WO2006090518A1 - 外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置及び表示装置 - Google Patents

外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置及び表示装置 Download PDF

Info

Publication number
WO2006090518A1
WO2006090518A1 PCT/JP2005/022361 JP2005022361W WO2006090518A1 WO 2006090518 A1 WO2006090518 A1 WO 2006090518A1 JP 2005022361 W JP2005022361 W JP 2005022361W WO 2006090518 A1 WO2006090518 A1 WO 2006090518A1
Authority
WO
WIPO (PCT)
Prior art keywords
external electrode
electrode fluorescent
fluorescent lamp
circuit
driving power
Prior art date
Application number
PCT/JP2005/022361
Other languages
English (en)
French (fr)
Inventor
Hideki Koh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006090518A1 publication Critical patent/WO2006090518A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • H05B41/2813Arrangements for protecting lamps or circuits against abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • Cut-off circuit for external electrode fluorescent lamp driving power source and lighting device and display device provided
  • the present invention relates to a cutoff circuit for an external electrode fluorescent lamp driving power source.
  • FIG. 9 shows a schematic sectional view of a general external electrode fluorescent lamp.
  • the external electrode fluorescent lamp shown in FIG. 9 has a configuration in which external electrodes 2 and 3 are formed at the end of a glass tube 1.
  • the glass tube 1 is hermetically sealed.
  • a fluorescent material is applied to the inner wall of the glass tube 1.
  • the whole pressure is 10. 7 X 10 3 ⁇ 5 of the glass tube 1.
  • the external electrode fluorescent lamp shown in FIG. Is a series connection with capacitors connected at both ends of the resistor whose resistance decreases nonlinearly as the current increases. For this reason, the entire external electrode fluorescent lamp shown in FIG. 9 has a nonlinear positive impedance characteristic such as the V-1 characteristic shown in FIG. Since the external electrode fluorescent lamp has a nonlinear positive impedance characteristic, there is an advantage that even when the plurality of external electrode fluorescent lamps are simply driven in parallel, all of the plurality of external electrode fluorescent lamps can be lit. Yes (see, for example, Patent Document 1).
  • the elasticity of the holder that also has an elastic metal member (for example, panel steel) force is applied to a lighting device using an external electrode fluorescent lamp.
  • the holder can sandwich the external electrode of the external electrode fluorescent lamp, and power can be supplied to the external electrode fluorescent lamp via the holder.
  • Patent Document 1 JP 2004-31338 A (Fig. 15)
  • Patent Document 2 JP 2004-39264 A
  • the glass interposed between the external electrode and the internal space of the glass tube is dielectrically sandwiched between the electrodes of the capacitor, which is a component of the equivalent circuit of the external electrode fluorescent lamp. Because it corresponds to the body, charged particles collide with the inner wall of the glass tube facing the external electrode, and the inner wall of the glass tube is sputtered locally. And, when the inner wall of the glass tube is sputtered, the capacitance of the sputtered portion increases, so that charged particles concentrate and collide with the sputtered portion.
  • the external electrode fluorescent lamp is in a runaway state by the progress.
  • the external electrode fluorescent lamp drive power supply is a power source that drives the external electrode fluorescent lamp so that the external electrode fluorescent lamp emits light with a brightness within a predetermined range
  • the lamp voltage when the external electrode fluorescent lamp is lit Gradually decreases as the total lighting time increases and then decreases rapidly (see Fig. 11A and Fig. 11B).
  • the external electrode fluorescent lamp becomes a runaway state within a few seconds after the lamp voltage (voltage between the external electrodes) when the external electrode fluorescent lamp is lit begins to decrease rapidly.
  • the external electrode fluorescent lamp driving power is stopped before the external electrode fluorescent lamp goes into a runaway state.
  • the lamp voltage and total lighting time characteristics vary with the individual characteristics of the external electrode fluorescent lamp (for example, the characteristics shown in FIG. The lamp has the characteristics shown in Fig. 11B.) Therefore, the external electrode fluorescent lamp drive power supply is stopped by the lower limit of the lamp voltage when the external electrode fluorescent lamp is lit. The power supply to the external electrode fluorescent lamp is stopped. And trouble occurs.
  • the lower limit value of the lamp voltage when the external electrode fluorescent lamp is lit is set to, for example, 1. OkV, the external electrode fluorescent lamp having the characteristics shown in FIG.
  • the external electrode fluorescent lamp having the characteristics shown in FIG. 11A is suitable for the external electrode fluorescent lamp having the characteristics shown in FIG. 11A.
  • the lamp is unable to light the initial power.
  • the lower limit of the lamp voltage when the external electrode fluorescent lamp is lit is set to 0.5 kV, for example, the power suitable for the external electrode fluorescent lamp having the characteristics shown in FIG. 11B runs out of control. It cannot be prevented from entering a state.
  • the present invention provides an external electrode fluorescent lamp driving power supply cutoff circuit capable of preventing the external electrode fluorescent lamp from going out of control, and an illumination device including the same And a display device.
  • a shut-off circuit for an external electrode fluorescent lamp driving power source includes an external electrode driving the external electrode fluorescent lamp so that the external electrode fluorescent lamp emits light with a luminance within a predetermined range.
  • a cutoff signal output unit that determines the value according to the detection value of the detection unit. For example, the cutoff signal output unit may output a cutoff signal for stopping the operation of the external electrode fluorescent lamp driving power source when the detection value of the detection unit exceeds a predetermined value.
  • the presence or absence of the output of a shut-off signal for stopping the operation of the external electrode fluorescent lamp driving power supply depends on the change in voltage or current supplied to the external electrode fluorescent lamp driving power supply. Therefore, the external electrode fluorescent lamp will run out of control even though the external electrode fluorescent lamp has individual variations in the total lighting time characteristics when the external electrode fluorescent lamp is lit. Can be prevented.
