) (OR2) (OR3) (2) B (OR 1 ) (OR 2 ) (OR 3 ) (2)
(式中、 R1は炭素数:!〜 10のアルキル基、 R2および R3は水素原子もしくは炭素数 1〜 10のアルキル基を表し、 R1, R2および R3は同一でも異なっていても良い) 一般式(2)で表されるホウ酸エステルとしては、ホウ酸トリメチル、ホウ酸トリエチル、 ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリペンチル、ホウ酸トリへキシル、ホウ酸 トリへプチル、ホウ酸トリオクチル、ホウ酸トリノニル、ホウ酸トリデシル、ホウ酸トリイソプ 口ピル、ホウ酸トリ tert—ブチル、ホウ酸トリアリル、ホウ酸トリシクロへキシル、ホウ酸ト リフエニル、ホウ酸ェチルジメチル、ホウ酸ジェチルメチル、ホウ酸ェチルジブチル等 が挙げられる。またホウ酸エステルのアルキル基同士が同じ分子内または別の分子 のアルキル基と結合していても良レ、。これらの化合物の 2種以上を混合して使用する ことちできる。 (Wherein R 1 represents an alkyl group having from 10 to 10 carbon atoms, R 2 and R 3 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 1 , R 2 and R 3 are the same or different. The boric acid ester represented by the general formula (2) is trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, trito borate Butyl, trioctyl borate, trinonyl borate, tridecyl borate, triisobutyl borate, tri-tert-butyl borate, triallyl borate, tricyclohexyl borate, triphenyl borate, ethyl dimethyl borate, cetylmethyl borate, And ethyl dibutyl borate. It is also acceptable if the alkyl groups of the borate ester are bonded to the alkyl group in the same molecule or in another molecule. A mixture of two or more of these compounds can be used.
これらの化合物のうち、一般式(2)で表されるホウ酸エステルは反応により水が生成 しないため特に好ましい。また、ホウ酸エステルは別途合成したものを使用することも できる力 安価なオルトホウ酸、メタホウ酸、無水ホウ酸等のホウ酸化合物とアルコー ルを加熱することによりホウ酸エステルを製造できるため、このようにして製造したもの も好適に使用できる。また、水よりも沸点が高レ、かあるいは沸点の高い共沸組成をつ くるアルコールとアルコール過剰系でホウ酸化合物を反応させ、生成する水を留去し た釜残をアルコール溶液として用いることができる。水よりも沸点の低いホウ酸エステ ルを蒸留により分離して用いることもできる。 Of these compounds, the borate ester represented by the general formula (2) generates water by reaction. This is particularly preferable. In addition, boric acid esters can be synthesized separately. Boric acid esters can be produced by heating boric acid compounds such as orthoboric acid, metaboric acid, boric anhydride, etc. and alcohol. What was manufactured in this way can also be used conveniently. In addition, the residue of the kettle obtained by reacting a boric acid compound in an alcohol-excess system with an alcohol having a boiling point higher than that of water or an azeotropic composition having a higher boiling point and distilling off the generated water should be used as the alcohol solution. Can do. A boric acid ester having a boiling point lower than that of water can be separated by distillation and used.
[0026] 本発明の BF塩の製造方法における(C)成分のフッ化水素は、水溶液として用いる こともできるが、非水系で電解液を製造できるようにするため無水フッ化水素が好適 に用いられる。 [0026] Hydrogen fluoride of component (C) in the method for producing a BF salt of the present invention can be used as an aqueous solution, but anhydrous hydrogen fluoride is preferably used in order to be able to produce a non-aqueous electrolyte. It is done.
[0027] 本発明の BF塩の製造方法は、無溶媒でも、溶媒中でも反応を行なうことができる。  [0027] In the method for producing a BF salt of the present invention, the reaction can be carried out without a solvent or in a solvent.
溶媒を使用する場合の溶媒種としては非水溶媒が好ましぐ例えば、メタノーノレ、エタ ノーノレ、プロパノール、イソプロパノール、ブタノール、ターシャリーブタノール、ェチレ ングリコール、プロピレングリコール、グリセリン等のアルコール類、ギ酸メチル、酢酸 メチノレ、酢酸ェチル、酢酸ブチル、 2—ヒドロキシイソ酪酸メチル、 γ —ブチロラタトン 等のエステル類、アセトン、メチルェチルケトン等のケトン類、ジェチルエーテル、ジメ トキシェタン、ジォキサン、テトラヒドロフラン等のエーテル類、へキサン、ベンゼン、ト ルェン、キシレン等の炭化水素類、炭酸ジメチル、炭酸ジェチル、炭酸プロピレン等 の炭酸エステル類、ホノレムアミド、 Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァ セトアミド等のアミド類、ァセトニトリル、プロピオ二トリル等の二トリル類、ニトロメタン等 のニトロ化合物、リン酸トリメチル等のリン化合物、スルホラン、ジメチルスルホキシド等 の硫黄化合物が挙げられる。  Non-aqueous solvents are preferred as the solvent species when using the solvent, for example, methanolol, ethanol, propanol, isopropanol, butanol, tertiary butanol, ethylene glycol, propylene glycol, glycerin and other alcohols, methyl formate, Acetic acid methylol, ethyl acetate, butyl acetate, methyl 2-hydroxyisobutyrate, esters such as γ-butyrolatatane, ketones such as acetone and methyl ethyl ketone, ethers such as jetyl ether, dimethoxetane, dioxane, tetrahydrofuran, Hydrocarbons such as hexane, benzene, toluene, xylene, carbonates such as dimethyl carbonate, jetyl carbonate, propylene carbonate, amides such as honremamide, Ν, Ν-dimethylformamide, Ν, Ν-dimethylacetamide, etc. Nitriles such as acetonitrile and propionitrile, nitro compounds such as nitromethane, phosphorus compounds such as trimethyl phosphate, and sulfur compounds such as sulfolane and dimethyl sulfoxide.
溶媒を使用する場合の使用量は、通常原料の塩化合物 1質量部に対して、 0. 001 〜1000質量部の範囲、好ましくは 0. 01〜: 100質量部の範囲、さらに好ましくは 0. 1 〜50質量部の範囲である。これより少ないと溶媒を使用する効果はなぐこれより多 い場合には経済的に不利となる。  When the solvent is used, the amount used is usually in the range of 0.001 to 1000 parts by mass, preferably in the range of 0.01 to 100 parts by mass, and more preferably in the range of 1 part by mass of the starting salt compound. It is the range of 1-50 mass parts. If the amount is less than this, the effect of using the solvent is not good.
[0028] 本発明の BF塩の製造方法における原料の仕込みのモル当量比は、塩化合物:フ ッ化水素:ホウ素化合物が通常 1 : 0. 1〜100 : 0. 1〜; L00の範囲であり、好ましくは 1 : 0. 5〜5 : 0· 5〜50、さらに好ましくは 1 : 0· 8〜2 : 0· 8〜: 10の範囲である。フッ化 水素が過剰に存在すると、生成する目的の BF塩に残留して不純物となるため、仕 [0028] The molar equivalent ratio of the raw materials used in the method for producing a BF salt of the present invention is usually in the range of salt compound: hydrogen fluoride: boron compound: 1: 0.1 to 100: 0.1 to L00 Yes, preferably 1 : 0.5 to 5: 0 · 5 to 50, more preferably 1: 0 · 8 to 2: 0 · 8 to 10 If excessive hydrogen fluoride is present, it will remain in the target BF salt to be produced and become an impurity.
4  Four
込みのモル当量比は等量付近が好ましレ、。またホウ素化合物の仕込みモル当量比 は等量付近が好ましいが、ホウ酸エステルを用いる場合には前記溶媒を用いずホウ 酸エステルを過剰に入れて自己溶媒とすることもできる。  The equivalent molar equivalent ratio is preferably around the same amount. The molar equivalent ratio of the boron compound is preferably around the same amount, but when a boric acid ester is used, the boric acid ester can be added excessively to make a self-solvent without using the solvent.
