JPWO2006090495A1 - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
JPWO2006090495A1
JPWO2006090495A1 JP2007504624A JP2007504624A JPWO2006090495A1 JP WO2006090495 A1 JPWO2006090495 A1 JP WO2006090495A1 JP 2007504624 A JP2007504624 A JP 2007504624A JP 2007504624 A JP2007504624 A JP 2007504624A JP WO2006090495 A1 JPWO2006090495 A1 JP WO2006090495A1
Authority
JP
Japan
Prior art keywords
gear
gear pump
casing
inner peripheral
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007504624A
Other languages
Japanese (ja)
Inventor
元博 岡田
元博 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2006090495A1 publication Critical patent/JPWO2006090495A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Abstract

溶融樹脂等の高圧、高粘度の流体の移送により適した歯車ポンプを実現する。ケーシング1内に設けられ、対をなし噛合する歯車2、3の回転により流体を吸込口11側から吐出口12側へ移送する歯車ポンプ100において、前記歯車2、3を、一点連続接触歯形のやまば歯車とし、かつ、各歯車2、3について、歯車外径Dの歯幅Bに対する比D/Bを1.1〜1.15に設定した。D/Bが1.1を下回ると、軸受荷重が過大となって軸受に損傷が発生するおそれがあり、溶融樹脂等を圧送する用途には適さなくなる。一方、D/Bが1.15を上回ると、ポンプ外形の大型化とともに機械効率が低下、全効率が低下する。A gear pump suitable for transferring high-pressure, high-viscosity fluid such as molten resin is realized. In a gear pump 100 provided in the casing 1 for transferring fluid from the suction port 11 side to the discharge port 12 side by the rotation of the gears 2 and 3 meshing in pairs, the gears 2 and 3 are connected to each other with a one-point continuous contact tooth profile. For the gears 2 and 3, the ratio D / B of the gear outer diameter D to the tooth width B was set to 1.1 to 1.15. If D / B is less than 1.1, the bearing load may be excessive and damage to the bearing may occur, making it unsuitable for applications where molten resin or the like is pumped. On the other hand, if D / B exceeds 1.15, the mechanical efficiency is lowered and the overall efficiency is lowered along with the enlargement of the outer shape of the pump.

Description

本発明は、特に高圧、高粘性の流体を移送するために用いられる歯車ポンプに関する。
The present invention relates to a gear pump used for transferring a high-pressure, high-viscosity fluid.

噛合する歯車の回転により流体を吸込側から吐出側へ移送する歯車ポンプでは、インボリュート歯形を採用したものが非常に多い。インボリュート歯形は切削し易く、しかも歯形の仕上げ寸法の測定も容易であるため、高精度の歯車を得ることができ、よって高圧運転条件にも適合し得るからである。
特開平11−013642号公報
Many gear pumps that employ an involute tooth profile transfer fluid from the suction side to the discharge side by the rotation of the meshing gear. This is because the involute tooth profile is easy to cut and the measurement of the finish dimension of the tooth profile is easy, so that a highly accurate gear can be obtained, and therefore it can be adapted to high-pressure operation conditions.
Japanese Patent Laid-Open No. 11-013642

インボリュート歯形を採用した歯車ポンプの抱える問題として、流体の閉じ込み現象が挙げられる。インボリュート歯車の噛み合い率は1より大きいことが通例であり、2組の歯が噛み合っている期間が存在する。その場合、これら2組の歯の間に流体が閉じ込められるが、この閉じ込み領域の容積は歯車の回転に伴い変動することから、圧縮時には閉じ込み流体の圧力上昇と動力浪費、膨張時には真空や気泡の発生といった不具合がもたらされる。但し、閉じ込み現象の害は、膨張時よりも圧縮時の方がはるかに大きい。
A problem of a gear pump that employs an involute tooth profile is a fluid confinement phenomenon. The meshing rate of the involute gear is usually greater than 1, and there is a period in which two sets of teeth are meshed. In that case, fluid is confined between these two sets of teeth, but the volume of the confinement region fluctuates as the gear rotates. Problems such as the generation of bubbles are brought about. However, the harm of the confinement phenomenon is much greater during compression than during expansion.

そして、上記の閉じ込み現象の害は、移送される流体の粘度や吸入圧力、吐出圧力が高いほど顕著になる。とりわけ、溶融樹脂等を圧送する用途においては、300°C程度の高温、20MPaG程度の高圧、300Pa・s程度の高粘度の流体を移送するため、閉じ込み現象によって歯車軸受へ多大な荷重がかかり、軸受寿命が短命になる。現状では、軸受を改良したり、あるいは軸受諸元に余裕をもたせたり(例えば、軸径を大きくする、回転速度を下げる等)して対処しているが、ポンプ外形の大型化、駆動力の増大化を招いてしまっている。
The harm of the above-mentioned confinement phenomenon becomes more prominent as the viscosity of the fluid to be transferred, the suction pressure, and the discharge pressure are higher. In particular, in applications where molten resin or the like is pumped, a fluid having a high temperature of about 300 ° C, a high pressure of about 20 MPaG, and a high viscosity of about 300 Pa · s is transferred, so that a large load is applied to the gear bearing due to the confinement phenomenon. , Bearing life is shortened. Currently, this is dealt with by improving the bearing, or by giving a margin to the bearing specifications (for example, increasing the shaft diameter, decreasing the rotational speed, etc.). It has been increasing.