  • the external electrode fluorescent lamp driving power source independently drives each of the plurality of external electrode fluorescent lamps, and each of the plurality of external electrode fluorescent lamps is You may make it provide the said detection part.
  • the external electrode fluorescent lamp driving power supply cutoff circuit configured as described above is connected to the external electrode fluorescent lamp.
  • the lamp driving power source may drive a plurality of external electrode fluorescent lamps in parallel and provide one detection unit for the plurality of external electrode fluorescent lamps.
  • the detection unit outputs a signal based on a voltage or current supplied from the external electrode fluorescent lamp driving power source to the external electrode fluorescent lamp.
  • a differentiation circuit for time differentiation may be provided.
  • the detection unit includes a delay circuit and a differential circuit that differentiates two input signals, and the external electrode fluorescent lamp driving power source is the external electrode.
  • a signal based on the voltage or current supplied to the fluorescent lamp may be divided into two so that one is input to the difference circuit and the other is input to the difference circuit via the delay circuit.
  • the delay circuit and the differential circuit can be integrated into an IC, so the detection unit can be downsized. Furthermore, from the viewpoint of improving the accuracy of the cut-off signal, it is desirable to provide a circuit that outputs a signal depending on the frequency component of the input signal in the former stage of the differentiation circuit in the former configuration. In this case, it is desirable to provide a circuit that outputs a signal that depends on the frequency component of the input signal in a stage preceding the two distribution points where the two distributions are performed.
  • an illumination device drives an external electrode fluorescent lamp and an external electrode fluorescent lamp so that the external electrode fluorescent lamp emits light with a luminance within a predetermined range.
  • the external electrode fluorescent lamp driving power supply, and the external electrode fluorescent lamp driving power supply cutoff circuit configured as described above connected to the external electrode fluorescent lamp and the external electrode fluorescent lamp driving power supply are configured.
  • a display device includes the illumination device having the above configuration.
  • a cutoff circuit for an external electrode fluorescent lamp driving power source capable of preventing the external electrode fluorescent lamp from going into a runaway state, and a lighting device and a display device including the same are realized. Can do.
  • FIG. 1A is a diagram showing how the external electrode fluorescent lamp is attached to the holder.
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the illumination device according to the present invention.
  • FIG. 3B is a graph showing a lamp voltage change rate total lighting time characteristic when an external electrode fluorescent lamp that emits light with a luminance within a predetermined range is turned on.
  • FIG. 4 is a diagram showing a configuration example of a differentiating circuit.
  • FIG. 5 is a block diagram showing a variation of the electrical configuration shown in FIG.
  • FIG. 6 is a diagram showing a configuration example of a filter.
  • FIG. 7 is a block diagram showing another example of the electrical configuration of the lighting apparatus according to the present invention.
  • FIG. 8 is a block diagram showing a modification of the electrical configuration shown in FIG.
  • FIG. 9 is a diagram showing a schematic cross section of a general external electrode fluorescent lamp.
  • FIG. 10 is a diagram showing the VI characteristics of the external electrode fluorescent lamp shown in FIG.
  • FIG. 11B is a diagram showing a lamp voltage total lighting time characteristic when an external electrode fluorescent lamp that emits light with a luminance within a predetermined range is turned on.
  • an elastic metal member including a plurality of external electrode fluorescent lamps, an illumination unit, and an optical sheet, and the plurality of external electrode fluorescent lamps provided on the front surface of the illumination unit
  • an optical sheet covers a front surface of an illumination unit attached to a holder made of panel steel and having a plurality of external electrode fluorescent lamps attached thereto.
  • FIG. 1A and FIG. IB show how a plurality of external electrode fluorescent lamps are attached to the holder.
  • 1A is a front view and FIG. 1B is a side view.
  • reference numeral 101 indicates a liquid crystal panel
  • reference numeral 102 indicates a diffusion plate
  • reference numeral 103 indicates a frame
  • reference numeral Reference numeral 104 denotes a peripheral portion of the illumination unit
  • reference numeral 105 denotes a harness
  • reference numeral 106 denotes an external electrode fluorescent lamp driving power source.
  • Plural pairs of holders 4 are provided on the front surface of the illumination unit, and one external electrode fluorescent lamp driving power source (not shown in FIG. 1A) is provided on the back surface of the illumination unit.
  • the holders 4 provided on the front left peripheral edge 5 of the lighting unit are connected in common and connected to one end of the external electrode fluorescent lamp driving power source.
  • the holders 4 provided on the front right peripheral edge 6 of the illumination unit are connected in common and connected to the other end of the external electrode fluorescent lamp driving power source.
  • the holder 4 holds the external electrode of the external electrode fluorescent lamp 7 by the elastic characteristics of the elastic metal member.
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the lighting device according to the present invention.
  • the external electrode fluorescent lamp driving power source 8 includes a rectifying / smoothing circuit 11, an inverter circuit 12, a transformer 13, and an inverter control circuit 14, and outputs a number of commercial voltages output from the commercial AC power source 10. Converted to 10 kHz AC high voltage and supplied to external electrode fluorescent lamp 7.
  • the rectifying / smoothing circuit 11 rectifies and smoothes the commercial voltage output from the commercial AC power supply 10 to generate a DC voltage, and outputs it to the inverter circuit 12.
  • the inverter circuit 12 converts the DC voltage output from the rectifying / smoothing circuit 11 into an AC voltage of several tens of kHz in response to the control signal S1 output from the inverter control circuit 14, and outputs the AC voltage to the transformer 13.
