TWI294945B - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
TWI294945B
TWI294945B TW095105601A TW95105601A TWI294945B TW I294945 B TWI294945 B TW I294945B TW 095105601 A TW095105601 A TW 095105601A TW 95105601 A TW95105601 A TW 95105601A TW I294945 B TWI294945 B TW I294945B
Authority
TW
Taiwan
Prior art keywords
gear
gear pump
sleeve
patent application
inner circumferential
Prior art date
Application number
TW095105601A
Other languages
Chinese (zh)
Other versions
TW200634233A (en
Inventor
Motohiro Okada
Original Assignee
Shimadzu Mectem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Mectem Inc filed Critical Shimadzu Mectem Inc
Publication of TW200634233A publication Critical patent/TW200634233A/en
Application granted granted Critical
Publication of TWI294945B publication Critical patent/TWI294945B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

1294節- 九、發明說明: 【發明所屬之技術領域】 本發明特別是關於—種用於輸送高壓、高黏性流體之 齒輪泵。 【先前技術】 精田嚅令茴輪之旋轉而將流體自吸入侧向吐出侧輸送 的齒輪泵,以採用漸開線(involute)齒形者居多。其原因在 於’、漸開線齒形切削方便,且齒形加工尺寸易於測定,故 可獲得高精度it輪,因此也可適合於高壓運轉條件。 【專利文獻1】日本專利特開平心⑽⑷號公報 作為採用漸開線齒形的齒輪栗所存在的問題,可列舉 =體圍阻現象。漸開線齒輪嗜合率大於i是通例,並且存 阻:3的嚙ί期間。於此情形下’在上述兩組齒之間圍 域的體積隨齒輪旋轉而改變,所以壓 時產生真空或氣泡之所_;=:浪:阻= 害,於壓麟遠大於擴騎。 、圍卩見象的危 並且,上述圍阻現象的危宝,匕土 吸入壓力、吐出Μ力越高時“,送的流體黏度或 融樹脂等用途方面,為輪送具、有、、別疋,,壓送熔 MPaG左右的高壓、以及3〇〇 · $卢左右的咼溫、20 圍阻現象導致過大的載荷施加於齒右的向黏度流體,因 短。目前現狀是在作改良軸承、二承,使軸承壽命縮 如:增大軸徑,降低旋轉速度等j 、使軸承資料充足(例 ❸處理’叫導致泵外 1294m 形的大型化及驅動力的增大化。 【發明内容】 本發明是鑒於上述事實,實現一種適用於輸送高分子 聚合物或熔融樹脂等高壓、高黏度的流體的齒輪泵了刀 為解決上述課題,本發明之齒輪泵的特徵在於包括· 套管,該套管包括導人越的吸人口以及排出該流 出口;以及一對齒輪,該一對齒輪設置於上述套管内,一 由相互嚙合旋轉而將上述流體自上述吸入口向上述吐出错 輸送,並且上述一對齒輪是一點連續接觸齒形的t字音二 (double-helical gear),該齒輪各外徑與齒寬之比為兩 亦即,採用圓弧齒形、橢圓齒形或者正弦曲 的接觸點總為-個且產生流體圍轉象㈣形^寺 人字齒輪,避免使軸向推力均衡,且軸向推‘用為 上。由此,將D/B設定為U〜U5,而可抑 載=輪 確保效率。當D/B小於U時,可能由1載何亚 ,並且在壓送熔轉脂等用途方::二:對 做的功變少。齒輪與套管間摩擦產生化,所 輪外徑的增加而急增,從而相對於 歧相應於齒 減小,外徑增大,其直接關係到栗外:=,,使齒寬 械效率降低與整個效率之下降。 匕,以及機 術人員希望將D/B設為U〜U5遷上述理由,本領域技 又,本發明之其他齒輪栗特徵在於包括:吸入口,其 1294¾^ 將流體導人;套管,其包括排出該流體之吐出π ;以及- =齒輪,其設置於上述套管内,相互嚙合旋轉而將上述流 版自上述吸入口向上述吐出口輸送,其中上述一對齒輪是 一點連續接觸齒形的螺旋齒輪,該齒輪各外徑與齒寬之比 為 1.1 〜1.15 〇 將一對齒輪作為螺旋齒輪,除具有上述效果以外,可 一體化製作齒輪/軸,又因構造簡單,從而加工性、生產性 提高。 匕,、,據本發明,可實現一種輸送高分子聚合物或熔融樹 脂等高壓、高黏度流體時適宜的齒輪栗。 【實施方式】 下面,根據圖面,就作為本發明齒輪泵的實施形態的 實施例加以說明。 [弟1實施例] 圖1及圖2所示的第1實施例之齒輪泵1〇〇,例如, 在石油=廠、化學工廠、聚合工廠、以及成形/紡絲裝置等 中,為同壓壓送熔融樹脂及高分子聚合物等高黏性物而使 用。上述高黏性物可為中間體,也可為最終製品。該齒輪 泵100疋所谓外接齒輪泵,在由套管i所包含的内部空間 :,於嗜合狀態下配設有驅動齒輪2與從動齒輪3,藉由 方疋美·驅動4些齒輪2、3,而發揮將齒間内獲取的流體自吸 入侧向吐出侧輸送的泵之作用。實際上,使吸入側位於上 方,吐出側位於下方’於吸入口 n的正±方設置儲存有高 分子聚合物或熔融娜槽’將貯槽内麟融樹脂等 8 I294m〇〇 吸入並使其以特定的吐出壓力吐出。 驅動齒輪2、從動齒輪3,分別設為一點連續接觸齒形 的人字齒輪。圖示例中,將兩齒輪2、3的齒形設為圓弧齒 形。對於各齒輪2、3,將外徑D與齒寬B之比D/B設定 於1.1〜1.15之間。此是根據該齒輪泵100以20 MpaG左 右的高壓壓送300QC左右的高溫熔融樹脂等所進行的設 定。齒輪外徑D、齒寬B的具體值,受到以下的限制:為 了將旋轉驅動力傳送至齒輪所需的齒輪軸徑以及為了抑制 齒輪軸的彎曲變形所需的軸徑。 於是,應將齒輪外徑D與齒寬B之比D/B限制於1.1 〜1.15的範圍内,並決定齒輪2、3的齒數Z及扭轉角度 (螺旋角度)β。將齒輪模數設為Μ,節圓(pitch circle)直 徑設為A時,則 A = MZ, D-M (Z+2) 成立。本實施形態中,兩齒輪2、3之齒形為一點接觸 齒形,故於齒輪轴方向上,若不扭轉1節距,則無法旋轉。 且必須滿足· 1 節距=πΑ/Ζ = πΜ, B/2 = nM/tanP。若設定D/B二χ時,根據上述,Ζ滿足 下式: Z= (2πχ/ΐαηβ ) — 2 〇 再者,較好的是,於齒形加工步驟中,扭轉角度β設 為32。或32。以下。根據上式,將D/B = x限制於1·1〜1.15 129娜 的範圍内’將扭轉角度β設定於28。〜32。之間時,齒數為 10齒〜12齒。Section 1294 - IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates in particular to a gear pump for conveying high pressure, high viscosity fluids. [Prior Art] A gear pump that conveys the fluid from the suction side to the discharge side by the rotation of the volley is used to adopt an involute tooth shape. The reason for this is that the involute tooth profile is easy to cut and the tooth profile size is easy to measure, so that a high-precision it wheel can be obtained, and thus it is also suitable for high-pressure operation conditions. [Patent Document 1] Japanese Patent Laid-Open No. Hei. (10) (4) Japanese Patent Publication No. Hei. (10) (4) discloses a problem of a gear body that uses an involute tooth shape. The involute gear arrhythmia is greater than i is a general rule, and the resistance is: 3 during the period. In this case, the volume of the area between the two sets of teeth changes with the rotation of the gear, so that a vacuum or a bubble is generated when the pressure is generated; =: wave: resistance = harm, and the pressure is much larger than the expansion. The danger of seeing the cofferdam and the danger of the above-mentioned obstacles, the higher the suction pressure of the bauxite and the higher the pressure of the spit, "the viscosity of the fluid to be sent or the use of the resin, etc., for the purpose of the wheel, the delivery, the疋,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The second bearing makes the bearing life shrink: increase the shaft diameter, reduce the rotation speed, etc., so that the bearing data is sufficient (for example, the processing is called to increase the size of the 1294m outside the pump and increase the driving force. The present invention has been made in view of the above circumstances, and a gear pump suitable for transporting a high-pressure, high-viscosity fluid such as a polymer polymer or a molten resin is provided. To solve the above problems, the gear pump of the present invention is characterized by including a sleeve. The sleeve includes a suctioning population