WO2006090495A1 - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
WO2006090495A1
WO2006090495A1 PCT/JP2005/015675 JP2005015675W WO2006090495A1 WO 2006090495 A1 WO2006090495 A1 WO 2006090495A1 JP 2005015675 W JP2005015675 W JP 2005015675W WO 2006090495 A1 WO2006090495 A1 WO 2006090495A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear pump
gear
casing
inner peripheral
pump according
Prior art date
Application number
PCT/JP2005/015675
Other languages
French (fr)
Japanese (ja)
Inventor
Motohiro Okada
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2007504624A priority Critical patent/JPWO2006090495A1/en
Priority to PCT/JP2006/302890 priority patent/WO2006090652A1/en
Priority to JP2007504693A priority patent/JP4688864B2/en
Priority to KR1020077021591A priority patent/KR20070112211A/en
Priority to US11/816,954 priority patent/US20090060770A1/en
Priority to EP06714031.9A priority patent/EP1852612B1/en
Priority to TW095105601A priority patent/TWI294945B/en
Publication of WO2006090495A1 publication Critical patent/WO2006090495A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the present invention relates to a gear pump used for transferring a high-pressure, high-viscosity fluid.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-013642
  • a problem of a gear pump employing an involute tooth profile is a fluid confinement phenomenon.
  • the intermittency ratio of involute gears is typically greater than 1, and there is a period during which two sets of teeth are engaged. In that case, the force by which the fluid is confined between these two sets of teeth.
  • the volume of this confinement region varies with the rotation of the gears. Troubles such as the generation of vacuum or bubbles are detected.
  • the harm of the confinement phenomenon is much greater during compression than during expansion.
  • a gear pump of the present invention that solves the above-described problems is provided with a casing having a suction port through which a fluid is introduced and a discharge port through which the fluid is discharged, and provided in the casing, and meshing with each other. And a pair of gears that transfer the fluid from the suction port to the discharge port by rotation, and the pair of gears is a single-point continuous contact tooth-shaped helical gear, and the outer diameter of each of the gears The specific force between the teeth and the tooth width is 1.1 to 1.15.
  • a tooth profile such as an arc tooth profile, an elliptical tooth profile, or a sinusoidal tooth profile that always has one contact point and does not cause fluid confinement is used, and the axial thrust is balanced as a spur gear, Axial thrust is avoided from acting on the gear.
  • DZB 1.1 to 1.15
  • efficiency is secured while suppressing bearing load. If DZB is less than 1.1, the bearing load may be excessive and damage to the bearing may occur, making it unsuitable for applications such as feeding molten resin. On the other hand, if DZB exceeds 1.15, the work force that can be used for the pump size increases.
  • D / B be 1.1 to 1.15.
  • FIG. 1 is a plan sectional view showing a gear pump according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view of the gear pump shown in FIG.
  • FIG. 3 is a flow chart showing the production process of a molded article of a high molecular weight polymer to which the gear pump of the present invention is applied.
  • the gear pump 100 of the present embodiment shown in Figs. 1 and 2 is a high-priced material such as a molten resin or other high molecular weight polymer in a petroleum plant, a chemical plant, a polymerization plant, a molding and spinning device, or the like. Used to pump viscous material at high pressure. These highly viscous materials may be intermediates or final products.
  • the gear pump 100 is a so-called external gear pump, in which a drive gear 2 and a driven gear 3 are arranged in an internal space in a casing 1 so as to rotate the gears 2 and 3. By doing so, it acts as a pump that transfers the fluid trapped in the tooth gap to the suction side as well as the discharge side.
  • the suction side is positioned upward and the discharge side is positioned downward, and a tank containing high molecular weight polymer or molten resin is installed directly above the intake port 11 to absorb the molten resin in the tank. Discharge at a predetermined discharge pressure.
  • the drive gear 2 and the driven gear 3 are each a single point continuous contact tooth-shaped helical gear.
  • the tooth profile of both gears 2 and 3 is an arc tooth profile.
  • the ratio DZB of outer diameter D to tooth width B is set between 1.1 and 1.15. This is because the gear pump 100 pumps high-temperature molten resin, etc. at a high temperature of about 300 ° C. at a high pressure of about 20 MPaG. According.
  • the specific values of gear outer diameter D and tooth width B are limited by the gear shaft diameter necessary to transmit the rotational driving force to the gear and the shaft diameter necessary to suppress the stagnation deformation of the gear shaft.
  • the ratio of the gear outer diameter D to the tooth width B DZB is within 1.1 to 1.15.
  • 8 decide. If the tooth module is M and the pitch circle diameter is A,
  • both gears 2 and 3 is a one-point contact tooth profile, the rotation is not transmitted, such as one pitch screw in the gear shaft direction.
  • the confinement phenomenon theoretically does not occur in the arc tooth profile, but when the discharge pressure pulsation was measured as an evaluation of confinement, it was 0.4% for the arc gear pump and 4% for the involute gear pump. All are values under the operating conditions of a liquid viscosity of about 300 Pa's, a discharge pressure of 20 MPaG, and a rotation speed of 30 rpm. Discharge pressure pulsation is measured. The arc pulsating pump reduced the discharge pulsation to lZio compared to the involute gear pump, although it changed depending on the fixed position and other measurement environments.
  • the gear pump 100 of the present embodiment is mainly used for pumping a high-pressure, high-viscosity fluid. Therefore, the inner peripheral shape of the casing 1 is not molded so that the high-viscosity fluid can be sufficiently sucked into the tooth gaps of the gears 2 and 3 and the tip leakage of the high-pressure fluid caught in the tooth gaps can be reduced. must not.
  • the positions where the tooth tips of the rotating gears 2 and 3 start to approach the inner peripheral surface of the casing 1 are P, P, and the positions where the tooth tips start to move away from the inner peripheral surface of the casing 1 are P, P, Both gears 2 and 3
  • the pitch point is P, and the center of each gear 2 and 3 is P and P.
  • Arc angle E is equal to or greater than two tooth spaces in gears 2 and 3.
  • the angle E formed by the line segment connecting the line segment connecting the slidable contact end point P and the pitch point P is a side sectional view 33
  • the angle E between the two line segments that connect each other shall be 48 ° to 102 ° in a side sectional view.
  • the upper limit of E should be about 102 °
  • the lower limit of E is set to about 48 °.
  • the gears 2, 3 are connected to each other in a one-point continuous contact tooth profile.
  • the ratio DZB of the gear outer diameter D to the tooth width B is set to 1.1 to 1.15 to avoid adverse effects on the bearing due to fluid confinement. Can do.
  • DZB by setting DZB to 1.1 to 1.15, efficiency can be ensured while suppressing bearing load, and the pump outer shape is not enlarged.
  • the gear pump 100 of this embodiment is more suitable for transferring a high-pressure, high-viscosity fluid than a conventional involute gear pump.
  • the gear pump 100 of the present invention configured as described above is used in the process of manufacturing a polymer or molten resin, or a molded product from a polymer or molten resin.
  • the present invention can be applied to uses for producing a polymer, molten resin or molded product.
  • the monomer is transferred from the monomer tank 110 to the polymerization tank 120 using the gear pump 100 of the present invention to produce a polymer, or the polymer is It can be transferred to the molding apparatus 300 or the spinning apparatus 400 via the pump 100 and used for the process of manufacturing the molded product. Further, even if a process for producing a polymer using the gear pump 100 of the present invention and a process for producing the molded product are integrated, a single production line as shown in FIG. 3 is constructed. Good.
  • the monomer tank 110 and the polymerization tank 120 shown in FIG. 3 can be replaced with a resin pellet tank and a molten resin tank, respectively, to form a production line for a molten resin and a molded product thereof.
  • the polymerization apparatus 200 can be formed by the monomer tank 110, the gear pump 100, and the polymerization tank 120 shown in FIG. Further, the molding apparatus 300 or the spinning apparatus 400 and the gear pump 100 may be separate from each other, or the molding apparatus 300 or the spinning apparatus 400 incorporating the gear pump 100 may be used.
  • the gear pump of the present invention can be suitably used for, for example, a transfer of molten resin and other high molecular weight polymers at a high pressure in oil plants, chemical plants, polymerization plants, molding and spinning devices, and the like. Force Not limited to these, it can be used for transferring high pressure and high viscosity fluids.

Abstract

A gear pump that is more suitable for sending high-pressure, high-viscosity fluid such as melted resin. A gear pump (100) for sending fluid from the suction opening (11) side to the discharge opening (12) side by rotation of a pair of gears (2, 3) provided in a casing (1) and meshing with each other. The gears (2, 3) are double-helical gears having a one point continuous contact tooth profile, and for both gears (2, 3), a ratio D/B, or a ratio of a gear outer diameter D to a tooth width B, is set to in the range of 1.1 - 1.15. When D/B is below 1.1, a bearing load is excessive and the bearings may be damaged, causing the gears to be unsuitable for forcing of melted resin, etc. On the other hand, when D/B is above 1.15, the outer profile of the pump is larger and mechanical efficiency is reduced to lower the entire efficiency.

Description

明 細 書  Specification
歯車ポンプ  Gear pump
技術分野  Technical field
[0001] 本発明は、特に高圧、高粘性の流体を移送するために用いられる歯車ポンプに関す る。  [0001] The present invention relates to a gear pump used for transferring a high-pressure, high-viscosity fluid.
背景技術  Background art
[0002] 嚙合する歯車の回転により流体を吸込側から吐出側へ移送する歯車ポンプでは、ィ ンボリュート歯形を採用したものが非常に多い。インボリユート歯形は切削し易ぐしか も歯形の仕上げ寸法の測定も容易であるため、高精度の歯車を得ることができ、よつ て高圧運転条件にも適合し得るからである。  [0002] There are very many gear pumps that employ an involute tooth profile to transfer fluid from the suction side to the discharge side by rotation of the meshing gear. This is because the involute tooth profile is easy to cut and the finish dimension of the tooth profile is easy to measure, so a high-precision gear can be obtained, and therefore it can be adapted to high-pressure operating conditions.
特許文献 1 :特開平 11— 013642号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-013642
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] インボリユート歯形を採用した歯車ポンプの抱える問題として、流体の閉じ込み現象 が挙げられる。インボリユート歯車の嚙み合い率は 1より大きいことが通例であり、 2組 の歯が嚙み合っている期間が存在する。その場合、これら 2組の歯の間に流体が閉 じ込められる力 この閉じ込み領域の容積は歯車の回転に伴い変動することから、圧 縮時には閉じ込み流体の圧力上昇と動力浪費、膨張時には真空や気泡の発生とい つた不具合力あたらされる。但し、閉じ込み現象の害は、膨張時よりも圧縮時の方が はるかに大きい。 [0003] A problem of a gear pump employing an involute tooth profile is a fluid confinement phenomenon. The intermittency ratio of involute gears is typically greater than 1, and there is a period during which two sets of teeth are engaged. In that case, the force by which the fluid is confined between these two sets of teeth. The volume of this confinement region varies with the rotation of the gears. Troubles such as the generation of vacuum or bubbles are detected. However, the harm of the confinement phenomenon is much greater during compression than during expansion.
[0004] そして、上記の閉じ込み現象の害は、移送される流体の粘度や吸入圧力、吐出圧力 が高いほど顕著になる。とりわけ、溶融榭脂等を圧送する用途においては、 300° C 程度の高温、 20MPaG程度の高圧、 300Pa' s程度の高粘度の流体を移送するため 、閉じ込み現象によって歯車軸受へ多大な荷重がかかり、軸受寿命が短命になる。 現状では、軸受を改良したり、あるいは軸受諸元に余裕をもたせたり(例えば、軸径を 大きくする、回転速度を下げる等)して対処しているが、ポンプ外形の大型化、駆動 力の増大化を招 、てしまって 、る。 [0005] 以上に鑑みてなされた本発明は、高分子重合物や溶融榭脂等の高圧、高粘度の流 体の移送により適した歯車ポンプを実現しょうとするものである。 [0004] The harm of the above-described confinement phenomenon becomes more prominent as the viscosity, suction pressure, and discharge pressure of the fluid to be transferred are higher. In particular, in applications where molten resin is pumped, a high temperature of about 300 ° C, high pressure of about 20MPaG, and high viscosity of about 300Pa's are transferred. This shortens the bearing life. Currently, this is dealt with by improving the bearing, or by giving a margin to the bearing specifications (for example, increasing the shaft diameter, decreasing the rotational speed, etc.). Invited to increase. [0005] The present invention made in view of the above is intended to realize a gear pump suitable for transferring a high-pressure, high-viscosity fluid such as a high molecular weight polymer or a molten resin.
課題を解決するための手段  Means for solving the problem
[0006] 上述した課題を解決するべぐ本発明の歯車ポンプは、流体が導入される吸込口と、 該流体が排出される吐出口とを有するケーシングと、前記ケーシング内に設けられ、 互いに嚙合して回転により前記流体を前記吸込口から前記吐出口へと移送する一 対の歯車とを備え、前記一対の歯車は、一点連続接触歯形のやまば歯車であり、該 歯車のそれぞれの外径と歯幅との比力 1. 1〜1. 15であることを特徴とする。  [0006] A gear pump of the present invention that solves the above-described problems is provided with a casing having a suction port through which a fluid is introduced and a discharge port through which the fluid is discharged, and provided in the casing, and meshing with each other. And a pair of gears that transfer the fluid from the suction port to the discharge port by rotation, and the pair of gears is a single-point continuous contact tooth-shaped helical gear, and the outer diameter of each of the gears The specific force between the teeth and the tooth width is 1.1 to 1.15.
[0007] 即ち、円弧歯形、楕円歯形またはサイン曲線歯形等の、接触点が常に 1つであり流 体の閉じ込みを発生させない歯形を採用するとともに、やまば歯車として軸推力を均 衡させ、軸推力が歯車に作用することを回避する。その上で、 DZBを 1. 1〜1. 15 に設定することで、軸受荷重を抑制しながら効率を確保する。 DZBが 1. 1を下回る と、軸受荷重が過大となって軸受に損傷が発生するおそれがあり、溶融榭脂等を圧 送する用途には適さなくなる。一方、 DZBが 1. 15を上回ると、ポンプ外形が大型化 する割にできる仕事力 、さくなる。歯車とケーシングとの摩擦による動力損失は歯車 外径の増加に応じて急増するため、一定の吐出量に対して歯幅を小さぐ外径を大 きくすることはポンプ外形の大型化とともに機械効率の低下、全効率の低下に直結す る。以上の理由により、 D/Bは 1. 1〜1. 15とすることが望ましい。  [0007] That is, a tooth profile such as an arc tooth profile, an elliptical tooth profile, or a sinusoidal tooth profile that always has one contact point and does not cause fluid confinement is used, and the axial thrust is balanced as a spur gear, Axial thrust is avoided from acting on the gear. In addition, by setting DZB to 1.1 to 1.15, efficiency is secured while suppressing bearing load. If DZB is less than 1.1, the bearing load may be excessive and damage to the bearing may occur, making it unsuitable for applications such as feeding molten resin. On the other hand, if DZB exceeds 1.15, the work force that can be used for the pump size increases. Since power loss due to friction between the gear and the casing increases rapidly as the outer diameter of the gear increases, increasing the outer diameter to reduce the tooth width for a given discharge rate increases the mechanical efficiency as the pump outer diameter increases. Directly leading to a decrease in overall efficiency. For these reasons, it is desirable that D / B be 1.1 to 1.15.
発明の効果  The invention's effect
[0008] 本発明によれば、高分子重合物や溶融榭脂等の高圧、高粘度の流体の移送により 適した歯車ポンプを実現可能である。  [0008] According to the present invention, it is possible to realize a gear pump suitable for transferring a high-pressure, high-viscosity fluid such as a polymer or a melted resin.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の一実施形態の歯車ポンプを示す平断面図。 FIG. 1 is a plan sectional view showing a gear pump according to an embodiment of the present invention.
[図 2]図 1に示す歯車ポンプの側断面図。  FIG. 2 is a side sectional view of the gear pump shown in FIG.
[図 3]本発明の歯車ポンプを適用した高分子重合物の成形物の製造過程を示すフロ ーテヤート。  FIG. 3 is a flow chart showing the production process of a molded article of a high molecular weight polymer to which the gear pump of the present invention is applied.
符号の説明 [0010] 1…ケーシング Explanation of symbols [0010] 1 ... Casing
2、 3…歯車  2, 3 ... Gear
100· ··歯車ポンプ  100 ... Gear pump
200…重合装置  200 ... Polymerizer
300…成形装置  300 ... Molding equipment
400…紡糸装置  400 ... Spinning equipment
D…歯車外径  D ... Gear outer diameter
B…歯幅  B ... tooth width
E…回転する両歯車の歯先がケーシングの内周面より離反する二位置と両歯車の E… Two positions where the tooth tips of both rotating gears are separated from the inner peripheral surface of the casing,
3 Three
ピッチ点とをそれぞれ結んだ線分のなす角度  Angle between line segments connecting pitch points
E…回転する歯車の歯先がケーシングの内周面に極近接する位置力 この歯車 E: Positional force where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing.
4 Four
の歯先がその内周面力 離反する位置までの円弧角  Arc angle until the tip of the tooth is separated from its inner peripheral surface force
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
実施例  Example
[0012] 図 1及び図 2に示す本実施形態の歯車ポンプ 100は、例えば、石油プラント、化学プ ラント、重合プラント、成形'紡糸装置等において、溶融榭脂その他の高分子重合物 等の高粘性物を高圧で圧送するために使用される。これらの高粘性物は、中間体で あっても最終製品であってもよい。この歯車ポンプ 100は、いわゆる外接歯車ポンプ であって、ケーシング 1が内包する内部空間に、駆動歯車 2と従動歯車 3とを嚙合状 態で配設してなり、これら歯車 2、 3を回転駆動することで歯溝に捉えた流体を吸込側 力も吐出側へ移送するポンプ作用を営むものである。実際には、吸込側を上方、吐 出側を下方に位置づけ、吸込口 11の直上に高分子重合物や溶融榭脂等を蓄えた タンクを設置して、タンク内の溶融榭脂等を吸込み所定の吐出圧力で吐出させる。  [0012] The gear pump 100 of the present embodiment shown in Figs. 1 and 2 is a high-priced material such as a molten resin or other high molecular weight polymer in a petroleum plant, a chemical plant, a polymerization plant, a molding and spinning device, or the like. Used to pump viscous material at high pressure. These highly viscous materials may be intermediates or final products. The gear pump 100 is a so-called external gear pump, in which a drive gear 2 and a driven gear 3 are arranged in an internal space in a casing 1 so as to rotate the gears 2 and 3. By doing so, it acts as a pump that transfers the fluid trapped in the tooth gap to the suction side as well as the discharge side. Actually, the suction side is positioned upward and the discharge side is positioned downward, and a tank containing high molecular weight polymer or molten resin is installed directly above the intake port 11 to absorb the molten resin in the tank. Discharge at a predetermined discharge pressure.
[0013] 駆動歯車 2、従動歯車 3は、それぞれ一点連続接触歯形のやまば歯車とする。図示 例では、両歯車 2、 3の歯形を円弧歯形としている。各歯車 2、 3について、外径 Dの 歯幅 Bに対する比 DZBは、 1. 1〜1. 15の間に設定する。これは、当該歯車ポンプ 100が 300° C程度の高温の溶融榭脂等を 20MPaG程度の高圧で圧送することに よる。歯車外径 D、歯幅 Bの具体的な値は、回転駆動力を歯車に伝達するために必 要な歯車軸径、歯車軸の橈み変形を抑制するために必要な軸径による制限を受ける [0013] The drive gear 2 and the driven gear 3 are each a single point continuous contact tooth-shaped helical gear. In the illustrated example, the tooth profile of both gears 2 and 3 is an arc tooth profile. For each gear 2 and 3, the ratio DZB of outer diameter D to tooth width B is set between 1.1 and 1.15. This is because the gear pump 100 pumps high-temperature molten resin, etc. at a high temperature of about 300 ° C. at a high pressure of about 20 MPaG. According. The specific values of gear outer diameter D and tooth width B are limited by the gear shaft diameter necessary to transmit the rotational driving force to the gear and the shaft diameter necessary to suppress the stagnation deformation of the gear shaft. receive
[0014] しかして、歯車外径 Dと歯幅 Bとの比 DZBを 1.1〜1. 15の範囲内に収めるベぐ歯 車 2、 3の歯数 Z及びねじれ角度(ヘリカル角度) |8を決定する。歯モジュールを M、 ピッチ円直径を Aとおくと、 [0014] Therefore, the ratio of the gear outer diameter D to the tooth width B DZB is within 1.1 to 1.15. The number of teeth Z and the twist angle (helical angle) | 8 decide. If the tooth module is M and the pitch circle diameter is A,
A=MZ、  A = MZ,
D=M(Z + 2)  D = M (Z + 2)
が成り立つ。本実施形態では、両歯車 2、 3の歯形が一点接触歯形であるから、歯車 軸方向に 1ピッチねじらな 、と回転が伝達されな 、。  Holds. In this embodiment, since the tooth profile of both gears 2 and 3 is a one-point contact tooth profile, the rotation is not transmitted, such as one pitch screw in the gear shaft direction.
1ピッチ = πΑΖΖ = πΜ  1 pitch = πΑΖΖ = πΜ
であり、  And
Β/2= πΜ/tanjS  Β / 2 = πΜ / tanjS
である必要がある。 DZB = xとおくと、上記より、  Need to be. If DZB = x, then
Ζ= (2πχ/ίΆΐΐβ) -2  Ζ = (2πχ / ίΆΐΐβ) -2
となる。  It becomes.
[0015] なお、ねじれ角度 j8は、歯形の加工工程上、 32° 以下とすることが好ましい。上式よ り、 DZB=xを 1.1〜1.15の範囲内に収めようとすると、ねじれ角度 j8を 28° 〜32 ° の間に設定した場合の歯数は 10枚〜 12枚となる。  [0015] Note that the twist angle j8 is preferably set to 32 ° or less in terms of the tooth profile processing step. From the above equation, if DZB = x is set within the range of 1.1 to 1.15, the number of teeth will be 10 to 12 when the twist angle j8 is set between 28 ° and 32 °.
[0016] 円弧歯形でM = 20、Z=10、A=200、 J8=31° 、: B = 209、容量 4189ccZrevの 円弧歯車ポンプを製作し、既知のインボリユート歯車ポンプと比較した。性能対比とし て用いたインボリユート歯車ポンプは、 M=14、 Z=14、 A=200、 j8 =2.4° 、 B = 209、容量 4080ccZrevである。性能に関わる軸径、軸受長さ等は両者で同一とし た。液粘度約 300Pa's、吐出圧力 20MPaGにおいて、円弧歯車ポンプはインボリュ ート歯車ポンプと同等の性能を得た。また、円弧歯形では理論上閉じ込み現象が発 生しないが、閉じ込みの評価として吐出圧力脈動を測定すると、円弧歯車ポンプで は 0.4%、インボリユート歯車ポンプでは 4%となった。何れも、液粘度約 300Pa's、 吐出圧力 20MPaG、回転数 30rpmの運転条件での値である。吐出圧力脈動は測 定位置その他の測定環境によって変化するものの、円弧歯車ポンプはインボリユート 歯車ポンプに対し吐出脈動が lZioまで減少した。 [0016] An arc gear pump with an arc tooth profile of M = 20, Z = 10, A = 200, J 8 = 31 °, B = 209, and a capacity of 4189 cc Zrev was manufactured and compared with a known involute gear pump. The involute gear pump used for performance comparison is M = 14, Z = 14, A = 200, j8 = 2.4 °, B = 209, capacity 4080ccZrev. The shaft diameter and bearing length related to performance were the same for both. At a liquid viscosity of about 300 Pa's and a discharge pressure of 20 MPaG, the circular gear pump obtained the same performance as the involute gear pump. In addition, the confinement phenomenon theoretically does not occur in the arc tooth profile, but when the discharge pressure pulsation was measured as an evaluation of confinement, it was 0.4% for the arc gear pump and 4% for the involute gear pump. All are values under the operating conditions of a liquid viscosity of about 300 Pa's, a discharge pressure of 20 MPaG, and a rotation speed of 30 rpm. Discharge pressure pulsation is measured. The arc pulsating pump reduced the discharge pulsation to lZio compared to the involute gear pump, although it changed depending on the fixed position and other measurement environments.
[0017] ところで、既に述べたように、本実施形態の歯車ポンプ 100は、高圧、高粘度の流体 の圧送を主たる用途としている。従って、高粘度流体を歯車 2、 3の歯溝内に十分に 吸入できるよう、並びに、歯溝に捉えた高圧流体の歯先漏れを低減できるよう、ケー シング 1の内周形状を成形しなくてはならない。以降、図 2を参照して詳述する。ここ で、回転する歯車 2、 3の歯先がケーシング 1の内周面に極近接を開始する位置を P 、 P、歯先がケーシング 1の内周面より離反し始める位置を P、 P、両歯車 2、 3のピ By the way, as already described, the gear pump 100 of the present embodiment is mainly used for pumping a high-pressure, high-viscosity fluid. Therefore, the inner peripheral shape of the casing 1 is not molded so that the high-viscosity fluid can be sufficiently sucked into the tooth gaps of the gears 2 and 3 and the tip leakage of the high-pressure fluid caught in the tooth gaps can be reduced. must not. Hereinafter, a detailed description will be given with reference to FIG. Here, the positions where the tooth tips of the rotating gears 2 and 3 start to approach the inner peripheral surface of the casing 1 are P, P, and the positions where the tooth tips start to move away from the inner peripheral surface of the casing 1 are P, P, Both gears 2 and 3
1 2 2 1 2 2
ツチ点を P、各歯車 2、 3の中心を P、 Pとおく。  The pitch point is P, and the center of each gear 2 and 3 is P and P.
0 c c  0 c c
[0018] 高粘度の流体を歯溝内に円滑に導くためには、両歯車 2、 3の中心 P、 Pを通る直線 と、歯車 2、 3の中心 P及び歯先の摺接開始点 Pを結ぶ線分とがなす角 Eについて 、側断面視 (歯車軸に直交する面で切断した断面視) 0° 〜6° 程度の大きさを確保 する必要がある。但し、摺接開始点 Pの位置は、両歯車 2、 3の中心 P、 Pを通る直 線よりも吐出側にあるものとする。また、歯先漏れを低減するには、歯先の摺接開始 点 Pから摺接終了点 Pまでの を中心とした)円弧角 Eについて、側断面視 72° [0018] In order to smoothly guide a high-viscosity fluid into the tooth gap, a straight line passing through the centers P and P of both gears 2 and 3 and the center P of the gears 2 and 3 and the sliding contact start point P of the tooth tip As for the angle E formed by the line connecting the two, it is necessary to secure a size of about 0 ° to 6 ° in a side sectional view (a sectional view cut along a plane perpendicular to the gear axis). However, the position of the sliding contact start point P is assumed to be on the discharge side with respect to the straight line passing through the centers P and P of the two gears 2 and 3. In order to reduce tooth tip leakage, the arc angle E (centered from the sliding contact start point P to the sliding contact end point P) is 72 °
1 2 4 1 2 4
以上の大きさを確保することが好ましい。円弧角 Eは、歯車 2、 3の歯溝 2つ分以上を  It is preferable to ensure the above size. Arc angle E is equal to or greater than two tooth spaces in gears 2 and 3.
4  Four
確保することが目安となる。とは言え、 Eを大きくすれば吐出口 12に連通する流路が  It is a guideline to secure. However, if E is increased, the flow path communicating with the discharge port 12 is increased.
4  Four
狭くなり、流体の吐出過程に支障を来しかねないので、 Eは側断面視 108° 程度ま  E narrows and may interfere with the fluid discharge process.
4  Four
での大きさに抑えるべきである。  Should be kept to the size of
[0019] Eを 0° 以上とし、 Eを 72° 〜108° とした場合、摺接開始点 P及びピッチ点 Pを [0019] When E is set to 0 ° or more and E is set to 72 ° to 108 °, the sliding contact start point P and the pitch point P are set to
1 4 1 0 結ぶ線分と、摺接終了点 P及びピッチ点 Pを結ぶ線分とがなす角 Eは側断面視 33  1 4 1 0 The angle E formed by the line segment connecting the line segment connecting the slidable contact end point P and the pitch point P is a side sectional view 33
2 0 2  2 0 2
。 〜66° となる。よって、両歯車 2、 3についての摺接終了点 P、 Pとピッチ点 Pとを  . ~ 66 °. Therefore, the sliding contact end points P and P and the pitch point P for both gears 2 and 3 are
2 2 0 それぞれ結ぶ 2本の線分がなす角 Eは、側断面視 48° 〜102° とする。逆に言え  2 2 0 The angle E between the two line segments that connect each other shall be 48 ° to 102 ° in a side sectional view. Conversely
3  Three
ば、所要の E、 E (または、 E )を確保するためには、 Eの上限を 102° 程度とする  For example, in order to secure the required E and E (or E), the upper limit of E should be about 102 °
1 2 4 3  1 2 4 3
必要がある。言うまでもなぐ Eの下限を 48° 程度としたのは、歯溝に捉えられ移送  There is a need. Needless to say, the lower limit of E is set to about 48 °.
3  Three
された流体を円滑に吐出口 12に向けて流下させるためである。  This is to smoothly flow the discharged fluid toward the discharge port 12.
[0020] 本実施形態によれば、対をなし嚙合する歯車 2、 3の回転により流体を吸込側から吐 出側へ移送する歯車ポンプ 100において、前記歯車 2、 3を、一点連続接触歯形の やまば歯車とし、かつ、各歯車 2、 3について、歯車外径 Dの歯幅 Bに対する比 DZB を 1. 1〜1. 15に設定したため、流体の閉じ込み現象に伴う軸受への悪影響を回避 し得る。その上で、 DZBを 1. 1〜1. 15に設定することで、軸受荷重を抑制しながら 効率を確保でき、ポンプ外形を徒に大型化させることもない。本実施形態の歯車ボン プ 100は、従前のインボリユート歯車ポンプと比較して、高圧、高粘度の流体の移送 により適したものとなる。 [0020] According to the present embodiment, in the gear pump 100 that transfers fluid from the suction side to the discharge side by rotation of the paired gears 2, 3, the gears 2, 3 are connected to each other in a one-point continuous contact tooth profile. For the gears 2 and 3, the ratio DZB of the gear outer diameter D to the tooth width B is set to 1.1 to 1.15 to avoid adverse effects on the bearing due to fluid confinement. Can do. In addition, by setting DZB to 1.1 to 1.15, efficiency can be ensured while suppressing bearing load, and the pump outer shape is not enlarged. The gear pump 100 of this embodiment is more suitable for transferring a high-pressure, high-viscosity fluid than a conventional involute gear pump.
[0021] また、角度 Eを 48° 〜102° 、角度 E4を 72° 〜108° としているため、流体を歯  [0021] Further, since the angle E is 48 ° to 102 ° and the angle E4 is 72 ° to 108 °, the fluid is
3 4  3 4
車 2、 3の歯溝内に十分に吸入でき、かつ歯溝に捉えた流体の歯先漏れを低減せし めることができる。  It can be sufficiently sucked into the tooth gaps of cars 2 and 3, and the tooth tip leakage of the fluid caught in the tooth gaps can be reduced.
[0022] 以上のような構成の本発明の歯車ポンプ 100は、高分子重合物若しくは溶融榭脂 の製造、または高分子重合物若しくは溶融樹脂からの成形物の製造の過程で用い て、高分子重合物、溶融榭脂又は成形物を製造する用途に適用することができる。  [0022] The gear pump 100 of the present invention configured as described above is used in the process of manufacturing a polymer or molten resin, or a molded product from a polymer or molten resin. The present invention can be applied to uses for producing a polymer, molten resin or molded product.
[0023] 例えば、図 3に示すように、モノマー槽 110からモノマーを本発明の歯車ポンプ 100 を用いて重合槽 120に移送して、高分子重合物を製造したり、高分子重合物を歯車 ポンプ 100を介して成形装置 300又は紡糸装置 400に移送して、その成形物を製造 する過程に供することができる。また、本発明の歯車ポンプ 100を用いた高分子重合 物を製造する過程と、その成形物を製造する過程とを一体化して、図 3に示すような 単一の製造ラインを構築してもよい。なお、図 3に示すモノマー槽 110と重合槽 120と は、それぞれ榭脂ペレット槽と溶融榭脂槽とに置き換えて、溶融樹脂の製造及びそ の成形物の製造ラインを形成することもできる。  For example, as shown in FIG. 3, the monomer is transferred from the monomer tank 110 to the polymerization tank 120 using the gear pump 100 of the present invention to produce a polymer, or the polymer is It can be transferred to the molding apparatus 300 or the spinning apparatus 400 via the pump 100 and used for the process of manufacturing the molded product. Further, even if a process for producing a polymer using the gear pump 100 of the present invention and a process for producing the molded product are integrated, a single production line as shown in FIG. 3 is constructed. Good. The monomer tank 110 and the polymerization tank 120 shown in FIG. 3 can be replaced with a resin pellet tank and a molten resin tank, respectively, to form a production line for a molten resin and a molded product thereof.
[0024] さらに、図 3に示すモノマー槽 110、歯車ポンプ 100及び重合槽 120によって重合装 置 200を形成することも可能である。また、成形装置 300又は紡糸装置 400と歯車ポ ンプ 100とは別体であっても、歯車ポンプ 100を組み込んだ成形装置 300又は紡糸 装置 400であってもよい。  Furthermore, the polymerization apparatus 200 can be formed by the monomer tank 110, the gear pump 100, and the polymerization tank 120 shown in FIG. Further, the molding apparatus 300 or the spinning apparatus 400 and the gear pump 100 may be separate from each other, or the molding apparatus 300 or the spinning apparatus 400 incorporating the gear pump 100 may be used.
[0025] なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構 成は上記実施形態に限られるものではなぐ本発明の趣旨を逸脱しない範囲で種々 変形が可能である。  Note that the present invention is not limited to the embodiment described in detail above. The specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0026] 本願は、 2005年 2月 24日に出願された日本特許出願番号 2005— 048965に基づ き優先権主張をするものであり、同出願の明細書、図面および特許請求の範囲を含 む出願内容は、すべてを参照してここに含める。 [0026] This application is based on Japanese Patent Application No. 2005-048965 filed on February 24, 2005. The contents of the application including the specification, drawings and claims of the application are hereby incorporated by reference in their entirety.
産業上の利用可能性 Industrial applicability
本発明の歯車ポンプは、例えば、石油プラントやィ匕学プラント、重合プラント、成形' 紡糸装置等において溶融榭脂その他の高分子重合物等を高圧で移送する用途に 好適に使用することができる力 これらに限らずあらゆる高圧、高粘度の流体の移送 用途に用いることができる。 The gear pump of the present invention can be suitably used for, for example, a transfer of molten resin and other high molecular weight polymers at a high pressure in oil plants, chemical plants, polymerization plants, molding and spinning devices, and the like. Force Not limited to these, it can be used for transferring high pressure and high viscosity fluids.

Claims

請求の範囲 The scope of the claims
[1] 流体が導入される吸込口と、該流体が排出される吐出口とを有するケーシングと、 前記ケーシング内に設けられ、互いに嚙合して回転により前記流体を前記吸込口 力 前記吐出口へと移送する一対の歯車とを備え、  [1] A casing having a suction port into which a fluid is introduced and a discharge port from which the fluid is discharged, and provided in the casing, and meshed with each other to rotate to draw the fluid to the suction port force to the discharge port And a pair of gears to transfer,
前記一対の歯車は、一点連続接触歯形のやまば歯車であり、  The pair of gears are one-point continuous contact tooth-shaped helical gears,
該歯車のそれぞれの外径と歯幅との比力 1. 1〜1. 15であることを特徴とする歯 車ポンプ。  A gear pump having a specific force between an outer diameter and a tooth width of each of the gears is 1.1 to 1.15.
[2] 前記歯車のそれぞれの歯数は 10枚〜 12枚であり、該歯車のそれぞれのねじれ角度 は、 28° 〜32° である請求項 1記載の歯車ポンプ。  [2] The gear pump according to claim 1, wherein the number of teeth of each of the gears is 10 to 12, and the twist angle of each of the gears is 28 ° to 32 °.
[3] 前記ケーシングの内周形状において、 [3] In the inner peripheral shape of the casing,
回転する前記歯車のそれぞれの歯先が該ケーシングの内周面より離反する位置と 、該歯車のピッチ点とをそれぞれ結んだ線分のなす角度は、側断面視 48° 〜102 ° である請求項 1記載の歯車ポンプ。  An angle formed by a line segment connecting a position where each tooth tip of the rotating gear is separated from the inner peripheral surface of the casing and a pitch point of the gear is 48 ° to 102 ° in a side sectional view. Item 1. The gear pump according to Item 1.
[4] 前記ケーシングの内周形状において、 [4] In the inner peripheral shape of the casing,
回転する前記歯車のそれぞれの歯先が該ケーシングの内周面より離反する位置と 、該歯車のピッチ点とをそれぞれ結んだ線分のなす角度は、側断面視 48° 〜102 ° である請求項 2記載の歯車ポンプ。  An angle formed by a line segment connecting a position where each tooth tip of the rotating gear is separated from the inner peripheral surface of the casing and a pitch point of the gear is 48 ° to 102 ° in a side sectional view. Item 2. The gear pump according to Item 2.
[5] 前記ケーシングの内周形状において、 [5] In the inner peripheral shape of the casing,
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯 車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視 72° 〜108° である請求項 1記載の歯車ポンプ。  The arc angle from the position at which the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position at which the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° in side sectional view. The gear pump according to claim 1, wherein the gear pump is ~ 108 °.
[6] 前記ケーシングの内周形状において、 [6] In the inner peripheral shape of the casing,
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯 車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視 72° 〜108° である請求項 2記載の歯車ポンプ。  The arc angle from the position at which the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position at which the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° in side sectional view. The gear pump according to claim 2, wherein the gear pump is -108 °.
[7] 前記ケーシングの内周形状において、 [7] In the inner peripheral shape of the casing,
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯 車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視 72° 〜108° である請求項 3記載の歯車ポンプ。 The arc angle from the position at which the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position at which the tooth tip of the gear is separated from the inner peripheral surface of the casing is the cross-sectional view. The gear pump according to claim 3, wherein the gear pump is 72 ° to 108 °.
[8] 前記ケーシングの内周形状において、 [8] In the inner peripheral shape of the casing,
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯 車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視 The arc angle from the position at which the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position at which the tooth tip of the gear is separated from the inner peripheral surface of the casing is the cross-sectional view.
72° 〜108° である請求項 4記載の歯車ポンプ。 The gear pump according to claim 4, wherein the gear pump is 72 ° to 108 °.
[9] 高分子重合物若しくは溶融樹脂の製造、または高分子重合物若しくは溶融樹脂から の成形物の製造の過程で、請求項 1記載の歯車ポンプを用いることを特徴とする高 分子重合物、溶融榭脂又は成形物を製造する方法。 [9] A high molecular weight polymer using the gear pump according to claim 1, in the production of a high molecular weight polymer or a molten resin, or in the process of manufacturing a molded product from the high molecular weight polymer or the molten resin, A method for producing a molten resin or molded product.
[10] 高分子重合物若しくは溶融樹脂の製造、または高分子重合物若しくは溶融樹脂から の成形物の製造の過程で、請求項 2記載の歯車ポンプを用いることを特徴とする高 分子重合物、溶融榭脂又は成形物を製造する方法。 [10] A high molecular weight polymer using the gear pump according to claim 2, in the process of producing a high molecular weight polymer or a molten resin, or producing a molded product from the high molecular weight polymer or the molten resin. A method for producing a molten resin or molded product.
[11] 請求項 1に記載の歯車ポンプを用いた重合装置。 [11] A polymerization apparatus using the gear pump according to claim 1.
[12] 請求項 2に記載の歯車ポンプを用いた重合装置。 [12] A polymerization apparatus using the gear pump according to claim 2.
[13] 請求項 1に記載の歯車ポンプを用いた成形装置。 [13] A molding apparatus using the gear pump according to claim 1.
[14] 請求項 2に記載の歯車ポンプを用いた成形装置。 14. A molding apparatus using the gear pump according to claim 2.
[15] 請求項 1に記載の歯車ポンプを用いた紡糸装置。 15. A spinning apparatus using the gear pump according to claim 1.
[16] 請求項 2に記載の歯車ポンプを用いた紡糸装置。 16. A spinning device using the gear pump according to claim 2.
PCT/JP2005/015675 2005-02-24 2005-08-29 Gear pump WO2006090495A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007504624A JPWO2006090495A1 (en) 2005-02-24 2005-08-29 Gear pump
PCT/JP2006/302890 WO2006090652A1 (en) 2005-02-24 2006-02-17 Gear pump
JP2007504693A JP4688864B2 (en) 2005-02-24 2006-02-17 Gear pump
KR1020077021591A KR20070112211A (en) 2005-02-24 2006-02-17 Gear pump
US11/816,954 US20090060770A1 (en) 2005-02-24 2006-02-17 Gear pump
EP06714031.9A EP1852612B1 (en) 2005-02-24 2006-02-17 Gear pump
TW095105601A TWI294945B (en) 2005-02-24 2006-02-20 Gear pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048965 2005-02-24
JP2005-048965 2005-02-24

Publications (1)

Publication Number Publication Date
WO2006090495A1 true WO2006090495A1 (en) 2006-08-31

Family

ID=36927145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015675 WO2006090495A1 (en) 2005-02-24 2005-08-29 Gear pump

Country Status (6)