  • the transformer 13 boosts the AC voltage of several tens of kHz output from the inverter circuit 11 and outputs the boosted voltage to the external electrode fluorescent lamp 7.
  • the inverter control circuit 14 is an IC control circuit, and generates a control signal S1 such that the external electrode fluorescent lamp 7 emits light with a luminance within a predetermined range.
  • the inverter control circuit 14 stops the operation of the inverter circuit 12 when it receives a cutoff signal S2 described later.
  • the cutoff circuit 9A includes a voltage dividing circuit 15, an AC-DC converter 16, a differentiating circuit 17, a comparator 18, and a reference voltage source 19, and outputs an external electrode fluorescent lamp driving power source 8.
  • the cutoff signal S2 is output to the inverter control circuit 14 of the external electrode fluorescent lamp driving power source 8.
  • the output voltage of the external electrode fluorescent lamp driving power source 8 is divided by the voltage dividing circuit 15.
  • a specific example of the voltage divider circuit 15 is a configuration in which one of a circuit in which two capacitors are connected in series is connected to a high voltage portion and the other is grounded. I can get lost.
  • an output voltage corresponding to the capacitance ratio of the two capacitors is output from the connection portion of the two capacitors.
  • the output of the voltage dividing circuit 15 is supplied to an AC—DC converter 16.
  • the AC-DC converter 16 converts the AC signal output from the voltage dividing circuit 15 into a DC signal and outputs it to the differentiating circuit 17.
  • a specific example of the AC-DC converter 16 is a rectifier circuit composed of a diode.
  • the differentiation circuit 17 differentiates the voltage output from the AC-DC converter 16 and outputs the differentiated voltage to the comparator 18.
  • the comparator 18 outputs a signal corresponding to the comparison result between the voltage output from the differentiating circuit 17 and the reference voltage output from the reference voltage source 19.
  • the output signal of the comparator 18 becomes High level, and the external electrode fluorescent lamp
  • the output signal power ow level of the comparator 18 can be set.
  • the high level signal is the cutoff signal S2.
  • the predetermined value is set to, for example, lOOVZsec, as is clear from FIGS. 3A and 3B, the individual variation of the external electrode fluorescent lamp 7 (for example, Some external electrode fluorescent lamps have the characteristics shown in FIG. 11A, and other external electrode fluorescent lamps have the characteristics shown in FIG. 11B.) It can be prevented in advance.
  • 3A corresponds to FIG. 11A
  • FIG. 3B corresponds to FIG. 11B!
  • the differentiation circuit shown in Fig. 4 has a capacitor C1, a resistor R1, and an operational amplifier OP1, and differentiates the input voltage V as shown in equation (1).
  • the resistance value of the capacitor and resistor R1 is shown.
  • the output signal is input as shown in Fig. 5. It is desirable to provide a filter 20, which is a circuit that depends on the frequency component, in front of the differentiation circuit 17.
  • the filter 20 the SN ratio (signal-to-noise ratio) of the signal input to the differentiating circuit 17 is improved, and the accuracy of the cutoff signal S2 can be increased.
  • the filter shown in FIG. 6 includes a capacitor C2, an inductor L1, and a capacitor C3, and is a low-pass filter that blocks high frequency components.
  • FIG. 7 is a block diagram showing another example of the electrical configuration of the illumination device according to the present invention.
  • the same parts as those in FIG. 7 are identical to FIG. 7 in FIG. 7, the same parts as those in FIG. 7, the same parts as those in FIG. 7, the same parts as those in FIG.
  • the lighting device shown in FIG. 7 includes a cutoff circuit 9C.
  • the cutoff circuit 9C has a configuration in which the differential circuit 17 of the cutoff circuit 9A provided in the lighting device shown in FIG.
  • the output of the AC-DC converter 16 is divided into two parts, one being input to the difference circuit 21 and the other being input to the difference circuit 22 via the delay circuit 22.
  • the difference circuit 21 also compares the input signal force via the delay circuit 22 with the input signal not passed through the delay circuit 22 and outputs the difference to the comparator 18.
  • the comparator 18 outputs a signal corresponding to the comparison result between the voltage output from the difference circuit 21 and the reference voltage output from the reference voltage source 19.
  • the difference circuit 21, the delay circuit 22, the comparison circuit 18, and the reference voltage source 19 can be integrated into an IC, so that the cutoff circuit 9C can be downsized.
  • a filter 20 that is a circuit that depends on the frequency component of the signal to which the output signal is input, before the two distribution points of the AC-DC converter 16 output.
  • the filter 20 the SN ratio (signal-to-noise ratio) between the signal input to the difference circuit 21 and the signal input to the delay circuit 22 can be improved, and the accuracy of the cutoff signal S2 can be increased.
  • the external electrode fluorescent lamp driving power source drives a plurality of external electrode fluorescent lamps in parallel! /
  • the external electrode fluorescent lamp driving power source independently drives a plurality of external electrode fluorescent lamps. That is, a separate voltage may be supplied to each external electrode fluorescent lamp! /.
  • a detector in the shut-off circuit (in the configuration of FIG. 2, the voltage divider circuit 15, the AC-DC converter 16, and the differential circuit 17 correspond) is provided for each external electrode fluorescent lamp. Just do it. Then, for example, a cutoff signal should be output when at least one of the outputs of the detection unit exceeds a predetermined value!
  • a display device includes the above-described illumination device according to the present invention and a display panel.
  • Specific examples of the display device according to the present invention include a transmissive liquid crystal display device in which the illumination device according to the present invention is used as a backlight unit and a liquid crystal display panel is provided on the front surface thereof.
  • the cutoff circuit for the external electrode fluorescent lamp driving power source according to the present invention is used as a safety circuit for preventing the external electrode fluorescent lamp from going out of control.
  • the external electrode fluorescent lamp can be used as an illumination source provided in various devices including an illumination source provided in a display device illumination device.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