and a discharge port; and a pair of gears disposed in the sleeve, wherein the fluid is moved from the suction port to the above The spit is conveyed in error, and the pair of gears are a double-helical gear that continuously contacts the tooth shape, and the ratio of the outer diameter to the tooth width of the gear is two, that is, the arc tooth shape and the elliptical tooth shape are adopted. Or the contact point of the sinusoidal curve is always - and the fluid encircling image is generated (4) shaped ^ temple herringbone gear, to avoid equalizing the axial thrust, and the axial push is used as the upper. Thus, D/B is set to U ~U5, and can suppress the load = wheel to ensure efficiency. When D / B is less than U, it may be caused by 1 load of He Ya, and in the use of pressure transfer and transfer of fat: 2: less work done less. Gear and The friction between the casings is generated, and the outer diameter of the wheel is increased sharply, so that the outer diameter is increased relative to the teeth, and the outer diameter is increased, which is directly related to the outside of the chestnut: =, so that the tooth width is reduced and the whole efficiency is reduced. The efficiency is reduced. 匕, and the operator wants to set D/B to U~U5 for the above reasons. In addition, the other gears of the present invention are characterized in that: the suction port, the 12943⁄4^ directs the fluid; a sleeve comprising a discharge π for discharging the fluid; and a = gear disposed in the sleeve and intermeshing The flow plate is transported from the suction port to the discharge port, wherein the pair of gears are helical gears that continuously contact the tooth shape, and the ratio of the outer diameter to the tooth width of the gear is 1.1 to 1.15. In addition to the above effects, the helical gear can be integrally formed with a gear/shaft, and the structure is simple, so that workability and productivity are improved. 匕,, according to the present invention, a polymer or molten resin can be transported. A gear pump suitable for a high-pressure, high-viscosity fluid. [Embodiment] Hereinafter, an embodiment of a gear pump according to the present invention will be described with reference to the drawings. [Embodiment 1 embodiment] Figs. 1 and 2 In the gear pump 1 of the first embodiment, for example, in a petroleum factory, a chemical factory, a polymerization plant, a molding/spinning device, or the like, high-viscosity such as molten resin and polymer is supplied under the same pressure. Use it for things. The above highly viscous material may be an intermediate or a final product. The gear pump 100 is a so-called external gear pump, and is provided with an internal space included in the sleeve i: a drive gear 2 and a driven gear 3 are arranged in an incompatible state, and 4 gears are driven by Fang Weimei. In addition, the function of the pump that transports the fluid obtained in the interdental space from the suction side to the discharge side is exerted. In fact, the suction side is located above, and the discharge side is located below. 'The polymer is stored in the positive side of the suction port n, or the molten nano tank is stored'. 8 I294m〇〇 in the storage tank is sucked and made into Specific discharge pressure is spit out. The drive gear 2 and the driven gear 3 are respectively set as a herringbone gear which continuously contacts the tooth shape at one point. In the example of the figure, the tooth shapes of the two gears 2, 3 are set as circular arc teeth. For each of the gears 2, 3, the ratio D/B of the outer diameter D to the tooth width B is set to be between 1.1 and 1.15. This is based on the high-temperature molten resin of about 300 QC which is pumped by the gear pump 100 at a high pressure of about 20 MpaG. The specific values of the gear outer diameter D and the tooth width B are limited by the gear shaft diameter required to transmit the rotational driving force to the gear and the shaft diameter required to suppress the bending deformation of the gear shaft. Therefore, the ratio D/B of the gear outer diameter D to the tooth width B should be limited to the range of 1.1 to 1.15, and the number of teeth Z and the torsion angle (helical angle) β of the gears 2, 3 should be determined. When the gear modulus is set to Μ and the pitch circle diameter is set to A, A = MZ and D-M (Z+2) are established. In the present embodiment, since the tooth shapes of the two gears 2 and 3 are in contact with each other in a tooth shape, they cannot be rotated in the direction of the gear axis without twisting by one pitch. And must satisfy · 1 pitch = π Α / Ζ = π Μ, B / 2 = nM / tanP. When D/B dice is set, Ζ Ζ satisfies the following equation: Z = (2π χ / ΐ α η β ) - 2 〇 Further, it is preferable that the torsion angle β is set to 32 in the tooth profile processing step. Or 32. the following. According to the above formula, D/B = x is limited to the range of 1·1 to 1.15 129 娜, and the twist angle β is set to 28. ~32. When between, the number of teeth is 10 teeth to 12 teeth.