仕込み順は特に限定されないが、原料の塩ィ匕合物の存在下にホウ素化合物とフッ 化水素を添加する方法が好ましレ、。  The order of preparation is not particularly limited, but a method of adding a boron compound and hydrogen fluoride in the presence of a raw material salt compound is preferred.
[0029] BF塩の製造における反応温度は、通常— 50〜200°Cの範囲、好ましくは— 20〜 [0029] The reaction temperature in the production of the BF salt is usually in the range of -50 to 200 ° C, preferably -20 to
4  Four
100°Cの範囲、さらに好ましくは _ 10°C〜60°Cの範囲である。この温度範囲より低い と反応は遅ぐこの温度範囲より高い場合には副反応が懸念される。  It is in the range of 100 ° C, more preferably in the range of -10 ° C to 60 ° C. If the temperature is lower than this temperature range, the reaction is slow. If the temperature is higher than this temperature range, side reactions may occur.
反応圧力は限定されないが、通常 0〜10MPaGの範囲、好ましくは 0. 05〜5MPa Gの範囲、さらに好ましくは常圧である。反応時間は使用する原料により異なるため 一概には言えないが、通常 1分〜 200時間の範囲、好ましくは 3分〜 150時間の範 囲、さらに好ましくは 5分〜 100時間の範囲である。  The reaction pressure is not limited, but is usually in the range of 0 to 10 MPaG, preferably in the range of 0.05 to 5 MPaG, more preferably atmospheric pressure. Since the reaction time varies depending on the raw materials used, it cannot be generally specified, but is usually in the range of 1 minute to 200 hours, preferably in the range of 3 minutes to 150 hours, and more preferably in the range of 5 minutes to 100 hours.
なお、本発明の BF塩の製造方法は回分法または流通法のどちらの方法でも好適  The method for producing the BF salt of the present invention is preferably either a batch method or a distribution method.
4  Four
に実施できる。  Can be implemented.
[0030] (A)成分、 (B)成分および (C)成分の反応により得られた BF塩は、分離精製する  [0030] The BF salt obtained by the reaction of component (A), component (B) and component (C) is separated and purified.
4  Four
ことが好ましい。分離精製方法としては、濾過、再結晶、抽出、蒸発乾固、蒸留、カラ ム分離等が挙げられる。該 BF塩が固体の場合には再結晶による精製が、液体の場  It is preferable. Separation and purification methods include filtration, recrystallization, extraction, evaporation to dryness, distillation, column separation and the like. If the BF salt is a solid, purification by recrystallization
4  Four
合には抽出による精製力 S、安価に高純度のものが得られるために好ましい。該 BF塩  In this case, the purification power S by extraction is preferable, and a high-purity product can be obtained at low cost. The BF salt
4 を濾過により分離する場合、原料の塩化合物を溶解し、かつ生成する BF塩を溶解  When 4 is separated by filtration, dissolve the raw salt compound and dissolve the BF salt that is produced.
4 しにくい溶媒種を反応溶媒として選択すれば、反応の進行と共に析出した BF塩を  4 If a difficult solvent species is selected as the reaction solvent, the BF salt precipitated as the reaction proceeds
4 分離すれば良く特に好ましい。  4 Separation is particularly preferable.
[0031] 本発明の電気二重層キャパシタ用非水電解液は上記の (A)成分、(B)成分および [0031] The non-aqueous electrolyte for an electric double layer capacitor of the present invention comprises the components (A), (B) and
(C)成分の反応により得られた BF塩を含有するものである。  It contains the BF salt obtained by the reaction of component (C).
4  Four
本発明の電気二重層キャパシタ用非水電解液において、電解質である前記 BF塩  In the non-aqueous electrolyte for an electric double layer capacitor of the present invention, the BF salt as an electrolyte
4 を含有していれば非水溶媒の使用は特に限定されないが、 BF塩が固体の場合に  The use of a non-aqueous solvent is not particularly limited as long as it contains 4, but when the BF salt is solid,
4  Four
は非水溶媒に BF塩を溶解させて電解液が構成される。 電気二重層キャパシタ用非水電解液の非水溶媒としては、例えば γ —プチ口ラクト ン、 γ —バレロラタトン、酢酸ェチル等のエステル類、メチルェチルケトン等のケトン 類、ジォキサン、テトラヒドロフラン、ジメトキシェタン等のエーテル類、炭酸ジメチル、 炭酸ジェチル、炭酸エチレン、炭酸プロピレン、ブチレンカーボネート、イソブチレン カーボネート、 1, 3—ジォキソラン一 2—オン等の炭酸エステル類、ホノレムアミド、 Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド等のアミド類、ァセトニトリル、 プロピオ二トリル、 3—メトキシプロピオ二トリル、フマロニトリル、グルタロニトリル等の二 トリル類、ニトロメタン等のニトロ化合物、 3_メチル _ 2_ォキサゾリジノン等のウレタ ン類、リン酸トリメチル等のリン化合物、スルホラン、 3—メチルスルホラン、ジメチルス ルホキシド等の硫黄化合物が挙げられる。これらの非水溶媒は 1種又は 2種以上を混 合して用いることもできる。 The electrolyte is composed of BF salt dissolved in non-aqueous solvent. Non-aqueous solvents for non-aqueous electrolytes for electric double layer capacitors include, for example, γ-petit-lactone, γ-valerolatatone, esters such as ethyl acetate, ketones such as methyl ethyl ketone, dioxane, tetrahydrofuran, and dimethoxy ester. Ethers such as tan, dimethyl carbonate, jetyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate, carbonate esters such as 1,3-dioxolan-2-one, honolemamide, Ν, ジ メ チ ル -dimethylformamide, Ν,ア ミ ド -amides such as dimethylacetamide, acetonitrile, propionitryl, 3-methoxypropionitryl, fumaronitrile, glutaronitrile and other nitriles, nitromethane and other nitro compounds, 3_methyl_2_oxazolidinone, etc. Urethanes, trimethyl phosphate Phosphorus compounds, sulfolane, 3-methyl sulfolane, sulfur compounds such Jimechirusu sulfoxide. These nonaqueous solvents can be used alone or in combination of two or more.
これらの非水溶媒は精密蒸留、カラム処理、モレキュラーシーブ、抽出等により不 純物を除去して使用することもできる。  These non-aqueous solvents can be used after removing impurities by precision distillation, column treatment, molecular sieve, extraction or the like.
[0032] 本発明の電気二重層キャパシタ用非水電解液中の BF塩の濃度は、通常 0.:!〜 1 [0032] The concentration of the BF salt in the non-aqueous electrolyte for an electric double layer capacitor of the present invention is usually from 0.:! To 1
4  Four
0モノレ/リットル、好ましくは 0· 5〜8モノレ/リットル、さらに好ましくは:!〜 6モル/リツ トルである。 BF塩の濃度を 0. 1モル/リットル以上とすることにより好適な電解液の  0 monolayer / liter, preferably 0.5 to 8 monolayer / liter, more preferably:! To 6 mol / liter. By setting the concentration of BF salt to 0.1 mol / liter or more, a suitable electrolyte solution
4  Four
電導度が得られ、 10モル/リットル以下とすることにより経済的に有利になる。  Conductivity is obtained, and it is economically advantageous to make it 10 mol / liter or less.
このようにして得られる非水電解液をさらにカラム処理、モレキュラーシーブ、抽出 等により不純物を除去することもできる。また、耐電圧を向上させる、または安全性を 高める目的で電解液に添加剤をカ卩えてもよい。  Impurities can be further removed from the thus obtained non-aqueous electrolyte by column treatment, molecular sieve, extraction or the like. In addition, an additive may be added to the electrolyte for the purpose of improving the withstand voltage or improving the safety.
[0033] 本発明の電気二重層キャパシタ用非水電解液は BF塩を含有していれば電気二 [0033] The non-aqueous electrolyte for an electric double layer capacitor of the present invention contains an BF salt as long as it contains a BF salt.