 本発明に係る外部電極蛍光ランプ駆動電源用の遮断回路は、所定範囲内の輝度で外部電極蛍光ランプが発光するように前記外部電極蛍光ランプを駆動する外部電極蛍光ランプ駆動電源から前記外部電極蛍光ランプに供給される電圧の変化率を検出する検出部と、前記検出部の検出値が所定値を越えている場合に前記外部電極蛍光ランプ駆動電源の動作を停止させるための遮断信号を出力する遮断信号出力部とを備える。このような構成によると、外部電極蛍光ランプが暴走状態になることを未然に防止することができる。

Description

明 細 書
外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装 置及び表示装置
技術分野
[0001] 本発明は、外部電極蛍光ランプ駆動電源用の遮断回路に関する。
背景技術
[0002] 一般的な外部電極蛍光ランプの概略断面図を図 9に示す。図 9に示す外部電極蛍 光ランプは、ガラス管 1の端部に外部電極 2及び 3を形成した構成である。なお、上記 構成においてガラス管 1内は密閉されている。また、ガラス管 1の内壁には蛍光物質 が塗布されている。そして、密閉されたガラス管 1内には、一般的には、ガラス管 1内 の全体圧力が 10. 7 X 103〜5. 3 X 103Pa ( = 80〜40Torr)になるようにネオンとァ ルゴンが 95: 5や 80: 20等の割合で封入され、さらに数 mgの水銀が封入されて 、る 。なお、水銀に代えてキセノンを封入する場合もある。
[0003] ランプ電圧 (外部電極間電圧)が点灯開始電圧に達すると、放電が開始され、放電 により水銀やキセノンが紫外線を発生し、その発生した紫外線がガラス管 1の内壁に 塗布されて!ゝる蛍光物質を発光させる。
[0004] ガラス管 1の内部は非線形負性インピーダンス特性を有しており、外部電極とガラス 管 1の内部はガラスによって絶縁されているため、図 9に示す外部電極蛍光ランプは 、その等価回路が電流の増加に応じて抵抗値が非線形的に減少する抵抗の両端に コンデンサが接続された直列接続体となる。このため、図 9に示す外部電極蛍光ラン プ全体としては、図 10に示す V - 1特性のような非線形正インピーダンス特性を有し ている。そして、外部電極蛍光ランプは、非線形正インピーダンス特性を有するため 、複数の外部電極蛍光ランプを単純に並列駆動させた場合でも複数の外部電極蛍 光ランプすベてを点灯させることができるという利点がある(例えば、特許文献 1を参 照)。
[0005] また、ガラス管の外周部に設けられる外部電極があるために、外部電極蛍光ランプ を用いた照明装置等にぉ 、て弾性金属部材 (例えば、パネ鋼)力もなる保持具の弾 性特性により保持具が外部電極蛍光ランプの外部電極を挟持する構成にし、保持具 を介して外部電極蛍光ランプに電力を供給することができる。このような形態にするこ とで、外部電極蛍光ランプの装着や取り外しが容易になると 、う利点がある。
特許文献 1 :特開 2004— 31338号公報 (第 15図)
特許文献 2:特開 2004— 39264号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、外部電極蛍光ランプでは、外部電極とガラス管の内部空間との間に 介在するガラスが外部電極蛍光ランプの等価回路の一構成要素であるコンデンサの 電極に挟まれる誘電体に該当するので、外部電極に対向するガラス管内壁に荷電 粒子が衝突し、局所的にガラス管内壁力スパッタリングされる。そして、ー且ガラス管 内壁がスパッタリングされるとそのスパッタリングされた部分の静電容量が大きくなる ため、そのスパッタリングされた部分に荷電粒子が集中して衝突するようになり、最終 的にはスパッタリングの進行によって外部電極蛍光ランプが暴走状態になる。外部電 極蛍光ランプ駆動電源が所定範囲内の輝度で外部電極蛍光ランプが発光するよう に外部電極蛍光ランプを駆動する電源である場合、外部電極蛍光ランプ点灯時のラ ンプ電圧 (外部電極間電圧)は総点灯時間の増加に伴って徐々に減少した後急激 に減少する(図 11A及び図 11Bを参照)。そして、外部電極蛍光ランプ点灯時のラン プ電圧 (外部電極間電圧)が急激に減少し始めてから数秒で外部電極蛍光ランプが 暴走状態になる。
[0007] 外部電極蛍光ランプが暴走状態になることを未然に防止するためには、外部電極 蛍光ランプが暴走状態になる前に外部電極蛍光ランプ駆動電源力 外部電極蛍光 ランプへの電力供給を停止すればよ 、が、外部電極蛍光ランプ点灯時のランプ電圧 総点灯時間特性には外部電極蛍光ランプの個体バラツキ (例えば、或る外部電極 蛍光ランプでは図 11Aに示す特性となり、別の外部電極蛍光ランプでは図 11Bに示 す特性となる。)があるため、外部電極蛍光ランプ点灯時のランプ電圧の下限値によ つて外部電極蛍光ランプ駆動電源力 外部電極蛍光ランプへの電力供給を停止す ると不具合が起こる。 [0008] 外部電極蛍光ランプ点灯時のランプ電圧の下限値を例えば 1. OkVに設定した場 合、図 11Aに示す特性の外部電極蛍光ランプには適するが、図 11Bに示す特性の 外部電極蛍光ランプが初期力 点灯不能となってしまう。また、外部電極蛍光ランプ 点灯時のランプ電圧の下限値を例えば 0. 5kVに設定した場合、図 11Bに示す特性 の外部電極蛍光ランプには適する力 図 11Aに示す特性の外部電極蛍光ランプが 暴走状態になることを防止することができない。