Country Link
US (1) US20090060770A1 (en)
JP (2) JPWO2006090495A1 (en)
KR (1) KR20070112211A (en)
CN (1) CN100513789C (en)
TW (1) TWI294945B (en)
WO (1) WO2006090495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642567A (en) * 2016-08-29 2019-04-16 罗伯特·博世有限公司 External gear pump for residual neat recovering system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206698A1 (en) * 2012-04-24 2013-10-24 Robert Bosch Gmbh Hydrostatic positive-displacement engine, has housing comprising housing portions extending in plane separating surface abutting each other, and plane separating surface incorporating rotational axes of gear wheels
JP5930881B2 (en) * 2012-05-31 2016-06-08 日東電工株式会社 Gear structure and sheet manufacturing apparatus
JP6002005B2 (en) * 2012-11-02 2016-10-05 住友ゴム工業株式会社 Gear pump extruder and method of manufacturing an extrusion gear used therefor
CN103790822A (en) * 2014-03-06 2014-05-14 肖计振 Spiral pump
CN104481874A (en) * 2014-11-27 2015-04-01 上海轩安环保科技有限公司 Herringbone gear pump
IT201600076227A1 (en) * 2016-07-20 2018-01-20 Settima Meccanica S R L Soc A Socio Unico Bi-helical gear wheel with variable helix angle and non-encapsulating tooth profile for gear hydraulic equipment
US10808694B2 (en) * 2016-08-15 2020-10-20 Georgia Tech Research Corporation Systems and devices for pumping and controlling high temperature fluids
CN107100835A (en) * 2017-06-28 2017-08-29 珠海市洪富食品机械制造有限公司 A kind of herringbone wildhaber-novikov gear constant displacement pump
CN107237747B (en) * 2017-08-10 2019-10-01 青岛科技大学 A kind of double V-shaped gear pump filter glue devices of gradual change
CN110397588A (en) * 2019-07-29 2019-11-01 山东劳伦斯流体科技有限公司 A kind of high-pressure heavy-load Quimby pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501004Y1 (en) * 1968-04-19 1975-01-11
JPS5138922B1 (en) * 1968-02-19 1976-10-25
JPH0814165A (en) * 1994-06-28 1996-01-16 Shimadzu Corp Gear pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1439628A (en) * 1921-06-07 1922-12-19 Emmett S Newton Pump
US2159744A (en) * 1936-08-26 1939-05-23 Brown & Sharpe Mfg Gear pump
US2338065A (en) * 1940-06-13 1943-12-28 Joseph F Keller Gear pump
US2997960A (en) * 1957-12-20 1961-08-29 Kimijima Takehiko Gear pump
DE1941673A1 (en) * 1969-08-16 1971-02-18 Barmag Barmer Maschf Gear pump with wedge-shaped narrowed intake chambers
US4137023A (en) * 1975-09-03 1979-01-30 Union Carbide Corporation Low energy recovery compounding and fabricating apparatus for plastic materials
DE2810563C2 (en) * 1978-03-10 1982-10-28 Theodorus Henricus Dipl.-Ing. Delft Korse Gear machine (pump or motor)
US4452750A (en) * 1981-05-12 1984-06-05 Union Carbide Corporation Low energy processing of thermoplastic polymers
US4537568A (en) * 1982-09-15 1985-08-27 Jochnick & Norrman Press Ab Force pump
US5108275A (en) * 1990-12-17 1992-04-28 Sager William F Rotary pump having helical gear teeth with a small angle of wrap
US5156781A (en) * 1990-12-24 1992-10-20 Bridgestone Corporation Compact precision extrusion method
US5190450A (en) * 1992-03-06 1993-03-02 Eastman Kodak Company Gear pump for high viscosity materials
EP1117932B1 (en) * 1998-10-01 2003-03-19 Dow Global Technologies Inc. Gear pump for pumping highly viscous fluids
CN1264982C (en) * 2003-03-31 2006-07-19 中国科学院植物研究所 Specific expressioned cinnamoyl coenzyme A reductase in wheat root, gene for coding said enzyme and expression carrier containing said gene
US7040870B2 (en) * 2003-12-30 2006-05-09 The Goodyear Tire & Rubber Company Gear pump with gears having curved teeth and method of feeding elastomeric material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138922B1 (en) * 1968-02-19 1976-10-25
JPS501004Y1 (en) * 1968-04-19 1975-01-11
JPH0814165A (en) * 1994-06-28 1996-01-16 Shimadzu Corp Gear pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ericloid Gear Pump ni Tsuite", NIPPON KUROIDO KOGYO KABUSHIKI KAISHA, 21 November 2005 (2005-11-21), XP003000591, Retrieved from the Internet <URL:http://www.cloid.co.jp/whatelli.html> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642567A (en) * 2016-08-29 2019-04-16 罗伯特·博世有限公司 External gear pump for residual neat recovering system

Also Published As

Publication number Publication date
CN101133250A (en) 2008-02-27
JPWO2006090495A1 (en) 2008-07-24
CN100513789C (en) 2009-07-15
US20090060770A1 (en) 2009-03-05
KR20070112211A (en) 2007-11-22
JP4688864B2 (en) 2011-05-25
TW200634233A (en) 2006-10-01
JPWO2006090652A1 (en) 2008-07-24
TWI294945B (en) 2008-03-21

Similar Documents

Publication Publication Date Title
WO2006090495A1 (en) Gear pump
WO2006090652A1 (en) Gear pump
RU2013127648A (en) DEVICE AND METHOD FOR REGULATING OR RESTRICTING ROTOR ORBIT IN SCREW BOTTOM MOTORS AND PUMPS SUCH AS HYDRAULIC BOTTOM MOTORS
US20090041574A1 (en) Uni-axial screw pump
CN101705937A (en) Skewed tooth gear pump
US8496456B2 (en) Progressive cavity pump including inner and outer rotors and a wheel gear maintaining an interrelated speed ratio
EP2199612A2 (en) Gear pump with unequal gear teeth on drive and driven gear
US20140037473A1 (en) Pumping assembly for feeding oil under pressure to a user
JP2023508152A (en) Mohno pump type liquid dispensing device
JP2010248978A (en) Uniaxial eccentric screw pump system, stator deterioration state determination device, and stator deterioration state determination method
JP2011127584A (en) Helical gear pump
US20230279858A1 (en) Boundary-Layer Pump and Method of Use
CN203783889U (en) Adjustable liquid medium conveying screw pump
CN111577568B (en) Synchronous belt constant delivery pump and method
CN218522797U (en) Crankshaft type metering pump
US11859632B2 (en) Boundary-layer pump and method of use
CN106907318A (en) A kind of single-screw (single screw) pump
CN212406958U (en) Synchronous belt constant delivery pump
CN216044326U (en) Wheelset and peristaltic pump
CN114091186A (en) Rotor structure design method suitable for cam type hydrogen circulating pump
KR101142113B1 (en) Motor and rotor shaft one body type screw rotor vaccum pump
CN212003566U (en) Speed-regulating type hydraulic coupler gear oil pump
CN116928090A (en) Quick assembly disassembly&#39;s herringbone tooth four tooth meshing melt pump
CN105134587B (en) A kind of gear wheel metering pump
TW202045820A (en) Connection shaft and uniaxial eccentric screw pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05775180

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5775180

Country of ref document: EP