以上に鑑みてなされた本発明は、高分子重合物や溶融樹脂等の高圧、高粘度の流体の移送により適した歯車ポンプを実現しようとするものである。
The present invention made in view of the above is intended to realize a gear pump suitable for transferring a high-pressure, high-viscosity fluid such as a polymer or a molten resin.

上述した課題を解決するべく、本発明の歯車ポンプは、流体が導入される吸込口と、該流体が排出される吐出口とを有するケーシングと、前記ケーシング内に設けられ、互いに噛合して回転により前記流体を前記吸込口から前記吐出口へと移送する一対の歯車とを備え、前記一対の歯車は、一点連続接触歯形のやまば歯車であり、該歯車のそれぞれの外径と歯幅との比が、1.1〜1.15であることを特徴とする。
In order to solve the above-described problems, a gear pump according to the present invention is provided in a casing having a suction port through which a fluid is introduced and a discharge port through which the fluid is discharged, and rotates in mesh with each other. And a pair of gears for transferring the fluid from the suction port to the discharge port, and the pair of gears is a one-point continuous contact tooth-shaped helical gear, and each gear has an outer diameter and a tooth width. The ratio is 1.1 to 1.15.

即ち、円弧歯形、楕円歯形またはサイン曲線歯形等の、接触点が常に1つであり流体の閉じ込みを発生させない歯形を採用するとともに、やまば歯車として軸推力を均衡させ、軸推力が歯車に作用することを回避する。その上で、D/Bを1.1〜1.15に設定することで、軸受荷重を抑制しながら効率を確保する。D/Bが1.1を下回ると、軸受荷重が過大となって軸受に損傷が発生するおそれがあり、溶融樹脂等を圧送する用途には適さなくなる。一方、D/Bが1.15を上回ると、ポンプ外形が大型化する割にできる仕事が小さくなる。歯車とケーシングとの摩擦による動力損失は歯車外径の増加に応じて急増するため、一定の吐出量に対して歯幅を小さく、外径を大きくすることはポンプ外形の大型化とともに機械効率の低下、全効率の低下に直結する。以上の理由により、D/Bは1.1〜1.15とすることが望ましい。
That is, a tooth profile such as an arc tooth profile, an elliptical tooth profile, or a sinusoidal tooth profile that always has one contact point and does not cause fluid confinement is used, and the axial thrust is balanced as a blind gear so that the axial thrust is applied to the gear. Avoid acting. In addition, by setting D / B to 1.1 to 1.15, the efficiency is ensured while suppressing the bearing load. If D / B is less than 1.1, the bearing load may be excessive and damage to the bearing may occur, making it unsuitable for applications where molten resin or the like is pumped. On the other hand, if D / B exceeds 1.15, the work that can be done for a large pump outer shape is reduced. The power loss due to the friction between the gear and the casing increases rapidly as the outer diameter of the gear increases, so reducing the tooth width and increasing the outer diameter for a given discharge amount increases the pump's outer diameter and increases mechanical efficiency. Directly linked to a decrease in overall efficiency. For the above reasons, it is desirable that D / B is 1.1 to 1.15.

本発明によれば、高分子重合物や溶融樹脂等の高圧、高粘度の流体の移送により適した歯車ポンプを実現可能である。
According to the present invention, it is possible to realize a gear pump suitable for transferring a high-pressure, high-viscosity fluid such as a polymer or a molten resin.

本発明の一実施形態の歯車ポンプを示す平断面図。The plane sectional view showing the gear pump of one embodiment of the present invention. 図1に示す歯車ポンプの側断面図。FIG. 2 is a side sectional view of the gear pump shown in FIG. 1. 本発明の歯車ポンプを適用した高分子重合物の成形物の製造過程を示すフローチャート。The flowchart which shows the manufacture process of the molding of the high molecular weight polymer to which the gear pump of this invention is applied.

符号の説明Explanation of symbols

1…ケーシング
2、3…歯車
100…歯車ポンプ
200…重合装置
300…成形装置
400…紡糸装置
D…歯車外径
B…歯幅
…回転する両歯車の歯先がケーシングの内周面より離反する二位置と両歯車のピッチ点とをそれぞれ結んだ線分のなす角度
…回転する歯車の歯先がケーシングの内周面に極近接する位置からこの歯車の歯先がその内周面から離反する位置までの円弧角
1 ... casing by 2, the gear 100 ... gear pump 200 ... polymerizer 300 ... addendum of both gears forming apparatus 400 ... spinning device D ... gear outer diameter B ... tooth width E 3 ... rotate the inner circumferential surface of the casing Angle formed by the line segment connecting the two separated positions and the pitch points of the two gears E 4 ... From the position where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing, Arc angle to the position away from the surface

以下、本発明の一実施形態を、図面を参照して説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1及び図2に示す本実施形態の歯車ポンプ100は、例えば、石油プラント、化学プラント、重合プラント、成形・紡糸装置等において、溶融樹脂その他の高分子重合物等の高粘性物を高圧で圧送するために使用される。これらの高粘性物は、中間体であっても最終製品であってもよい。この歯車ポンプ100は、いわゆる外接歯車ポンプであって、ケーシング1が内包する内部空間に、駆動歯車2と従動歯車3とを噛合状態で配設してなり、これら歯車2、3を回転駆動することで歯溝に捉えた流体を吸込側から吐出側へ移送するポンプ作用を営むものである。実際には、吸込側を上方、吐出側を下方に位置づけ、吸込口11の直上に高分子重合物や溶融樹脂等を蓄えたタンクを設置して、タンク内の溶融樹脂等を吸込み所定の吐出圧力で吐出させる。
The gear pump 100 of the present embodiment shown in FIGS. 1 and 2 is a high-pressure material such as a molten resin or other high-molecular polymer at a high pressure in, for example, a petroleum plant, a chemical plant, a polymerization plant, a molding / spinning device, or the like. Used for pumping. These highly viscous materials may be intermediates or final products. The gear pump 100 is a so-called external gear pump, in which a drive gear 2 and a driven gear 3 are arranged in an internal space in which a casing 1 is enclosed, and the gears 2 and 3 are rotationally driven. This serves to pump the fluid captured in the tooth gap from the suction side to the discharge side. Actually, the suction side is positioned upward, the discharge side is positioned downward, a tank storing a polymer or molten resin is installed directly above the suction port 11, and the molten resin in the tank is sucked into the specified discharge. Discharge with pressure.

駆動歯車2、従動歯車3は、それぞれ一点連続接触歯形のやまば歯車とする。図示例では、両歯車2、3の歯形を円弧歯形としている。各歯車2、3について、外径Dの歯幅Bに対する比D/Bは、1.1〜1.15の間に設定する。これは、当該歯車ポンプ100が300°C程度の高温の溶融樹脂等を20MPaG程度の高圧で圧送することによる。歯車外径D、歯幅Bの具体的な値は、回転駆動力を歯車に伝達するために必要な歯車軸径、歯車軸の撓み変形を抑制するために必要な軸径による制限を受ける。
The drive gear 2 and the driven gear 3 are each a single-point continuous contact tooth-shaped helical gear. In the illustrated example, the tooth profiles of both gears 2 and 3 are arc teeth. For each gear 2, 3, the ratio D / B of the outer diameter D to the tooth width B is set between 1.1 and 1.15. This is because the gear pump 100 pumps a molten resin having a high temperature of about 300 ° C. at a high pressure of about 20 MPaG. Specific values of the gear outer diameter D and the tooth width B are limited by the gear shaft diameter necessary for transmitting the rotational driving force to the gear and the shaft diameter necessary for suppressing the bending deformation of the gear shaft.

しかして、歯車外径Dと歯幅Bとの比D/Bを1.1〜1.15の範囲内に収めるべく、歯車2、3の歯数Z及びねじれ角度(ヘリカル角度)βを決定する。歯モジュールをM、ピッチ円直径をAとおくと、
A=MZ、
D=M(Z+2)
が成り立つ。本実施形態では、両歯車2、3の歯形が一点接触歯形であるから、歯車軸方向に1ピッチねじらないと回転が伝達されない。
1ピッチ=πA/Z=πM
であり、
B/2=πM/tanβ
である必要がある。D/B=xとおくと、上記より、
Z=(2πx/tanβ)−2
となる。
Therefore, the number of teeth Z and the twist angle (helical angle) β of the gears 2 and 3 are determined so that the ratio D / B between the gear outer diameter D and the tooth width B is within the range of 1.1 to 1.15. To do. If the tooth module is M and the pitch circle diameter is A,
A = MZ,
D = M (Z + 2)
Holds. In this embodiment, since the tooth profile of both the gears 2 and 3 is a one-point contact tooth profile, rotation is not transmitted unless it is twisted by 1 pitch in the gear shaft direction.
1 pitch = πA / Z = πM
And
B / 2 = πM / tan β
Need to be. If D / B = x, then
Z = (2πx / tan β) −2
It becomes.

なお、ねじれ角度βは、歯形の加工工程上、32°以下とすることが好ましい。上式より、D/B=xを1.1〜1.15の範囲内に収めようとすると、ねじれ角度βを28°〜32°の間に設定した場合の歯数は10枚〜12枚となる。
Note that the twist angle β is preferably 32 ° or less in terms of the tooth profile processing step. From the above formula, if D / B = x is within the range of 1.1 to 1.15, the number of teeth is 10 to 12 when the twist angle β is set between 28 ° and 32 °. It becomes.

円弧歯形でM=20、Z=10、A=200、β=31°、B=209、容量4189cc/revの円弧歯車ポンプを製作し、既知のインボリュート歯車ポンプと比較した。性能対比として用いたインボリュート歯車ポンプは、M=14、Z=14、A=200、β=2.4°、B=209、容量4080cc/revである。性能に関わる軸径、軸受長さ等は両者で同一とした。液粘度約300Pa・s、吐出圧力20MPaGにおいて、円弧歯車ポンプはインボリュート歯車ポンプと同等の性能を得た。また、円弧歯形では理論上閉じ込み現象が発生しないが、閉じ込みの評価として吐出圧力脈動を測定すると、円弧歯車ポンプでは0.4%、インボリュート歯車ポンプでは4%となった。何れも、液粘度約300Pa・s、吐出圧力20MPaG、回転数30rpmの運転条件での値である。吐出圧力脈動は測定位置その他の測定環境によって変化するものの、円弧歯車ポンプはインボリュート歯車ポンプに対し吐出脈動が1/10まで減少した。
An arc gear pump having an arc tooth profile with M = 20, Z = 10, A = 200, β = 31 °, B = 209, and a capacity of 4189 cc / rev was manufactured and compared with a known involute gear pump. The involute gear pump used for performance comparison has M = 14, Z = 14, A = 200, β = 2.4 °, B = 209, and capacity 4080 cc / rev. The shaft diameter, bearing length, etc. related to performance were the same in both cases. At a liquid viscosity of about 300 Pa · s and a discharge pressure of 20 MPaG, the circular gear pump obtained the same performance as the involute gear pump. Further, although the constriction phenomenon does not theoretically occur in the arc tooth profile, when the discharge pressure pulsation is measured as an evaluation of confinement, it is 0.4% for the arc gear pump and 4% for the involute gear pump. All are values under the operating conditions of a liquid viscosity of about 300 Pa · s, a discharge pressure of 20 MPaG, and a rotation speed of 30 rpm. Although the discharge pressure pulsation changes depending on the measurement position and other measurement environments, the discharge pulsation of the circular gear pump is reduced to 1/10 compared to the involute gear pump.

ところで、既に述べたように、本実施形態の歯車ポンプ100は、高圧、高粘度の流体の圧送を主たる用途としている。従って、高粘度流体を歯車2、3の歯溝内に十分に吸入できるよう、並びに、歯溝に捉えた高圧流体の歯先漏れを低減できるよう、ケーシング1の内周形状を成形しなくてはならない。以降、図2を参照して詳述する。ここで、回転する歯車2、3の歯先がケーシング1の内周面に極近接を開始する位置をP、P、歯先がケーシング1の内周面より離反し始める位置をP、P、両歯車2、3のピッチ点をP、各歯車2、3の中心をP、Pとおく。
By the way, as already described, the gear pump 100 of the present embodiment is mainly used for pumping a high-pressure, high-viscosity fluid. Therefore, the inner peripheral shape of the casing 1 is not formed so that the high-viscosity fluid can be sufficiently sucked into the tooth gaps of the gears 2 and 3 and the tooth tip leakage of the high-pressure fluid caught in the tooth gaps can be reduced. Must not. Hereinafter, a detailed description will be given with reference to FIG. Here, P 1 and P 1 are positions where the tooth tips of the rotating gears 2 and 3 start to approach the inner peripheral surface of the casing 1, and P 2 is a position where the tooth tips start to move away from the inner peripheral surface of the casing 1. , P 2 , the pitch point of both gears 2, 3 is P 0 , and the center of each gear 2, 3 is P c , P c .

高粘度の流体を歯溝内に円滑に導くためには、両歯車2、3の中心P、Pを通る直線と、歯車2、3の中心P及び歯先の摺接開始点Pを結ぶ線分とがなす角Eについて、側断面視(歯車軸に直交する面で切断した断面視)0°〜6°程度の大きさを確保する必要がある。但し、摺接開始点Pの位置は、両歯車2、3の中心P、Pを通る直線よりも吐出側にあるものとする。また、歯先漏れを低減するには、歯先の摺接開始点Pから摺接終了点Pまでの(Pを中心とした)円弧角Eについて、側断面視72°以上の大きさを確保することが好ましい。円弧角Eは、歯車2、3の歯溝2つ分以上を確保することが目安となる。とは言え、Eを大きくすれば吐出口12に連通する流路が狭くなり、流体の吐出過程に支障を来しかねないので、Eは側断面視108°程度までの大きさに抑えるべきである。
The high viscosity fluids in order to guide smoothly in the tooth groove, the center P c of the gears 2 and 3, a straight line passing through the P c, the center P c and sliding the starting point of the tooth tip P of gears 2 and 3 It is necessary to secure a size of about 0 ° to 6 ° in a side sectional view (a sectional view cut along a plane orthogonal to the gear axis) with respect to an angle E 1 formed by a line segment connecting 1 . However, the position of the sliding start point P 1, it is assumed that the center P c of the gears 2 and 3, the straight line passing through the P c is in the discharge side. Further, to reduce the tooth tip leakage, (centered on P c) from sliding starting point P 1 of the addendum to the sliding end point P 2 for arc angle E 4, a sectional side view 72 ° or more It is preferable to ensure the size. As a guideline, the arc angle E 4 is secured for at least two tooth spaces of the gears 2 and 3. Nevertheless, the flow path is narrowed in communication with the discharge port 12 by increasing the E 4, so could disturbed the discharge process fluid, E 4 is suppressed to a size of up to about sectional side view 108 ° Should.

を0°以上とし、Eを72°〜108°とした場合、摺接開始点P及びピッチ点Pを結ぶ線分と、摺接終了点P及びピッチ点Pを結ぶ線分とがなす角Eは側断面視33°〜66°となる。よって、両歯車2、3についての摺接終了点P、Pとピッチ点Pとをそれぞれ結ぶ2本の線分がなす角Eは、側断面視48°〜102°とする。逆に言えば、所要のE、E(または、E)を確保するためには、Eの上限を102°程度とする必要がある。言うまでもなく、Eの下限を48°程度としたのは、歯溝に捉えられ移送された流体を円滑に吐出口12に向けて流下させるためである。
When E 1 is set to 0 ° or more and E 4 is set to 72 ° to 108 °, a line segment connecting the sliding contact start point P 1 and the pitch point P 0 is connected to the sliding contact end point P 2 and the pitch point P 0 . lines and the angle E 2 is a side cross-sectional view 33 ° -66 °. Therefore, the sliding end point P 2, P 2 and the pitch point P 0 and the two line segments angle E 3 of connecting each of the gears 2 and 3, a side cross-sectional view 48 ° to 102 °. In other words, in order to secure required E 1 and E 2 (or E 4 ), the upper limit of E 3 needs to be about 102 °. Needless to say, the lower limit of E 3 set to about 48 ° is to be flow down toward the smooth discharge port 12 to transfer fluid trapped in the tooth grooves.

本実施形態によれば、対をなし噛合する歯車2、3の回転により流体を吸込側から吐出側へ移送する歯車ポンプ100において、前記歯車2、3を、一点連続接触歯形のやまば歯車とし、かつ、各歯車2、3について、歯車外径Dの歯幅Bに対する比D/Bを1.1〜1.15に設定したため、流体の閉じ込み現象に伴う軸受への悪影響を回避し得る。その上で、D/Bを1.1〜1.15に設定することで、軸受荷重を抑制しながら効率を確保でき、ポンプ外形を徒に大型化させることもない。本実施形態の歯車ポンプ100は、従前のインボリュート歯車ポンプと比較して、高圧、高粘度の流体の移送により適したものとなる。
According to the present embodiment, in the gear pump 100 that transfers the fluid from the suction side to the discharge side by the rotation of the gears 2 and 3 that mesh with each other, the gears 2 and 3 are helical gears having a one-point continuous contact tooth profile. In addition, since the ratio D / B of the gear outer diameter D to the tooth width B is set to 1.1 to 1.15 for each of the gears 2 and 3, adverse effects on the bearing due to the fluid confinement phenomenon can be avoided. . In addition, by setting D / B to 1.1 to 1.15, the efficiency can be ensured while suppressing the bearing load, and the pump external shape is not enlarged. The gear pump 100 according to the present embodiment is more suitable for transferring a high-pressure, high-viscosity fluid than a conventional involute gear pump.

また、角度Eを48°〜102°、角度E4を72°〜108°としているため、流体を歯車2、3の歯溝内に十分に吸入でき、かつ歯溝に捉えた流体の歯先漏れを低減せしめることができる。
Further, the angle E 3 48 ° ~102 °, since the angle E4 4 and 72 ° -108 °, fluid can be sufficiently sucked into the tooth of the gear 2, and the teeth of the fluid captured in the tooth groove It is possible to reduce the leakage.

以上のような構成の本発明の歯車ポンプ100は、高分子重合物若しくは溶融樹脂の製造、または高分子重合物若しくは溶融樹脂からの成形物の製造の過程で用いて、高分子重合物、溶融樹脂又は成形物を製造する用途に適用することができる。   The gear pump 100 of the present invention configured as described above is used in the process of manufacturing a polymer or molten resin, or a molded product from the polymer or molten resin. It can be applied to uses for producing a resin or a molded product.

例えば、図3に示すように、モノマー槽110からモノマーを本発明の歯車ポンプ100を用いて重合槽120に移送して、高分子重合物を製造したり、高分子重合物を歯車ポンプ100を介して成形装置300又は紡糸装置400に移送して、その成形物を製造する過程に供することができる。また、本発明の歯車ポンプ100を用いた高分子重合物を製造する過程と、その成形物を製造する過程とを一体化して、図3に示すような単一の製造ラインを構築してもよい。なお、図3に示すモノマー槽110と重合槽120とは、それぞれ樹脂ペレット槽と溶融樹脂槽とに置き換えて、溶融樹脂の製造及びその成形物の製造ラインを形成することもできる。 For example, as shown in FIG. 3, the monomer is transferred from the monomer tank 110 to the polymerization tank 120 using the gear pump 100 of the present invention to produce a polymer, or the polymer is transferred to the gear pump 100. Then, it can be transferred to the molding apparatus 300 or the spinning apparatus 400 and used for the process of manufacturing the molded product. Further, even if a process for producing a high molecular weight polymer using the gear pump 100 of the present invention and a process for producing the molded product are integrated, a single production line as shown in FIG. 3 is constructed. Good. The monomer tank 110 and the polymerization tank 120 shown in FIG. 3 can be replaced with a resin pellet tank and a molten resin tank, respectively, to form a molten resin production line and a molded product production line.

さらに、図3に示すモノマー槽110、歯車ポンプ100及び重合槽120によって重合装置200を形成することも可能である。また、成形装置300又は紡糸装置400と歯車ポンプ100とは別体であっても、歯車ポンプ100を組み込んだ成形装置300又は紡糸装置400であってもよい。 Furthermore, the polymerization apparatus 200 can be formed by the monomer tank 110, the gear pump 100, and the polymerization tank 120 shown in FIG. Further, the molding device 300 or the spinning device 400 and the gear pump 100 may be separate from each other, or the molding device 300 or the spinning device 400 incorporating the gear pump 100 may be used.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 The present invention is not limited to the embodiment described in detail above. The specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本願は、2005年2月24日に出願された日本特許出願番号2005−048965に基づき優先権主張をするものであり、同出願の明細書、図面および特許請求の範囲を含む出願内容は、すべてを参照してここに含める。 This application claims priority based on Japanese Patent Application No. 2005-048965 filed on Feb. 24, 2005, and the contents of the application including the specification, drawings and claims of the application are all And include it here.

本発明の歯車ポンプは、例えば、石油プラントや化学プラント、重合プラント、成形・紡糸装置等において溶融樹脂その他の高分子重合物等を高圧で移送する用途に好適に使用することができるが、これらに限らずあらゆる高圧、高粘度の流体の移送用途に用いることができる。 The gear pump of the present invention can be suitably used for, for example, an application for transferring a molten resin or other polymer polymer at a high pressure in a petroleum plant, a chemical plant, a polymerization plant, a molding / spinning apparatus, etc. The present invention can be used not only for transferring high-pressure and high-viscosity fluids.

Claims (16)

流体が導入される吸込口と、該流体が排出される吐出口とを有するケーシングと、
前記ケーシング内に設けられ、互いに噛合して回転により前記流体を前記吸込口から前記吐出口へと移送する一対の歯車とを備え、
前記一対の歯車は、一点連続接触歯形のやまば歯車であり、
該歯車のそれぞれの外径と歯幅との比が、1.1〜1.15であることを特徴とする歯車ポンプ。
A casing having a suction port through which a fluid is introduced and a discharge port through which the fluid is discharged;
A pair of gears provided in the casing and meshing with each other to transfer the fluid from the suction port to the discharge port by rotation;
The pair of gears are one-point continuous contact tooth-shaped helical gears,
A gear pump characterized in that a ratio of an outer diameter and a tooth width of each gear is 1.1 to 1.15.
前記歯車のそれぞれの歯数は10枚〜12枚であり、該歯車のそれぞれのねじれ角度は、28°〜32°である請求項1記載の歯車ポンプ。
The gear pump according to claim 1, wherein the number of teeth of each of the gears is 10 to 12, and the twist angle of each of the gears is 28 ° to 32 °.
前記ケーシングの内周形状において、
回転する前記歯車のそれぞれの歯先が該ケーシングの内周面より離反する位置と、該歯車のピッチ点とをそれぞれ結んだ線分のなす角度は、側断面視48°〜102°である請求項1記載の歯車ポンプ。
In the inner peripheral shape of the casing,
An angle formed by a line segment connecting a position where each tooth tip of the rotating gear is separated from an inner peripheral surface of the casing and a pitch point of the gear is 48 ° to 102 ° in a side sectional view. The gear pump according to Item 1.
前記ケーシングの内周形状において、
回転する前記歯車のそれぞれの歯先が該ケーシングの内周面より離反する位置と、該歯車のピッチ点とをそれぞれ結んだ線分のなす角度は、側断面視48°〜102°である請求項2記載の歯車ポンプ。
In the inner peripheral shape of the casing,
An angle formed by a line segment connecting a position where each tooth tip of the rotating gear is separated from an inner peripheral surface of the casing and a pitch point of the gear is 48 ° to 102 ° in a side sectional view. Item 3. The gear pump according to Item 2.
前記ケーシングの内周形状において、
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視72°〜108°である請求項1記載の歯車ポンプ。
In the inner peripheral shape of the casing,
The arc angle from the position where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position where the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° to a side sectional view. The gear pump according to claim 1, wherein the gear pump is 108 °.
前記ケーシングの内周形状において、
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視72°〜108°である請求項2記載の歯車ポンプ。
In the inner peripheral shape of the casing,
The arc angle from the position where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position where the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° to a side sectional view. The gear pump according to claim 2, wherein the gear pump is 108 °.
前記ケーシングの内周形状において、
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視72°〜108°である請求項3記載の歯車ポンプ。
In the inner peripheral shape of the casing,
The arc angle from the position where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position where the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° to a side sectional view. The gear pump according to claim 3, wherein the gear pump is 108 °.
前記ケーシングの内周形状において、
回転する前記歯車の歯先が前記ケーシングの内周面に極近接する位置から、該歯車の歯先が該ケーシングの前記内周面より離反する位置までの円弧角は、側断面視72°〜108°である請求項4記載の歯車ポンプ。
In the inner peripheral shape of the casing,
The arc angle from the position where the tooth tip of the rotating gear is in close proximity to the inner peripheral surface of the casing to the position where the tooth tip of the gear is separated from the inner peripheral surface of the casing is 72 ° to a side sectional view. The gear pump according to claim 4, wherein the gear pump is 108 °.
高分子重合物若しくは溶融樹脂の製造、または高分子重合物若しくは溶融樹脂からの成形物の製造の過程で、請求項1記載の歯車ポンプを用いることを特徴とする高分子重合物、溶融樹脂又は成形物を製造する方法。 The gear pump according to claim 1, wherein the gear pump according to claim 1 is used in the process of producing a polymer or molten resin, or producing a molded product from the polymer or molten resin. A method for producing a molded product. 高分子重合物若しくは溶融樹脂の製造、または高分子重合物若しくは溶融樹脂からの成形物の製造の過程で、請求項2記載の歯車ポンプを用いることを特徴とする高分子重合物、溶融樹脂又は成形物を製造する方法。 A gear polymer according to claim 2, wherein the gear pump is used in the process of producing a polymer or molten resin, or a molded product from the polymer or molten resin. A method for producing a molded product. 請求項1に記載の歯車ポンプを用いた重合装置。 A polymerization apparatus using the gear pump according to claim 1. 請求項2に記載の歯車ポンプを用いた重合装置。 A polymerization apparatus using the gear pump according to claim 2. 請求項1に記載の歯車ポンプを用いた成形装置。 A molding apparatus using the gear pump according to claim 1. 請求項2に記載の歯車ポンプを用いた成形装置。 A molding apparatus using the gear pump according to claim 2. 請求項1に記載の歯車ポンプを用いた紡糸装置。 A spinning device using the gear pump according to claim 1. 請求項2に記載の歯車ポンプを用いた紡糸装置。
A spinning device using the gear pump according to claim 2.
JP2007504624A 2005-02-24 2005-08-29 Gear pump Pending JPWO2006090495A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005048965 2005-02-24
JP2005048965 2005-02-24
PCT/JP2005/015675 WO2006090495A1 (en) 2005-02-24 2005-08-29 Gear pump

Publications (1)

Publication Number Publication Date
JPWO2006090495A1 true JPWO2006090495A1 (en) 2008-07-24

Family

ID=36927145

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007504624A Pending JPWO2006090495A1 (en) 2005-02-24 2005-08-29 Gear pump
JP2007504693A Active JP4688864B2 (en) 2005-02-24 2006-02-17 Gear pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007504693A Active JP4688864B2 (en) 2005-02-24 2006-02-17 Gear pump

Country Status (6)

Country Link
US (1) US20090060770A1 (en)
JP (2) JPWO2006090495A1 (en)
KR (1) KR20070112211A (en)
CN (1) CN100513789C (en)
TW (1) TWI294945B (en)
WO (1) WO2006090495A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206698A1 (en) * 2012-04-24 2013-10-24 Robert Bosch Gmbh Hydrostatic positive-displacement engine, has housing comprising housing portions extending in plane separating surface abutting each other, and plane separating surface incorporating rotational axes of gear wheels
JP5930881B2 (en) * 2012-05-31 2016-06-08 日東電工株式会社 Gear structure and sheet manufacturing apparatus
JP6002005B2 (en) * 2012-11-02 2016-10-05 住友ゴム工業株式会社 Gear pump extruder and method of manufacturing an extrusion gear used therefor
CN103790822A (en) * 2014-03-06 2014-05-14 肖计振 Spiral pump
CN104481874A (en) * 2014-11-27 2015-04-01 上海轩安环保科技有限公司 Herringbone gear pump
IT201600076227A1 (en) * 2016-07-20 2018-01-20 Settima Meccanica S R L Soc A Socio Unico Bi-helical gear wheel with variable helix angle and non-encapsulating tooth profile for gear hydraulic equipment
US10808694B2 (en) * 2016-08-15 2020-10-20 Georgia Tech Research Corporation Systems and devices for pumping and controlling high temperature fluids
DE102016216159A1 (en) * 2016-08-29 2018-03-01 Robert Bosch Gmbh External gear pump for a waste heat recovery system
CN107100835A (en) * 2017-06-28 2017-08-29 珠海市洪富食品机械制造有限公司 A kind of herringbone wildhaber-novikov gear constant displacement pump
CN107237747B (en) * 2017-08-10 2019-10-01 青岛科技大学 A kind of double V-shaped gear pump filter glue devices of gradual change
CN110397588A (en) * 2019-07-29 2019-11-01 山东劳伦斯流体科技有限公司 A kind of high-pressure heavy-load Quimby pump

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1439628A (en) * 1921-06-07 1922-12-19 Emmett S Newton Pump
US2159744A (en) * 1936-08-26 1939-05-23 Brown & Sharpe Mfg Gear pump
US2338065A (en) * 1940-06-13 1943-12-28 Joseph F Keller Gear pump
US2997960A (en) * 1957-12-20 1961-08-29 Kimijima Takehiko Gear pump
JPS5138922B1 (en) * 1968-02-19 1976-10-25
JPS501004Y1 (en) * 1968-04-19 1975-01-11
DE1941673A1 (en) * 1969-08-16 1971-02-18 Barmag Barmer Maschf Gear pump with wedge-shaped narrowed intake chambers
US4137023A (en) * 1975-09-03 1979-01-30 Union Carbide Corporation Low energy recovery compounding and fabricating apparatus for plastic materials
DE2810563C2 (en) * 1978-03-10 1982-10-28 Theodorus Henricus Dipl.-Ing. Delft Korse Gear machine (pump or motor)
US4452750A (en) * 1981-05-12 1984-06-05 Union Carbide Corporation Low energy processing of thermoplastic polymers
US4537568A (en) * 1982-09-15 1985-08-27 Jochnick & Norrman Press Ab Force pump
US5108275A (en) * 1990-12-17 1992-04-28 Sager William F Rotary pump having helical gear teeth with a small angle of wrap
US5156781A (en) * 1990-12-24 1992-10-20 Bridgestone Corporation Compact precision extrusion method
US5190450A (en) * 1992-03-06 1993-03-02 Eastman Kodak Company Gear pump for high viscosity materials
JPH0814165A (en) * 1994-06-28 1996-01-16 Shimadzu Corp Gear pump
AU760694B2 (en) * 1998-10-01 2003-05-22 Dow Global Technologies Inc. Gear pump for pumping highly viscous fluids
CN1264982C (en) * 2003-03-31 2006-07-19 中国科学院植物研究所 Specific expressioned cinnamoyl coenzyme A reductase in wheat root, gene for coding said enzyme and expression carrier containing said gene
US7040870B2 (en) * 2003-12-30 2006-05-09 The Goodyear Tire & Rubber Company Gear pump with gears having curved teeth and method of feeding elastomeric material

Also Published As

Publication number Publication date
CN100513789C (en) 2009-07-15
CN101133250A (en) 2008-02-27
TW200634233A (en) 2006-10-01
WO2006090495A1 (en) 2006-08-31
KR20070112211A (en) 2007-11-22
JP4688864B2 (en) 2011-05-25
US20090060770A1 (en) 2009-03-05
JPWO2006090652A1 (en) 2008-07-24
TWI294945B (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4688864B2 (en) Gear pump
WO2006090652A1 (en) Gear pump
JP4600844B2 (en) Internal gear type pump rotor and internal gear type pump using the same
US10844859B2 (en) Sealing in helical trochoidal rotary machines
US20090041574A1 (en) Uni-axial screw pump
CN101705937A (en) Skewed tooth gear pump
US20110150687A1 (en) Progressive cavity pump with inner and outer rotors
RU2619153C2 (en) Rotor, including surface with involute profile
CN212454804U (en) Variable-pitch conical single-screw gas-liquid mixed delivery pump rotor and stator
JP5252557B2 (en) Pump rotor and internal gear pump using the rotor
KR100593208B1 (en) Rotor structure of volumetric rotary pump
JP5361074B2 (en) Helical gear pump
JPH07509295A (en) Conveyor worm pair for rotary positive displacement pumps
JP2010019204A (en) Rotor for internal gear pump
CN111648956A (en) Multi-point meshing screw rotor of double-screw pump
CN212454803U (en) Rotor and stator of sectional variable-pitch single-screw gas-liquid mixed delivery pump
JP2010248978A (en) Uniaxial eccentric screw pump system, stator deterioration state determination device, and stator deterioration state determination method
KR20230155473A (en) Screw assembly for a triple screw pump and screw pump comprising said assembly
CN209385995U (en) A kind of hard alloy bar with hole cold in spiral
KR20230159435A (en) Screw assembly for a triple screw pump and triple screw pump comprising said assembly
CN114091186A (en) Rotor structure design method suitable for cam type hydrogen circulating pump
KR20010033665A (en) Line of products for gear pumps having different delivery capacity and method for producing said individual gear pumps of said line of products
JP2009174986A (en) Volumetric flowmeter
KR20160002685U (en) Gear pump
KR200236543Y1 (en) Pump