[0009] 本発明は、上記の問題点に鑑み、外部電極蛍光ランプが暴走状態になることを未 然に防止することができる外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを 備えた照明装置及び表示装置を提供することを目的とする。
課題を解決するための手段
[0010] 上記目的を達成するために本発明に係る外部電極蛍光ランプ駆動電源用の遮断 回路は、所定範囲内の輝度で外部電極蛍光ランプが発光するように前記外部電極 蛍光ランプを駆動する外部電極蛍光ランプ駆動電源から前記外部電極蛍光ランプ に供給される電圧又は電流の変化率を検出する検出部と、前記外部電極蛍光ラン プ駆動電源の動作を停止させるための遮断信号を出力する力否かを前記検出部の 検出値に応じて決定する遮断信号出力部とを備える構成とする。例えば、前記遮断 信号出力部が、前記検出部の検出値が所定値を越えている場合に前記外部電極蛍 光ランプ駆動電源の動作を停止させるための遮断信号を出力するようにするとよい。
[0011] このような構成によると、外部電極蛍光ランプ駆動電源の動作を停止させるための 遮断信号の出力の有無が外部電極蛍光ランプ駆動電源力 外部電極蛍光ランプに 供給される電圧又は電流の変化率に応じて決定されるので、外部電極蛍光ランプ点 灯時のランプ電圧 総点灯時間特性に外部電極蛍光ランプの個体バラツキがある にもかかわらず外部電極蛍光ランプが暴走状態になることを未然に防止することがで きる。
[0012] また、上記構成の外部電極蛍光ランプ駆動電源用の遮断回路において、前記外 部電極蛍光ランプ駆動電源が複数の外部電極蛍光ランプそれぞれを独立駆動し、 前記複数の外部電極蛍光ランプ毎に前記検出部を備えるようにしてもよい。また、上 記構成の外部電極蛍光ランプ駆動電源用の遮断回路にぉ ヽて、前記外部電極蛍光 ランプ駆動電源が複数の外部電極蛍光ランプを並列駆動し、前記複数の外部電極 蛍光ランプに対して前記検出部を一つ備えるようにしてもょ 、。
[0013] また、上記各構成の外部電極蛍光ランプ駆動電源用の遮断回路において、前記 検出部が、前記外部電極蛍光ランプ駆動電源から前記外部電極蛍光ランプに供給 される電圧又は電流に基づく信号を時間微分する微分回路を備えるようにしてもよい 。また、上記各構成の外部電極蛍光ランプ駆動電源用の遮断回路において、前記 検出部が、遅延回路及び二つの入力信号を差分する差分回路を備え、前記外部電 極蛍光ランプ駆動電源力 前記外部電極蛍光ランプに供給される電圧又は電流に 基づく信号を二分配して、一方を前記差分回路に入力し、他方を前記遅延回路を介 して前記差分回路に入力するようにしてもよい。後者の構成を採用した場合、遅延回 路及び差分回路の IC化が可能であるため、検出部の小型化を図ることができる。さら に、遮断信号の精度向上の観点から、前者の構成においては、入力された信号の周 波数成分に依存する信号を出力する回路を前記微分回路の前段に設けることが望 ましぐ後者の構成においては、入力された信号の周波数成分に依存する信号を出 力する回路を前記二分配がなされる二分配点の前段に設けることが望ましい。
[0014] また、上記目的を達成するために本発明に係る照明装置は、外部電極蛍光ランプ と、所定範囲内の輝度で外部電極蛍光ランプが発光するように前記外部電極蛍光ラ ンプを駆動する外部電極蛍光ランプ駆動電源と、前記外部電極蛍光ランプ及び前 記外部電極蛍光ランプ駆動電源に接続される上記構成の外部電極蛍光ランプ駆動 電源用の遮断回路とを備える構成とする。
[0015] また、上記目的を達成するために本発明に係る表示装置は、上記構成の照明装置 を備える構成とする。
発明の効果
[0016] 本発明によると、外部電極蛍光ランプが暴走状態になることを未然に防止すること ができる外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置 及び表示装置を実現することができる。
図面の簡単な説明
[0017] [図 1A]及び [図 IB]は、外部電極蛍光ランプの保持具に対する取り付けの様子を示す図である。
[図 2]は、本発明に係る照明装置の電気的構成の一例を示すブロック図である。
[図 3A]及び
[図 3B]は、所定範囲内の輝度で発光する外部電極蛍光ランプ点灯時のランプ電圧 変化率 総点灯時間特性を示す図である。
[図 4]は、微分回路の一構成例を示す図である。
[図 5]は、図 2に示す電気的構成の変形例を示すブロック図である。
[図 6]は、フィルタの一構成例を示す図である。
[図 7]は、本発明に係る照明装置の電気的構成の他の例を示すブロック図である。