4  Four
重層キャパシタの製造方法、形状等は特に限定されないが、以下に本発明の非水 電解液が用いられる電気二重層キャパシタについて例示する。  Although the manufacturing method, shape, etc. of a multilayer capacitor are not specifically limited, The electric double layer capacitor in which the nonaqueous electrolyte of this invention is used is illustrated below.
通常、電気二重層キャパシタは、外装体、分極性電極、セパレータ及び電解液から 構成される。  Usually, an electric double layer capacitor is comprised from an exterior body, a polarizable electrode, a separator, and electrolyte solution.
電気二重層キャパシタの外装体及び形状としては、例えば金属外装によるコイン形 、円筒形、角形、アルミラミネートフィルムやプラスチックによる袋形等の形状で組み 立てること力 Sできる。 [0034] 分極性電極は活性炭、導電助剤、バインダーと集電極等から構成される。 As the outer package and shape of the electric double layer capacitor, for example, it is possible to assemble in a coin shape, metal shape, cylindrical shape, square shape, aluminum laminate film or plastic bag shape. [0034] The polarizable electrode is composed of activated carbon, a conductive additive, a binder, a collector electrode, and the like.
活性炭としては、例えばヤシ殻、フエノール樹脂、石油ピッチ等の炭化物を水蒸気 、二酸化炭素、塩化亜鉛、水酸化カリウム等で賦活したものが挙げられる。  Examples of the activated carbon include those obtained by activating carbides such as coconut shell, phenol resin, and petroleum pitch with water vapor, carbon dioxide, zinc chloride, potassium hydroxide, and the like.
導電助剤としては、例えばアセチレンブラック等のカーボンブラックあるいはアルミ や銅などの金属等が挙げられる。  Examples of the conductive aid include carbon black such as acetylene black, or metal such as aluminum and copper.
バインダーとしては、例えばポリテトラフルォロエチレン、ポリフッ化ビニリデン、カル ボキシメチルセルロース、ゴム類等が挙げられる。  Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, and rubbers.
集電極としては、例えばアルミ、ステンレス、銅、導電性プラスチック等が挙げられる  Examples of the collecting electrode include aluminum, stainless steel, copper, and conductive plastic.
[0035] 分極性電極の製造法としては、例えば活性炭、導電助剤、バインダーを混合し、適 宜アルコール等の溶媒を加えて混練してシート状とし、集電極に導電性接着剤等に より貼り付けて電極を得るシート成型法や、活性炭、導電助剤とバインダーを N—メチ ルピロリドン等の溶媒と混合してスラリーとし、集電極にドクターブレード等により薄膜 を形成し乾燥して得られる塗工法による製造することができる。活性炭、導電助剤、 バインダーの混合比は、通常、質量比で 10 : 0· 01〜5 : 0. 01〜5である。またこれら の電極は集電極の片面でも両面に加工することもできる。 [0035] As a method for producing a polarizable electrode, for example, activated carbon, a conductive aid, and a binder are mixed, and an appropriate solvent such as alcohol is added and kneaded to form a sheet, and the collector electrode is coated with a conductive adhesive or the like. Obtained by sheet molding method to obtain an electrode by pasting, activated carbon, conductive additive and binder mixed with a solvent such as N-methylpyrrolidone to form a slurry, and a thin film is formed on the collector electrode with a doctor blade etc. and dried. It can be manufactured by a coating method. The mixing ratio of the activated carbon, the conductive additive, and the binder is usually 10: 0 · 01 to 5: 0.01 to 5 in mass ratio. These electrodes can be processed on one side or both sides of the collector electrode.
このようにして得られた分極性電極は乾燥した後、セパレータを挟んで対向させて 外装体内に設置し、電解液を含浸させて密封して電気二重層キャパシタを組み立て る。電極の乾燥方法や温度は特に限定されないが、通常 50〜400°Cであり、真空下 で乾燥を行なうこともできる。  After the polarizable electrode thus obtained is dried, it is placed inside the outer package so as to face each other with a separator interposed therebetween, and impregnated with an electrolytic solution and sealed to assemble an electric double layer capacitor. The drying method and temperature of the electrode are not particularly limited, but are usually 50 to 400 ° C., and can be dried under vacuum.
このセパレータには、紙製や、ポリエチレン、ポリプロピレン、ポリアミド、ポリテトラフ ルォロエチレン等のプラスチック製のものが使用可能である。  The separator can be made of paper or plastic such as polyethylene, polypropylene, polyamide, polytetrafluoroethylene.
電気二重層キャパシタにおける本発明の電解液と正負極合計での分極性電極との 質量比(電解液の質量 Z分極性電極の質量)は限定されないが、通常 0.:!〜 5、好 ましくは 0. 5〜2、特に好ましくは 0. 7〜: 1. 5の範囲である。質量比を 0. 1以上とする ことにより電解液を電極全体に行き渡らすことができ、イオン不足による静電容量の 低下、内部抵抗の増加を引き起こすことがない。一方、質量比を 5以下とすることによ り電解液量が多くならず、経済性が得られる。 実施例 In the electric double layer capacitor, the mass ratio of the electrolyte solution of the present invention to the polarizable electrode in total of positive and negative electrodes (the mass of the electrolyte solution and the mass of the Z-polarizable electrode) is not limited, but is usually 0.:! To 5, preferably Or 0.5 to 2, particularly preferably 0.7 to 1.5. By setting the mass ratio to 0.1 or more, the electrolyte solution can be spread over the entire electrode, and the capacitance is not reduced and the internal resistance is not increased due to insufficient ions. On the other hand, when the mass ratio is 5 or less, the amount of the electrolyte does not increase and economic efficiency is obtained. Example
[0036] 以下に、実施例によって本発明をさらに具体的に説明する。本発明は、これらの実 施例によって限定されるものではない。  [0036] Hereinafter, the present invention will be described more specifically with reference to Examples. The present invention is not limited by these examples.
なお、以下において、生成物の分析にはイオンクロマトグラフィーを、電解液の水分 の分析はカールフィッシャー水分計を用いた。  In the following, ion chromatography was used to analyze the product, and Karl Fischer moisture meter was used to analyze the water content of the electrolyte.
また、電解液の評価は、作用極にグラッシ一カーボン、対極に白金線、参照極に銀 線を用いポテンシヨスタツトにより 5mV/secの掃引速度で正、負極に掃引し、 ± 10 β Αに到達した電位の絶対値を合計した「電位窓」により行った。  The electrolyte was evaluated using glassy carbon for the working electrode, platinum wire for the counter electrode, and silver wire for the reference electrode, and with a potentiostat, the positive and negative electrodes were swept at a sweep rate of 5 mV / sec to ± 10 β Α. The measurement was performed by a “potential window” in which the absolute values of the reached potentials were summed.
[0037] さらに、電気二重層キャパシタの作製は以下のようにして行なった。 Furthermore, the electric double layer capacitor was manufactured as follows.
メソフェーズピッチの炭素化物を水酸化カリウムにより賦活して得た活性炭粉末 80 wt%、カーボンブラック 10質量%,ポリテトラフルォロエチレン 10質量%からなる混 合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いたのち、 2 00°Cで 12時間真空乾燥して分極性電極(直径 16mm、厚さ 0. 4mm)とした。この電 極を、紙製セパレータを介して互いに対向させ、ステンレス製ケース内に収納した。 その後、上記電解液を含浸させ封じ込め電気二重層キャパシタセルを作製した。 電気二重層キャパシタの評価は、作製したセルに 25°Cで 5mAの定電流で 2. 7V まで電圧を印加して十分に充電した後、 5mAの定電流で 0Vまで放電する充放電試 験により初期静電容量 (F/cc)を求め、次いで加速試験として 70°Cで 250時間充放 電サイクルを繰り返して静電容量の初期に対する加速後静電容量保持率(%)を求 めた。  After mixing a mixture of activated carbon powder 80 wt%, carbon black 10 mass%, polytetrafluoroethylene 10 mass% obtained by activating mesophase pitch carbonized with potassium hydroxide, a pressure sheet is formed. did. The obtained sheet was punched out into a disk shape and then vacuum-dried at 200 ° C. for 12 hours to obtain a polarizable electrode (diameter 16 mm, thickness 0.4 mm). The electrodes were placed in a stainless steel case facing each other through a paper separator. Thereafter, an electric double layer capacitor cell was prepared by impregnating with the electrolytic solution. The electric double layer capacitor is evaluated by a charge / discharge test in which the cell is fully charged by applying a voltage of up to 2.7V at a constant current of 5mA at 25 ° C and then discharged to 0V at a constant current of 5mA. The initial capacitance (F / cc) was obtained, and then, as an accelerated test, the charge / discharge cycle for 250 hours at 70 ° C was repeated to obtain the capacitance retention rate (%) after acceleration relative to the initial capacitance.
なお、静電容量は、岡村廸夫著、 日刊工業新聞社刊「電気二重層キャパシタと蓄 電システム 第二版」記載の放電エネルギーから求めた。  The capacitance was obtained from the discharge energy described in Ikuo Okamura and Nikkan Kogyo Shimbun “Electric Double Layer Capacitor and Storage System Second Edition”.
[0038] < BF塩の合成 > [0038] <Synthesis of BF salt>
4  Four
実施例 1  Example 1
水 40g、オルトホウ酸 12g (0. 2モル)を、攪拌機を付した PTFE (ポリテトラフルォロ エチレン)製の 200mlナスフラスコに仕込み、氷冷下 50質量%フッ化水素 32g (0. 8 モル)を滴下し、直ちにジェチルジメチルアンモニゥム 2—ヒドロキシイソ酪酸塩(DE DMA— HBAと表す。)41g (0. 2モル)を添加した。 3時間攪拌後、水を減圧で留去 し、釜残にエタノールを加え再結晶してジェチルジメチルアンモニゥム BF (DEDM 40 g of water and 12 g of orthoboric acid (0.2 mol) were placed in a 200 ml eggplant flask made of PTFE (polytetrafluoroethylene) equipped with a stirrer, and 32 g (0.8 mol) of 50 mass% hydrogen fluoride under ice cooling. ), And 41 g (0.2 mol) of jetyldimethylammonium 2-hydroxyisobutyrate (denoted as DE DMA-HBA) was immediately added. After stirring for 3 hours, water was distilled off under reduced pressure. Add ethanol to the residue and recrystallize to recycle the diethyldimethylammonium BF (DEDM
4  Four
A-BFと表す。)の白色の結晶 26gを得た。結晶の純度は 99· 2質量%、収率は D  Expressed as A-BF. ) 26 g of white crystals were obtained. The purity of the crystals is 99.2% by mass, the yield is D
4  Four
EDMA—HBA基準で 69モル%であった。  It was 69 mol% based on EDMA-HBA.
[0039] 実施例 2 [0039] Example 2
エタノーノレ 40g、 DEDMA-HBA41g (0. 2モノレ)と才ノレトホウ酸 12g (0. 2モノレ) を実施例 1と同様の容器に仕込み、氷冷下フッ化水素 16g (0. 8モル)を吹き込んだ 。 1時間攪拌を継続し、析出した結晶を濾過して DEDMA—BFの白色結晶 28gを  40 g of ethanol, 41 g of DEDMA-HBA (0.2 monole) and 12 g of noreboric acid (0.2 monole) were charged in the same container as in Example 1, and 16 g (0.8 mol) of hydrogen fluoride was blown under ice cooling. . Stirring was continued for 1 hour, and the precipitated crystals were filtered to obtain 28 g of DEDMA-BF white crystals.
4  Four
得た。結晶の純度は 99. 8質量%、収率は DEDMA— HBA基準で 75モル%であつ た。  Obtained. The purity of the crystals was 99.8% by mass, and the yield was 75 mol% based on DEDMA-HBA.
[0040] 実施例 3  [0040] Example 3
オルトホウ酸に代えてメタホウ酸 8. 9g (0. 2モル)とした以外は実施例 2と同様にし て反応を行なった。 DEDMA— BF結晶の純度は 99. 8質量%、収率は DEDMA  The reaction was conducted in the same manner as in Example 2 except that 8.9 g (0.2 mol) of metaboric acid was used instead of orthoboric acid. DEDMA— The purity of BF crystals is 99.8% by mass, and the yield is DEDMA.
4  Four
HBA基準で 73モノレ%であった。  It was 73 monole% based on HBA.
[0041] 実施例 4 [0041] Example 4
オルトホウ酸に代えて無水ホウ酸 7. 0g (0. 1モル)、反応温度を室温、反応時間を 72時間とした以外は実施例 2と同様にして反応を行なった。 DEDMA—BF結晶の  The reaction was carried out in the same manner as in Example 2 except that 7.0 g (0.1 mol) of boric anhydride was used in place of orthoboric acid, the reaction temperature was room temperature, and the reaction time was 72 hours. DEDMA—of BF crystals
4 純度は 99. 8質量%、収率はDEDMA—HBA基準でモル69%でぁった。  4 The purity was 99.8% by mass, and the yield was 69% mol based on DEDMA-HBA.
[0042] 実施例 5 [0042] Example 5
オルトホウ酸に代えてホウ酸トリェチル 29g (0. 2モル)とした以外は実施例 2と同様 にして反応を行なった。 DEDMA—BF結晶の純度は 99. 8質量%、収率は DED  The reaction was performed in the same manner as in Example 2 except that 29 g (0.2 mol) of triethyl borate was used instead of orthoboric acid. The purity of DEDMA-BF crystals is 99.8% by mass, and the yield is DED.
4  Four
MA— HBA基準で 79モル%であった。  MA—79 mol% based on HBA.
[0043] 実施例 6 [0043] Example 6
ホウ酸トリェチルに代えてホウ酸トリメチル 21g (0. 2モル)とした以外は実施例 1と 同様に反応を行った。 DEDMA—BF結晶の純度は 99. 8質量%、収率は DEDM  The reaction was carried out in the same manner as in Example 1 except that triethyl borate (21 g, 0.2 mol) was used instead of triethyl borate. The purity of DEDMA—BF crystals is 99.8% by mass, and the yield is DEDM.
4  Four
A—HBA基準で 54モノレ%であった。  It was 54 monole% based on A-HBA.
[0044] 実施例 7 [0044] Example 7
エタノーノレ 40g、ジェチルジメチルアンモニゥムメチル炭酸塩 35g (0. 2モル)とホウ 酸トリエチノレ 29g (0. 2モル)を、攪拌機を付した PTFE製の 200mlナスフラスコに仕 込み、氷冷下フッ化水素 16g (0. 8モル)を吹き込んだ。得られた DEDMA— BF結 40 g of ethanol and 35 g (0.2 mol) of jetyldimethylammonium methyl carbonate and 29 g (0.2 mol) of triethinole borate were placed in a PTFE 200 ml eggplant flask equipped with a stirrer. Then, 16 g (0.8 mol) of hydrogen fluoride was blown in under ice cooling. Obtained DEDMA—BF results
4 晶の純度は 99. 8質量%、収率はジェチルジメチルアンモニゥムメチル炭酸塩基準 で 75モノレ%であった。  The purity of the 4 crystals was 99.8% by mass, and the yield was 75% by mole based on jetyldimethylammonium methyl carbonate.
[0045] 実施例 8 [0045] Example 8
エタノールに代えて 2—ヒドロキシイソ酪酸メチルとした以外は実施例 2と同様にして 反応を行なった。 DEDMA— BF結晶の純度は 99. 8質量%、収率は DEDMA— The reaction was performed in the same manner as in Example 2 except that methyl 2 -hydroxyisobutyrate was used instead of ethanol. DEDMA— The purity of BF crystals is 99.8% by mass, and the yield is DEDMA—
4  Four
HBA基準で 20モル%であった。  It was 20 mol% based on HBA.
[0046] 実施例 9 [0046] Example 9
エタノールを使用せず、ホウ酸トリェチル 73g (0. 5モル)を自己溶媒とした以外は 実施例 5と同様に反応を行なった。 DEDMA—BF結晶の純度は 99. 8質量%、収  The reaction was performed in the same manner as in Example 5 except that ethanol was not used and 73 g (0.5 mol) of triethyl borate was used as the self-solvent. The purity of the DEDMA-BF crystal is 99.8% by mass.
4  Four
率は DEDMA—HBA基準で 81モル%であった。  The rate was 81 mol% based on DEDMA-HBA.
[0047] 実施例 10〜: 16 [0047] Examples 10 to 16
実施例 2におレ、て原料の塩化合物(DEDMA— HBA)を第 1表に記載のものに代 えた以外は実施例 2と同様にして反応を行なった。得られた BF塩とその純度および  In Example 2, the reaction was carried out in the same manner as in Example 2 except that the starting salt compound (DEDMA-HBA) was changed to that shown in Table 1. The obtained BF salt and its purity and
4  Four
収率を第 1表に示す。  The yield is shown in Table 1.
なお、第 1表において、 Meはメチル基、 Etはェチル基、 Prはプロピル基、 Phはフエ 二ノレ基を示す。  In Table 1, Me represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, and Ph represents a phenol group.
[0048] [表 1] 1表 [0048] [Table 1] 1 table
Figure imgf000019_0001
Figure imgf000019_0001
[0049] 実施例 17  [0049] Example 17
メタノーノレ 40g、 1—ェチル一 3-メチルイミダゾリゥムメチル 2—ヒドロキシイソ酪酸塩 43g (0. 2モノレ)とホウ酸トリメチル 21g (0. 2モル)を、攪拌機を付した PTFE製の 20 Omlナスフラスコに仕込み、氷冷下フッ化水素 16g (0. 8モル)を吹き込んだ。反応液 力 低沸を留去した後に酢酸ェチルで洗浄し、 1—ェチル—3-メチルイミダゾリゥム -BFの液体を得た。純度は 99. 8質量%、収率は 1 _ェチル—3-メチルイミダゾリMethanolol 40 g, 1-ethyl 3-methylimidazolium 2-hydroxyisobutyrate 43 g (0.2 monole) and 21 g trimethyl borate (0.2 mol) were placed in a PTFE 20 Oml eggplant flask equipped with a stirrer, and 16 g (0.8 mol) of hydrogen fluoride was blown in with ice cooling. . Reaction liquid After distilling off the low boiling point, the reaction solution was washed with ethyl acetate to obtain 1-ethyl-3-methylimidazolium-BF liquid. The purity is 99.8% by mass, the yield is 1_ethyl-3-methylimidazoli
4 Four
ゥムメチル炭酸塩基準で 96モル0 /。であった。 96 mole 0 / umum carbonate standard. Met.
[0050] 実施例 18 [0050] Example 18
DEDMA— HBAに代えて 20質量%トリェチルメチルアンモニゥムハイドロォキサイ ド(TEMA—OHと表す。)水溶液 133g (0. 2モノレ)、水に代えてエタノーノレ 40gとし た以外は実施例 1と同様にして反応を行なった。トリェチルメチルアンモニゥム BF (T  Example 1 except that 20% by weight triethylmethylammonium hydroxide (denoted as TEMA-OH) 133 g (0.2 monole) in place of DEDMA-HBA and ethanol 40 g in place of water The reaction was carried out in the same manner. Triethylmethylammonium BF (T
4 Four
EMA-BFと表す。)結晶の純度は 99. 8質量%、収率は TEMA—OH基準で 76 Expressed as EMA-BF. ) The purity of the crystal is 99.8 mass%, and the yield is 76 based on TEMA-OH.
4  Four
モノレ%であった。  Monore%.
[0051] 実施例 19  [0051] Example 19
仕込みをエタノールに TEMA— OHとオルトホウ酸を仕込み、次いで 50質量%フッ 化水素を滴下する順とした以外は実施例 11と同様にして反応を行なった。 TEMA OHとオルトホウ酸を仕込んだところでー且沈殿が生じ、フッ化水素を滴下すると沈 殿はなくなつた。 TEMA— BF結晶の純度は 99. 8質量%、収率は TEMA— OH基  The reaction was carried out in the same manner as in Example 11 except that TEMA-OH and orthoboric acid were added to ethanol and then 50% by mass of hydrogen fluoride was added dropwise. Precipitation occurred when TEMA OH and orthoboric acid were charged, and the precipitation disappeared when hydrogen fluoride was added dropwise. The purity of TEMA—BF crystals is 99.8% by mass, and the yield is TEMA—OH group.
4  Four
準で 74モル%であった。  The equivalent was 74 mol%.
[0052] 実施例 20 [0052] Example 20
仕込みをエタノールに TEMA— OHと 50質量%フッ化水素を仕込み、次いでォノレ トホウ酸を添加する順とした以外は実施例 11と同様にして反応を行なった。 TEMA -BF結晶の純度は 99. 8質量%、収率は TEMA— OH基準で 71モル%であった The reaction was carried out in the same manner as in Example 11 except that TEMA-OH and 50% by mass hydrogen fluoride were added to ethanol in the order of addition of onoleboric acid. The purity of TEMA-BF crystal was 99.8% by mass, and the yield was 71 mol% based on TEMA-OH.
4 Four
[0053] 比較例 1 [0053] Comparative Example 1
水 40g、 DEDMA-HBA41g (0. 2モル)と 42質量0 /0ホウフッ化水素酸水溶液 29 g (0. 2モル)を、攪拌機を付した PTFE製の 200mlナスフラスコに仕込み、氷冷下 5 0質量%フッ化水素水溶液 32g (0. 8モル)を滴下した。 1時間攪拌を継続したが結 晶は析出せず、反応液をエバポレータにて加熱して減圧で濃縮し、再結晶溶媒とし てエタノールを加え冷却することにより DEDMA—BF結晶が析出した。 高価で腐食性の高いホウフッ化水素酸水溶液を用いると、非水系で反応を行なうこ とはできず、水に対する BF塩の溶解度が高いため反応液の加熱濃縮操作が必要 Water 40g, DEDMA-HBA41g a (0.2 mol) and 42 mass 0/0 fluoroboric acid solution 29 g (0.2 mol) were charged to a PTFE 200ml eggplant flask equipped with a stirrer, under ice-cooling 5 32 g (0.8 mol) of 0 mass% aqueous hydrogen fluoride solution was added dropwise. Stirring was continued for 1 hour, but no crystals were precipitated. The reaction solution was heated with an evaporator and concentrated under reduced pressure, and ethanol was added as a recrystallization solvent and cooled to precipitate DEDMA-BF crystals. If an expensive and highly corrosive borohydrofluoric acid aqueous solution is used, the reaction cannot be carried out in a non-aqueous system, and the BF salt is highly soluble in water, so the reaction solution must be heated and concentrated.
4  Four
であった。  Met.
[0054] 比較例 2  [0054] Comparative Example 2
攪拌機の付いた 200mlのハステロィ C製の HF— BF調合槽に、エタノーノレ 64g (l  In a 200 ml Hastelloy C HF—BF blending tank with a stirrer, 64 g ethanol (l
3  Three
. 4モル)を仕込み、 5°Cに冷却しながらフッ化水素 10g (0. 5モル)を滴下し、次いで BFガス 33g (0. 5モル)を吹き込み HF— BFのエタノール溶液を調製した。攪拌機 4 mol) was charged, 10 g (0.5 mol) of hydrogen fluoride was added dropwise while cooling to 5 ° C, and then 33 g (0.5 mol) of BF gas was blown to prepare an ethanol solution of HF-BF. Stirrer
3 3 3 3
の付いた 500mlのハステロィ C製の反応槽に DEDMA_HBA103g (0. 5モル)と エタノーノレ 88g (l . 9モル)を加え、 DEDMA—HBAのエタノール溶液を調製した。  DEDMA_HBA103g (0.5 mol) and ethanolol 88g (l.9 mol) were added to a 500 ml Hastelloy C reaction vessel with a mark to prepare an ethanolic solution of DEDMA-HBA.
[0055] 上記で調製した HF— BFのエタノール溶液を DEDMA—HBAのエタノール溶液 [0055] The ethanol solution of HF-BF prepared above was added to the ethanol solution of DEDMA-HBA.
3  Three
中へ滴下し、 1時間攪拌後析出した結晶を濾過して DEDMA—BFの白色結晶 77g  Dropped into the solution and stirred for 1 hour. The precipitated crystals were filtered and white DEDMA-BF crystals 77g
4  Four
を得た。結晶の純度は 99. 8質量%、収率は DEDMA—HBA基準で 81モル%であ つに。  Got. The purity of the crystals is 99.8% by mass, and the yield is 81 mol% based on DEDMA-HBA.
[0056] 比較例 3 [0056] Comparative Example 3
DEDMA— HBAに代えて 1—ェチル 3-メチルイミダゾリゥムメチル 2 ヒドロキシ イソ酪酸塩 107g (0. 5モル)とした以外は比較例 2と同様に反応を行なった。反応液 力 低沸を留去した後に酢酸ェチルで洗浄し、 1—ェチル—3-メチルイミダゾリゥム -BFの液体を得た。純度は 99. 7質量%、収率は 1ーェチルー 3-メチルイミダゾリ The reaction was carried out in the same manner as in Comparative Example 2, except that 107 g (0.5 mol) of 1-ethyl 3-methylimidazolium methyl 2-hydroxyisobutyrate was used instead of DEDMA-HBA. Reaction liquid After distilling off the low boiling point, the reaction solution was washed with ethyl acetate to obtain 1-ethyl-3-methylimidazolium-BF liquid. The purity is 99.7% by mass, the yield is 1-ethyl-3-methylimidazoli
4 Four
ゥムメチル炭酸塩基準で 94モル%であった。  It was 94 mol% based on ummethyl carbonate.
[0057] <電解液の調製と評価 > [0057] <Preparation and Evaluation of Electrolytic Solution>
実施例 21  Example 21
実施例 5で得られた DEDMA— BFを 100°Cの真空乾燥器にて 10時間乾燥後、  After the DEDMA-BF obtained in Example 5 was dried in a vacuum dryer at 100 ° C for 10 hours,
4  Four
露点一 30°Cのグローブボックス内に持ち込み、市販品を精密蒸留したプロピレン力 ーボネート(PC)に 1. 8モル/リットル(以降、モル/リットルを Mと略す)の濃度で溶 解させ DEDMA— BF ZPC電解液を調製した。電解液の水分は 20ppm以下であ  DEDMA—A propylene power-bonate (PC) that was brought into a glove box with a dew point of 30 ° C and precision-distilled was dissolved at a concentration of 1.8 mol / liter (hereinafter abbreviated as M / mol). A BF ZPC electrolyte was prepared. Electrolyte moisture is 20ppm or less
4  Four
つた。  I got it.
調製した電解液の電位窓を測定した結果を第 2表に示す。  The results of measuring the potential window of the prepared electrolyte are shown in Table 2.
[0058] 実施例 22〜24 第 2表に示す実施例および比較例で得られた DEDMA— BFを用い、実施例 21と 同様にして 1. 8Mの DEDMA— BF /PC電解液を調製した。電解液の水分はいず れも 20ppm以下であつた。 [0058] Examples 22-24 Using the DEDMA-BF obtained in the examples and comparative examples shown in Table 2, a 1.8M DEDMA-BF / PC electrolyte was prepared in the same manner as in Example 21. The water content of the electrolyte was 20 ppm or less.
調製した電解液の電位窓を測定した結果を第 2表に示す。  The results of measuring the potential window of the prepared electrolyte are shown in Table 2.
[0059] 比較例 4 [0059] Comparative Example 4
比較例 2で得られた DEDMA— BFを用レ、、実施例 21と同様にして 1. 8Mの DE DEDMA—BF obtained in Comparative Example 2 was used in the same manner as in Example 21.
DMA-BF /PC電解液を調製した。電解液の水分は 20ppm以下であった。 DMA-BF / PC electrolyte was prepared. The water content of the electrolyte was 20 ppm or less.
調製した電解液の電位窓を測定した結果を第 2表に示す。  The results of measuring the potential window of the prepared electrolyte are shown in Table 2.
[0060] [表 2] [0060] [Table 2]
第 2表 Table 2
Figure imgf000022_0001
Figure imgf000022_0001
[0061] 実施例 25〜30 [0061] Examples 25-30
第 3表に示す実施例で得られた BF塩を用い、実施例 21と同様にして第 3表に示 す濃度の PC電解液を調製した。電解液の水分はいずれも 20ppm以下であった。 調製した電解液の電位窓を測定した結果を第 3表に示す。  Using the BF salt obtained in the example shown in Table 3, a PC electrolyte solution having the concentration shown in Table 3 was prepared in the same manner as in Example 21. The water content of the electrolyte was 20 ppm or less. Table 3 shows the results of measuring the potential window of the prepared electrolyte.
[0062] [表 3] [0062] [Table 3]
Figure imgf000022_0002
Figure imgf000022_0002
[0063] 実施例 31 実施例 17で得られた 1—ェチル—3-メチルイミダゾリゥム— BFを用い、実施例 21 [0063] Example 31 Using 1-ethyl-3-methylimidazolium BF obtained in Example 17, Example 21
4  Four
と同様にして 1Mの 1—ェチル—3-メチルイミダゾリゥム— BF /PC電解液を調製し  1M 1-Ethyl-3-methylimidazolium-BF / PC electrolyte was prepared
4  Four
た。電解液の水分は 20ppm以下であった。  It was. The water content of the electrolyte was 20 ppm or less.
調製した電解液の電位窓を測定した結果を第 4表に示す。  Table 4 shows the results of measuring the potential window of the prepared electrolyte.
[0064] 比較例 5 [0064] Comparative Example 5
比較例 3で得られた 1 _ェチル _ 3 -メチルイミダゾリゥム—BFを用レ、、実施例 21と  1_Ethyl_3-methylimidazolium-BF obtained in Comparative Example 3 was used in Example 21, and
4  Four
同様にして 1Mの 1 _ェチル—3-メチルイミダゾリゥム _BF /PC電解液を調製した  In the same manner, 1M 1_ethyl-3-methylimidazolium_BF / PC electrolyte was prepared.
4  Four
。電解液の水分は 20ppm以下であった。  . The water content of the electrolyte was 20 ppm or less.
調製した電解液の電位窓を測定した結果を第 4表に示す。第 4表から明らかなよう に従来法と同等の電位窓を持つ 1 _ェチル—3-メチルイミダゾリゥム—BF電解液が  Table 4 shows the results of measuring the potential window of the prepared electrolyte. As shown in Table 4, 1_ethyl-3-methylimidazolium-BF electrolyte with a potential window equivalent to that of the conventional method is
4 製造可能であった。  4 Manufacturable.
[0065] [表 4] 第 4表
Figure imgf000023_0001
[0065] [Table 4] Table 4
Figure imgf000023_0001
[0066] <電気二重層キャパシタの評価 > [0066] <Evaluation of Electric Double Layer Capacitor>
実施例 32〜34、比較例 6  Examples 32-34, Comparative Example 6
第 5表に示す実施例、比較例により製造した 1. 8Mの DEDMA—BF電解液を用  Manufactured according to the examples and comparative examples shown in Table 5. 1. Using 8M DEDMA-BF electrolyte
4 いた電気二重層キャパシタの評価を行なった。結果を第 5表に示す。 HF-BFを使  4 Electric double layer capacitors were evaluated. The results are shown in Table 5. Use HF-BF
3 用する比較例 4の方法は非水系の反応で BF塩が高収率で得られ電解液は高純度  3 The method of Comparative Example 4 to be used is a non-aqueous reaction, and a high yield of BF salt is obtained, and the electrolyte is highly pure.
4  Four
であるが、高価で毒性の高い BFガスを使用しており耐圧の装置が必要であった。  However, expensive and highly toxic BF gas is used, and a pressure-resistant device is required.
3  Three
[0067] [表 5]  [0067] [Table 5]
^ 5表 ^ 5 table
電解液の製造 初期静電容量 加速試験後  Electrolyte production Initial capacitance After accelerated test
(Fん c) 静電容量保持率 (》/。) 実施例 3 2 実施例 2 1 2 5 . 9 8 7 . 5 実施例 3 3 実施例 2 2 2 5 . 8 8 7 . 8 実施例 3 4 実施例 2 3 2 5 . 5 8 7 . 0 比較例 6 比較例 4 2 5 . 8 8 7 . 2 [0068] 実施例および比較例から明らかなように、本発明によって得られる電解液は、非水 系の HF— BFにより製造した電解液と同等レベルの高純度であり、電気二重層キヤ (F c) Capacitance retention ratio (>> /.) Example 3 2 Example 2 1 2 5. 9 8 7.5 Example 3 3 Example 2 2 2 5. 8. 8 8 7. 8 Example 3 4 Example 2 3 2 5 .5 8 77.0 Comparative Example 6 Comparative Example 4 2 5 .8 8 7 .2 As is clear from the examples and comparative examples, the electrolytic solution obtained by the present invention has a high purity equivalent to the electrolytic solution produced by non-aqueous HF-BF, and has an electric double layer carrier.
3  Three
パシタ用の電解液として有用であった。このように本発明によれば、ホウ酸を含むホウ 素化合物を用いることにより電解液が安全かつ安価に製造できる。特にホウ酸エステ ルを用いることにより非水系で高純度の電解液が得られる。  It was useful as an electrolyte for pasita. Thus, according to the present invention, an electrolytic solution can be produced safely and inexpensively by using a boron compound containing boric acid. In particular, by using boric acid ester, a non-aqueous and high-purity electrolyte can be obtained.
産業上の利用可能性  Industrial applicability
[0069] 本発明によれば、電気二重層キャパシタ用の電解液に用いられる高純度の BF塩 [0069] According to the present invention, a high-purity BF salt used in an electrolytic solution for an electric double layer capacitor
4 を、高価で毒性の高い BFガスを用いずに、工業的に有利に製造できる。  4 can be produced industrially advantageously without using expensive and highly toxic BF gas.
3  Three
また、本発明の非水系で BF塩を製造する方法では、電気二重層キャパシタ用の  Further, in the method for producing a BF salt in the non-aqueous system of the present invention, an electric double layer capacitor is used.
4  Four
非水電解液として良好な物性を有し、非水電解液を有利に製造できる。  It has good physical properties as a non-aqueous electrolyte and can be advantageously produced.
特に、ホウ酸エステル化合物をホウ素源とすることにより系内で水の副生が無ぐ溶 媒を不要とすることもでき、高純度の BF塩を工業的に非常に有利に製造できる。  In particular, by using a boric acid ester compound as a boron source, it is possible to eliminate the need for a solvent that does not produce by-product water in the system, and a high-purity BF salt can be produced very advantageously industrially.
4  Four
更に、アルキルァミンとカルボン酸エステルとの反応によって得られたアルキルアン モニゥム有機酸塩を原料とすることにより、精製工程の簡略化が可能であり、カルボ ン酸エステルとしてヒドロキシカルボン酸エステルを用いることにより、副生したヒドロキ シカルボン酸をエステル化して四級化工程へリサイクルすることができ、工業的に BF 塩を極めて有利に製造できる。  Furthermore, by using alkylammonium organic acid salt obtained by the reaction of alkylamine and carboxylic acid ester as a raw material, the purification process can be simplified, and by using hydroxycarboxylic acid ester as carboxylic acid ester. The by-produced hydroxycarboxylic acid can be esterified and recycled to the quaternization process, and the BF salt can be produced industrially very advantageously.
4  Four
従って本発明によれば、電気二重層キャパシタ用の非水電解液として良好な物性 を有する BF塩を工業的に極めて有利に製造でき、高性能を有する電気二重層キヤ  Therefore, according to the present invention, a BF salt having good physical properties as a non-aqueous electrolyte for an electric double layer capacitor can be produced industrially very advantageously, and the electric double layer carrier having high performance can be produced.
4  Four
パシタ用非水電解液を経済的に有利に得ることができる。  A non-aqueous electrolyte for pasita can be advantageously obtained economically.

Claims

請求の範囲 [1] (A)一般式(1)で表される塩化合物、 Q+X— (1) (式中、 Q+はォニゥムイオンまたは金属イオンを表し、 X—は BF—を除く無機酸イオン、 有機酸イオンまたは水酸化物イオンを表す) (B)オルトホウ酸、メタホウ酸、四ホウ酸、酸化ホウ素および一般式(2)で表されるホウ 酸エステルからなる群より選ばれた 1種以上のホウ素化合物および、 B (OR1) (OR2) (OR3) (2) (式中、 R1は炭素数:!〜 10のアルキル基、 R2および R3は水素原子もしくは炭素数 1〜 10のアルキル基を表し、 R1, R2および R3は同一でも異なっていても良い) (C)フッ化水素を反応させることを特徴とする一般式(3)で表される四フッ化ホウ素塩 の製造方法。 Q+BF― (3) Claims [1] (A) Salt compound represented by general formula (1), Q + X— (1) (where Q + represents an ion or metal ion, and X— represents an inorganic acid excluding BF— (Represents ion, organic acid ion or hydroxide ion) (B) One selected from the group consisting of orthoboric acid, metaboric acid, tetraboric acid, boron oxide and boric acid ester represented by the general formula (2) The above boron compound and B (OR1) (OR2) (OR3) (2) (wherein R1 is an alkyl group having! -10 to C10, R2 and R3 are a hydrogen atom or an alkyl group having 1 to 10 carbons) Wherein R1, R2 and R3 may be the same or different. (C) A process for producing a boron tetrafluoride salt represented by the general formula (3), characterized by reacting hydrogen fluoride. Q + BF― (3)
(式中、 Q+は一般式(1)と同様である。 ) (In the formula, Q + is the same as in general formula (1).)
[2] 一般式(1)および(3)において、 Q+がリチウムイオン、アルキルアンモニゥムイオン[2] In general formulas (1) and (3), Q + is a lithium ion or an alkylammonium ion
、アルキルホスホニゥムイオンおよびイミダゾリゥムィオンからなる群より選ばれた 1種 以上のイオンである請求項 1に記載の四フッ化ホウ素塩の製造方法。 2. The method for producing a boron tetrafluoride salt according to claim 1, wherein the ion is one or more ions selected from the group consisting of alkylphosphonium ions and imidazolium ions.
[3] 一般式(1)および(3)において、 Q+がテトラェチルアンモニゥムイオン、トリメチルェ チルアンモニゥムイオンまたはジェチルジメチルアンモニゥムイオンである請求項 2に 記載の四フッ化ホウ素塩の製造方法。 [3] The boron tetrafluoride salt according to claim 2, wherein in the general formulas (1) and (3), Q + is a tetraethylammonium ion, a trimethylethylammonium ion, or a jetyldimethylammonium ion. Production method.
[4] 一般式(1)および(3)において、 Q+がイミダゾリゥムイオンである請求項 2に記載の 四フッ化ホウ素塩の製造方法。 4. The method for producing a boron tetrafluoride salt according to claim 2, wherein in the general formulas (1) and (3), Q + is an imidazolium ion.
[5] 一般式(1)において、 X—が有機酸イオンである請求項 1〜4のいずれかに記載の四 フッ化ホウ素塩の製造方法。 [5] The method for producing a boron tetrafluoride salt according to any one of [1] to [4], wherein in the general formula (1), X— is an organic acid ion.
[6] (A)成分が、アルキルァミンと有機酸エステルまたは炭酸ジアルキルとの反応によ つて得られたものである請求項 1〜5のいずれかに記載の四フッ化ホウ素塩の製造方 法。 [6] The method for producing a boron tetrafluoride salt according to any one of [1] to [5], wherein the component (A) is obtained by reacting an alkylamine with an organic acid ester or dialkyl carbonate.
[7] (A)成分が、アルキルァミンとヒドロキシカルボン酸エステルとの反応によって得られ たものである請求項 6に記載の四フッ化ホウ素塩の製造方法。 [7] The component (A) is obtained by reacting an alkylamine with a hydroxycarboxylic acid ester. The method for producing a boron tetrafluoride salt according to claim 6, wherein
[8] (A)成分、(B)成分および (C)成分を、非水溶媒の存在下で反応させる請求項:!〜[8] The component (A), the component (B), and the component (C) are reacted in the presence of a nonaqueous solvent.
7のいずれかに記載の四フッ化ホウ素塩の製造方法。 8. The method for producing a boron tetrafluoride salt according to any one of 7 above.
[9] (B)成分に一般式(2)で表されるホウ酸エステルを用いる請求項 8に記載の四フッ 化ホウ素塩の製造方法。 [9] The method for producing a boron tetrafluoride salt according to [8], wherein the boric acid ester represented by the general formula (2) is used as the component (B).
[10] 一般式(2)で表されるホウ酸エステルを溶媒として用レ、、 (A)成分、 (B)成分および [10] Use a borate ester represented by the general formula (2) as a solvent, (A) component, (B) component and
(C)成分を反応させる請求項:!〜 7のいずれかに記載の四フッ化ホウ素塩の製造方 法。  The method for producing a boron tetrafluoride salt according to any one of claims 7 to 7, wherein the component (C) is reacted.
[11] 請求項 1〜: 10のいずれかに記載の方法によって製造されたことを特徴とする四フッ 化ホウ素塩。  [11] A boron tetrafluoride salt produced by the method according to any one of claims 1 to 10.
[12] 請求項 11に記載の四フッ化ホウ素塩を含有することを特徴とする電気二重層キヤ パシタ用非水電解液。  [12] A nonaqueous electrolytic solution for an electric double layer capacitor, comprising the boron tetrafluoride salt according to claim 11.
[13] 上請求項 11に記載の四フッ化ホウ素塩を非水溶媒に溶解させることを特徴とする 電気二重層キャパシタ用非水電解液の製造方法。  [13] A method for producing a nonaqueous electrolytic solution for an electric double layer capacitor, wherein the boron tetrafluoride salt according to the above item 11 is dissolved in a nonaqueous solvent.
PCT/JP2006/302933 2005-02-23 2006-02-20 Process for producing boron tetrafluoride, boron tetrafluoride produced by said process, electrolysis solution for electric double layer capacitor using said boron tetrafluoride, and process for producing said electrolysis solution WO2006090657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504696A JP5029353B2 (en) 2005-02-23 2006-02-20 Method for producing boron tetrafluoride salt, boron tetrafluoride salt obtained by the method, electrolytic solution for electric double layer capacitor using the same, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-046887 2005-02-23
JP2005046887 2005-02-23
JP2005-179033 2005-06-20
JP2005179033 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006090657A1 true WO2006090657A1 (en) 2006-08-31

Family

ID=36927297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302933 WO2006090657A1 (en) 2005-02-23 2006-02-20 Process for producing boron tetrafluoride, boron tetrafluoride produced by said process, electrolysis solution for electric double layer capacitor using said boron tetrafluoride, and process for producing said electrolysis solution

Country Status (2)

Country Link
JP (1) JP5029353B2 (en)
WO (1) WO2006090657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277111A (en) * 2006-04-03 2007-10-25 Stella Chemifa Corp Method for producing tetrafluoroborate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190820A (en) * 1982-04-26 1983-11-07 Daikin Ind Ltd Manufacture of anhydrous lithium borofluoride
JPS63284148A (en) * 1987-05-14 1988-11-21 Mitsubishi Petrochem Co Ltd Production of quaternary ammonium inorganic acid salt
JPH11157830A (en) * 1997-11-19 1999-06-15 Central Glass Co Ltd Production of lithium tetrafluoroborate
JPH11310555A (en) * 1998-04-30 1999-11-09 Mitsui Chem Inc Production of quaternary alkylammonium tetrafluoroborates
JP2000226361A (en) * 1999-02-04 2000-08-15 Mitsubishi Rayon Co Ltd Production of quaternary alkylammonium salt
JP2000281657A (en) * 1999-03-29 2000-10-10 Sanyo Chem Ind Ltd Production of n-substituted cyclic amidine
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2002326977A (en) * 2001-05-02 2002-11-15 Mitsubishi Gas Chem Co Inc Method for producing electrolyte and nonaqueous electrolyte liquid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190820A (en) * 1982-04-26 1983-11-07 Daikin Ind Ltd Manufacture of anhydrous lithium borofluoride
JPS63284148A (en) * 1987-05-14 1988-11-21 Mitsubishi Petrochem Co Ltd Production of quaternary ammonium inorganic acid salt
JPH11157830A (en) * 1997-11-19 1999-06-15 Central Glass Co Ltd Production of lithium tetrafluoroborate
JPH11310555A (en) * 1998-04-30 1999-11-09 Mitsui Chem Inc Production of quaternary alkylammonium tetrafluoroborates
JP2000226361A (en) * 1999-02-04 2000-08-15 Mitsubishi Rayon Co Ltd Production of quaternary alkylammonium salt
JP2000281657A (en) * 1999-03-29 2000-10-10 Sanyo Chem Ind Ltd Production of n-substituted cyclic amidine
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2002326977A (en) * 2001-05-02 2002-11-15 Mitsubishi Gas Chem Co Inc Method for producing electrolyte and nonaqueous electrolyte liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277111A (en) * 2006-04-03 2007-10-25 Stella Chemifa Corp Method for producing tetrafluoroborate

Also Published As

Publication number Publication date
JP5029353B2 (en) 2012-09-19
JPWO2006090657A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
JP4705476B2 (en) Method for producing fluorine compound
JP5974181B2 (en) Method for producing lithium bis (fluorosulfonyl) imide
JP2018035054A (en) Manufacturing method of bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition
WO2016093025A1 (en) Manufacturing method for lithium difluorophosphate powder, and lithium difluorophosphate
US6197205B1 (en) Electrolytic solution for lithium cell and method for producing same
EP1505057B1 (en) Method of purifying quaternary alkylammonium salt
EP3617139B1 (en) Method of preparing high-purity lithium difluorophosphate crystal and non-aqueous electrolyte solution for secondary battery including the crystal
WO2012069554A1 (en) Process for preparing organic lithium salts
JP2008088135A (en) Method for purifying quaternary imidazolium tetrafluoroborate and electric double layer capacitor using quaternary imidazolium tetrafluoroborate purified thereby
JPH1092468A (en) Electrolyte for lithium battery, method for refining it, and lithium battery using it
WO2006090657A1 (en) Process for producing boron tetrafluoride, boron tetrafluoride produced by said process, electrolysis solution for electric double layer capacitor using said boron tetrafluoride, and process for producing said electrolysis solution
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
JP6051757B2 (en) Ionic liquid
JP2008210871A (en) Method of manufacturing spiro type quaternary ammonium compound, quaternary ammonium compound and its use
JP4993262B2 (en) Method for purifying quaternary ammonium tetrafluoroborate and electric double layer capacitor using the same
JP2006210816A (en) Nonaqueous electrolyte
JP5089904B2 (en) Method for producing tetrafluoroborate
JP2005325067A (en) Method for purifying quaternary ammonium salt and quaternary ammonium salt prepared by the same method
TW201533019A (en) Ester having 3,3,3-trifluoropropionate group and method for producing same
CN115552672A (en) TEMPO derivative solution for use as electrolyte in redox flow battery
JP4815692B2 (en) Method for producing electrolyte and non-aqueous electrolyte
JP2008133248A (en) Method for producing imidazolium salt
JP4784177B2 (en) Carbonate compounds
JP2982950B2 (en) Method for producing electrolyte for lithium battery and lithium battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714074

Country of ref document: EP

Kind code of ref document: A1