按照圓弧齒形,製作Μ = 2〇、ζ=1〇、Α = 200、β = 31。、 Β = 209、容量為4189cc/rev的圓弧齒輪泵,並與既知的漸 開線齒輪泵作比較。作為性能對比所使用的漸開線齒輪泵 中,Μ=14,ζ=14,Α=200,β = 2·4。,B二209,容量為 4080 cc/rev。與性能相關的軸徑、軸承長度等,於兩者中 設為相同。液黏度約為300 Pa · s,吐出壓力為20 MpaG • % ®弧齒輪泵取得與漸開線齒輪泵同樣的性能。又,圓 ‘ 弧齒形理論上不產生圍阻現象,但以測定吐出壓力脱 . 為對圍阻的評價時,圓弧齒輪泵中為〇·4%,漸 、丁作 中為4%。無論何者,液黏度約300 Pa · s、吃士 ^輪氣 MpaG、旋轉數30rpm之運轉條件下的值。吐墨力2〇 根據測定位置及其他測定環境而變化,圓弧齒_ =力脈衡 漸開線齒輪泵,其吐出脈衝減少至1/1〇。 相對於 在此,如上所述,本實施形態的齒輪泵1〇〇, • 作高壓、高黏度流體的壓送。因此,必須使套警,主要用 形狀成形,以便可將高黏度流體充分吸入齒輪之内周 内,並可減少齒間内獲取的高壓流體自齒頂漏出j的齒間 參照圖2加以詳細說明。此處,將旋轉的齒輪2、下面, 開始極接近套管丨之内周面的位置設為&、A,3 <齒了貝 女σ月_套管1之内周面的位置設為P2、P2,並將、將齒了貝開 3之節點設為Ρ〇,各齒輪2、3的中心設為Pc ,齒輪2、 為將高黏度流體順利導入齒間内,對於% e。 、牙過兩衛輪 10 129級 2 3 ,j , “T^、^Pe ' Pe的直線、與連結歯輪2、3夕由 與齒頂滑接開始點?1的線 ^ 2 3之中心Pc 面觀察(在垂直於I 斤成$角必須確保自侧剖 卢六齒輪軸的面截斷的剖面觀突彳A (1。< 左右的尺寸,其中滑接 u為〇〜6。 輪2、3的中心Pe、pe之二置’相較於穿過兩齒 少流體自齒頂漏出,關於告秸二:出侧。而且’為減 止點P2的(以Pc為中二A 月接開始點P!至滑接終 側剖面觀察為72。< =、圓孤角E4,較好的是確保從 輪2、3的齒間在H上的尺寸。圓弧角^以確保# JU4間在兩個或兩個以上 E4增大時,連通於吐出口 12 ^S如此,將 吐出過程帶來旦彡塑 、飢又乍,可能給流體的 左右的應將E4控制在從侧剖面觀察為⑽。 將El設為〇。或〇。以上,仏設為72。〜丨⑽。日士 接開始點及節點P轉段、與連結滑接結束;; 點Ρ〇的線段所成的角ε2,從侧剖面觀察為33二662。。: 此’關於兩齒輪2、3的滑接結束點?2、Ρ2與節點ρ。分別 連結的兩條線段所成的角玛,從側剖面觀察為48。〜1〇2。。 相反而言,為確保所需的E1、ES (或者艮),必需將玛的 上限設為102。左右。當然,將Eg的下限設為48。左右,是 為使窗間内獲取的被輸送的流體順利地向吐出口 12流下。 根據本實施形態,藉由成對嚙合的齒輪2、3之旋轉而 將流體自吸入侧向吐出側輸送的齒輪泵1〇〇中,將上述歯 輪2、3作為一點連續接觸齒形的人字齒輪,且對於各齒輪 2、3,將齒輪外徑0與齒寬3之比〇瓜設定為1.1〜1.15, j294i^^_doc 而㈣免隨流體圍阻現象產生對軸承的+良影塑。此外 將D/B設定為U〜U5 ’可抑制軸承載荷並確^效率,亦 不會使栗外形大型化。本實施形態的齒輪栗1〇〇,與 的漸開線齒輪栗相比較,更適合於高壓、高黏度流體的輪 送。 而且,因將角度E3 5又為48。〜1〇20,角度e γ。 〜置,故可將越充分吸人結輪2、3^=^ 少齒間内獲取的流體自齒頂漏出。 鲁如上所述結構的本發明之齒輪泵100,可用於高分子 * 聚合物或溶融樹脂的製造過程’或者高分子聚合物或熔融 . 樹脂的成形物的製造過程,從而可適於製造高分子聚合 物、熔融樹脂或者成形物的用途。 例如,如圖3所不,利用本發明的齒輪泵1〇〇將單體 自單體槽110輸送至聚合槽120,以提供於製造高分子聚 合物的過程巾;或者藉由錄泉⑽將高分子聚合物輸送 至成形裝置3〇〇或紡絲裝置4〇〇中,以提供於製造其成形 # ㈣過程中。而且,亦可將使用本發明的齒輪栗1〇〇製造 南分子聚合物的過秋,與製造其成形物的過程一體化,以 構造如圖3所示的單-生產線。再者,亦可將圖3所示的 單體槽110與1合槽u〇 ’分別替換為樹脂顆粒物槽與炫 融樹脂槽,形成,融樹脂的製造以及其成形物的生產線。 進而,亦可藉由圖3所示的單體槽11〇、齒輪泵1〇〇 以及聚合槽120而形成聚合裝置2〇〇。而且,成形裝置3〇〇 或紡絲裝置400與齒輪栗可為異體,亦可將齒輪栗1〇〇 12 I29494p5d〇c 併入成形裝置300或者紡絲裝置400。 [第2實施例] 圖4及圖5表示第2實施例的齒輪泵500。該齒輪泵 500與第1實施例同樣地,構成為在套管1的内部空間, 於嚙合狀態下配設有驅動齒輪502與從動齒輪503,藉由 旋轉驅動這些齒輪502、503,而發揮將齒間内獲取的流體 自吸入侧向吐出側輸送的泵之作用。 驅動齒輪502及從動齒輪503,分別為一點連續接觸 齒形的螺旋齒輪。圖示例中,兩齒輪502、503的齒形為圓 弧齒形。 在此,一般來說,齒輪泵的齒數越少時整個效率越高, 又當齒輪外徑越小,且齒寬越大時,整個效率越高。再者, 傳送驅動力時必要的軸徑、軸承載荷引起軸彎曲時的軸徑 等,會對齒輪外徑與齒寬形成限制,並由上述因素而決定 最適當的齒數。 並且,齒輪泵500用於高壓20 Mpa時,與第1實施 例同樣地,外徑D與齒寬B之比D/B為1.1〜1.15。 繼而,與第1實施例同樣地,設齒輪外徑為D,齒寬 為B,齒輪模數為Μ,齒數為Z,節圓直徑為A,螺旋齒 輪的齒扭轉角度為β,則: Α = ΜΖ D-M (Ζ+2) 兩齒輪502、503的齒形為一點接觸齒形,故於齒輪軸 方向上,若不扭轉1節距,則無法旋轉。 13 Π94挪 f.doc 1 節距= πΑ/Ζ = πΜ,貝ij B二KM/tanp。若設定D/B^^x時,根據上述,Z滿足 下式: Ζ= (2πχ/ΐαηβ) — 2。 螺旋齒輪的β,較之上述人字齒輪β為1/2,β=14〜 16°。較好的是,上述人字齒輪於齒形加工步驟中設為32° 或32。以下。當為螺旋齒輪的情形,|3=16。或i6。以上時, 於齒形加工步驟中亦無防礙。According to the arc tooth shape, Μ = 2〇, ζ=1〇, Α = 200, β = 31. , Β = 209, arc gear pump with a capacity of 4189 cc / rev, and compared with the known involute gear pump. In the involute gear pump used for performance comparison, Μ=14, ζ=14, Α=200, β = 2·4. B 209 has a capacity of 4080 cc/rev. The shaft diameter, bearing length, etc. related to performance are set to be the same in both. The liquid viscosity is approximately 300 Pa · s and the discharge pressure is 20 MpaG • The % ® arc gear pump achieves the same performance as the involute gear pump. In addition, the circle ‘the arc tooth shape does not theoretically cause the entrapment phenomenon, but the measurement of the discharge pressure is taken as the evaluation of the enclosure resistance, which is 〇·4% in the arc gear pump and 4% in the gradual and finite operation. In either case, the liquid viscosity is about 300 Pa · s, the value of the machine is MpaG, and the number of rotations is 30 rpm. Discharge force 2〇 Depending on the measurement position and other measurement environments, the arc tooth _ = force pulse balance The involute gear pump reduces the discharge pulse to 1/1 〇. As described above, as described above, the gear pump 1 of the present embodiment is used for pressure transmission of a high-pressure, high-viscosity fluid. Therefore, it is necessary to form the trap, mainly in shape, so that the high-viscosity fluid can be sufficiently sucked into the inner circumference of the gear, and the high-pressure fluid obtained in the inter-tooth space can be reduced from the tooth tip leakage j. Referring to Fig. 2, it will be described in detail. Here, the position of the inner circumference of the rotating gear 2 and the lower end of the casing is set to &, A, 3 < teeth, and the position of the inner circumference of the casing 1 is set. For P2 and P2, the node of the toothed open 3 is set to Ρ〇, the center of each gear 2, 3 is set to Pc, and the gear 2 is to smoothly introduce the high viscosity fluid into the tooth, for % e. The teeth are over two wheels 10 129 grade 2 3 , j , "T^, ^Pe ' Pe straight line, and the connecting wheel 2, 3 eve by the top of the tooth tip start point ? 1 line ^ 2 3 center Pc face observation (in the direction perpendicular to I kg into the $ angle must be ensured to cut off the face of the six-axis gear shaft from the side of the cross-sectional view of the abrupt A (1. < left and right dimensions, where the sliding u is 〇 ~ 6. Wheel 2 3, the center of the Pe, the second of the pe's less than the fluid passing through the two teeth from the top of the tooth, about the straw 2: the exit side. And 'for the reduction point P2 (Pc for the second two months) From the starting point P! to the sliding end side, the cross-sectional observation is 72. < =, rounded corner E4, it is better to ensure the size of the teeth from the wheels 2, 3 on the H. The arc angle ^ to ensure # JU4 When two or more E4s increase, the connection to the spout 12 ^S is such that the discharge process brings about smashing, hunger and sputum, and the right and left of the fluid should be controlled from the side profile. (10) Set El to 〇. or 〇. Above, 仏 is set to 72. ~ 丨 (10). The Japanese start line and the node P turn, and the connection slide ends;; Ε2, observed from the side profile as 33 II 662: This is about the end point of the sliding of the two gears 2, 3, 2, Ρ 2 and the node ρ. The angle formed by the two line segments respectively connected is 48. ~1〇2. On the contrary, in order to ensure the required E1, ES (or 艮), it is necessary to set the upper limit of the horse to about 102. Of course, the lower limit of Eg is set to 48. The left and right are for the window to be acquired. The transported fluid smoothly flows down the discharge port 12. According to the present embodiment, the gear is pumped from the suction side to the discharge side by the rotation of the pair of meshed gears 2, 3, and the above-mentioned wheel is placed. 2, 3 as a point of continuous contact tooth-shaped herringbone gear, and for each gear 2, 3, the ratio of the outer diameter of the gear 0 to the tooth width 3 is set to 1.1 to 1.15, j294i^^_doc and (4) free of fluid The containment phenomenon produces a good shadow for the bearing. In addition, setting D/B to U~U5' can suppress the bearing load and ensure the efficiency, and will not increase the size of the chestnut. Compared with the involute gear pump, it is more suitable for the rotation of high pressure and high viscosity fluids. Degree E3 5 is 48. ~1〇20, angle e γ. ~ Set, so the more fully inhaling the knot wheel 2, 3^=^ The fluid obtained in the small tooth leakage from the top of the tooth. The gear pump 100 of the present invention can be used in the manufacturing process of a polymer* polymer or a molten resin or a manufacturing process of a polymer or a molten resin, thereby being suitable for producing a polymer and melting. The use of the resin or the molded article. For example, as shown in FIG. 3, the gear pump 1 of the present invention is used to transport the monomer from the monomer tank 110 to the polymerization tank 120 to provide a process towel for manufacturing the high molecular polymer; Alternatively, the high molecular weight polymer is conveyed to the forming apparatus 3 or the spinning apparatus 4 by means of the recording spring (10) to be provided in the process of manufacturing the forming #4. Further, it is also possible to integrate the process of producing a molded article using the gear pump 1 of the present invention to form a single-production line as shown in Fig. 3. Further, the monomer groove 110 and the 1 groove u 〇 ' shown in Fig. 3 may be replaced with a resin particle groove and a sleek resin groove, respectively, to form a melt resin and a molded product line. Further, the polymerization apparatus 2 can be formed by the monomer tank 11 〇 shown in FIG. 3, the gear pump 1 〇〇, and the polymerization tank 120. Further, the forming device 3 or the spinning device 400 and the gear pump may be a separate body, and the gear pump 1 12 I29494p5d〇c may be incorporated into the forming device 300 or the spinning device 400. [Second Embodiment] Figs. 4 and 5 show a gear pump 500 of a second embodiment. In the same manner as in the first embodiment, the gear pump 500 is configured such that the drive gear 502 and the driven gear 503 are disposed in the meshing state in the internal space of the sleeve 1, and the gears 502 and 503 are rotationally driven. The action of the pump that transports the fluid obtained in the interdental space from the suction side to the discharge side. The drive gear 502 and the driven gear 503 are respectively a helical gear that continuously contacts the tooth shape. In the illustrated example, the tooth profiles of the two gears 502, 503 are in the form of a circular arc. Here, in general, the smaller the number of teeth of the gear pump, the higher the overall efficiency, and the smaller the outer diameter of the gear, and the larger the tooth width, the higher the overall efficiency. Further, the shaft diameter necessary for transmitting the driving force and the shaft diameter when the bearing load is caused by the bearing load restrict the outer diameter of the gear and the tooth width, and the optimum number of teeth is determined by the above factors. Further, when the gear pump 500 is used for a high pressure of 20 MPa, the ratio D/B of the outer diameter D to the tooth width B is 1.1 to 1.15 as in the first embodiment. Then, similarly to the first embodiment, the outer diameter of the gear is D, the tooth width is B, the gear modulus is Μ, the number of teeth is Z, the pitch diameter is A, and the tooth torsion angle of the helical gear is β, then: = ΜΖ DM (Ζ+2) The tooth profiles of the two gears 502 and 503 are one-point contact tooth shape, so they cannot be rotated in the direction of the gear axis without twisting one pitch. 13 Π94°f.doc 1 pitch = πΑ/Ζ = πΜ, 贝 ij B二KM/tanp. When D/B^^x is set, according to the above, Z satisfies the following equation: Ζ = (2πχ / ΐαηβ) - 2. The β of the helical gear is 1/2 compared to the above-mentioned herringbone gear β, and β = 14 to 16°. Preferably, the above-described herringbone gear is set to 32 or 32 in the tooth profile processing step. the following. In the case of a helical gear, |3=16. Or i6. In the above, there is no obstacle in the tooth profile processing step.