[図 8]は、図 7に示す電気的構成の変形例を示すブロック図である。
[図 9]は、一般的な外部電極蛍光ランプの概略断面を示す図である。
[図 10]は、図 9に示す外部電極蛍光ランプの V— I特性を示す図である。
[図 11 A]及び
[図 11B]は、所定範囲内の輝度で発光する外部電極蛍光ランプ点灯時のランプ電圧 総点灯時間特性を示す図である。
符号の説明
1 ガラス管
2、 3 外部電極
4 保持具
5 照明ユニットの正面左周縁部
6 照明ユニットの正面右周縁部
7 外部電極蛍光ランプ
8 外部電極蛍光ランプ駆動電源
9A〜9D 遮断回路
10 商用交流電源
11 整流平滑回路
12 インバータ回路
13 卜ランス 14 インバータ制御回路
15 分圧回路
16 AC— DCコンバータ
17 微分回路
18 比較回路
19 基準電圧源
20 フイノレタ
21 差分回路
22 遅延回路
101 液晶パネル
102 拡散板
103 フレーム
104 照明ユニットの周縁部
105 ノヽーネス
106 外部電極蛍光ランプ駆動電源
Cl、 C2、 C3 コンデンサ
LI インダクタ
OP1 オペアンプ
Rl 抵抗
発明を実施するための最良の形態
[0019] 本発明の実施形態について図面を参照して以下に説明する。本発明に係る照明 装置の一構造例として、複数の外部電極蛍光ランプと、照明ユニットと、光学シートと を備え、複数の外部電極蛍光ランプが照明ユニットの正面に設けられた弾性金属部 材 (例えば、パネ鋼)からなる保持具に取り付けられ、複数の外部電極蛍光ランプが 取り付けられた照明ユニットの正面を光学シートが覆っている構造が挙げられる。
[0020] ここで、複数の外部電極蛍光ランプの前記保持具に対する取り付けの様子を図 1 A 及び図 IBに示す。図 1Aは正面図であり、図 1Bは側面図である。なお、図 1Bの符号 101は液晶パネルを示し、符号 102は拡散板を示し、符号 103はフレームを示し、符 号 104は照明ユニットの周縁部を示し、符号 105はハーネスを示し、符号 106は外部 電極蛍光ランプ駆動電源を示している。前記照明ユニットの正面に複数対の保持具 4が設けられ、前記照明ユニットの背面に外部電極蛍光ランプ駆動電源(図 1Aにお いて不図示)がーつ設けられる。前記照明ユニットの正面左周縁部 5に設けられる各 保持具 4は共通接続されて前記外部電極蛍光ランプ駆動電源の一端に接続される。 また、前記照明ユニットの正面右周縁部 6に設けられる各保持具 4は共通接続されて 前記外部電極蛍光ランプ駆動電源の他端に接続される。保持具 4は弾性金属部材 の弾性特性により外部電極蛍光ランプ 7の外部電極を挟持する。
[0021] 次に、本発明に係る照明装置の電気的構成について説明する。図 2は、本発明に 係る照明装置の電気的構成の一例を示すブロック図である。
[0022] 外部電極蛍光ランプ駆動電源 8は、整流平滑回路 11と、インバータ回路 12と、トラ ンス 13と、インバータ制御回路 14とを備えており、商用交流電源 10から出力される 商用電圧を数十 kHzの交流高電圧に変換して外部電極蛍光ランプ 7に供給する。整 流平滑回路 11は、商用交流電源 10から出力される商用電圧を整流かつ平滑して直 流電圧を生成し、インバータ回路 12に出力する。インバータ回路 12は、インバータ 制御回路 14から出力される制御信号 S1に応じて整流平滑回路 11から出力される直 流電圧を数十 kHzの交流電圧に変換してトランス 13に出力する。トランス 13は、イン バータ回路 11から出力される数十 kHzの交流電圧を昇圧して外部電極蛍光ランプ 7 に出力する。インバータ制御回路 14は、 IC化された制御回路であり、所定範囲内の 輝度で外部電極蛍光ランプ 7が発光するような制御信号 S1を生成する。なお、イン バータ制御回路 14は、後述する遮断信号 S2を受け取るとインバータ回路 12の動作 を停止させる。
[0023] 遮断回路 9Aは、分圧回路 15と、 AC— DCコンバータ 16と、微分回路 17と、比較 器 18と、基準電圧源 19とを備えており、外部電極蛍光ランプ駆動電源 8の出力電圧 (実効電圧)の変化率が所定値を越えると遮断信号 S2を外部電極蛍光ランプ駆動電 源 8のインバータ制御回路 14に出力する。外部電極蛍光ランプ駆動電源 8の出力電 圧は分圧回路 15によって分圧される。分圧回路 15の具体例としては、 2つのコンデ ンサが直列接続された回路の一方を高圧部分に接続し、他方を接地する構成が挙 げられる。この構成の分圧回路では、 2つのコンデンサの接続部分から 2つのコンデ ンサの容量比に応じた出力電圧が出力される。分圧回路 15の出力は AC— DCコン バータ 16に供給される。 AC— DCコンバータ 16は分圧回路 15から出力される交流 信号を直流信号に変換して微分回路 17に出力する。 AC— DCコンバータ 16の具体 例としては、ダイオードにて構成された整流回路が挙げられる。微分回路 17は、 AC — DCコンバータ 16から出力される電圧を微分して比較器 18に出力する。比較器 18 は、微分回路 17から出力される電圧と基準電圧源 19から出力する基準電圧との比 較結果に応じた信号を出力する。このような構成により、例えば、外部電極蛍光ラン プ駆動電源 8の出力電圧 (実効電圧)の変化率が所定値を越えているときに比較器 1 8の出力信号が Highレベルとなり、外部電極蛍光ランプ駆動電源 8の出力電圧(実 効電圧)の変化率が所定値を越えていないときに比較器 18の出力信号力 owレべ ルとなるようにすることができる。この場合、 Highレベルの信号が遮断信号 S2となる。
