WO2006089984A1 - Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo - Google Patents

Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo Download PDF

Info

Publication number
WO2006089984A1
WO2006089984A1 PCT/ES2006/000014 ES2006000014W WO2006089984A1 WO 2006089984 A1 WO2006089984 A1 WO 2006089984A1 ES 2006000014 W ES2006000014 W ES 2006000014W WO 2006089984 A1 WO2006089984 A1 WO 2006089984A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
tube
fluids
steam
liquid
Prior art date
Application number
PCT/ES2006/000014
Other languages
English (en)
French (fr)
Inventor
Alfonso Miguel GAÑÁN CALVO
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200500112A external-priority patent/ES2265259B1/es
Priority claimed from ES200500981A external-priority patent/ES2265270B1/es
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Priority to JP2007550802A priority Critical patent/JP4875628B2/ja
Priority to EP06708833A priority patent/EP1839760A1/en
Priority to US11/793,622 priority patent/US8201351B2/en
Publication of WO2006089984A1 publication Critical patent/WO2006089984A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0018Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
    • B05B7/0025Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam with a compressed gas supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/10Hand irons internally heated by electricity with means for supplying steam to the article being ironed
    • D06F75/20Arrangements for discharging the steam to the article being ironed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/22Hand irons internally heated by electricity with means for supplying liquid to the article being ironed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/915Reverse flow, i.e. flow changing substantially 180° in direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/918Counter current flow, i.e. flows moving in opposite direction and colliding

Definitions

  • Said tube is closed and provided with a discharge mouth, located in front of a confluence zone where the outgoing flow of intercepted fluid meets an approximately perpendicular invading fluid stream directed radially and centripetally towards the axis of said outgoing flow.
  • the product is freely discharged to the outside through an exit hole, the edges of said discharge mouth and said exit hole are facing and separated by an axial offset; and the penetration of said reflux cell in the feeding tube is regulated by controlling the speed of the fluid.
  • An application of the invention is spray ironing of drops less than 200 microns assisted with steam.
  • nebulization in insecticide applications, this increases the flotation capacity of the preparation as well as the covered extension when the drop deposition occurs.
  • FF Flow Focusing
  • WO 0076673 proposed a flow configuration, called violent flow focusing; unlike FF, the focusing gas here has an essentially radial and centripetal (diaphragm-flow) flow, concentrically directed in a thin layer that intercepts the liquid outlet on a flow surface transverse to the axis of movement of the liquid.
  • the gas comes from a pressure chamber, and the intense interaction that occurs between the liquid phase, whose movement is essentially axial, and the gaseous phase, directed radially, results in an immediate transfer of quantity of movement.
  • the liquid exits into the outer atmosphere in the form of a jet.
  • the size of the drops has a very small dependence on the flow of atomized liquid, at least along the parametric range of flows claimed therein. It is also notable to note for its differential importance with the present invention, that in D1 a relationship between the 00014
  • the invention described herein introduces a mixing modality that, on the one hand, allows the interaction of two or more T / ES2006 / 000014
  • the first steam iron appeared in the mid-sixties (US3248813), consisting of an iron with a heat source inside that generates a stream of steam flowing through a filter or diffuser that exists between source steam and capillary vapor, passing through the filter like small drops of moisture.
  • Another related invention is a water intake apparatus integrated in the iron that conducts a water flow to a nebulizer used as a steam-assisted ironing process (WO9800597) where the steam generator is located in a stand independent of the iron or It can go inside the plate (WO9925915) that can be filled automatically (EP1026306).
  • the present invention includes a pneumatic nebulizer, in which the drops are generated from the turbulent mixture with water vapor.
  • Said water vapor can be generated directly through independent systems (prior or not) of heat generation (eg electrical), or by using heat from the part that is used to press on the ironing.
  • heat generation eg electrical
  • One way of doing so would be to cross the water line destined to vaporize in the vicinity of said piece, in such a way that throughout its journey the heat absorbed is sufficient to cause the vaporization.
  • the high speed of the spray water outlet caused by the described methodology improves the ironing performance compared to other existing methods.
  • the object of the invention is a phase combination device for mixing in the case of miscible fluids, and for the production of emulsions, aerosols, and micro-foams in the case of non-miscible fluids, by creating a reflux cell. produced by the countercurrent invasion by one of the fluids, the one with the lowest density (invading fluid), which penetrates upstream into the feeding tube of the other, denser fluid (intercepted fluid).
  • Said feeding tube is closed and is provided with a discharge mouth; said discharge mouth is located in front of a confluence zone where the outgoing flow of intercepted fluid meets an approximately perpendicular current directed radially and centripetally towards the axis of said outgoing flow; the product of the interaction of both phases, mainly produced in said reflux cell, freely discharges to the outside through an exit orifice that has approximately the same dimensions as said discharge mouth; the edges of said discharge mouth and said outlet opening are facing and separated by an axial offset; and the penetration of said reflux cell in the feed tube is regulated by controlling the speed of the invading fluid in said confluence zone, which must be at least twice higher, preferably at least five times higher than the intercepted fluid velocity.
  • said speed ratio is obtained by an adequate choice of the ratio of mass flows of both phases, and by the choice of said axial offset, which must be less than half, preferably less than a quarter of the diameter of said orifice of exit.
  • Another variant of the invention is a phase combination device according to the above, in which said invading fluid is composed, consisting of a plurality of currents formed by differentiated phases, which interact with the fluid stream intercepted in said reflux cell. 14
  • a phase combination device is also disclosed in which said fluids are not molecularly miscible.
  • the average inertia per unit volume of any of the phases in the confluence zone and in the passage section of said exit orifice is at least twenty times, preferably one hundred times greater than the average value per unit volume of the forces that are caused in the current due to the viscosity of the fluids in said confluence zone and passage section of the outlet orifice.
  • said feed tube of the intercepted fluid is preferably of circular section, its discharge mouth also preferably being circular, as well as said outlet orifice of the mixture; said discharge mouth is contained in a plane perpendicular to the axis of symmetry of said tube, and said plane is parallel to the plane containing said exit hole, said axial gap between both planes;
  • the difference between the diameters of said outlet orifice and said discharge mouth is less than 20% of the greater of said diameters, and the centers of said orifice and mouth are aligned with a maximum error of 20% of the greater of said diameters.
  • a further embodiment is based on the fact that the invading fluid (s) converge towards the discharge mouth of the tube that feeds the intercepted fluid through one or more openings oriented in an essentially perpendicular direction towards the axis of said tube, so that said openings border on one side with said discharge mouth and on the opposite side with said discharge hole, located in front of the discharge mouth of said tube, and the total area of said openings being between 0.2 and 1.5 times, preferably between 0.5 and 1 times the area of said discharge hole.
  • a device for mixing is contemplated in this invention because two phases are brought together, the liquid being the densest phase and the gas less dense phase, so that the ratio of mass flow rates between the gas and the liquid it is between 0.01 and 10000, preferably between 0.05 and 200.
  • the intercepted fluid is a liquid phase that contains samples that are to be characterized by optical or mass atomic spectroscopy, and the invading fluid is a gas, preferably argon.
  • the object of the invention is a process of combining phases for mixing in the case of miscible fluids, and for the production of emulsions, aerosols, and micro-foams in the case of non-miscible fluids, based on the use of the device described above.
  • an ironing device or "iron” is the object of the invention, which consists of a pneumatic nebulizer for the generation of a very fine droplet spray through the mixing of liquid water with water vapor according to the described configurations.
  • Said device is characterized in that the invading fluid is water vapor generated by means of providing heat to a stream of liquid water which, in turn, is the intercepted fluid.
  • the heat used to vaporize the water can come from the piece that is used to press the fabric to iron it.
  • the drops generated impact the fabric, being able to control their size so that the ironing results are improved.
  • the device can operate with a mass flow of steam less than half of the mass flow of liquid water used.
  • This system provides a high energy saving compared to conventional ironing systems, which require much more energy to produce the complete vaporization of the liquid source. On the contrary, this system uses less energy, since for the same total flow of water ejected by the iron, the proposed device requires only the vaporization of a fraction thereof, reducing energy consumption. Likewise, the penetration of moisture into the tissue and, therefore, the effectiveness of ironing, are improved due to the greater inertia of the aerosol, its small droplet size and the high velocity of the spray out of the nebulizer.
  • Figure 1 Axilsymmetric configuration of the mixing device of the present invention as a liquid nebulizer.
  • Gray arrows Liquid to atomize.
  • Black arrows Atomization gas.
  • Figure 3 Example of mixing inside the tube in the case of atomizing a liquid with gas and using an axilsymmetric configuration.
  • FIG. 1 Dynamic mixing process in the confluence region of phases 1 (denser) and 2 (less dense) and reflux towards the feeding conduit of phase 1, with three characteristic steps: (a) Formation of a point backwater in the fluid velocity field 2 between the tube outlet and the outlet hole. The pressure at the outlet of the tube begins to increase, (b) Collapse of the inlet of the fluid 2 towards the tube by accumulation of the fluid 1 at the outlet of the tube, (c) Discharge of the accumulated fluid 2 at the outlet of the tube together with the fluid 1. Lowering the pressure at the outlet of the tube.
  • a liquid is fed through a tube of circular section and inner diameter D.
  • Said tube is inside a pressurized chamber with a gas that is fed from a or several entries to said camera.
  • the outlet of the tube is sharp as indicated in the figure, and is faced with a hole also circular and of diameter D located in one of the walls of the chamber, such that the planes containing the hole in the chamber and to the outlet of the tube are parallel and separated a distance H.
  • Said distance H is less than D / 2, preferably less than DIA, whereby the annular section of 6 000014
  • lateral gas passage between the outlet of the tube and the outlet has a passage area approximately in the same order as the area of the outlet. Because the outlet of the liquid feed tube is sharp, the annular section of the lateral passage of the gas described above facilitates an expedited discharge for the gas, with little or no friction losses. Consequently, the pressurized gas inside the chamber will discharge through said section at the highest speed that the essentially adiabatic expansion allows, for a pressure jump AP between the chamber and the outside, to the intermediate zone located between the outlet of the tube and the exit orifice of the chamber, as shown in Figure 1.
  • a liquid is fed through a tube of circular section and internal diameter D.
  • Said tube is located inside a pressurized chamber with another liquid that is fed from one or more inputs to said camera.
  • the outlet of the tube is sharp as indicated in the figure, and it is faced with a hole also circular and of diameter D located in one of the walls of the chamber, such that the planes containing the hole of the chamber and the outlet of the tube are parallel and are separated a distance H
  • Said distance H is less than D / 2, preferably less than DIA, whereby the annular section of lateral gas passage between the outlet of the tube and the exit orifice has a passage area approximately in the same order as the exit hole area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nozzles (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Procedimiento y dispositivo para micro-mezclado de fluidos miscibles o inmiscibles mediante célula de reflujo, producida por la invasión a contracorriente por uno de los fluidos, que penetra aguas arriba en el tubo de alimentación del otro fluido. Dicho tubo está cerrado y dotado de una boca de descarga, situada frente a una zona de confluencia donde el flujo saliente de fluido interceptado se encuentra con una corriente de fluido invasor aproximadamente perpendicular dirigida radial y centrípetamente hacia el eje de dicho flujo saliente. El producto se descarga libremente al exterior a través de un orificio de salida, los bordes de dicha boca de descarga y dicho orificio de salida están enfrentados y separados por un desfase axial; y la penetración de dicha célula de reflujo en el tubo de alimentación se regula controlando la velocidad del fluido. Una aplicación de la invención es el planchado con spray de gotas.

Description

Título
Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo
Objeto de Ia invención
Procedimiento y dispositivo para micro-mezclado de fluidos miscibles o inmiscibles mediante célula de reflujo, producida por Ia invasión a contracorriente por uno de los fluidos, que penetra aguas arriba en el tubo de alimentación del otro fluido. Dicho tubo está cerrado y dotado de una boca de descarga, situada frente a una zona de confluencia donde el flujo saliente de fluido interceptado se encuentra con una corriente de fluido invasor aproximadamente perpendicular dirigida radial y centrípetamente hacia el eje de dicho flujo saliente. El producto se descarga libremente al exterior a través de un orificio de salida, los bordes de dicha boca de descarga y dicho orificio de salida están enfrentados y separados por un desfase axial; y Ia penetración de dicha célula de reflujo en el tubo de alimentación se regula controlando Ia velocidad del fluido. Una aplicación de Ia invención es el planchado con spray de gotas inferiores a 200 mieras asistido con vapor.
Estado de Ia técnica
La producción de sistemas multifásicos de escala pequeña es de alto interés para múltiples aplicaciones de Ia industria farmacéutica, alimentaria, agronómica y científica. Entre dichos sistemas de multifásicos se cuenta con emulsiones, espumas o aerosoles. La producción de éstos por vías puramente fluidodinámicas, y en particular por vía neumática, da lugar a numerosas aplicaciones y desarrollos industriales, tecnológicos, científicos y de Ia vida cotidiana. Los aerosoles han sido usados en numerosos campos tecnológicos, en particular como medio para tratar las enfermedades de las vías respiratorias mediante Ia nebulización de medicamentos líquidos. La administración de fármacos en forma de aerosol por vía inhalatoria permite obtener concentraciones adecuadas de medicamentos en el aparato respiratorio minimizando los efectos secundarios. Asimismo son muy conocidas las aplicaciones en el sector agronómico, para pulverización de plaguicidas, por ejemplo en tratamientos de desinsectación. Se utilizan para ello equipos manuales o automáticos (portátiles, montados en vehículos), que permiten una aplicación dirigida y cierta capacidad de regular el grosor de Ia gota, cuyo diámetro suele variar entre las 100 y las 500 mieras. Cuando los tamaños de gota son inferiores, entre 50 - 100 mieras, suele usarse el término nebulización: en las aplicaciones de insecticida, ello aumenta Ia capacidad de flotación del preparado así como Ia extensión cubierta cuando se produce Ia deposición de las gotas.
Son diversos los principios tecnológicos aplicables al mezclado (en el caso de que las fases que confluyen sean molecularmente miscibles) o interpenetración íntima de una o más fases. En Io que sigue se citan los precedentes más cercanos basados en vías puramente fluidodinámicas.
La llamada tecnología Flow Focusing (FF) (Gañán-Calvo 1998, Physical Review Letters 80, 285), mediante el uso de una geometría especial, utiliza Ia vía neumática para generar microchorros de líquido que posteriormente, pasado el orificio de salida, se rompen en gotas de tamaño muy pequeño y sustancialmente homogéneo. Esta última tecnología también es capaz de generar micro-chorros de líquido mediante otro líquido en lugar de gas, o bien puede generar micro- chorros de gas en el seno de un líquido (el mismo líquido u otro diferente usado como forzador, es decir, con el mismo papel desempeñado por el gas en el procedimiento neumático), con Io cual se generan microburbujas de tamaño perfectamente homogéneo. Posteriormente, Ia patente WO 0076673 (D1) propuso una configuración de flujo, denominada violent flow focusing; a diferencia de FF, el gas enfocante tiene aquí un flujo esencialmente radial y centrípeto (flujo-diafragma), dirigido concéntricamente en una capa delgada que intercepta Ia salida del líquido en una superficie de flujo transversal al eje de movimiento del líquido. Como se explica en D1 , el gas procede de una cámara de presión, y Ia intensa interacción que se produce entre Ia fase líquida, cuyo movimiento es esencialmente axial, y Ia fase gaseosa, dirigida radialmente, da lugar a una inmediata transferencia de cantidad de movimiento. Como se describe en D1 , sin embargo, el líquido sale a Ia atmósfera exterior en forma de chorro. Además, también se declara en dicha patente que el tamaño de las gotas tiene una dependencia muy pequeña respecto del caudal de líquido atomizado, al menos a Io largo del rango paramétrico de caudales que se reivindica allí. Es también notable destacar por su importancia diferencial con Ia presente invención, que en D1 se reivindica una relación entre el 00014
diámetro medio d de las gotas y los parámetros del sistema (el caudal de líquido Q, Ia presión aplicada AP, y las propiedades físicas del líquido: densidad p y tensión superficial σ), dada por: d ldo » {QI Q0J15 (1) donde do = σ I AP , y Q0 = (σ4 /(pΔP3))1/2. En D1 se reivindica que el líquido es expelido a través del orificio de salida en forma de un chorro; si el diámetro de ese chorro tiene Ia siguiente expresión (A.M. Gañán-Calvo 1998, Physical Review Letters 80, 218):
Figure imgf000005_0001
Entonces estaría perfectamente justificada Ia expresión (1) mediante el modelo de mezcla turbulenta (en una región posterior a Ia salida del orificio) de Kolmogorov- Hinze (R. Shinnar, 1961, Journal of Fluid Mechanics 10, 259). En efecto, esta teoría nos dice que el diámetro de las gotas producidas por rotura turbulenta tienen una relación con Ia escala macroscópica del flujo, que estaría dada por d¡ , según Ia siguiente expresión:
Figure imgf000005_0002
Combinando las expresiones (2) y (3) se obtiene Ia expresión (1). Los datos declarados en D1 concuerdan muy bien con Ia ley (1), Io cual concuerda con Ia presencia del chorro (que se puede detectar también por medios visuales). Por otra parte, se declaran también una serie de restricciones geométricas del dispositivo para que el sistema funcione según se reivindica. Más recientemente, Ia solicitud de patente española número P200402333 (D2) de título "Dispositivo y procedimiento para Ia atomización neumática de líquidos mediante flujo implosivo de gas" describe dispositivos y procedimientos para atomizar un líquido utilizando una configuración similar a Ia de Ia presente invención, restringida al caso de un orificio circular y estando Ia fase líquida rodeada de Ia fase gaseosa cuando ambas atraviesan el orificio de salida. Además, se describe una variedad de configuraciones posibles para impulsar el líquido mediante Ia fase gaseosa, que puede ser un vapor.
Con respecto a dichas patentes, Ia invención aquí descrita introduce una modalidad de mezclado que, por una parte, permite Ia interacción de dos o más T/ES2006/000014
fases arbitrariamente elegidas (no es preciso restringir a chorro líquido central rodeado por corriente gaseosa); por otra parte, no se basa en Ia fragmentación de un chorro emitido por el tubo central de alimentación, sino en un nuevo principio: Ia invasión aguas arriba de dicho tubo de alimentación por una corriente invasora procedente del fluido externo. El rasgo, por Io tanto, esencial del procedimiento y dispositivo descritos es Ia producción de una célula de reflujo, donde se generan escalas de turbulencia que aseguran Ia más íntima interacción entre las fases que allí confluyen. Por Io tanto, a diferencia con Ia patente D1 , (i) no existe un chorro de una fase rodeado por Ia otra fase, pasando a través de un orificio de salida, (ii) las restricciones geométricas que se imponen en D1 no son aplicables a Ia presente invención, y (iii) los tamaños de gota obtenidos, en caso de usarse Ia presente invención como nebulizador de líquidos, son mucho más pequeños (en algunos casos hasta cinco veces más pequeños) que los declarados en D1.
Con respecto al planchado con spray de agua asistido por vapor, Ia primera plancha de vapor apareció a mediados de los años sesenta (US3248813), consistente en una plancha con una fuente de calor en su interior que genera una corriente de vapor que atraviesa un filtro o difusor que existe entre vapor fuente y el vapor del capilar, pasando a través del filtro como pequeñas gotas de humedad. Otra invención relacionada es un aparato de toma de agua integrado en Ia plancha que conduce un flujo de agua hasta un nebulizador utilizado como procedimiento de planchado asistido por vapor (WO9800597) donde el generador de vapor esta situado en un stand independiente de Ia plancha o bien puede ir dentro de Ia plancha (WO9925915) que puede ser rellenado automáticamente (EP1026306). Hay antecedentes que utilizan un sistema para generación de vapor que posteriormente se conduce a través de conductos a Ia plancha (WO02070812). A diferencia de las anteriores, Ia presente invención incluye un nebulizador neumático, en el que las gotas son generadas a partir de Ia mezcla turbulenta con vapor de agua. Dicho vapor de agua puede generarse directamente a través de sistemas independientes (previos o no) de generación de calor (p.ej. eléctricos), o bien mediante Ia utilización de calor proveniente de Ia pieza que se utiliza para presionar en el planchado. Un modo de hacerlo sería hacer atravesar Ia línea de agua destinada a vaporizarse por las inmediaciones de dicha pieza, de tal modo que a Io largo de su recorrido el calor absorbido sea suficiente para ocasionar Ia vaporización. La elevada velocidad de Ia salida del agua del spray causada por Ia metodología descrita mejora las prestaciones en el planchado frente a otros métodos existentes.
Descripción de la invención
Es objeto de Ia invención un dispositivo de combinación de fases para el mezclado en el caso de fluidos miscibles, y para Ia producción de emulsiones, aerosoles, y micro-espumas en el caso de fluidos no miscibles, mediante Ia creación de una célula de reflujo producida por Ia invasión a contracorriente por uno de los fluidos, el de menor densidad (fluido invasor), que penetra aguas arriba en el tubo de alimentación del otro fluido, más denso (fluido interceptado). Dicho tubo de alimentación es cerrado y está dotado de una boca de descarga; dicha boca de descarga está situada frente a una zona de confluencia donde el flujo saliente de fluido interceptado se encuentra con una corriente aproximadamente perpendicular dirigida radial y centrípetamente hacia el eje de dicho flujo saliente; el producto de Ia interacción de ambas fases, principalmente producida en dicha célula de reflujo, descarga libremente al exterior a través de un orificio de salida que posee aproximadamente las mismas dimensiones que dicha boca de descarga; los bordes de dicha boca de descarga y dicho orificio de salida están enfrentados y separados por un desfase axial; y Ia penetración de dicha célula de reflujo en el tubo de alimentación se regula controlando Ia velocidad del fluido invasor en dicha zona de confluencia, que debe ser al menos dos veces más alta, preferentemente al menos cinco veces más alta que Ia velocidad del fluido interceptado en dicho tubo de alimentación; dicha relación de velocidades es obtenida mediante una adecuada elección de Ia relación de flujos másicos de ambas fases, y mediante Ia elección de dicho desfase axial, que ha de ser inferior a Ia mitad, preferentemente inferior a Ia cuarta parte del diámetro de dicho orificio de salida. Otra variante de Ia invención es un dispositivo de combinación de fases según Io anterior, en el que dicho fluido invasor es compuesto, constando de una pluralidad de corrientes formadas por fases diferenciadas, que interaccionan con Ia corriente de fluido interceptado en dicha célula de reflujo. 14
Asimismo se da a conocer un dispositivo de combinación de fases en el que dichos fluidos no son miscibles molecularmente.
Formas más específicas de Ia invención conducen a dispositivos según Io anterior, en los que Ia inercia media por unidad de volumen de cualquiera de las fases en Ia zona de confluencia y en Ia sección de paso de dicho orificio de salida es al menos veinte veces, preferentemente cien veces mayor que el valor medio por unidad de volumen de las fuerzas que se provocan en Ia corriente debido a Ia viscosidad de los fluidos en dichas zona de confluencia y sección de paso del orificio de salida. En otra variante, dicho tubo de alimentación del fluido interceptado es de sección preferentemente circular, siendo su boca de descarga también preferentemente circular, así como dicho orificio de salida de Ia mezcla; dicha boca de descarga está contenida en un plano perpendicular al eje de simetría de dicho tubo, y dicho plano es paralelo al plano que contiene a dicho orificio de salida, existiendo entre ambos planos el dicho desfase axial; Ia diferencia entre los diámetros de dicho orificio de salida y dicha boca de descarga es inferior al 20% del mayor de dichos diámetros, y los centros de dichos orificio y boca se encuentran alineados con un error máximo del 20% del mayor de dichos diámetros.
Una modalidad adicional se basa en que el o los fluidos invasores confluyen hacia Ia boca de descarga del tubo que alimenta el fluido interceptado a través de una o más aperturas orientadas en dirección esencialmente perpendicular hacia el eje de dicho tubo, de manera que dichas aperturas lindan por una parte con dicha boca de descarga y por Ia parte opuesta con dicho orificio de descarga, situado enfrente de Ia boca de descarga de dicho tubo, y siendo el área total de dichas aperturas entre 0.2 y 1.5 veces, preferentemente entre 0.5 y 1 veces el área de dicho orificio de descarga.
En particular, se contempla en esta invención un dispositivo para el mezclad por que se hacen confluir dos fases, siendo Ia fase más densa un líquido y Ia fase menos densa un gas, de manera que Ia relación de caudales másicos entre el gas y el líquido está entre 0.01 y 10000, preferentemente entre 0.05 y 200.
Un uso preferente de los dispositivos descritos es Ia introducción de muestras en espectroscopia atómica mediante Io anterior; el fluido interceptado es una fase líquida que contiene muestras que se quieren caracterizar por espectroscopia atómica óptica o másica, y el fluido invasor es un gas, preferentemente argón. ES2006/000014
Por otra parte, es objeto de Ia invención un procedimiento de combinación de fases para el mezclado en el caso de fluidos miscibles, y para Ia producción de emulsiones, aerosoles, y micro-espumas en el caso de fluidos no miscibles, basado en el uso del dispositivo descrito anteriormente.
Por otra parte, es objeto de Ia invención un dispositivo de planchado o "plancha", que consta de un nebulizador neumático para Ia generación de un aerosol de gotas muy finas a través del mezclado de agua líquida con vapor de agua según las configuraciones descritas. Dicho dispositivo se caracteriza por que el fluido invasor es vapor de agua generado mediante Ia aportación de calor a una corriente de agua líquida que, a su vez, es el fluido interceptado. El calor utilizado para vaporizar el agua puede provenir de Ia pieza que se utiliza para presionar el tejido para plancharlo. Las gotas generadas impactan contra el tejido pudiéndose controlar el tamaño de las mismas de modo que se mejoren los resultados del planchado. El dispositivo puede funcionar con un caudal másico de vapor inferior a Ia mitad del caudal másico de agua líquida empleado. Este sistema proporciona un elevado ahorro de energía frente a los sistemas de planchado convencionales, que requieren mucha más energía para producir Ia vaporación completa de Ia comente líquida. Por contra este sistema utiliza menos energía, ya que para un mismo caudal de agua total eyectado por Ia plancha, el dispositivo propuesto requiere sólo Ia vaporización de una fracción del mismo, reduciendo el consumo energético. Asimismo Ia penetración de Ia humedad en el tejido y, por tanto, Ia efectividad del planchado, se mejoran debido a Ia mayor inercia del aerosol, su pequeño tamaño de gotas y a Ia elevada velocidad de salida del spray del nebulizador.
Descripción de figuras
Figura 1. Configuración axilsimétrica del dispositivo de mezclado de Ia presente invención como nebulizador de líquido. Flechas grises: Líquido a atomizar. Flechas negras: Gas de atomización.
Figura 2. Cuatro ejemplos de mezclado en el interior del tubo, en Ia zona próxima a Ia boca de descarga de dicho tubo (fotografías de alta velocidad tomadas con un 6 000014
tiempo de obturación de 0.1 microsegundo, usando una cámara de vídeo de alta velocidad 4Quick de Stanford Computer Optics), para el caso de atomizar un líquido con gas y usando una configuración axilsimétrica. Obsérvese Ia formación de escalas microscópicas, burbujas de muy diferente tamaño y gotas. El líquido utilizado es agua con un 0.1% de Tween 80. El valor de H declarado es Ia distancia entre Ia boca de salida del tubo de alimentación del líquido y el orificio.
Figura 3. Ejemplo de mezclado en el interior del tubo para el caso de atomizar un líquido con gas y usando una configuración axilsimétrica. En esta caso, el líquido utilizado es agua pura a 2O0C, con una sobrepresión ¿1P=25OO milibares y un caudal de líquido Q=10 mL/min.
Figura 4. Proceso de mezclado dinámico en Ia región de confluencia de las fases 1 (más densa) y 2 (menos densa) y reflujo hacia el conducto de alimentación de Ia fase 1, con tres pasos característicos: (a) Formación de un punto de remanso en el campo de velocidades del fluido 2 entre Ia salida del tubo y el agujero de salida. Empieza a aumentar Ia presión en Ia salida del tubo, (b) Colapso de Ia entrada del fluido 2 hacia el tubo por acumulación del fluido 1 en Ia salida del tubo, (c) Descarga del fluido 2 acumulado en Ia salida del tubo junto con el fluido 1. Bajada de Ia presión en Ia salida del tubo.
Modo de realización de Ia invención
Ejemplo 1. Sistema de atomización neumática de líquidos
Mediante Ia configuración mostrada en Ia figura 1, con simetría de revolución, se alimenta un líquido a través de un tubo de sección circular y diámetro interior D. Dicho tubo se encuentra en el interior de una cámara presurizada con un gas que es alimentado desde una o varias entradas a dicha cámara. La boca de salida del tubo es de forma afilada como indica Ia figura, y está enfrentada a un orificio también circular y de diámetro D situado en una de las paredes de Ia cámara, de tal manera que los planos que contienen al orificio de Ia cámara y a Ia boca de salida del tubo son paralelos y están separados una distancia H. Dicha distancia H es inferior a D/2, preferentemente inferior a DIA, con Io cual Ia sección anular de 6 000014
paso lateral de gas entre Ia boca de salida del tubo y el orificio de salida tiene un área de paso aproximadamente del mismo orden que el área del orificio de salida. Debido a que Ia boca de salida del tubo de alimentación del líquido es de forma afilada, Ia sección anular de paso lateral del gas arriba descrita facilita una descarga expedita para el gas, con pocas o nulas pérdidas por fricción. Consecuentemente, el gas presurizado dentro de Ia cámara descargará a través de dicha sección a Ia mayor velocidad que Ie permita Ia expansión esencialmente adiabática, para un salto de presiones AP entre Ia cámara y el exterior, hasta Ia zona intermedia situada entre Ia boca de salida del tubo y el orificio de salida de Ia cámara, como se muestra en Ia figura 1. En dicha zona intermedia se produce una compleja distribución de presiones no estacionaria como consecuencia de: (i) el colapso radial a alta velocidad del gas hacia el eje de simetría del tubo, que provoca un aumento local de Ia presión en las inmediaciones de dicho eje de simetría, y (ii) Ia descarga del líquido a través del tubo dado un caudal volumétrico de líquido Q. La subida de presión local en las inmediaciones del eje de simetría del tubo provoca una penetración del gas aguas arriba del tubo en forma de un corto chorro vertical, que se abre inmediatamente y forma una zona de vorticidad toroidal (configuración en "seta") en el tubo, con su eje de simetría coincidente con el del tubo, en las proximidades de Ia boca de descarga (ver figura 1). En dicha zona se produce un movimiento muy turbulento generador de escalas microscópicas de mezclado, burbujas, y gotas microscópicas, con Io cual se provoca un violento mezclado con el líquido que viene por el tubo (ver figuras 2 y 3). En Ia figura 3 se puede observar también como el líquido sale a alta velocidad de Ia boca del tubo en forma de múltiples ligamentos líquidos muy finos, antes de que éstos atraviesen el orificio de salida. Esta es una diferencia fundamental de Ia presente invención respecto de las anteriores (D 1 y D2).
Ejemplo 2. Sistema de mezclado de líquidos
También mediante Ia configuración mostrada en Ia figura 1 , con simetría de revolución, se alimenta un líquido a través de un tubo de sección circular y diámetro interior D. Dicho tubo se encuentra en el interior de una cámara presurizada con otro líquido que es alimentado desde una o varias entradas a dicha cámara. La boca de salida del tubo es de forma afilada como indica Ia figura, y está enfrentada a un orificio también circular y de diámetro D situado en una de las paredes de Ia cámara, de tal manera que los planos que contienen al orificio de Ia cámara y a Ia boca de salida del tubo son paralelos y están separados una distancia H. Dicha distancia H es inferior a D/2, preferentemente inferior a DIA, con Io cual Ia sección anular de paso lateral de gas entre Ia boca de salida del tubo y el orificio de salida tiene un área de paso aproximadamente del mismo orden que el área del orificio de salida.
En este caso de Ia mezcla de dos fases líquidas, un posible patrón de flujo observado se describe en Ia figura 4, que presenta tres momentos más o menos cíclicos como se indica en Ia figura.

Claims

006/00001411Reivindicaciones
1. Dispositivo de combinación de fases para el mezclado en el caso de fluidos miscibles, y para Ia producción de emulsiones, aerosoles, y micro-espumas en el caso de fluidos no miscibles, mediante Ia creación de una célula de reflujo producida por Ia invasión a contracorriente por uno de los fluidos, el de menor densidad (fluido invasor), que penetra aguas arriba en el tubo de alimentación del otro fluido, más denso (fluido interceptado), siendo dicho tubo de alimentación cerrado y estando dotado de una boca de descarga; dicha boca de descarga está situada frente a una zona de confluencia donde el flujo saliente de fluido interceptado se encuentra con una corriente aproximadamente perpendicular dirigida radial y centrípetamente hacia el eje de dicho flujo saliente; el producto de Ia interacción de ambas fases, principalmente producida en dicha célula de reflujo, descarga libremente al exterior a través de un orificio de salida que posee aproximadamente las mismas dimensiones que dicha boca de descarga; los bordes de dicha boca de descarga y dicho orificio de salida están enfrentados y separados por un desfase axial; y Ia penetración de dicha célula de reflujo en el tubo de alimentación se regula controlando Ia velocidad del fluido invasor en dicha zona de confluencia, que debe ser al menos dos veces más alta, preferentemente al menos cinco veces más alta que Ia velocidad del fluido interceptado en dicho tubo de alimentación; dicha relación de velocidades es obtenida mediante una adecuada elección de Ia relación de flujos másicos de ambas fases, y mediante Ia elección de dicho desfase axial, que ha de ser inferior a Ia mitad, preferentemente inferior a Ia cuarta parte del diámetro de dicho orificio de salida.
2. Dispositivo de combinación de fases según Ia reivindicación 1, caracterizado por que dicho fluido invasor es compuesto, constando de una pluralidad de corrientes formadas por fases diferenciadas, que interaccionan con Ia corriente de fluido interceptado en dicha célula de reflujo.
3. Dispositivo de combinación de fases según las reivindicaciones 1 o 2, caracterizado por que dichos fluidos no son miscibles molecularmente.
4. Dispositivo de combinación de fases según Ia reivindicación 3, caracterizado por que Ia inercia media por unidad de volumen de cualquiera de las fases en Ia zona de confluencia y en Ia sección de paso de dicho orificio de salida es al menos veinte veces, preferentemente cien veces mayor que el valor medio por unidad de volumen de las fuerzas que se provocan en Ia corriente debido a Ia viscosidad de los fluidos en dichas zona de confluencia y sección de paso del orificio de salida.
5. Dispositivo de combinación de fases según Ia reivindicación 3, caracterizado por que dicho tubo de alimentación del fluido interceptado es de sección preferentemente circular, siendo su boca de descarga también preferentemente circular, así como dicho orificio de salida de Ia mezcla; dicha boca de descarga está contenida en un plano perpendicular al eje de simetría de dicho tubo, y dicho plano es paralelo al plano que contiene a dicho orificio de salida, existiendo entre ambos planos el dicho desfase axial; Ia diferencia entre los diámetros de dicho orificio de salida y dicha boca de descarga es inferior al 20% del mayor de dichos diámetros, y los centros de dichos orificio y boca se encuentran alineados con un error máximo del 20% del mayor de dichos diámetros.
6. Dispositivo de combinación de fases según Ia reivindicación 3, caracterizado por que el o los fluidos invasores confluyen hacia Ia boca de descarga del tubo que alimenta el fluido interceptado a través de una o más aperturas orientadas en dirección esencialmente perpendicular hacia el eje de dicho tubo, de manera que dichas aperturas lindan por una parte con dicha boca de descarga y por Ia parte opuesta con dicho orificio de descarga, situado enfrente de Ia boca de descarga de dicho tubo, y siendo el área total de dichas aperturas entre 0.2 y 1.5 veces, preferentemente entre 0.5 y 1 veces el área de dicho orificio de descarga.
7. Dispositivo de combinación de fases según Ia reivindicación 3, caracterizado por que se hacen confluir dos fases, siendo Ia fase más densa un líquido y Ia fase menos densa un gas, de manera que Ia relación de caudales másicos entre el gas y el líquido está entre 0.01 y 10000, preferentemente entre 0.05 y 200.
8. Dispositivo para Ia introducción de muestras en espectroscopia atómica según las reivindicaciones 1 a 7, caracterizado por que el fluido 14
13
interceptado es una fase líquida que contiene muestras que se quieren caracterizar por espectroscopia atómica óptica o másica, y el fluido invasor es un gas, preferentemente argón.
9. Procedimiento de combinación de fases para el mezclado en el caso de fluidos miscibles, y para Ia producción de emulsiones, aerosoles, y micro- espumas en el caso de fluidos no miscibles, según el dispositivo de las reivindicaciones 1 a 7 que consta de los siguientes procesos: a. Suministro de un caudal de fluido interceptado al tubo o pieza de descarga por el extremo opuesto a Ia boca de descarga b. Suministro de un caudal de el o los fluidos invasores hasta alcanzar
Ia zona de Ia célula de reflujo. c. Mezcla turbulenta de los fluidos involucrados en Ia célula de reflujo y generación de un producto dependiente de Ia naturaleza de los fluidos y su miscibilidad. d. El producto generado sale al exterior a través del orificio de salida.
10. Dispositivo de planchado de tejidos, papel, láminas o películas con spray de agua asistido por vapor caracterizado por que incorpora un dispositivo de combinación de fase según a las reivindicaciones 1 a 8 de dispersión de agua, dirigido hacia el objeto que se plancha y en forma de un spray de agua impulsado por vapor de agua, con gotas de tamaño inferior a 200 mieras.
11. Dispositivo de planchado con spray de agua asistido por vapor según Ia reivindicación 10, caracterizado por que el dispositivo que dispersión de agua en forma de spray es un nebulizador neumático siendo el gas impulsor vapor de agua, y siendo Ia relación másica de flujos de vapor y de agua líquida inferior a 0.5, preferentemente inferior a 0.15.
12. Dispositivo de planchado con spray de agua asistido por vapor según las reivindicaciones 10 y 11, caracterizado por que Ia presión de vapor absoluta utilizada en Ia impulsión está comprendida entre 1.5 Bares y 12 bares.
13. Dispositivo de planchado con spray de agua asistido por vapor según las reivindicaciones 10-12, caracterizado por que incorpora un calderín de capacidad entre 20 y 5000 centímetros cúbicos, donde se mantiene el agua a temperatura regulable entre 1100C y 1870C. ES2006/000014
14
14. Dispositivo de planchado con spray de agua asistido por vapor según las reivindicaciones 10-13, caracterizado por que de las zonas internas situadas en las cotas verticales más baja y más alta del calderín parten, respectivamente, un tubo de alimentación de agua líquida y un tubo de alimentación del vapor hacia el nebulizador neumático incorporado en Ia plancha.
15. Dispositivo de planchado con spray de agua asistido por vapor según las reivindicaciones 10-14, caracterizado por que el tubo de alimentación de agua se dispone circulando a Io largo y ancho de Ia parte interna de Ia superficie de planchado o suela de Ia plancha.
16. Procedimiento de planchado con spray de agua asistido por vapor según el dispositivo descritos en las reivindicaciones 10 a 15. que consta de los siguientes procesos: a. Suministro de agua desde un depósito hasta el nebulizador. b. Suministro de vapor desde un sistema de generación de vapor hasta el nebulizador. c. Mezclado de ambas fases y generación de un aerosol de gotas finas que salen del nebulizador a alta velocidad. d. Impacto del aerosol sobre el tejido, papel, lámina o película que se desea planchar.
PCT/ES2006/000014 2005-01-17 2006-01-16 Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo WO2006089984A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007550802A JP4875628B2 (ja) 2005-01-17 2006-01-16 還流セルを通して流体をミクロ混合するための手順およびデバイス
EP06708833A EP1839760A1 (en) 2005-01-17 2006-01-16 Method and device for the micromixing of fluids using a reflux cell
US11/793,622 US8201351B2 (en) 2005-01-17 2006-01-16 Procedure and device for the micro-mixing of fluids through reflux cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200500112A ES2265259B1 (es) 2005-01-17 2005-01-17 Procedimiento y dispositivo de planchado con spray de agua asistido por vapor.
ESP200500112 2005-01-17
ESP200500981 2005-04-18
ES200500981A ES2265270B1 (es) 2005-04-18 2005-04-18 Procedimiento y dispositivo para micro-mezclado de fluidos mediante celula de reflujo.

Publications (1)

Publication Number Publication Date
WO2006089984A1 true WO2006089984A1 (es) 2006-08-31

Family

ID=36927053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000014 WO2006089984A1 (es) 2005-01-17 2006-01-16 Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo

Country Status (4)

Country Link
US (1) US8201351B2 (es)
EP (2) EP2842635A1 (es)
JP (1) JP4875628B2 (es)
WO (1) WO2006089984A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091434B2 (en) 2008-04-18 2015-07-28 The Board Of Trustees Of The University Of Alabama Meso-scaled combustion system
US10369579B1 (en) 2018-09-04 2019-08-06 Zyxogen, Llc Multi-orifice nozzle for droplet atomization

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881956B2 (en) * 2012-02-29 2014-11-11 Universidad De Sevilla Dispensing device and methods for emitting atomized spray
US8800824B2 (en) 2012-02-29 2014-08-12 Alfonso M. Gañan-Calvo Sequential delivery valve apparatus and methods
US9120109B2 (en) 2012-02-29 2015-09-01 Universidad De Sevilla Nozzle insert device and methods for dispensing head atomizer
US10898912B2 (en) 2015-08-28 2021-01-26 Regents Of The University Of Minnesota Nozzles and methods of mixing fluid flows
ES2663217B1 (es) * 2016-10-10 2019-02-07 Ingeniatrics Tecnologias S L Aparato y método para mezclar al menos dos líquidos
CA3103860A1 (en) * 2018-06-14 2019-12-19 Regents Of The University Of Minnesota Counterflow mixer and atomizer
CN115228642A (zh) * 2022-08-02 2022-10-25 北京航空航天大学 小流量分散流雾化喷嘴及低流速雾化器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248813A (en) 1962-02-16 1966-05-03 Carl F Quick Steam iron
WO1998000597A1 (en) 1996-07-01 1998-01-08 Philips Electronics N.V. Ironing machine comprising an iron and a stand
US5868322A (en) * 1996-01-31 1999-02-09 Hewlett-Packard Company Apparatus for forming liquid droplets having a mechanically fixed inner microtube
US5884846A (en) * 1996-09-19 1999-03-23 Tan; Hsiaoming Sherman Pneumatic concentric nebulizer with adjustable and capillaries
WO1999025915A1 (fr) 1997-11-19 1999-05-27 Seb S.A. Appareil et procede de repassage avec generation de vapeur
WO2000076673A1 (en) 1999-06-11 2000-12-21 Aradigm Corporation Method for producing an aerosol
WO2002070812A1 (en) 2001-03-01 2002-09-12 Euro Star S.R.L. Steam ironing apparatus with water spray arrangement
WO2003095097A1 (en) * 2002-05-07 2003-11-20 Spraying Systems Co. Internal mix air atomizing spray nozzle assembly
WO2005018817A2 (en) 2003-08-26 2005-03-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1140548A (en) * 1914-06-08 1915-05-25 John B Vogelsang Device for combining and emulsifying substances.
JPS4616148Y1 (es) * 1966-12-14 1971-06-04
US3822217A (en) * 1971-11-30 1974-07-02 E Rogers Foam forming device
CH681480A5 (es) * 1990-06-07 1993-03-31 Asea Brown Boveri
US5209407A (en) * 1992-01-21 1993-05-11 Black & Decker Inc. Spray nozzle for electric iron
DE19536856C2 (de) * 1995-10-03 1997-08-21 Danfoss As Mikromischer und Mischverfahren
US6197835B1 (en) * 1996-05-13 2001-03-06 Universidad De Sevilla Device and method for creating spherical particles of uniform size
ES2140998B1 (es) * 1996-05-13 2000-10-16 Univ Sevilla Procedimiento de atomizacion de liquidos.
JP2002508238A (ja) * 1997-12-17 2002-03-19 ユニバーシィダッド デ セビリヤ 流体のエアレーションのためのデバイスおよび方法
EP1037713B1 (en) * 1997-12-17 2002-07-10 Universidad de Sevilla Method of producing hollow droplets
US6565010B2 (en) * 2000-03-24 2003-05-20 Praxair Technology, Inc. Hot gas atomization
DE60331382D1 (de) * 2002-03-27 2010-04-08 Euroflex S R L Dampfbügeleisen mit Dampfkammer
JP2006507921A (ja) * 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
US7000342B2 (en) * 2004-01-23 2006-02-21 Mitco International Ltd. Steam iron
US7883026B2 (en) * 2004-06-30 2011-02-08 Illinois Tool Works Inc. Fluid atomizing system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248813A (en) 1962-02-16 1966-05-03 Carl F Quick Steam iron
US5868322A (en) * 1996-01-31 1999-02-09 Hewlett-Packard Company Apparatus for forming liquid droplets having a mechanically fixed inner microtube
WO1998000597A1 (en) 1996-07-01 1998-01-08 Philips Electronics N.V. Ironing machine comprising an iron and a stand
US5884846A (en) * 1996-09-19 1999-03-23 Tan; Hsiaoming Sherman Pneumatic concentric nebulizer with adjustable and capillaries
WO1999025915A1 (fr) 1997-11-19 1999-05-27 Seb S.A. Appareil et procede de repassage avec generation de vapeur
WO2000076673A1 (en) 1999-06-11 2000-12-21 Aradigm Corporation Method for producing an aerosol
WO2002070812A1 (en) 2001-03-01 2002-09-12 Euro Star S.R.L. Steam ironing apparatus with water spray arrangement
WO2003095097A1 (en) * 2002-05-07 2003-11-20 Spraying Systems Co. Internal mix air atomizing spray nozzle assembly
WO2005018817A2 (en) 2003-08-26 2005-03-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.M. GANAN-CALVO, PHYSICAL REVIEW LETTERS, vol. 80, 1998, pages 218
GANAN-CALVO, PHYSICAL REVIEW LETTERS, vol. 80, 1998, pages 285
R. SHINNAR, JOURNAL OF FLUID MECHANICS, vol. 10, 1961, pages 259

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091434B2 (en) 2008-04-18 2015-07-28 The Board Of Trustees Of The University Of Alabama Meso-scaled combustion system
US10369579B1 (en) 2018-09-04 2019-08-06 Zyxogen, Llc Multi-orifice nozzle for droplet atomization

Also Published As

Publication number Publication date
JP4875628B2 (ja) 2012-02-15
JP2008538192A (ja) 2008-10-16
EP1839760A1 (en) 2007-10-03
US8201351B2 (en) 2012-06-19
US20080271350A1 (en) 2008-11-06
EP2842635A1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2006089984A1 (es) Procedimiento y dispositivo para micro-mezclado de fluidos mediante célula de reflujo
ES2424713T4 (es) Método para producir un aerosol
ES2264608B2 (es) Dispositivo y procedimiento para la atomizacion neumatica de liquidos mediante flujo implosivo de gas.
US20070102533A1 (en) Aerosol created by directed flow of fluids and devices and methods for producing same
ES2258458T3 (es) Sistema de atomizacion de baja fuerza de pulverizacion y baja retencion.
CA2314920C (en) Device and method for creating aerosols for drug delivery
US6595202B2 (en) Device and method for creating aerosols for drug delivery
US20050000512A1 (en) Device and method for creating aerosols for drug delivery
CN107530650A (zh) 微细气泡生成装置
EP3259543B1 (en) An apparatus and a method for generating droplets
JP2017515595A (ja) 医薬液剤送達のためのエアロゾル化エンジン
JP2019532739A (ja) 微細構造化通路ノズル
Mezhericher et al. Atomization of liquids by disintegrating thin liquid films using gas jets
ES2265270B1 (es) Procedimiento y dispositivo para micro-mezclado de fluidos mediante celula de reflujo.
US20120292406A1 (en) Procedure and Device For The Micro-Mixing Of Fluids Through Reflux Cell
Ebrahim et al. An experimental technique for accelerating a single liquid droplet to high impact velocities against a solid target surface using a propellant gas
GB2531789A (en) Pierce device
US11648358B2 (en) Aerosol generator with offset inlet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006708833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007550802

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006708833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793622

Country of ref document: US