於 β=18。之情形下,當 d/B=1.1,Z=8,D/B=1.15 時,Z=9 〇 因此,螺旋齒輪之情形下,當8〜12,β = 14〜18。 時,可獲得與上述同等的效果。 圓弧齒形中,製作 Μ=32、Ζ=10、Α=320、β=16·75 度、Β = 334 · 5、容量為17152 cm3/rev的螺旋齒輪泵,並 與既知的圓弧齒形人字齒輪泵作比較。 性能對比是,在圓弧齒形的人字齒輪中,M= 32、2At β=18. In the case, when d/B=1.1, Z=8, D/B=1.15, Z=9 〇 Therefore, in the case of a helical gear, when 8~12, β=14~18. At the same time, the same effect as described above can be obtained. In the circular arc profile, a helical gear pump with Μ=32, Ζ=10, Α=320, β=16·75 degrees, Β = 334 · 5, capacity 17152 cm3/rev is produced, and the known arc tooth Shaped herringbone gear pump for comparison. The performance comparison is that in the arc-shaped herringbone gear, M=32, 2

=10、A= 320、β = 31 度、b = 334.5,容量為 17152 cm3/rev。 理所當然,除扭轉角度以外均相同。 、在液黏度約為30〇pa.s、吐出壓力為2〇MpaG、旋轉=10, A = 320, β = 31 degrees, b = 334.5, and the capacity is 17152 cm3/rev. Of course, the same is true except for the angle of twist. , the liquid viscosity is about 30〇pa.s, the discharge pressure is 2〇MpaG, and the rotation

數為30 rpm的運轉條件下,圓弧齒形螺旋齒輪時亦可 大致相同的性能。 T 對圍=的;’即使測定吐出壓力脈衝作為 同的結果。無論何者。夜黏度約為300 1 14Under the operating conditions of 30 rpm, the arc-tooth helical gear can also have approximately the same performance. T is squared; 'even if the discharge pressure pulse is measured as the same result. No matter what. Night viscosity is about 300 1 14

129佩。c ,. 是相當清楚地 T據該第2實施例’如上所述可獲得與第i實施例同 樣的效果,而且由於驅動齒輪5G2及從動齒輪5Q3為螺旋 齒輪’故可-體化製作絲/軸,又g構造鮮,從而加工 性、生產性提高。 回輪泵500可代替圖3所示的齒輪系刚而使用,亦 可構成併人有齒輪泵5GG的成形裝置·或者紡絲裝置 400 0 再者,本發明並非限於上述詳細的實施形態。各部分 具體的結構並非隨上述實卿g,於不麟本發明要旨 的範圍内,可作種種變形。 本申請案,根據2005年2月24日提出的曰本專利申 請號2005 - 048965號而主張優先權,包括該申請案的說明 書、圖面及申請專利範_申請内容,全部參照而包含於 此。 本發明的if齡,例如可剌於:石油工廠或化學工 廠、聚合工廠、成形/紡絲裝置等中,以高壓輸送炫融樹脂 及高分子聚合物等用途,但並非僅限於上述用途,亦可用 於所有高壓、高黏度流體的輸送用途。 【圖式簡單說明】 圖1表示本叙明第1實施例之齒輪泵的平剖面圖。 圖2是圖1所示齒輪泵的橫剖面圖。 15 129蝶。c . 圖3表示適用本發明齒輪泵之高分子聚合物的成形物 之製造過程的流程圖。 圖4表示第2實施例之齒輪泵的平剖面圖。 圖5是圖4所示的齒輪泵之横剖面圖。 【主要元件符號說明】 I :套管 2、3 :齒輪 II :吸入口 # 12 :吐出口 • 100、500 :齒輪泵 . 110 :單體槽 120 :聚合槽 200 :聚合裝置 300 :成形裝置 400 :紡絲裝置 502 :驅動齒輪 φ 503 :從動齒輪 D :齒輪外徑 B :齒寬 P〇:節點 P1:滑接開始點 P2:滑接終止點 Pc:齒輪中心 E1〜E4 ·流程圖符號 16129. c,. It is quite clear that according to the second embodiment, the same effects as those of the i-th embodiment can be obtained as described above, and since the drive gear 5G2 and the driven gear 5Q3 are helical gears, the wire can be formed. /The shaft and the g structure are fresh, so that the workability and productivity are improved. The return pump 500 can be used instead of the gear train shown in Fig. 3, and can also be used as a forming device or a spinning device 400 0 for the gear pump 5GG. The present invention is not limited to the above detailed embodiment. The specific structure of each part is not limited to the above, and various modifications can be made within the scope of the gist of the invention. The present application claims priority based on the present patent application No. 2005- 048965 filed on Feb. 24, 2005, including the specification, the drawings and the patent application of the application. . The age of the present invention can be applied to, for example, a petroleum plant, a chemical plant, a polymerization plant, a molding/spinning device, and the like, and the use of a high-pressure conveying resin and a polymer, but it is not limited to the above use. It can be used for all high pressure, high viscosity fluids. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan sectional view showing a gear pump according to a first embodiment of the present invention. Figure 2 is a cross-sectional view of the gear pump of Figure 1. 15 129 butterflies. Fig. 3 is a flow chart showing a manufacturing process of a molded article of a high molecular polymer to which the gear pump of the present invention is applied. Fig. 4 is a plan sectional view showing the gear pump of the second embodiment. Figure 5 is a cross-sectional view of the gear pump shown in Figure 4. [Explanation of main component symbols] I: Sleeve 2, 3: Gear II: Suction port # 12: Exhaust port • 100, 500: Gear pump. 110: Monomer tank 120: Polymerization tank 200: Polymerization apparatus 300: Forming apparatus 400 Spinning device 502: Drive gear φ 503: Drive gear D: Gear outer diameter B: Tooth width P〇: Node P1: Sliding start point P2: Sliding end point Pc: Gear center E1 to E4 • Flowchart symbol 16

Claims (1)

if.doc 十、申請專利範圍: 1.一種齒輪泵,其特徵在於包括: 套管,具有導入流體的吸入口以及排出該流體的吐出 口;以及 一對齒輪,設置於上述套管内,藉由相互响合旋轉而 將上述流體自上述吸入口向上述吐出口輸送,其中上述一 對齒輪是一點連續接觸齒形的人字齒輪,且每一該些齒輪 的外徑與齒寬之比為U〜1.15。 • 2.如申請專利範圍第1項所述之齒輪泵,其中上述齒 . 輪的各齒數為10齒〜12齒,該齒輪各扭轉角度為28°〜 . 32。。 3. 如申請專利範圍第1項所述之齒輪泵,其中上述套 管的内周形狀中,旋轉的上述齒輪之各齒頂背離該套管内 周面的位置、與該齒輪的節點分別連結的線段所成的角 度,從侧剖面觀察為48°〜102°。 4. 如申請專利範圍第2項所述之齒輪泵,其中上述套 φ 管的内周形狀中,旋轉的上述齒輪之各齒頂背離該套管内 周面的位置、與該齒輪的節點分別連結的線段所成的角 度,從侧剖面觀察為48°〜102°。 5. 如申請專利範圍第1項所述之齒輪泵,其中上述套 管的内周形狀中, 自旋轉的上述齒輪之齒頂極接近上述套管之内周面的 位置,至該齒輪的齒頂背離該套管的上述内周面之位置的 圓弧角,從側部面觀察為72°〜108°。 17 1291雄心 6. 如申清專利範圍第2項 、^ 管的内周形狀中, 其中上述套 位置自亡述齒輪之齒頂極接近上述套管之内周面的 圓弧肖輪的齒頂背離該套管的上述内周面之位置的 回弧角,從側剖面觀察為72。〜108。。 7. 如申凊專利範圍第3項所述 管的内周形狀中, I之一4,其中上述套 位詈自ΪΪ的上述齒輪之齒頂極接近上述套管之内周面的 圓弧自^輪的齒頂背_套管的上述内周面之位置的 口弧角,攸侧剖面觀察為72〇〜1〇8〇。 管的8内專中利範圍第4項所述之齒輪泵,其中上述套 自旋轉的上杨輪之齒頂極接近上述套管之内周面的 名至該齒輪的齒頂背離該套管的上述内周面之位置的 W弧角’從侧剖面觀察為72。〜1〇8。。 9·一種高分子聚合物、熔融樹脂或者成形物的製造方 特徵在於,在高分子聚合物或炫轉脂的製造過程、 ^尚分子聚合物或熔融樹脂的成形物的製造過程中,使 用申凊專利範圍第1項所述之齒輪泵。 、ι〇· 一種高分子聚合物、熔融樹脂或者成形物的製造方 ,,气特徵在於,在高分子聚合物或溶融樹脂的製造過程、 或者高分子聚合物或熔融樹脂的成形物的製造過裎中,使 用申請專利範圍第2項所述之齒輪泵。 U•一種聚合裝置,其使用申請專利範圍第1項所述之 18If.doc X. Patent application scope: 1. A gear pump, comprising: a sleeve having a suction port for introducing a fluid and a discharge port for discharging the fluid; and a pair of gears disposed in the sleeve Rotating and rotating the fluid from the suction port to the discharge port, wherein the pair of gears are a herringbone gear that continuously contacts the tooth shape, and the ratio of the outer diameter to the tooth width of each of the gears is U ~ 1.15. 2. The gear pump of claim 1, wherein the teeth of the wheel are 10 to 12 teeth, and the torsion angle of the gear is 28° to 32. . 3. The gear pump according to claim 1, wherein in the inner circumferential shape of the sleeve, a position of each of the rotating gear teeth facing away from the inner circumferential surface of the sleeve is respectively coupled to a node of the gear The angle formed by the line segment is 48° to 102° as viewed from the side section. 4. The gear pump according to claim 2, wherein in the inner circumferential shape of the sleeve φ tube, a position of each of the rotating gear teeth facing away from the inner circumferential surface of the sleeve is connected to a node of the gear The angle formed by the line segment is 48° to 102° as viewed from the side section. 5. The gear pump according to claim 1, wherein in the inner peripheral shape of the sleeve, a tooth tip of the self-rotating gear is in a position close to an inner circumferential surface of the sleeve, to a tooth of the gear The arcuate angle of the top surface away from the inner circumferential surface of the sleeve is 72° to 108° as viewed from the side surface. 17 1291 Ambition 6. In the inner circumference shape of the second section of the patent scope, the above-mentioned sleeve position is the tip of the circular arc wheel of the tooth tip of the missing gear that is close to the inner circumferential surface of the sleeve. The arcing angle at a position away from the inner circumferential surface of the sleeve is 72 as viewed from a side cross section. ~108. . 7. In the inner peripheral shape of the tube according to item 3 of the patent scope of claim 3, one of the four, wherein the top of the gear of the above-mentioned sleeve 詈 self-aligning is close to the arc of the inner circumference of the sleeve. The angle of the mouth of the wheel top back_the inner circumferential surface of the sleeve is 72 〇1 to 1 〇8 观察. The gear pump of the fourth aspect of the invention, wherein the top of the sleeve of the self-rotating upper poppet is close to the inner peripheral surface of the sleeve to the top of the gear, away from the sleeve The W arc angle ' at the position of the inner circumferential surface is 72 as viewed from the side cross section. ~1〇8. . 9. A method for producing a polymer, a molten resin or a molded article, which is characterized in that, in the production process of a high molecular polymer or a condensed fat, or in the production process of a molded product of a molecular polymer or a molten resin,齿轮The gear pump described in item 1 of the patent scope. 〇 〇 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种In the case, use the gear pump described in the second paragraph of the patent application. U• A polymerization apparatus using the 18th of claim 1 Π94 搬 d 齒輪泵。 12. —種聚合裝置,其使用申請專利範圍第2項所述之 齒輪泵。 13. —種成形裝置,其使用申請專利範圍第1項所述之 齒輪泵。 14. 一種成形裝置,其使用申請專利範圍第2項所述之 齒輪泵。 15. —種紡絲裝置,其使用申請專利範圍第1項所述之 齒輪泵。 16. —種紡絲裝置,其使用申請專利範圍第2項所述之 齒輪泵。 17. —種齒輪泵,其特徵在於包括: 套管,具有導入流體的吸入口及排出該流體的吐出 口;以及 一對齒輪,設置於上述套管内,藉由相互嚙合旋轉而 將上述流體自上述吸入口向上述吐出口輸送,其中上述一 對齒輪是一點連續接觸齒形的螺旋齒輪,且每一該些齒輪 的外徑與齒寬之比為1.1〜1.15。 18. 如申請專利範圍第17項所述之齒輪泵,其中上述 齒輪的各齒數為8齒〜12齒,該齒輪各扭轉角度為If〜 18°。 19. 如申請專利範圍第17項所述之齒輪泵,其中上述 套管之内周形狀中,旋轉的上述齒輪之各齒頂背離該套管 内周面的位置、與該齒輪的節點分別連結的線段所成的角 19 I2949244,〇c 度’彳欠側剖面觀察為48。〜102。。 套管申請專利範圍第18項所述之齒輪栗,复中上、求 内周面的周形狀中’旋轉的上述齒輪之各齒7員背離該套ΐ 。、位置、與該齒輪的節點分別連結 ^ ^ 度,從侧剖面觀察為48。〜繼。。 裏奴所成的角 套管之内=二Ϊ述齒輪之齒頂极接近上述 内周面齒輪的齒頂背離該套管的上i 二之位置的0弧角’從側剖面觀察為72。〜静 套势白^°申請專利範圍第18項所述之齒輪栗,复中。上、十、 套“勺内周形狀中,自旋轉二其中上述 =周面的位置,至該 0立置的圓弧角,從侧剖面觀察為乃。〜、^ 套管的:周申:^ 位置,至該齒輪士f套管之内周面的 弧角,從侧剖面觀察為72。〜_。吕。、㈣周面位置的圓 套管之内周面的位置,二:土述齒輪之齒頂極接近上述 内周面之位置的圓弧角,背離該套管的上述 25.-種高分子聚合物、“72°〜108。。 法,其特徵在於,在高分 ^月曰或者成形物之製造方 刀子聚合物麵融樹脂的製造過程, 20 1294麟 f.doc 或者高分子聚合物或熔融樹脂的成形物的製造過程中,使 用申請專利範圍第17項所述之齒輪泵。 26. —種高分子聚合物、熔融樹脂或者成形物之製造方 法,其特徵在於,在高分子聚合物或熔融樹脂的製造過程, 或者高分子聚合物或熔融樹脂的成形物的製造過程中,使 用申請專利範圍第18項所述之齒輪泵。 27. —種聚合裝置,其使用申請專利範圍第17項所述 之齒輪泵。 28. —種聚合裝置,其使用申請專利範圍第18項所述 之齒輪泵。 29. —種成形裝置,其使用申請專利範圍第17項所述 之齒輪泵。 30. —種成形裝置,其使用申請專利範圍第18項所述 之齒輪泵。 31. —種紡絲裝置,其使用申請專利範圍第17項所述 之齒輪泵。 32. —種紡絲裝置,其使用申請專利範圍第18項所述 之齒輪泵。 21 doc 七、指定代表圖: (一) 本案指定代表圖為:圖1。 (二) 本代表圖之元件符號簡單說明: 1 :套管 2 :驅動齒輪 3 :從動齒輪 100 :齒輪泵 B :齒寬 春 D :齒輪外徑 . 八、本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無Π94 Move d gear pump. 12. A polymerization apparatus using the gear pump described in claim 2 of the patent application. A molding apparatus using the gear pump described in claim 1 of the patent application. A forming apparatus using the gear pump described in claim 2 of the patent application. 15. A spinning apparatus using the gear pump of claim 1 of the patent application. 16. A spinning apparatus using the gear pump of claim 2 of the patent application. 17. A gear pump, comprising: a sleeve having a suction port for introducing a fluid and a discharge port for discharging the fluid; and a pair of gears disposed in the sleeve and rotating the fluid by intermeshing rotation The suction port is conveyed to the discharge port, wherein the pair of gears are helical gears that continuously contact the tooth shape at one point, and the ratio of the outer diameter to the tooth width of each of the gears is 1.1 to 1.15. 18. The gear pump of claim 17, wherein the gears have a number of teeth of 8 to 12 teeth, and the gears have a twist angle of If to 18 degrees. 19. The gear pump according to claim 17, wherein in the inner circumferential shape of the sleeve, a position of each of the rotating gear teeth facing away from an inner circumferential surface of the sleeve and a node of the gear are respectively connected The angle formed by the line segment is 19 I2949244, and the 〇c degree '彳 is less than 48. ~102. . The casing is applied to the gear pump described in claim 18, and the teeth of the above-mentioned gears of the 'rotation' in the circumferential shape of the inner circumferential surface are turned away from the casing. The position and the node of the gear are respectively connected to ^^ degrees, and 48 is observed from the side section. ~ Following. . The angle formed by the lining is within the casing. The tip of the gear of the two-dimensional gear is close to the angle of 0 arc of the position of the tooth of the inner circumferential gear facing away from the upper surface of the casing. ~ Static set of white ^ ° Apply for the patent range of the 18th of the gear pump, Fuzhong. Upper, ten, set "In the inner shape of the scoop, self-rotating two of the above = the position of the circumferential surface, to the arc angle of the zero standing, from the side profile is observed. ~, ^ Casing: Zhou Shen: ^ Position, to the arc angle of the inner circumference of the gearbox f, from the side profile is 72. ~_. Lu., (four) the position of the inner circumference of the circular casing at the circumferential surface position, two: the description The arcuate angle of the tooth tip of the gear is close to the position of the inner peripheral surface, and the above-mentioned 25.-type high molecular polymer, "72 ° to 108". . The method is characterized in that, in the manufacturing process of a high-concentration 曰 曰 or a molded product of a knives, a polymer surface melt resin, in the manufacturing process of a molded article of a polymer or a molten resin, Use the gear pump described in Clause 17 of the patent application. 26. A method for producing a polymer, a molten resin or a molded article, which is characterized in that, in the production process of a polymer or a molten resin, or in the production of a molded article of a polymer or a molten resin, Use the gear pump described in Clause 18 of the patent application. 27. A polymerization apparatus using the gear pump of claim 17 of the patent application. 28. A polymerization apparatus using the gear pump of claim 18. 29. A forming apparatus using the gear pump of claim 17 of the patent application. A molding apparatus using the gear pump described in claim 18 of the patent application. 31. A spinning apparatus using the gear pump of claim 17 of the patent application. 32. A spinning apparatus using the gear pump described in claim 18 of the patent application. 21 doc VII. Designation of representative drawings: (1) The representative representative of the case is as shown in Figure 1. (2) The symbol of the symbol of this representative diagram is simple: 1 : casing 2 : drive gear 3 : driven gear 100 : gear pump B : tooth width spring D : gear outer diameter. VIII. If there is a chemical formula in this case, please reveal The chemical formula that best shows the characteristics of the invention: None
TW095105601A 2005-02-24 2006-02-20 Gear pump TWI294945B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048965 2005-02-24
PCT/JP2005/015675 WO2006090495A1 (en) 2005-02-24 2005-08-29 Gear pump

Publications (2)

Publication Number Publication Date
TW200634233A TW200634233A (en) 2006-10-01
TWI294945B true TWI294945B (en) 2008-03-21

Family

ID=36927145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095105601A TWI294945B (en) 2005-02-24 2006-02-20 Gear pump

Country Status (6)

Country Link
US (1) US20090060770A1 (en)
JP (2) JPWO2006090495A1 (en)
KR (1) KR20070112211A (en)
CN (1) CN100513789C (en)
TW (1) TWI294945B (en)
WO (1) WO2006090495A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206698A1 (en) * 2012-04-24 2013-10-24 Robert Bosch Gmbh Hydrostatic positive-displacement engine, has housing comprising housing portions extending in plane separating surface abutting each other, and plane separating surface incorporating rotational axes of gear wheels
JP2014005429A (en) * 2012-05-31 2014-01-16 Nitto Denko Corp Roll type sheet
JP6002005B2 (en) * 2012-11-02 2016-10-05 住友ゴム工業株式会社 Gear pump extruder and method of manufacturing an extrusion gear used therefor
CN103790822A (en) * 2014-03-06 2014-05-14 肖计振 Spiral pump
CN104481874A (en) * 2014-11-27 2015-04-01 上海轩安环保科技有限公司 Herringbone gear pump
IT201600076227A1 (en) * 2016-07-20 2018-01-20 Settima Meccanica S R L Soc A Socio Unico Bi-helical gear wheel with variable helix angle and non-encapsulating tooth profile for gear hydraulic equipment
US10808694B2 (en) * 2016-08-15 2020-10-20 Georgia Tech Research Corporation Systems and devices for pumping and controlling high temperature fluids
DE102016216159A1 (en) * 2016-08-29 2018-03-01 Robert Bosch Gmbh External gear pump for a waste heat recovery system
CN107100835A (en) * 2017-06-28 2017-08-29 珠海市洪富食品机械制造有限公司 A kind of herringbone wildhaber-novikov gear constant displacement pump
CN107237747B (en) * 2017-08-10 2019-10-01 青岛科技大学 A kind of double V-shaped gear pump filter glue devices of gradual change
CN110397588A (en) * 2019-07-29 2019-11-01 山东劳伦斯流体科技有限公司 A kind of high-pressure heavy-load Quimby pump

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1439628A (en) * 1921-06-07 1922-12-19 Emmett S Newton Pump
US2159744A (en) * 1936-08-26 1939-05-23 Brown & Sharpe Mfg Gear pump
US2338065A (en) * 1940-06-13 1943-12-28 Joseph F Keller Gear pump
US2997960A (en) * 1957-12-20 1961-08-29 Kimijima Takehiko Gear pump
JPS5138922B1 (en) * 1968-02-19 1976-10-25
JPS501004Y1 (en) * 1968-04-19 1975-01-11
DE1941673A1 (en) * 1969-08-16 1971-02-18 Barmag Barmer Maschf Gear pump with wedge-shaped narrowed intake chambers
US4137023A (en) * 1975-09-03 1979-01-30 Union Carbide Corporation Low energy recovery compounding and fabricating apparatus for plastic materials
DE2810563C2 (en) * 1978-03-10 1982-10-28 Theodorus Henricus Dipl.-Ing. Delft Korse Gear machine (pump or motor)
US4452750A (en) * 1981-05-12 1984-06-05 Union Carbide Corporation Low energy processing of thermoplastic polymers
US4537568A (en) * 1982-09-15 1985-08-27 Jochnick & Norrman Press Ab Force pump
US5108275A (en) * 1990-12-17 1992-04-28 Sager William F Rotary pump having helical gear teeth with a small angle of wrap
US5156781A (en) * 1990-12-24 1992-10-20 Bridgestone Corporation Compact precision extrusion method
US5190450A (en) * 1992-03-06 1993-03-02 Eastman Kodak Company Gear pump for high viscosity materials
JPH0814165A (en) * 1994-06-28 1996-01-16 Shimadzu Corp Gear pump
KR100610524B1 (en) * 1998-10-01 2006-08-09 다우 글로벌 테크놀로지스 인크. High efficiency gear pump for pumping highly viscous fluids
CN1264982C (en) * 2003-03-31 2006-07-19 中国科学院植物研究所 Specific expressioned cinnamoyl coenzyme A reductase in wheat root, gene for coding said enzyme and expression carrier containing said gene
US7040870B2 (en) * 2003-12-30 2006-05-09 The Goodyear Tire & Rubber Company Gear pump with gears having curved teeth and method of feeding elastomeric material

Also Published As

Publication number Publication date
KR20070112211A (en) 2007-11-22
WO2006090495A1 (en) 2006-08-31
TW200634233A (en) 2006-10-01
CN100513789C (en) 2009-07-15
JP4688864B2 (en) 2011-05-25
JPWO2006090652A1 (en) 2008-07-24
JPWO2006090495A1 (en) 2008-07-24
CN101133250A (en) 2008-02-27
US20090060770A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
TWI294945B (en) Gear pump
JP5360387B2 (en) Rotor drive mechanism and pump device including the same
US10184471B2 (en) Trochoid pump for transferring high-viscosity liquid under high pressure
JP5078969B2 (en) Gear pump
WO2005005835A1 (en) Internal gear pump and inner rotor of the pump
WO2006090652A1 (en) Gear pump
CN105840494B (en) Single-shaft eccentric screw pump
JP5388187B2 (en) Uniaxial eccentric screw pump
WO2016013504A1 (en) Uniaxial eccentric screw pump
TWI585299B (en) Pump rotor
CN107654357A (en) Peristaltic pump idler wheel mechanism and peristaltic pump
JP7514541B2 (en) Connecting shaft and single shaft eccentric screw pump
JP4675809B2 (en) Inscribed gear pump rotor and inscribed gear pump
CN207437320U (en) A kind of peristaltic pump with tower slowing-down structure
KR102095596B1 (en) Internal gear pump
JPS6075786A (en) Vermicular motion type roller pump and pump rotor
JP5674044B2 (en) Internal gear pump
CN219984122U (en) Medicine configuration device convenient for adjusting liquid medicine inlet amount
JP5126583B2 (en) Fluid injection device and fluid injection device set
CN216044326U (en) Wheelset and peristaltic pump
JP3241424U (en) pumping equipment
CN213997270U (en) Two-roller straightener
JP2012017761A (en) Mechanical seal used for uniaxial eccentric screw pump and uniaxial eccentric screw pump
CN107715202A (en) Peristaltic pump with rotary play
JP7014093B2 (en) Gear pump or motor