[0024] 上記所定値を例えば lOOVZsecと設定すると、図 3A及び図 3Bから明らかなように 、外部電極蛍光ランプ点灯時のランプ電圧 総点灯時間特性に外部電極蛍光ラン プ 7の個体バラツキ (例えば、或る外部電極蛍光ランプでは図 11 Aに示す特性となり 、別の外部電極蛍光ランプでは図 11Bに示す特性となる。)があるにもかかわらず外 部電極蛍光ランプ 7が暴走状態になることを未然に防止することができる。なお、図 3 Aは図 11Aに対応しており、図 3Bは図 11Bに対応して!/、る。
[0025] 微分回路 17の一構成例を図 4に示す。図 4に示す微分回路は、コンデンサ C1と、 抵抗 R1と、オペアンプ OP1とを備えており、(1)式に示すように入力電圧 V を微分
IN
した出力電圧 V が得られる。なお、(1)式の C、 Rはそれぞれコンデンサ C1の静電
OUT
容量、抵抗 R1の抵抗値を示している。
[0026] [数 1]
Figure imgf000010_0001
なお、微分回路は外乱に弱いため、図 5に示すように、出力信号が入力された信号 の周波数成分に依存する回路であるフィルタ 20を微分回路 17の前段に設けることが 望ましい。フィルタ 20を設けることで、微分回路 17へ入力される信号の SN比 (信号 対雑音比)が向上し、遮断信号 S2の精度を高めることができる。
[0027] フィルタ 20の一構成例を図 6に示す。図 6に示すフィルタは、コンデンサ C2と、イン ダクタ L1と、コンデンサ C3とを備えており、高い周波数成分を遮断するローパスフィ ルタである。
[0028] 次に、本発明に係る照明装置の電気的構成の他の例について説明する。図 7は、 本発明に係る照明装置の電気的構成の他の例を示すブロック図である。なお、図 7 において図 2と同一の部分には同一の符号を付し詳細な説明を省略する。
[0029] 図 7に示す照明装置は遮断回路 9Cを備えている。遮断回路 9Cは、図 2に示す照 明装置が備える遮断回路 9Aの微分回路 17を差分回路 21及び遅延回路 22に置換 した構成である。 AC— DCコンバータ 16の出力が二分配され、一方が差分回路 21 に入力され、他方が遅延回路 22を介して差分回路 22に入力される。差分回路 21は 、遅延回路 22経由の入力信号力も遅延回路 22不経由の入力信号を差分して比較 器 18に出力する。比較器 18は、差分回路 21から出力される電圧と基準電圧源 19か ら出力する基準電圧との比較結果に応じた信号を出力する。このような構成によると 、差分回路 21、遅延回路 22、比較回路 18、及び基準電圧源 19を IC化することがで きるので、遮断回路 9Cの小型化を図ることができる。
[0030] なお、図 8に示すように、出力信号が入力された信号の周波数成分に依存する回 路であるフィルタ 20を AC— DCコンバータ 16出力の二分配点の前段に設けることが 望ましい。フィルタ 20を設けることで、差分回路 21へ入力される信号及び遅延回路 2 2へ入力される信号の SN比 (信号対雑音比)が向上し、遮断信号 S2の精度を高める ことができる。
[0031] 上述した実施形態では外部電極蛍光ランプ駆動電源が複数の外部電極蛍光ラン プを並列駆動して!/、るが、外部電極蛍光ランプ駆動電源が複数の外部電極蛍光ラン プを独立駆動すなわち各外部電極蛍光ランプに別個の電圧を供給してもよ!/、。この 場合、遮断回路の中の検出部(図 2の構成においては分圧回路 15、 AC— DCコン バータ 16、及び微分回路 17が該当する)を外部電極蛍光ランプ毎に設けるようにす ればよい。そして、例えば検出部の出力の少なくとも一つが所定値を越えたときに遮 断信号が出力されるようにすればよ!、。
[0032] 本発明に係る表示装置は、上述した本発明に係る照明装置と、表示パネルとを備 える構成である。本発明に係る表示装置の具体的態様としては、例えば、本発明に 係る照明装置をバックライトユニットとして用い、その正面に液晶表示パネルを設けた 透過型液晶表示装置が挙げられる。
産業上の利用可能性
[0033] 本発明に係る外部電極蛍光ランプ駆動電源用の遮断回路は、外部電極蛍光ラン プが暴走状態になることを未然に防止するための安全回路として用いられる。なお、 外部電極蛍光ランプは、表示装置用照明装置内に設けられる照明源をはじめ、種々 の装置内に設けられる照明源として利用することができる。

Claims

請求の範囲
[1] 所定範囲内の輝度で外部電極蛍光ランプが発光するように前記外部電極蛍光ラン プを駆動する外部電極蛍光ランプ駆動電源力 前記外部電極蛍光ランプに供給さ れる電圧又は電流の変化率を検出する検出部と、
前記外部電極蛍光ランプ駆動電源の動作を停止させるための遮断信号を出力す る力否かを前記検出部の検出値に応じて決定する遮断信号出力部とを備えることを 特徴とする外部電極蛍光ランプ駆動電源用の遮断回路。
[2] 前記遮断信号出力部が、前記検出部の検出値が所定値を越えている場合に前記 外部電極蛍光ランプ駆動電源の動作を停止させるための遮断信号を出力する請求 項 1に記載の外部電極蛍光ランプ駆動電源用の遮断回路。
[3] 前記外部電極蛍光ランプ駆動電源が複数の外部電極蛍光ランプそれぞれを独立 駆動し、前記複数の外部電極蛍光ランプ毎に前記検出部を備える請求項 1に記載 の外部電極蛍光ランプ駆動電源用の遮断回路。
[4] 前記外部電極蛍光ランプ駆動電源が複数の外部電極蛍光ランプを並列駆動し、 前記複数の外部電極蛍光ランプに対して前記検出部を一つ備える請求項 1に記載 の外部電極蛍光ランプ駆動電源用の遮断回路。
[5] 前記検出部が、前記外部電極蛍光ランプ駆動電源から前記外部電極蛍光ランプ に供給される電圧又は電流に基づく信号を時間微分する微分回路を備える請求項 1 に記載の外部電極蛍光ランプ駆動電源用の遮断回路。
[6] 前記検出部が、入力された信号の周波数成分に依存する信号を出力する回路を 前記微分回路の前段に備える請求項 5に記載の外部電極蛍光ランプ駆動電源用の 遮断回路。
[7] 前記検出部が、遅延回路及び二つの入力信号を差分する差分回路を備え、前記 外部電極蛍光ランプ駆動電源力 前記外部電極蛍光ランプに供給される電圧又は 電流に基づく信号を二分配して、一方を前記差分回路に入力し、他方を前記遅延回 路を介して前記差分回路に入力する請求項 1に記載の外部電極蛍光ランプ駆動電 源用の遮断回路。
[8] 前記検出部が、入力された信号の周波数成分に依存する信号を出力する回路を 前記二分配がなされる二分配点の前段に備える請求項 7に記載の外部電極蛍光ラ ンプ駆動電源用の遮断回路。
[9] 外部電極蛍光ランプと、
所定範囲内の輝度で外部電極蛍光ランプが発光するように前記外部電極蛍光ラン プを駆動する外部電極蛍光ランプ駆動電源と、
前記外部電極蛍光ランプ及び前記外部電極蛍光ランプ駆動電源に接続される請 求項 1〜8のいずれかに記載の外部電極蛍光ランプ駆動電源用の遮断回路とを備え ることを特徴とする照明装置。
[10] 請求項 9に記載の照明装置を備えることを特徴とする表示装置。
PCT/JP2005/022361 2005-02-22 2005-12-06 外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置及び表示装置 WO2006090518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-045025 2005-02-22
JP2005045025 2005-02-22

Publications (1)

Publication Number Publication Date
WO2006090518A1 true WO2006090518A1 (ja) 2006-08-31

Family

ID=36927167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022361 WO2006090518A1 (ja) 2005-02-22 2005-12-06 外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置及び表示装置

Country Status (1)

Country Link
WO (1) WO2006090518A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251888A (ja) * 1993-02-26 1994-09-09 Mitsubishi Electric Corp 放電灯点灯装置
JPH11283764A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 高圧放電灯の保護回路
WO2004019312A2 (en) * 2002-08-26 2004-03-04 Samsung Electronics Co., Ltd. Apparatus for supplying power, backlight assembly and liquid crystal display apparatus having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251888A (ja) * 1993-02-26 1994-09-09 Mitsubishi Electric Corp 放電灯点灯装置
JPH11283764A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 高圧放電灯の保護回路
WO2004019312A2 (en) * 2002-08-26 2004-03-04 Samsung Electronics Co., Ltd. Apparatus for supplying power, backlight assembly and liquid crystal display apparatus having the same

Similar Documents

Publication Publication Date Title
JP4157948B2 (ja) ランプ駆動装置及び駆動方法とこれを用いた液晶表示装置
US7492106B2 (en) Inverter circuit, backlight assembly, liquid crystal display having the same, and method thereof
JP2005536846A (ja) 電力供給装置並びに該装置を有するバクライトアセンブリ及び液晶表示装置
KR101539581B1 (ko) 광원 구동 방법, 이를 수행하기 위한 광원 어셈블리 및 이를 갖는 액정 표시 장치
US7279849B2 (en) Apparatus for driving backlight of liquid crystal display
US7642732B2 (en) Dielectric barrier discharge lamp lighting apparatus and method of detecting the number of normally lighting dielectric barrier discharge lamps
JP5616574B2 (ja) インバータ回路、バックライト装置及びそれを用いた液晶表示装置
US7224129B2 (en) Discharge lamp drive apparatus and liquid crystal display apparatus
WO2006090518A1 (ja) 外部電極蛍光ランプ駆動電源用の遮断回路並びにそれを備えた照明装置及び表示装置
JP2004191935A (ja) 電源供給装置及びこれを用いた液晶表示装置
KR20070001396A (ko) 백라이트 구동장치 및 그 구동방법
KR101192058B1 (ko) 램프 구동장치 및 구동방법
KR101201133B1 (ko) 백라이트 구동장치
JP5254665B2 (ja) インバータ回路、バックライト装置及びそれを用いた液晶表示装置
US7629752B2 (en) Light source driving device
JP4925304B2 (ja) 放電灯点灯装置及びこれを用いた照明装置、液晶表示装置
KR100478412B1 (ko) 외부전극 형광램프용 인버터
US20060044255A1 (en) Method for driving backlight unit
KR100854703B1 (ko) 형광램프의 불량 판단 장치
KR20060016224A (ko) 외부전극 형광램프용 인버터
KR100906452B1 (ko) 냉음극 평면형 형광램프용 구동장치
KR100854704B1 (ko) 형광램프의 불량 판단 장치
US20110175890A1 (en) Lighting device for display device, display device and television receiver
KR20100055148A (ko) 엘시디 백라이트용 인버터
KR101441394B1 (ko) 백 라이트 유닛과 이를 이용한 액정 표시장치 및 그의구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814568

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814568

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP