WO2006088912A2 - Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers - Google Patents
Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers Download PDFInfo
- Publication number
- WO2006088912A2 WO2006088912A2 PCT/US2006/005251 US2006005251W WO2006088912A2 WO 2006088912 A2 WO2006088912 A2 WO 2006088912A2 US 2006005251 W US2006005251 W US 2006005251W WO 2006088912 A2 WO2006088912 A2 WO 2006088912A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bentonite
- clay minerals
- electrospun
- wound
- gelatin
- Prior art date
Links
- 230000023597 hemostasis Effects 0.000 title claims abstract description 21
- 208000027418 Wounds and injury Diseases 0.000 title description 50
- 206010052428 Wound Diseases 0.000 title description 44
- 229910052500 inorganic mineral Inorganic materials 0.000 title description 18
- 239000011707 mineral Substances 0.000 title description 17
- 230000001154 acute effect Effects 0.000 title description 7
- 208000025865 Ulcer Diseases 0.000 title description 4
- 230000001684 chronic effect Effects 0.000 title description 4
- 238000005516 engineering process Methods 0.000 title description 4
- 231100000397 ulcer Toxicity 0.000 title description 4
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 93
- 239000000440 bentonite Substances 0.000 claims abstract description 93
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000002734 clay mineral Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000011324 bead Substances 0.000 claims abstract description 11
- 230000001737 promoting effect Effects 0.000 claims abstract description 7
- 108010010803 Gelatin Proteins 0.000 claims description 61
- 239000008273 gelatin Substances 0.000 claims description 61
- 229920000159 gelatin Polymers 0.000 claims description 61
- 235000019322 gelatine Nutrition 0.000 claims description 61
- 235000011852 gelatine desserts Nutrition 0.000 claims description 61
- 239000008280 blood Substances 0.000 claims description 29
- 210000004369 blood Anatomy 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 29
- 239000000835 fiber Substances 0.000 claims description 27
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical group OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 238000001523 electrospinning Methods 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 20
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 15
- 229920001661 Chitosan Polymers 0.000 claims description 14
- 108010073385 Fibrin Proteins 0.000 claims description 14
- 102000009123 Fibrin Human genes 0.000 claims description 14
- 229950003499 fibrin Drugs 0.000 claims description 14
- 230000002227 vasoactive effect Effects 0.000 claims description 14
- 239000008187 granular material Substances 0.000 claims description 13
- 239000002250 absorbent Substances 0.000 claims description 12
- 239000000499 gel Substances 0.000 claims description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 10
- 108090000190 Thrombin Proteins 0.000 claims description 10
- 239000011575 calcium Substances 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 229960004072 thrombin Drugs 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 150000003943 catecholamines Chemical class 0.000 claims description 7
- 229940099990 ogen Drugs 0.000 claims description 7
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 7
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 239000007850 fluorescent dye Substances 0.000 claims description 6
- 239000003193 general anesthetic agent Substances 0.000 claims description 6
- 229910052900 illite Inorganic materials 0.000 claims description 6
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 6
- 229910021647 smectite Inorganic materials 0.000 claims description 6
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 claims description 6
- 239000004599 antimicrobial Substances 0.000 claims description 5
- 238000004132 cross linking Methods 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000006072 paste Substances 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920000247 superabsorbent polymer Polymers 0.000 claims description 3
- 229920002307 Dextran Polymers 0.000 claims description 2
- 208000032843 Hemorrhage Diseases 0.000 abstract description 48
- 239000000463 material Substances 0.000 abstract description 47
- 230000023555 blood coagulation Effects 0.000 abstract description 9
- 235000012216 bentonite Nutrition 0.000 description 94
- 229940092782 bentonite Drugs 0.000 description 90
- 239000004927 clay Substances 0.000 description 41
- 208000014674 injury Diseases 0.000 description 22
- 230000035602 clotting Effects 0.000 description 20
- 108010049003 Fibrinogen Proteins 0.000 description 19
- 102000008946 Fibrinogen Human genes 0.000 description 19
- 229940012952 fibrinogen Drugs 0.000 description 19
- 239000002245 particle Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 206010053567 Coagulopathies Diseases 0.000 description 16
- 208000034158 bleeding Diseases 0.000 description 16
- 230000000740 bleeding effect Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 230000008733 trauma Effects 0.000 description 16
- 229910021536 Zeolite Inorganic materials 0.000 description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 14
- 239000010457 zeolite Substances 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 13
- 229920002125 Sokalan® Polymers 0.000 description 12
- 239000004584 polyacrylic acid Substances 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- -1 for example Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000004872 arterial blood pressure Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 8
- 238000005345 coagulation Methods 0.000 description 8
- 210000001105 femoral artery Anatomy 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 206010060964 Arterial haemorrhage Diseases 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000002439 hemostatic effect Effects 0.000 description 6
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 5
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 239000003114 blood coagulation factor Substances 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 229910052615 phyllosilicate Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 241000282898 Sus scrofa Species 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 210000001715 carotid artery Anatomy 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 239000002874 hemostatic agent Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000036407 pain Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229910052604 silicate mineral Inorganic materials 0.000 description 3
- 230000000472 traumatic effect Effects 0.000 description 3
- 229920002101 Chitin Polymers 0.000 description 2
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 2
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 2
- 229940014259 gelatin Drugs 0.000 description 2
- 210000004013 groin Anatomy 0.000 description 2
- 230000002008 hemorrhagic effect Effects 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920005594 polymer fiber Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000280 sodium bentonite Inorganic materials 0.000 description 2
- 229940080314 sodium bentonite Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000000476 thermogenic effect Effects 0.000 description 2
- 230000029663 wound healing Effects 0.000 description 2
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 1
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010003162 Arterial injury Diseases 0.000 description 1
- 206010003175 Arterial spasm Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 208000032456 Hemorrhagic Shock Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 206010061249 Intra-abdominal haemorrhage Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 206010049771 Shock haemorrhagic Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- 206010065441 Venous haemorrhage Diseases 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000636 anti-proteolytic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000005249 arterial vasculature Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229910000281 calcium bentonite Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006448 coagulant property Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006196 deacetylation Effects 0.000 description 1
- 238000003381 deacetylation reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- RUYJNKYXOHIGPH-UHFFFAOYSA-N dialuminum;trioxido(trioxidosilyloxy)silane Chemical compound [Al+3].[Al+3].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] RUYJNKYXOHIGPH-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 208000001780 epistaxis Diseases 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005541 medical transmission Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003232 mucoadhesive effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052645 tectosilicate Inorganic materials 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/18—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0004—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
Definitions
- the invention generally relates to compositions and methods for promoting hemostasis.
- the invention provides compositions comprising clay minerals, which, when applied to a bleeding area, function to 1) absorb liquid and 2) promote blood clotting.
- Hemorrhagic events from the minor to the life threatening, result from a wide variety of circumstances and occur in a wide variety of settings.
- the conditions which result in hemorrhage may be relatively predictable, such as those associated with medical procedures.
- hemorrhagic events may result from unpredictable circumstances, such as a breach of the skin or an internal organ in an accident.
- Such acute traumatic wounds occur in an almost infinite number of patterns and degrees, making the use of simple compression or application of a single type of bandage, impractical if not impossible, especially in the most severe circumstances.
- a traumatic wound to the groin cannot be readily controlled either by simple direct pressure or by the use of a simple flat bandage.
- Hemcon's Chitosan Bandage (see the website located at hemcon.com) is a gauze bandage impregnated with chitosan.
- Chitosan a fiber derived from chitin in shellfish, is a nondigestible aminopolysaccharide.
- Chitosan is synthesized by removing acetyl groups from chitin, through a process called deacetylation.
- Chitosan is known to have significant coagulant properties which are believed to be based on its cationic (positive charge) properties. However, its mucoadhesive properties may also be responsible.
- the Fibrin Sealant Dressing is the result of a collaborative effort between the U.S. Army and the American Red Cross. It is made from fibrin, thrombin, and factor XIH purified from human donated blood and plasma. It is thus a biologic which has a potential for disease transmission even though this risk is small.
- the FSD controls hemorrhage by promoting natural clot formation at the site of injury since it provides concentrated coagulation factors at the site of injury.
- it is a biologic and the manufacture of such bandages is extremely labor-intensive, and their cost may prohibit routine use in most circumstances (estimated cost between $500 and $1000).
- the dressings are fragile and tend to break apart if not carefully handled.
- the FSD bandage significantly improved survival when compared with the Army Field dressing, QuickClot and the HemCon bandage. The product comes only in bandage form.
- the Rapid Deployable Hemostat is a bandage made by Marine Polymer Technologies and incorporates a derivative from sea algae to promote hemostasis.
- RDH Rapid Deployable Hemostat
- United States patent 4,748,978 discloses a therapeutic dressing that includes a flexible permeable support and a mixture of mineral components, including bentonite, kaolinite and illite or attapulgite, and may include anti-fungal (or other) agents as well.
- the dressing is reported to be designed to be flexible and to be able to be made or cut to any desired size. It is reported to be intended primarily to treat burns, but can also be used for the treatment of ulcers. However, the dressing is not described as suitable for the treatment of hemorrhage, and no data from Kamp is available to support its use for this indictaion.
- United States patent 4,822,349 (to Hursey et al.) describes a non-bandage material used to treat bleeding.
- the material is sold by Z-Medica as "Quick-Clot" (see the website located at z-medica.com) and is a granular form of zeolite, an aluminum silicate mineral. During use, it is poured into a wound, hi addition to absorbing water from hemorrhaged blood and concentrating hemostatic factors in the blood at the site of injury, its mechanism of action appears to involve chemical cautery. An intense exothermic reaction is produced upon contact with liquid (e.g. blood), and is likely responsible for stoppage of blood flow by cauterization.
- liquid e.g. blood
- the product is a powder consisting of microporous beads which absorb water and which contain concentrated clotting factors. During use, the material is poured or squirted into the wound.
- Trauma 2003 ; 54 : 1077- 1082 in a model of severe hemorrhagic shock, TraumaDex performed no better than a standard field dressing, thus offering no advantage and certainly more expense.
- Alam and colleagues studied this product again J Trauma 2004;56:974-983 and demonstrated its performance to be suboptimal compared to QuickClot and the Hemcon bandage. In this study, it performed only slightly better than a standard dressing. Also to our knowledge, this product has not been made into a bandage and even if it were it would probably lack efficacy in stopping severe bleeding.
- the invention is based on the surprising discovery that formulations comprising certain relatively inexpensive and readily available clay minerals are highly effective in promoting blood clotting and stanching the flow of blood when applied to a hemorrhaging wound. Application of the material does not cause an exothermic reaction upon contact with the liquid components of blood. Thus, there is no danger of possible tissue damage by burning.
- the compositions of the invention can thus be used safely in any situation that requires the treatment of hemorrhage, including internal bleeding.
- An exemplary type of such a clay mineral is bentonite.
- the present invention provides compositions comprising clay minerals and methods for their use for effectively treating and controlling hemorrhage in a large number of variable scenarios.
- the compositions are relatively inexpensive to manufacture, highly effective, highly adaptable and easy to use, and cause no serious side effects.
- the clay mineral compositions provided herein can be used in a flexible manner to treat hemorrhage under a wide-ranging variety of circumstances. It is an object of this invention to provide a method of promoting hemostasis in a hemorrhaging wound.
- the method comprises the step of applying a composition comprising one or more clay minerals to the hemorrhaging wound.
- the clay minerals are applied in a quantity sufficient to promote one or both of the following: i) hemostasis and ii) formation of a cast (e.g.
- a hardened plug comprising the one or more clay minerals and blood from the hemorrhaging wound.
- the one or more clay minerals may be selected from the group consisting of kaolin-serpentine type clays, illite type clays and smectite type clays, hi one embodiment, the one or more clay minerals is bentonite.
- the one or more clay minerals may be in a form such as, for example, granules, powder, micron beads, liquid, paste, gel, impregnated in a bandage, and electospun into a bandage.
- the composition may further comprise one or more substances such as, for example, superabsorbent polymers, chitosan, fibrin(ogen), thrombin, calcium, vasoactive catecholamines, vasoactive peptides, electrostatic agents, antimicrobial agents, anesthetic agents, fluorescent agents, and quick dissolve carrier polymers such as dextran and polyethylene glycol (PEG).
- the hemorrhaging wound that is treated may be an external wound or an internal wound.
- the wounds may be the result of accidental or intentional trauma or by tissue breakdown from disease. Examples of tissue breakdown leading to severe bleeding include gastrointestinal bleeding as a result of ulcers, among others.
- Intentional trauma includes trauma that occurs as a result of surgical manipulation of tissue, due to, for example, repair of the tissue, repair or removal of adjacent tissue, the need to surgically insert or remove medical devices, etc.
- the invention further provides an electrospun fiber comprising one or more clay minerals.
- the one or more clay minerals may be, for example, kaolin-serpentine type clays, illite type clays and smectite type clays.
- the one or more clay minerals is bentonite.
- the electrospun fiber may further comprising one or more substances such as, for example, gelatin, a super-absorbent polymer, chitosan, fibrin(ogen), thrombin, calcium, vasoactive catecholamines, vasoactive peptides, antimicrobial agents, anesthetic agents and fluorescent agents.
- the electrospun fiber maybe crosslinked.
- the invention also provides a method of making an electrospun fiber, comprising the steps of 1) forming a composition comprising one or more clay minerals and a solvent, and 2) electrospinning the composition to form the electrospun fiber.
- the solvent is 2,2,2-trifluoroethanol.
- the composition to form the electrospun fiber may further comprise one or more substances such as, for example, gelatin, a super-absorbent polymer, chitosan, fibrin(ogen), thrombin, calcium, vasoactive catecholamines and vasoactive peptides.
- the method may further comprise the step of crosslinking the electrospun fiber.
- the invention provides a bandage comprised of electrospun fibers, wherein the electrospun fibers comprise one or more clay minerals.
- Figure 1 Schematic representation of exemplary electrospinning apparatus.
- Figure 2 Product obtained from electrospinning of gelatin alone (200 mg/mL of 2,2,2- trifluoroethanol, TFE).
- Figure 3 Product obtained from electrospinning of gelatin (200 mg/mL TFE) with pulverized bentonite clay (300 mg/mL TFE).
- Figure 4 Product obtained from electrospinning of gelatin (200 mg/mL TFE), pulverized bentonite clay (300 mg/mL) and a blend of crosslinked sodium salt of polyacrylic acid with particle size distribution less than 300 microns (LiquiBlock 144: Emerging Technologies Inc. Greensboro North Caroliina) (100 mg/mL TFE).
- Clay Powder 300 mg/mL TFE
- sodium salt of polyacrylic acid with particle size distribution less than 300 microns 100 mg/mL TFE
- FIG. 7 A-C. Coagulation studies with bentonite.
- A effect of bentonite on platelet function
- B effect of bentonite of clot structure
- C Thromboelastograph (TEG ® ) data with varying concentrations of bentonite.
- FIG. 8A-C Coagulation studies with bentonite compared to fibrinogen.
- A Effects of bentonite and fibrinogen on platelet function;
- B effects of electrospun materials on clot structure;
- C Thromboelastograph (TEG ® ) data.
- Figure 9A and B Comparison of bentonite, gelatin and zeolite.
- A effect of lOmg/mL of these agents on platelet function;
- B effect of lOmg/mL of these agents on clot structure.
- FIG 10A-B Comparison of bentonite, gelatin and zeolite.
- A effect of 50mg/mL of these agents on platelet function
- B effect of 50mg/mL of these agents on clot structure.
- Figure 1 IA-E Thromboelastograph (TEG ® ) data for bentonite, gelatin and zeolite.
- A lOgm/mL
- B 50 mg/mL
- C 75 mg/mL
- D zeolite at 10, 50 and 75 mg/mL
- E bentonite atlO, 50 and 75 mg/mL.
- the present invention provides compositions comprising clay minerals and related materials, and methods for their use in treating and controlling hemorrhage, i.e. in promoting hemostasis.
- hemorrhage or "acute hemorrhage” we mean the loss of blood from one or more anatomical sites of a patient that, if left untreated, would jeopardize the health of the patient. Hemorrhage typically results from rupture of one or more blood vessels, which may occur accidentally (e.g. as in accidental wounds) or purposefully (e.g. during surgical procedures).
- the active control of hemorrhage is referred to as "hemostasis”.
- the promotion of hemostasis involves, for example: slowing or stanching the flow of blood; and enhancing, facilitating or causing the blood to clot, particularly at the site of a wound.
- clay has no standard definition among the various fields to which it applies (e.g. geology, mineralogy, etc.). However, those skilled in the relevant arts generally recognize that clay is a very fine grained inorganic mineral material that is plastic when wet, and that hardens when dried. Most clays, having been formed by the weathering of silicate minerals in igneous rocks, are included in the silicate class of minerals and the subclass phyllosilicates. Phyllosilicates are formed from continuous sheets of tetrahedra, the basic unit of which is (Si 2 Os) "2 .
- Phyllosilicates in turn contain the clay group, comprised of hydrous layered silicates in which Al substitutes for some of the Si, the basic unit being (AlSi 3 OiO) "5 .
- Clay minerals generally exhibit high aqueous absorption capacities. However, unlike some silicate minerals (such as zeolite of the tectosilicate subclass), phyllosilicates and clays do not react exothermically in the presence of liquid.
- the present invention is based in part on the surprising discovery that clay minerals and related materials are highly effective in causing rapid blood clotting. Thus, they are excellent candidates for use in compositions and methods to treat hemorrhage. In addition, clay minerals are readily available and relatively inexpensive, and they are amenable to manipulation into a variety of forms.
- clay minerals and related materials we mean naturally occurring or synthetic inorganic material that exhibits the properties of clay minerals, e.g. the material is mineral in nature; dry forms of the material exhibit high aqueous absorption capacities; the material exhibits plasticity (ability to be molded) when particulate forms of the material are mixed with aqueous-based liquid; the material is devoid of exothermic activity when mixed with aqueous-based liquid; the material causes rapid clotting of blood.
- the materials utilized in the practice of the invention are clay minerals such as various forms of kaolinite-serpentine type clays, illite type clays and smectite type clays, etc. or combinations thereof.
- Materials related to clay minerals which may be used in the practice of the invention include but are not limited to volcanic ash (a precursor of mineral clay) and other similar natural and synthetic minerals, compounds and clays.
- the materials are naturally occurring hydrated aluminum silicates referred to as bentonites.
- Bentonite is comprised of a three layer structure with alumina sheets sandwiched between tetrahedral silica units. Simplified formulas for bentonite are: 1) (OH) 2 Al 2 Si 4 OiO; and 2) Al 2 O 3 • 4SiO 2 • H 2 O. Bentonite is a plastic clay generated from the alteration of volcanic ash, and consists predominately of smectite minerals, especially montmorillonite.
- Bentonite synonyms include sodium bentonite, calcium montmorillonite, saponite, montmorillonite sodium, montmorillonite calcium, taylorite, aluminum silicate, fuller's earth, and others.
- bentonite There are three major types of bentonite: 1) natural calcium bentonite; 2) natural sodium bentonite; and 3) sodium activated bentonite.
- sodium activated bentonites have superior swelling and gelling properties compared to calcium bentonites.
- the term "bentonite" as used herein in intended to encompass all synonyms and all types of bentonite, unless otherwise specified.
- bentonite Commercial, food, and pharmaceutical grade bentonites are readily available, as are a variety of particle or mesh sizes.
- Current uses of bentonite include the following: foundry sand, paints, thickening, suspending, sealing, bonding, binding, emulsification, absorption, moisture retention, carriers, water proofing, water filtering and detoxification, beverage, food, and cosmetics. Because of it absorptive and clumping ability, one of the most common uses of bentonite clay has been for cat litter. Bentonite clay in various forms and mixtures is also promoted as a detoxifying agent when orally consumed. It appears to have the ability to absorb potential toxins through its structure and ionic charges. It has been postulated that it may also have anti-proteolytic effects.
- the mineral clay that is used is kaolin
- kaolin anhydrous aluminum silicate.
- activated partial thromboplastin time is a measure of the activity of the intrinsic clotting system. The activator for this test is kaolin.
- Clay minerals have been found to have a remarkable and unexpected ability to cause blood to clot. Even heparinized blood will clot in their presence. Without being bound by theory, it is noted that the distribution of cations and anions in this type of material may cause favorable hemostasis, since cationic species are known to cause red cell aggregation and hence clotting, perhaps through a cation exchange mechanism. The negative charge of the clay may activate the intrinsic clotting system because a negative charge is known to possess this ability.
- the structural composition of the mineral along with its ionic distribution of charges also provides impressive absorptive properties. In terms of hemorrhage, this would provide for rapid absorption of blood components which may concentrate intrinsic clotting factors, including platelets, at the site of injury.
- the clay mineral compositions utilized in the present invention may include one or more clay minerals, i.e. a mixture of clays may be utilized. Those of skill in the art will recognize that such mixtures may occur naturally, in that deposits of mineral clays may or may not be of purely one type. Alternatively, the mixtures may be formed purposefully during production of the compositions.
- the clay mineral compositions utilized in the practice of the present invention may be formulated in a variety of ways. Examples include but are not limited to liquids, foams, powders, granules, gels, hydrogels, sprays, incorporation into bandages, etc. Depending on the application, such formulations may vary, for example, in viscosity, particle size, etc.
- a variety of other compounds or materials may be added to the clay minerals, examples of which include antimicrobial (e.g. anti-biotic, anti-fungal, and/or anti-viral) agents, electrostatic agents (e.g. dendrimers in which the charge density is varied or similar compounds), preservatives, various carriers which modulate viscosity (e.g.
- fibrinogen for a spray formulation
- various colorants for a spray formulation
- various medicaments which promote wound healing
- Other appropriate hemostatic or absorptive agents may also be added.
- fibrin(ogen) e.g. fibrin, which is a cleavage product of fibrinogen, or super-absorbent polymers of many types, cellulose of many types, other cations such as calcium, silver, and sodium or anions, other ion exchange resins, and other synthetic or natural absorbent entities such as super-absorbent polymers with and without ionic or charge properties.
- cations of one type in the clay maybe substituted with cations of another type (e.g. silver cations), the latter having a more favorable clotting activity.
- the clay mineral may have added to it vasoactive or other agents which promote vasoconstriction and hemostasis.
- agents might include catecholamines or vasoactive peptides. This may be especially helpful in its dry form so that when blood is absorbed, the additive agents become activated and are leached into the tissues to exert their effects.
- antibiotics and other agents which prevent infection any bacteriocidal or bacteriostatic agent or compound
- anesthetics/analgesics may be added to enhance healing by preventing infection and reducing pain.
- fluorescent agents or components could be added to help during surgical removal of some forms of the mineral to ensure minimal retention of the mineral after definitive control of hemorrhage is obtained. These could be viewed during application of light for example from a Wood's lamp. In short, any suitable material may be added, so long as the mineral clay composition is still able to cause blood clotting and promote hemostasis.
- the formulations of the present invention may be administered to a site of bleeding by any of a variety of means that are well known to those of skill in the art. Examples include but are not limited to internally (e.g. by ingestion of a liquid or tablet form), directly to a wound, (e.g. by shaking powdered or granulated forms of the material directly into or onto a site of hemorrhage), by placing a material such as a bandage that is impregnated with the material into or onto a wound, by spraying it into or onto the wound, or otherwise coating the wound with the material. Bandages may also be of a type that, with application of pressure, bend and so conform to the shape of the wound site.
- Partially hydrated forms resembling mortar or other semisolid-semiliquid forms, etc. may be used to fill certain types of wounds.
- For intra-abdominal bleeding we envision puncture of the peritoneum with a trocar followed by administration of clay mineral agents of various suitable formulations.
- Formulations may thus be in many forms such as bandages of varying shapes, sizes and degrees of flexibility and/or rigidity; gels; liquids; pastes; slurries; granules; powders; and other forms.
- the clay minerals can be incorporated into special carriers such as liposomes or other vehicles to assist in their delivery either topically, gastrointestinally, intracavitary, or even intravascularly.
- combinations of these forms may also be used, for example, a bandage that combines a flexible, sponge-like or gel material that is placed directly onto a wound, and that has an outer protective backing of a somewhat rigid material that is easy to handle and manipulate, the outer layer providing mechanical protection to the wound after application.
- Both the inner and outer materials may contain clay minerals. Any means of administration may be used, so long as the mineral clay makes sufficient contact with the site of hemorrhage to promote hemostasis.
- the mineral clay is incorporated into a fiber-like material for use in bandages using the technique of electrospinning.
- Electrospinning involves drawing a solution, usually liquid polymers dissolved in solvents, through a small nozzle within a high-energy electric field. The charged solution forms a liquid jet as it moves out the nozzle toward a grounded target, such as a metal plate or rod. During liquid jet travel, the solvent evaporates, forming a solid fiber that collects on the target as a non- woven "fabric" or mat/scaffolding.
- a solution usually liquid polymers dissolved in solvents
- This configuration permits the creation of scaffolds with micro- to nano-scale fibers. Additionally, random or highly aligned (high mandrel rotational speeds with fibers aligned circumferentially) fiber structures can be fabricated.
- the major factor in controlling fiber diameter is the polymer solution concentration. A linear relationship exists between polymer concentration and polymer fiber diameters produced, with a lower concentration resulting in finer fiber diameters.
- the mix of materials that is electrospun will, in general include, in addition to the mineral clay, a carrier polymer (natural and/or synthetic) for the insoluble clay, a solvent to dissolve the carrier polymer(s), and/or an absorbent polymer.
- a carrier polymer naturally and/or synthetic
- an absorbent polymer facilitates exposure of the blood to the entire structure of the electrospun fibrous material (e.g. bandage) and not just the surface of the material that is in contact with the blood.
- Possible additives to electrospun material include those which can be added to other clay mineral compositions and materials, as described above.
- beads in the micron size range may be formed from compositions of the present invention.
- a solution results which may be electrosprayed (rather than electrospun), and the product that results is in the shape of micron-sized balls or beads.
- Such beads may be used in the practice of the invention in much the same way as pulverized bentonite is used (e.g. poured into a wound).
- electrosprayed beads may also contain other substances which are beneficial for blood clotting and/or wound healing, since they can be made from compositions that contain such substances, as described above for electrospun compositions. Electrosprayed beads can thus be used, for example, for the release (e.g. slow release) of such beneficial compounds at the site of a wound to which they are applied.
- Compositions comprising clay minerals may be utilized to control bleeding in a large variety of settings, which include but are not limited to: a) External bleeding from wounds (acute and chronic) through the use of liquids, slurries, gels, sprays, foams, hydrogels, powder, granules, or the coating of bandages with these preparations. b) Gastrointestinal bleeding through the use of an ingestible liquid, slurry, gel, foam, granules, or powder. c) Epistaxis through the use of an aerosolized powder, sprays, foam, patches, or coated tampon.
- Many applications of the present invention are based on the known problems of getting the surfaces of bandages to conform to all surfaces of a bleeding wound.
- the use of granules, powders, gels, foams, slurries, pastes, and liquids allow the preparations of the invention to cover all surfaces no matter how irregular they are.
- a traumatic wound to the groin is very difficult to control by simple direct pressure or by the use of a simple flat bandage.
- treatment can be carried out by using a clay mineral in the form of, for example, a powder, granule preparation, gel, foam, or very viscous liquid preparation that can be poured, squirted or pumped into the wound, followed by application of pressure.
- One advantage of the preparations of the present invention is their ability to be applied to irregularly shaped wounds, and for sealing wound tracks, i.e. the path of an injurious agent such as a bullet, knife blade, etc.
- EXAMPLE 1 Electrospinning Gelatin, Bentonite and Super- Absorbent Polymer To create a hemostatic bandage, gelatin (Sigma Aldrich #G-9391), as a basic structural element (carrier polymer) was utilized for its potential to quickly dissolve in the wound (if desired and not cross-linked), promote some degree of coagulation, and act as a delivery system for bentonite, and/or quick absorb polymers.
- gelatin Sigma Aldrich #G-9391
- carrier polymer carrier polymer
- the concentration of gelatin that was chosen for electrospinning ranged between 150 mg/mL to 250 mg/mL TFE.
- 3 mL of solution was sufficient to obtain a sample, but 5 mL was necessary when spinning onto a larger mandrel to create a full bandage.
- Figure 2 shows a scanning electron micrograph (SEM) of electrospun gelatin alone at a concentration of 200 mg/mL TFE.
- the optimal concentration of ground bentonite to be put into the gelatin solution was determined. Concentrations ranging from 100 mg/mL to 400 mg/mL of ground bentonite were added to the gelatin solution to determine the highest concentration possible that could be put into the gelatin without clogging the syringe or having all of the particles sink to the bottom of the vial when pulling the solution into the syringe for electrospinning. The highest concentration of pulverized bentonite that allowed for successful electrospinning was 300 mg/niL in the gelatin solution, and this concentration was utilized throughout.
- the next step was testing the different super-absorbent polymers (blends of crosslinked polyacrylic acid and their salts) for their absorbency. Each polymer was placed in 3 mLs of water and timed to determine how long it took each polymer to form a gel. From these tests, the three polymers that gelled the quickest were chosen for the experiment to create a "quick" absorb bandage. The three chosen, Norsocryl XFS, LiquiBlock 144, and Norsocryl s-35, were based on their particle distribution size (less than 200 microns, 300 microns, and 500 microns, and, respectively). These polymers were individually added to gelatin samples and electrospun.
- ground bentonite clay was then added to the solution and electrospun. The same ratios of each substance were maintained: 100 mg/mL of the super- absorbent polymer, 300 mg/mL of ground bentonite clay, and 250 mg/mL of gelatin in TFE.
- the lid to the larger Petri dish was put into place to create an enclosed saturated glutaraldehyde vapor environment for cross-linking.
- the fluid component never comes into direct contact with the bandage structure.
- the polyacrylic acid with a particle size distribution less than 300 microns produced a scaffold with a cast-like appearance, whereas when it was spun at a slower flow rate (4 mL/hr) it was more cotton-like, but was difficult to remove from the mandrel.
- a solution spun at 10 mL/hr with 300 mg/mL of bentonite clay, 250 mg/mL gelatin in TFE, and 100 mg/mL of the same polyacrylic acid had a 776% increase in weight when placed into water for 30 seconds, for an un-fixed scaffold, and a 1508% increase in weight for the same scaffold in the cross-linked state. Further, this sample retained its shape when exposed to water.
- the sample utilizing the cross-linked polyacrylic acid (and its salt) of less than 500 micron particle size had a cotton-like appearance regardless of the flow rate at which the sample was electrospun.
- the scaffold formed from this sample also absorbed more water in comparison to that formed with the previous sample (polyacrylic acid with a particle size distribution less than 300 microns), showing a 1914% increase in weight when it was cross-linked.
- this sample was also the most apt to dissolve when exposed to water. In fact, a sample could not be collected for measurement of water absorption when it was in the un-fixed state due to complete dissolution.
- the super-absorbent polymer chosen for further investigation as an addition to the gelatin/bentonite clay solution was that made with cross-linked polyacrylic acid (and its salt) of less than 300 micron particle size.
- Figure 4 shows is a SEM of electrospun gelatin with pulverized bentonite clay and this superabsorbent polyacrylic acid.
- the original bentonite utilized in these experiments was in the form of coarse pellets which were ground into fine pieces that were easily suspended in the gelatin solution.
- bentonite clay powder (Kalyx.com, Item #2194)
- Bentonite clay is available in powder size particles and was suspended into the gelatin solution much more efficiently because the particles were so small. Therefore, the bentonite did not fall out of solution when pulling it into the syringe or during electrospinning.
- the final scaffold generally had a soft, cottony texture, regardless of the electrospinning rate, though this need not always be the case.
- the clay powder and gelatin solution was electrospun with and without the addition of the less than 300 micron particle size cross-linked polyacrylic acid.
- one preferred bandage is electrospun from a composition made with a concentration of 200 mg of gelatin per mL of TFE, 300 mg of bentonite clay powder per niL of the gelatin solution, and 100 mg of cross-linked polyacrylic acid (and its salts) of less than 300 micron particle size (LiquiBlock 144) per mL of the gelatin solution ( Figure 6).
- the bandage/scaffold is fixed for a minimum of about 30 minutes with a glutaraldehyde vapor.
- This embodiment of the scaffold exhibited a 2413% increase in weight when placed in 3 mL of water for 30 seconds. Further, the scaffold did not lose its shape upon exposure to water.
- Part I pulverized bentonite or gelatin
- Part II electrospun fibroginogen, bentonite, or gelatin
- Part IH pulverized bentonite, gelatin, and zeolite
- Part IV pulverized bentonite and zeolite.
- Pulverized cat litter (as above in Example 1) was the source of bentonite.
- Gelatin was obtained from Sigma Aldrich (catalog #G-9391).
- Zeolite (Quickclot) was obtained from Z-Medica.
- HASTM Hemodyne Hemostasis Analyzer
- FOT force onset time
- PCF platelet contractile force
- CEM clot elastic modulus
- CEM clot elastic modulus
- PCF platelet contractile force
- FOT is the speed at which thrombin is generated in whole blood.
- PCF is the force produced by platelets during clot retraction and therefore a measure of platelet function during clotting.
- CEM is measured simultaneously with PCF and it reflects the structural integrity of the clot. Very low PCF, low CEM, and prolonged FOT is associated with increased bleeding risk. CEM is the best overall measure of clot integrity and strength.
- the Thromboelastograph® Coagulation Analyzer 5000 measures the response to shearing of a formed clot; a pin, inserted into a rotating cup containing whole blood moves with the cup as the fibrin polymerizes. The amount of movement of the pin is recorded as amplitude, which reaches a maximum. The stronger the clot, the more the pin moves with the cup -and the higher the maximum amplitude (MA) or clot strength. Both fibrin polymerization and platelet contraction contribute to the MA.
- Assays were done as follows: Increasing amounts of study material followed by 20 ⁇ L of 0.2M CaCl 2 and 340 ⁇ L of sodium citrated whole blood were added to the sample cup. Final material concentrations in the blood samples were 0, 10, 50 and 75 mg/mL.
- Electrospun samples were evaluated at 5 mg/mL. Clot formation was initiated.
- the reaction time (R) is the time interval between the addition of sample to the cup and the production of a signal of at least 2 mm amplitude.
- the R value is typically interpreted as the time required for initial fibrin formation.
- MA is a reflection of the maximum structural integrity obtained by the clot. It is dependent on fibrin content, fibrin structure, platelet concentration and platelet function.
- na Preclotted sample; unable to obtain valid results.
- Gelatin 200 + Bentonite 200 had very little effect on FOT and PCF and MA but increased CEM and shortened R.
- Gelatin 200 + Bentonite 200 (10 mg/ml) shortened FOT and R and increased PCF, CEM, and MA.
- Bentonite Composition to Stanch Bleeding in vivo
- two large swine 50-80 kg were used to test the ability of bentonite clay granules to stop arterial bleeding.
- the model is designed the test the ability of hemostatic agents to control high pressure arterial bleeding (see Acheson et al: Comparison of Hemorrhage Control Agents Applied to Lethal Extremity Arterial Hemorrhage in Swine. J Trauma 2005:59;865- 875).
- the first animal underwent surgical exposure of the left and right femoral artery and the left carotid artery.
- a catheter was placed in the right femoral artery for arterial blood pressure monitoring.
- a 6 mm arteriotomy was created in the left femoral artery after lidocaine was applied to the area to prevent arterial spasm.
- the animal was allowed to hemorrhage for 30 seconds.
- 3.5 ounces (approximately 100 grams) of bentonite clay granules were poured into the wound (this is approximately equivalent to the weight and volume of Quick Clot as recommended by the manufacturer for use). Pressure was then applied with simple gauze pad for 4 minutes. After this time pressure was released. No further bleeding was noted.
- the mean arterial blood pressure at the time of application was 120 mmHg.
- the mean arterial blood pressure after the end of application did not change.
- an arteriotomy was made in the left carotid artery followed by immediate application of the 3.5 ounces of bentonite clay.
- the second animal underwent similar experimentation except that the left carotid artery was cannulated for monitoring of arterial blood pressure. Both the left and right femoral arteries were surgically isolated. Lidocaine was applied to the vessels to prevent vasospasm. A 6 mm arteriotomy was made in the right femoral artery. The animal was allowed to hemorrhage for 30 seconds. At this time 3.5 ounces of bentonite clay was applied and pressure was placed on the clay using simple medical gauze for 4 minutes. At this time pressure was released and no further bleeding was observed. The mean arterial blood pressure at this time was greater than 80 mmHg. The experiment was repeated on the left femoral artery with the same results.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Anesthesiology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Diabetes (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Artificial Filaments (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/884,363 US11167058B2 (en) | 2005-02-15 | 2006-02-15 | Hemostasis of wound having high pressure blood flow |
JP2007556251A JP2008531498A (en) | 2005-02-15 | 2006-02-15 | Mineral technology (MT) for emergency hemostasis and treatment of acute wounds and chronic ulcers |
AU2006214371A AU2006214371A1 (en) | 2005-02-15 | 2006-02-15 | Mineral technologies (MT) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
EP06735080.1A EP1853326B1 (en) | 2005-02-15 | 2006-02-15 | Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
CA002597940A CA2597940A1 (en) | 2005-02-15 | 2006-02-15 | Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
IL185211A IL185211A0 (en) | 2005-02-15 | 2007-08-12 | Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
US12/797,662 US9821084B2 (en) | 2005-02-15 | 2010-06-10 | Hemostasis of wound having high pressure blood flow using kaolin and bentonite |
US13/468,100 US20120219612A1 (en) | 2005-02-15 | 2012-05-10 | Mineral Technologies (MT) for Acute Hemostasis and for the Treatment of Acute Wounds and Chronic Ulcers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65284805P | 2005-02-15 | 2005-02-15 | |
US60/652,848 | 2005-02-15 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/884,363 A-371-Of-International US11167058B2 (en) | 2005-02-15 | 2006-02-15 | Hemostasis of wound having high pressure blood flow |
US12/797,662 Continuation US9821084B2 (en) | 2005-02-15 | 2010-06-10 | Hemostasis of wound having high pressure blood flow using kaolin and bentonite |
US13/468,100 Continuation US20120219612A1 (en) | 2005-02-15 | 2012-05-10 | Mineral Technologies (MT) for Acute Hemostasis and for the Treatment of Acute Wounds and Chronic Ulcers |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006088912A2 true WO2006088912A2 (en) | 2006-08-24 |
WO2006088912A3 WO2006088912A3 (en) | 2007-06-07 |
Family
ID=36917001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/005251 WO2006088912A2 (en) | 2005-02-15 | 2006-02-15 | Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
Country Status (9)
Country | Link |
---|---|
US (3) | US11167058B2 (en) |
EP (1) | EP1853326B1 (en) |
JP (1) | JP2008531498A (en) |
KR (1) | KR20070117589A (en) |
CN (1) | CN101160143A (en) |
AU (1) | AU2006214371A1 (en) |
CA (1) | CA2597940A1 (en) |
IL (1) | IL185211A0 (en) |
WO (1) | WO2006088912A2 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070160638A1 (en) * | 2006-01-09 | 2007-07-12 | Jack Mentkow | Hemostatic agent delivery system |
WO2008054566A1 (en) * | 2006-10-30 | 2008-05-08 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
WO2008109160A2 (en) | 2007-03-06 | 2008-09-12 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
EP1983951A2 (en) * | 2005-12-30 | 2008-10-29 | Uop Llc | Adsorbent-containing hemostatic devices |
DE102007024220A1 (en) | 2007-05-15 | 2008-11-20 | Aesculap Ag | Hemostatic fleece |
WO2008153714A1 (en) * | 2007-05-22 | 2008-12-18 | Virginia Commonwealth University | Hemostatic mineral compositions and uses thereof |
WO2008157536A2 (en) * | 2007-06-21 | 2008-12-24 | Z-Medica Corporation | Hemostatic sponge and method of making the same |
WO2009025782A2 (en) * | 2007-08-16 | 2009-02-26 | Jack Mentkow | Hemostatic agent composition and method of delivery |
WO2009032884A1 (en) * | 2007-09-05 | 2009-03-12 | Z-Medica Corporation | Wound healing with zeolite-based hemostatic devices |
WO2009126870A2 (en) | 2008-04-11 | 2009-10-15 | Virginia Commonwealth Unversity | Electrospun dextran fibers and devices formed therefrom |
WO2009126917A1 (en) * | 2008-04-11 | 2009-10-15 | Z-Medica Corporation | Method of providing hemostasis in anti-coagulated blood |
JP2009293168A (en) * | 2008-06-09 | 2009-12-17 | Panasonic Corp | Apparatus for producing non-connected cylinder and method for producing non-connected cylinder |
US7838716B2 (en) | 2006-08-11 | 2010-11-23 | Feg Holdings, Llc | High speed swelling, pressure exerting hemostatic device |
US7858123B2 (en) | 2005-04-04 | 2010-12-28 | The Regents Of The University Of California | Inorganic materials for hemostatic modulation and therapeutic wound healing |
US8202549B2 (en) | 2007-08-14 | 2012-06-19 | The Regents Of The University Of California | Mesocellular oxide foams as hemostatic compositions and methods of use |
US8252318B2 (en) | 2005-02-09 | 2012-08-28 | Z-Medica Corporation | Devices and methods for the delivery of blood clotting materials to bleeding wounds |
US8252344B2 (en) | 2003-09-12 | 2012-08-28 | Z-Medica Corporation | Partially hydrated hemostatic agent |
US8409629B2 (en) | 2006-01-09 | 2013-04-02 | Jack Mentkow | Hemostatic agent composition and method of delivery |
US8609129B2 (en) | 2006-01-09 | 2013-12-17 | Jack Mentkow | Hemostatic agent composition, delivery system and method |
US8703634B2 (en) | 2007-02-21 | 2014-04-22 | The Regents Of The University Of California | Hemostatic compositions and methods of use |
US8795718B2 (en) | 2008-05-22 | 2014-08-05 | Honeywell International, Inc. | Functional nano-layered hemostatic material/device |
US8883194B2 (en) | 2007-11-09 | 2014-11-11 | Honeywell International, Inc. | Adsorbent-containing hemostatic devices |
US8938898B2 (en) | 2006-04-27 | 2015-01-27 | Z-Medica, Llc | Devices for the identification of medical products |
US9198995B2 (en) | 2006-09-20 | 2015-12-01 | Ore-Medix Llc | Conformable structured therapeutic dressing |
US9555157B2 (en) | 2013-11-12 | 2017-01-31 | St. Teresa Medical, Inc. | Method of inducing hemostasis in a wound |
US9603964B2 (en) | 2012-06-22 | 2017-03-28 | Z-Medica, Llc | Hemostatic devices |
US9821084B2 (en) | 2005-02-15 | 2017-11-21 | Virginia Commonwealth University | Hemostasis of wound having high pressure blood flow using kaolin and bentonite |
US9889154B2 (en) | 2010-09-22 | 2018-02-13 | Z-Medica, Llc | Hemostatic compositions, devices, and methods |
CN107875433A (en) * | 2017-11-30 | 2018-04-06 | 英泰时尚服饰(苏州)有限公司 | A kind of preparation method of quick-acting haemostatic powder type looped fabric |
US10046081B2 (en) | 2008-04-11 | 2018-08-14 | The Henry M Jackson Foundation For The Advancement Of Military Medicine, Inc. | Electrospun dextran fibers and devices formed therefrom |
US10660945B2 (en) | 2015-08-07 | 2020-05-26 | Victor Matthew Phillips | Flowable hemostatic gel composition and its methods of use |
WO2020127745A1 (en) | 2018-12-20 | 2020-06-25 | Bk Giulini Gmbh | Products for treating bleeding wounds |
US10751444B2 (en) | 2015-08-07 | 2020-08-25 | Victor Matthew Phillips | Flowable hemostatic gel composition and its methods of use |
US10828387B2 (en) | 2015-11-12 | 2020-11-10 | St. Teresa Medical, Inc. | Method of sealing a durotomy |
US10953128B2 (en) | 2017-11-02 | 2021-03-23 | St. Teresa Medical, Inc. | Fibrin sealant products |
US11406771B2 (en) | 2017-01-10 | 2022-08-09 | Boston Scientific Scimed, Inc. | Apparatuses and methods for delivering powdered agents |
US11433223B2 (en) | 2016-07-01 | 2022-09-06 | Boston Scientific Scimed, Inc. | Delivery devices and methods |
US11642281B2 (en) | 2018-10-02 | 2023-05-09 | Boston Scientific Scimed, Inc. | Endoscopic medical device for dispensing materials and method of use |
US11701448B2 (en) | 2018-01-12 | 2023-07-18 | Boston Scientific Scimed, Inc. | Powder for achieving hemostasis |
US11766546B2 (en) | 2018-01-31 | 2023-09-26 | Boston Scientific Scimed, Inc. | Apparatuses and methods for delivering powdered agents |
US11833539B2 (en) | 2018-10-02 | 2023-12-05 | Boston Scientific Scimed, Inc. | Fluidization devices and methods of use |
US11918780B2 (en) | 2019-12-03 | 2024-03-05 | Boston Scientific Scimed, Inc. | Agent administering medical device |
US11931003B2 (en) | 2019-12-03 | 2024-03-19 | Boston Scientific Scimed, Inc. | Medical devices for agent delivery and related methods of use |
US12053169B2 (en) | 2019-12-03 | 2024-08-06 | Boston Scientific Scimed, Inc. | Devices and methods for delivering powdered agents |
US12083216B2 (en) | 2020-02-18 | 2024-09-10 | Boston Scientific Scimed, Inc. | Hemostatic compositions and related methods |
US12102749B2 (en) | 2020-01-06 | 2024-10-01 | Boston Scientific Scimed, Inc. | Agent delivery systems and methods of using the same |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9326995B2 (en) | 2005-04-04 | 2016-05-03 | The Regents Of The University Of California | Oxides for wound healing and body repair |
US20070154509A1 (en) * | 2005-12-30 | 2007-07-05 | Wilcher Steve A | Adsorbent-Containing Hemostatic Devices |
US20080145655A1 (en) * | 2006-12-14 | 2008-06-19 | Ppg Industries Ohio, Inc. | Electrospinning Process |
WO2013040080A1 (en) * | 2011-09-12 | 2013-03-21 | Protege Biomedical, Llc | Composition and dressing for wound treatment |
WO2013048787A1 (en) | 2011-09-26 | 2013-04-04 | Yes, Inc. | Novel hemostatic compositions and dressings for bleeding |
WO2013056116A1 (en) * | 2011-10-12 | 2013-04-18 | The Trustees Of Columbia University In The City Of New York | Hemostatic dressing for arterial bleeding |
WO2013086153A1 (en) | 2011-12-09 | 2013-06-13 | Acell, Inc. | Hemostatic device |
EP2676662B1 (en) * | 2012-06-18 | 2017-03-29 | Rhodia Poliamida E Especialidades Ltda | Polymeric composition containing mineral fillers, for improving skin wound healing |
CN102895068A (en) * | 2012-09-06 | 2013-01-30 | 浙江长安仁恒科技股份有限公司 | First-aid binder for trauma |
KR101432276B1 (en) * | 2013-02-06 | 2014-08-21 | 주식회사 이노테라피 | Animal Model to Assess Hemostatic Adhesives Ability Inducing Hemorrhage of Common Carotid Artery (CCA) or Superior Sagittal Sinus (SSS) and Use of the Same |
US11931227B2 (en) * | 2013-03-15 | 2024-03-19 | Cook Medical Technologies Llc | Bimodal treatment methods and compositions for gastrointestinal lesions with active bleeding |
US9867931B2 (en) | 2013-10-02 | 2018-01-16 | Cook Medical Technologies Llc | Therapeutic agents for delivery using a catheter and pressure source |
AU2016211382B2 (en) * | 2015-01-28 | 2019-10-10 | Hollister Incorporated | Adhesive for moist tissue and peristomal device made using the same |
AU2016220560A1 (en) * | 2015-02-16 | 2017-09-21 | Ihor Volodymyrovych GAIOVYCH | Hemostatic composition and hemostatic device (variants) |
KR20170093536A (en) * | 2016-02-05 | 2017-08-16 | 주식회사 유엔헬스케어 | Hemostatic bandage comprising kaolin and chitosan |
KR102387327B1 (en) * | 2017-04-28 | 2022-04-15 | 쿡 메디컬 테크놀러지스 엘엘씨 | Bimodal treatment method and composition for gastrointestinal lesions with vigorous bleeding |
WO2018237031A1 (en) * | 2017-06-20 | 2018-12-27 | St. Teresa Medical, Inc. | Hemostatic products |
CN108030952A (en) * | 2017-12-25 | 2018-05-15 | 陈益德 | A kind of new bio fiber hemostatic material and preparation method thereof |
CN108744022A (en) * | 2018-07-06 | 2018-11-06 | 中国热带农业科学院农产品加工研究所 | A kind of functionality absorbable hemostatic powder and preparation method thereof |
KR102366423B1 (en) * | 2019-03-20 | 2022-02-22 | 한남대학교 산학협력단 | A hemostatic system with rapid control of massive bleeding by solution spinning of biodegradable polymer |
WO2020198519A1 (en) * | 2019-03-28 | 2020-10-01 | Vantage Specialty Chemicals, Inc. | Skin-enhancing development |
KR102088351B1 (en) * | 2019-07-18 | 2020-03-13 | 한국지질자원연구원 | Pharmaceutical composition for prevention or treatment of metabolic bone disease comprising bentonite |
US20220211898A1 (en) * | 2019-09-10 | 2022-07-07 | American Nano, LLC | Silica fiber hemostatic devices and methods |
CN110464868B (en) * | 2019-09-27 | 2020-10-09 | 中南大学 | Silicate clay modified hemostatic material and preparation method thereof |
KR102164819B1 (en) * | 2020-03-02 | 2020-10-13 | 주식회사 이노테라피 | Apparatus for hemostasis and method for manufacturing the same |
KR102401238B1 (en) * | 2020-11-19 | 2022-05-25 | 한국지질자원연구원 | Bentonite-hydrogel bio-nano-composites and preparing method thereof |
CN113230447B (en) * | 2021-05-24 | 2022-04-08 | 河北工业大学 | Hemostatic repair material and preparation method thereof |
Family Cites Families (263)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB548046A (en) | 1941-02-19 | 1942-09-23 | Walter Sim Harris | Improvements in or relating to lint, bandages, gauze, cotton wool and other surgicaldressings and bindings |
US2688586A (en) | 1950-03-17 | 1954-09-07 | Johnson & Johnson | Improved hemostatic alginic surgical dressings and method of making |
US2969145A (en) | 1956-05-07 | 1961-01-24 | Johnson & Johnson | Packaged adhesive bandage |
US2922719A (en) | 1957-04-08 | 1960-01-26 | Zonolite Company | Structural clay products and method of making the same |
US3122140A (en) | 1962-03-29 | 1964-02-25 | Johnson & Johnson | Flexible absorbent sheet |
US3189227A (en) | 1962-12-07 | 1965-06-15 | American Home Prod | Fluid dispenser |
US3181231A (en) | 1963-08-06 | 1965-05-04 | Union Carbide Corp | Molecular sieve-metal agglomerates and their preparation |
US3366578A (en) | 1964-12-07 | 1968-01-30 | Universal Oil Prod Co | Zeolite and method for making the improved zeolite |
GB1155440A (en) | 1966-01-18 | 1969-06-18 | Herman Ferdinand Kamp | Therapeutic Composition for Treating Skin Injuries |
US3550593A (en) | 1967-02-02 | 1970-12-29 | Jack W Kaufman | Therapeutic apparatus |
US3386802A (en) | 1967-07-28 | 1968-06-04 | Universal Oil Prod Co | Method for preparing spherically-shaped crystalline zeolite particles |
US3538508A (en) | 1968-08-08 | 1970-11-10 | Samuel Young | Combination pillow and crash helmet |
FR2047874A6 (en) | 1969-06-10 | 1971-03-19 | Nouvel Lucien | |
US3723352A (en) | 1971-01-25 | 1973-03-27 | Air Prod & Chem | Supported silver catalysts |
US3698392A (en) | 1971-04-21 | 1972-10-17 | Kewanee Oil Co | Topical dressing |
US3763900A (en) | 1971-09-10 | 1973-10-09 | Milchwirlschaftliche Forschung | Process for sterilizing and filling aerosol containers |
US3979335A (en) | 1974-12-27 | 1976-09-07 | Georgy Anatolievich Golovko | Process for the preparation of synthetic zeolites |
JPS5792574A (en) | 1980-11-28 | 1982-06-09 | Nippon Denso Co | Manufacture of cordierite ceramics |
US4379143A (en) | 1980-12-05 | 1983-04-05 | Pq Corporation | Topical liquid or ointment |
US4374044A (en) | 1981-01-19 | 1983-02-15 | General Motors Corporation | Cordierite bead catalyst support and method of preparation |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4460642A (en) | 1981-06-26 | 1984-07-17 | Minnesota Mining And Manufacturing Company | Water-swellable composite sheet of microfibers of PTFE and hydrophilic absorptive particles |
JPS58206751A (en) | 1982-05-26 | 1983-12-02 | 日石三菱株式会社 | Wound covering material |
JPS5937956A (en) | 1982-08-24 | 1984-03-01 | カネボウ株式会社 | Particle filled fiber structure |
JPS5962050A (en) | 1982-09-30 | 1984-04-09 | 日本バイリ−ン株式会社 | Skin adhering agent |
JPS59133235A (en) | 1983-01-21 | 1984-07-31 | Kanebo Ltd | Zeolite particle-containing polymer and its production |
US4828832A (en) | 1983-09-07 | 1989-05-09 | Laboratorios Biochemie De Mexico | Method of manufacturing a composition for treating skin lesions |
US4514510A (en) | 1983-09-08 | 1985-04-30 | American Colloid Company | Hydrogen enriched water swellable clay having reduced acid demand and stable at low pH |
NZ209534A (en) | 1983-09-30 | 1987-01-23 | Surgikos Inc | Antimicrobial fabric for surgical drape |
US4822349A (en) * | 1984-04-25 | 1989-04-18 | Hursey Francis X | Method of treating wounds |
EP0176984B1 (en) * | 1984-09-27 | 1990-08-29 | Herman Ferdinand Kamp | Therapeutic dressing and method for manufacturing said dressing |
DK158066C (en) | 1984-11-21 | 1990-08-20 | Moelnlycke Ab | FIXING BIND |
JPS61145120A (en) | 1984-12-20 | 1986-07-02 | Sofuto Shirika Kk | Maturative for affected part of trauma |
US4626550A (en) | 1985-01-14 | 1986-12-02 | Pq Corporation | Zeolite for personal care products |
JPS61240963A (en) | 1985-04-18 | 1986-10-27 | ユニチカ株式会社 | Wound covering protective material |
US4631845A (en) | 1985-05-17 | 1986-12-30 | Intermec Corporation | Luggage tag |
GB2175889A (en) | 1985-05-23 | 1986-12-10 | Nat Res Dev | Clay films and applications |
US4717735A (en) | 1986-04-10 | 1988-01-05 | European Body Wrap, Inc. | Composition for body wrap |
US5599578A (en) | 1986-04-30 | 1997-02-04 | Butland; Charles L. | Technique for labeling an object for its identification and/or verification |
US4728323A (en) | 1986-07-24 | 1988-03-01 | Minnesota Mining And Manufacturing Company | Antimicrobial wound dressings |
US4938958A (en) | 1986-12-05 | 1990-07-03 | Shinagawa Fuel Co., Ltd. | Antibiotic zeolite |
JPH0618899B2 (en) | 1987-06-30 | 1994-03-16 | 品川燃料株式会社 | Film containing antibacterial zeolite |
JP2532515B2 (en) | 1987-10-08 | 1996-09-11 | 水澤化学工業株式会社 | Blood coagulant |
US4828081A (en) | 1988-03-04 | 1989-05-09 | Samsonite Corporation | Luggage identification system |
JPH0245040A (en) | 1988-08-03 | 1990-02-15 | Terumo Corp | Reduced pressure blood taking tube |
US4956350A (en) | 1988-08-18 | 1990-09-11 | Minnesota Mining And Manufacturing Company | Wound filling compositions |
US5140949A (en) | 1989-09-19 | 1992-08-25 | Mobil Oil Corporation | Zeolite-clay composition and uses thereof |
US5271943A (en) | 1989-10-27 | 1993-12-21 | Scott Health Care | Wound gel compositions containing sodium chloride and method of using them |
NO171069C (en) | 1990-05-29 | 1993-01-20 | Protan Biopolymer As | COVALENT CIRCUIT, STRONGLY SWELLING ALKALIMETAL AND AMMONIUM ALGINATE GELS, AND PROCEDURES FOR PREPARING THEREOF |
JP2777279B2 (en) | 1990-10-08 | 1998-07-16 | 工業技術院長 | Wound dressing and method for producing the same |
US5146932A (en) | 1990-11-01 | 1992-09-15 | Mccabe Francis J | Elastic counterpressure garment |
GB9109367D0 (en) | 1991-05-01 | 1991-06-26 | Merck Sharp & Dohme | Surgical dressing |
US5575995A (en) | 1991-08-15 | 1996-11-19 | Giovanoni; Richard L. | Ferric subsulfate gel and methods of using same |
GB2259858A (en) | 1991-08-21 | 1993-03-31 | Glanmor Thomas Williams | Odour adsorbing means |
GB9212303D0 (en) | 1992-06-10 | 1992-07-22 | Johnson & Johnson Medical Ltd | Absorbent products |
US5474545A (en) | 1992-12-07 | 1995-12-12 | Chikazawa; Osamu | Diaper and/or sanitary napkin |
GB9218749D0 (en) | 1992-09-04 | 1992-10-21 | Courtaulds Plc | Alginate gels |
DE4322956C2 (en) | 1993-07-09 | 1995-12-21 | Haack Karl Werner An | Chitosan film for wound sealing |
US5725551A (en) | 1993-07-26 | 1998-03-10 | Myers; Gene | Method and apparatus for arteriotomy closure |
US5486195A (en) | 1993-07-26 | 1996-01-23 | Myers; Gene | Method and apparatus for arteriotomy closure |
GB9317180D0 (en) | 1993-08-18 | 1993-10-06 | Unilever Plc | Granular detergent compositions containing zeolite and process for their preparation |
CA2175203A1 (en) | 1993-11-03 | 1995-05-11 | Thaddeus P. Pruss | Hemostatic patch |
US5502042A (en) | 1994-07-22 | 1996-03-26 | United States Surgical Corporation | Methods and compositions for treating wounds |
JPH0877746A (en) | 1994-08-31 | 1996-03-22 | Sony Corp | Recording medium housing cassette and cassette keeping case and label adhered thereto |
WO1996009541A1 (en) | 1994-09-19 | 1996-03-28 | Sekisui Kagaku Kogyo Kabushiki Kaisha | Blood component adhesion inhibitor, blood coagulation accelerator, method for using these agents, and vessel and carrier for blood examination |
WO1996016562A1 (en) | 1994-11-28 | 1996-06-06 | Langley John D | A breathable non-woven composite fabric |
US5826543A (en) | 1995-01-20 | 1998-10-27 | Ralston Purina Company | Clumpable animal litter containing a dust reducing agent |
US5538500A (en) | 1995-02-08 | 1996-07-23 | Peterson; Donald A. | Postoperative wound dressing |
US5801116A (en) | 1995-04-07 | 1998-09-01 | Rhodia Inc. | Process for producing polysaccharides and their use as absorbent materials |
FR2732585B1 (en) | 1995-04-10 | 1997-10-17 | Garconnet Michel | COMPACT LOST PACKAGE FOR FIRST AID DRESSING |
US5578022A (en) | 1995-04-12 | 1996-11-26 | Scherson; Daniel A. | Oxygen producing bandage and method |
US5788682A (en) | 1995-04-28 | 1998-08-04 | Maget; Henri J.R. | Apparatus and method for controlling oxygen concentration in the vicinity of a wound |
GB9510226D0 (en) | 1995-05-20 | 1995-07-19 | Smith & Nephew | Sterilisable cream or paste product for topical application |
WO1996040285A1 (en) | 1995-06-07 | 1996-12-19 | Imarx Pharmaceutical Corp. | Novel targeted compositions for diagnostic and therapeutic use |
AUPN851996A0 (en) | 1996-03-07 | 1996-03-28 | John Patrick Gray | Improvements in wound care management |
US5696101A (en) | 1996-04-16 | 1997-12-09 | Eastman Chemical Company | Oxidized cellulose and vitamin E blend for topical hemostatic applications |
US8696362B2 (en) | 1996-05-08 | 2014-04-15 | Gaumard Scientific Company, Inc. | Interactive education system for teaching patient care |
US5964239A (en) | 1996-05-23 | 1999-10-12 | Hewlett-Packard Company | Housing assembly for micromachined fluid handling structure |
GB2314842B (en) | 1996-06-28 | 2001-01-17 | Johnson & Johnson Medical | Collagen-oxidized regenerated cellulose complexes |
US5891074A (en) * | 1996-08-22 | 1999-04-06 | Avitar, Inc. | Pressure wound dressing |
US5981052A (en) | 1996-08-27 | 1999-11-09 | Rengo Co., Ltd. | Inorganic porous crystals-hydrophilic macromolecule composite |
US5834008A (en) | 1996-09-19 | 1998-11-10 | U.S. Biomaterials Corp. | Composition and method for acceleration of wound and burn healing |
USD386002S (en) | 1996-10-01 | 1997-11-11 | Hinkle Gerald F | Combined pouch for first aid safety kit with instruction card |
US8323305B2 (en) | 1997-02-11 | 2012-12-04 | Cardiva Medical, Inc. | Expansile device for use in blood vessels and tracts in the body and method |
US6037280A (en) | 1997-03-21 | 2000-03-14 | Koala Konnection | Ultraviolet ray (UV) blocking textile containing particles |
JPH10298824A (en) | 1997-04-22 | 1998-11-10 | Chisso Corp | Fiber and fibrous formed product using the same |
US5941897A (en) | 1997-05-09 | 1999-08-24 | Myers; Gene E. | Energy activated fibrin plug |
JPH10337302A (en) | 1997-06-06 | 1998-12-22 | Unitika Ltd | Tympanic membrane absence closure promoting material and manufacture thereof |
GB2326827B (en) | 1997-06-30 | 2002-02-20 | Johnson & Johnson Medical | Use of molecular sieves to promote wound healing |
JPH1171228A (en) | 1997-07-04 | 1999-03-16 | Shiseido Co Ltd | Water-in-oil emulsion composition |
JP3311650B2 (en) | 1997-08-19 | 2002-08-05 | 日本碍子株式会社 | Method for manufacturing cordierite-based ceramic honeycomb structure |
AU9400798A (en) | 1997-09-18 | 1999-04-05 | University Of Pittsburgh | Icam-1 selective echogenic microbubbles |
US6159232A (en) | 1997-12-16 | 2000-12-12 | Closys Corporation | Clotting cascade initiating apparatus and methods of use and methods of closing wounds |
JPH11178912A (en) | 1997-12-22 | 1999-07-06 | Kyocera Corp | Organism prosthetic material |
US6372333B1 (en) | 1998-02-25 | 2002-04-16 | Rengo Co., Ltd. | Composition containing inorganic porous crystals-hydrophilic macromolecule composite and product made therefrom |
WO1999045777A1 (en) | 1998-03-10 | 1999-09-16 | The Children's Hospital Of Philadelphia | Compositions and methods for treatment of asthma |
US7018392B2 (en) | 1998-04-08 | 2006-03-28 | Arthrocare Corporation | Hemostatic system for body cavities |
US6086970A (en) | 1998-04-28 | 2000-07-11 | Scimed Life Systems, Inc. | Lubricious surface extruded tubular members for medical devices |
JPH11332909A (en) | 1998-05-22 | 1999-12-07 | Frontier:Kk | Absorbent for absorption of salt-containing solution |
RU2176822C2 (en) | 1998-07-27 | 2001-12-10 | Лутаенко Вячеслав Федорович | Trainer for taking of emergency medical care |
US6123925A (en) | 1998-07-27 | 2000-09-26 | Healthshield Technologies L.L.C. | Antibiotic toothpaste |
US6475470B1 (en) | 1998-09-25 | 2002-11-05 | Kao Corporation | Compositions for oral cavity |
US20020197302A1 (en) | 1998-11-12 | 2002-12-26 | Cochrum Kent C. | Hemostatic polymer useful for rapid blood coagulation and hemostasis |
CA2350594A1 (en) | 1998-11-24 | 2000-06-02 | Johnson & Johnson Consumer Companies, Inc. | Coating useful as a dispenser of an active ingredient on dressings and bandages |
JP4236751B2 (en) | 1999-01-27 | 2009-03-11 | 日東電工株式会社 | Medical adhesive tape or sheet, and emergency bandage |
US6060461A (en) | 1999-02-08 | 2000-05-09 | Drake; James Franklin | Topically applied clotting material |
WO2000066086A1 (en) | 1999-04-29 | 2000-11-09 | Usbiomaterials Corporation | Anti-inflammatory bioactive glass particulates |
US6203512B1 (en) | 1999-06-28 | 2001-03-20 | The Procter & Gamble Company | Method for opening a packaging device and retrieving an interlabial absorbent article placed therein |
JP3423261B2 (en) | 1999-09-29 | 2003-07-07 | 三洋電機株式会社 | Display device |
US6450537B2 (en) | 2000-01-24 | 2002-09-17 | Polaroid Corporation | Self-service postage stamp assemblage |
KR100721752B1 (en) | 2000-01-24 | 2007-05-25 | 쿠라레 메디카루 가부시키가이샤 | Water-swellable polymer gel and process for preparing the same |
US6187347B1 (en) | 2000-02-09 | 2001-02-13 | Ecosafe, Llc. | Composition for arresting the flow of blood and method |
BR0110670A (en) | 2000-04-28 | 2005-05-24 | Biolife Llc | Hemostatic agent and delivery vehicle for the same |
US20020141964A1 (en) | 2001-01-19 | 2002-10-03 | Patterson James A. | Composition for arresting the flow of blood and method |
US6592888B1 (en) | 2000-05-31 | 2003-07-15 | Jentec, Inc. | Composition for wound dressings safely using metallic compounds to produce anti-microbial properties |
WO2001097826A2 (en) | 2000-06-16 | 2001-12-27 | University Of Medicine And Dentistry Of New Jersey | Hemostatic compositions, devices and methods |
AU2001270138A1 (en) | 2000-06-29 | 2002-01-14 | The Night Fun Co. | Illuminated emergency signaling device and flying balloon |
AU5436301A (en) | 2000-07-14 | 2002-01-17 | Safer Sleep Limited | A label, a label system and method |
IL138099A0 (en) | 2000-08-25 | 2001-10-31 | Naimer Richard | Bandage |
US20040013715A1 (en) * | 2001-09-12 | 2004-01-22 | Gary Wnek | Treatment for high pressure bleeding |
CN1279894C (en) | 2000-09-14 | 2006-10-18 | 久光医药股份有限公司 | Preparations for coating wound |
WO2002022060A1 (en) | 2000-09-15 | 2002-03-21 | Bruder Healthcare Company | Wound and therapy compress and dressing |
AU2002211686A1 (en) | 2000-10-13 | 2002-04-22 | On Site Gas Systems, Inc. | Bandage using molecular sieves |
DE60115960T2 (en) | 2001-01-31 | 2006-08-03 | Missak Kechichian | ABSORBENT PRODUCT |
JP2004525921A (en) | 2001-03-19 | 2004-08-26 | イオマイ コーポレイシヨン | Transdermal immunization patch |
US20040166172A1 (en) | 2001-03-27 | 2004-08-26 | Coni Rosati | Bioctive tissue abrasives |
US6481134B1 (en) | 2001-04-02 | 2002-11-19 | Alicia Aledo | Tag for attaching to a garment having an attribute and identifying the attribute to a person unable to visually identify the attribute |
US6622856B2 (en) | 2001-04-25 | 2003-09-23 | Johnson & Johnson Consumer Companies, Inc. | Relief kit |
JP4853887B2 (en) | 2001-05-09 | 2012-01-11 | 日東電工株式会社 | Adhesives and adhesive bandages and emergency bandages |
WO2002089675A2 (en) | 2001-05-09 | 2002-11-14 | Biointeractions Ltd. | Wound closure system and methods |
US20050147656A1 (en) | 2001-06-14 | 2005-07-07 | Hemcon, Inc. | Tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chitosan |
US7371403B2 (en) | 2002-06-14 | 2008-05-13 | Providence Health System-Oregon | Wound dressing and method for controlling severe, life-threatening bleeding |
WO2003000155A2 (en) * | 2001-06-22 | 2003-01-03 | Millard Marsden Mershon | Compositions and methods for reducing blood and fluid loss from open wounds |
US20030073249A1 (en) | 2001-07-07 | 2003-04-17 | Lee Duen | Allergen detection chip |
US7429252B2 (en) | 2001-12-12 | 2008-09-30 | Ogenix Corporation | Oxygen producing device for woundcare |
JP2005514105A (en) | 2001-12-31 | 2005-05-19 | アレス ラボラトリーズ エルエルシー | Hemostasis composition and method for controlling bleeding |
US20050119112A1 (en) | 2002-01-22 | 2005-06-02 | Zeochem, Llc | Process for production of molecular sieve adsorbent blends |
US7544177B2 (en) | 2002-01-24 | 2009-06-09 | The Regents Of The University Of California | Aerosol device to deliver bioactive agent |
WO2003065877A2 (en) | 2002-02-04 | 2003-08-14 | Damage Control Surgical Technologies, Inc. | Method and apparatus for improved hemostasis and damage control operations |
PT3483183T (en) | 2002-03-01 | 2021-06-02 | Immunomedics Inc | Immunoconjugate comprising humanised rs7 antibodies |
US20030175333A1 (en) | 2002-03-06 | 2003-09-18 | Adi Shefer | Invisible patch for the controlled delivery of cosmetic, dermatological, and pharmaceutical active ingredients onto the skin |
JP2003305079A (en) | 2002-04-17 | 2003-10-28 | Sekisui Film Kk | Adhesive tape |
US20030199922A1 (en) | 2002-04-22 | 2003-10-23 | Buckman James S. | Pneumatic pressure bandage for medical applications |
US20030212357A1 (en) | 2002-05-10 | 2003-11-13 | Pace Edgar Alan | Method and apparatus for treating wounds with oxygen and reduced pressure |
US20060193905A1 (en) | 2002-05-14 | 2006-08-31 | University Of Louisville Research Foundation, Inc. | Direct cellular energy delivery system |
DK2311432T3 (en) | 2002-06-07 | 2015-02-02 | Dyax Corp | Modified Kunitz domain polypeptides and their use in reducing ischemia or the onset of a systemic inflammatory response associated with a surgical procedure |
US20050137512A1 (en) | 2003-12-23 | 2005-06-23 | Campbell Todd D. | Wound dressing and method for controlling severe, life-threatening bleeding |
US8269058B2 (en) | 2002-06-14 | 2012-09-18 | Hemcon Medical Technologies, Inc. | Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chitosan |
US7279177B2 (en) | 2002-06-28 | 2007-10-09 | Ethicon, Inc. | Hemostatic wound dressings and methods of making same |
US20040101546A1 (en) | 2002-11-26 | 2004-05-27 | Gorman Anne Jessica | Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents |
GB2393120A (en) | 2002-09-18 | 2004-03-24 | Johnson & Johnson Medical Ltd | Compositions for wound treatment |
JP3794365B2 (en) | 2002-10-04 | 2006-07-05 | 憲司 中村 | Warming deodorant sterilizing compound and heat retaining deodorizing sterilizing material |
US6745720B2 (en) | 2002-10-29 | 2004-06-08 | Cycle Group Limited Of Delaware | Clumping animal litter and method of making same |
US6890177B2 (en) | 2002-12-02 | 2005-05-10 | Centrix, Inc. | Method and device for the retraction and hemostasis of tissue during crown and bridge procedures |
US6701649B1 (en) | 2002-12-12 | 2004-03-09 | Gunter Brosi | Combat identification marker |
US7060795B2 (en) | 2002-12-19 | 2006-06-13 | Kimberly-Clark Worldwide, Inc. | Wound care compositions |
WO2004056383A1 (en) * | 2002-12-20 | 2004-07-08 | Council Of Scientific And Industrial Research | Herbal composition for cuts, burns and wounds |
TW200427888A (en) | 2002-12-20 | 2004-12-16 | Procter & Gamble | Tufted fibrous web |
US7994078B2 (en) | 2002-12-23 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | High strength nonwoven web from a biodegradable aliphatic polyester |
JP3975944B2 (en) | 2003-02-27 | 2007-09-12 | 住友電気工業株式会社 | HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME |
US7322976B2 (en) | 2003-03-04 | 2008-01-29 | Cardiva Medical, Inc. | Apparatus and methods for closing vascular penetrations |
JP4589608B2 (en) | 2003-06-24 | 2010-12-01 | ニプロパッチ株式会社 | Pressure sensitive adhesive tape |
KR100544123B1 (en) | 2003-07-29 | 2006-01-23 | 삼성에스디아이 주식회사 | Flat panel display |
EP2216342B1 (en) | 2003-07-31 | 2015-04-22 | Immunomedics, Inc. | Anti-CD19 antibodies |
EP1656069B1 (en) | 2003-08-14 | 2011-03-23 | Loma Linda University Medical Center | Vascular wound closure device |
US20050143689A1 (en) | 2003-08-17 | 2005-06-30 | Ramsey Maynard Iii | Internal compression tourniquet catheter system and method for wound track navigation and hemorrhage control |
US7125821B2 (en) | 2003-09-05 | 2006-10-24 | Exxonmobil Chemical Patents Inc. | Low metal content catalyst compositions and processes for making and using same |
WO2005027808A1 (en) * | 2003-09-12 | 2005-03-31 | Z-Medica Corporation | Calcium zeolite hemostatic agent |
ATE489062T1 (en) | 2003-09-12 | 2010-12-15 | Z Medica Corp | PARTIALLY HYDROGENATED HEMOSTATIC AGENT |
CA2443059A1 (en) | 2003-09-29 | 2005-03-29 | Le Groupe Lysac Inc. | Polysaccharide-clay superabsorbent nanocomposites |
NZ547140A (en) | 2003-10-22 | 2009-09-25 | Encelle Inc | Bioactive hydrogel compositions in dehydrated form for regenerating connective tissue |
AU2003284808B2 (en) | 2003-11-14 | 2009-01-22 | Catalyst Biosciences, Inc. | The derivatives of pyridone and the use of them |
EP1727569A1 (en) | 2004-03-11 | 2006-12-06 | Medtrade Products Ltd. | Compositions of alpha and beta chitosan and methods of preparing them |
EP2301619B1 (en) | 2004-03-19 | 2017-05-10 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
GB0407502D0 (en) | 2004-04-02 | 2004-05-05 | Inotec Amd Ltd | Hyperbaric dressing |
US7572274B2 (en) | 2004-05-27 | 2009-08-11 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
US7993366B2 (en) | 2004-05-27 | 2011-08-09 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
US20080154303A1 (en) | 2006-12-21 | 2008-06-26 | Cardiva Medical, Inc. | Hemostasis-enhancing device and method for its use |
US9017374B2 (en) | 2004-04-09 | 2015-04-28 | Cardiva Medical, Inc. | Device and method for sealing blood vessels |
US20050226911A1 (en) | 2004-04-13 | 2005-10-13 | Bringley Joseph F | Article for inhibiting microbial growth in physiological fluids |
US20050248270A1 (en) | 2004-05-05 | 2005-11-10 | Eastman Kodak Company | Encapsulating OLED devices |
US20050249899A1 (en) | 2004-05-06 | 2005-11-10 | Bonutti Peter M | Biodegradable packaging material |
GB2415382A (en) | 2004-06-21 | 2005-12-28 | Johnson & Johnson Medical Ltd | Wound dressings for vacuum therapy |
US8916208B2 (en) | 2004-06-24 | 2014-12-23 | California Institute Of Technology | Aluminophosphate-based materials for the treatment of wounds |
US7326043B2 (en) * | 2004-06-29 | 2008-02-05 | Cornell Research Foundation, Inc. | Apparatus and method for elevated temperature electrospinning |
EP1773414A1 (en) | 2004-07-08 | 2007-04-18 | Alltracel Development Services Limited | A delivery system for controlling the bleeding of skin wounds |
US20060034935A1 (en) | 2004-07-22 | 2006-02-16 | Pronovost Allan D | Compositions and methods for treating excessive bleeding |
US20060078628A1 (en) | 2004-10-09 | 2006-04-13 | Karl Koman | Wound treating agent |
US20060116635A1 (en) | 2004-11-29 | 2006-06-01 | Med Enclosure L.L.C. | Arterial closure device |
US20060121101A1 (en) | 2004-12-08 | 2006-06-08 | Ladizinsky Daniel A | Method for oxygen treatment of intact skin |
US8535709B2 (en) | 2004-12-13 | 2013-09-17 | Southeastern Medical Technologies, Llc | Agents for controlling biological fluids and methods of use thereof |
US20060127437A1 (en) * | 2004-12-13 | 2006-06-15 | Misty Anderson Kennedy | Semisolid system and combination semisolid, multiparticulate system for sealing tissues and/or controlling biological fluids |
US20060141060A1 (en) | 2004-12-27 | 2006-06-29 | Z-Medica, Llc | Molecular sieve materials having increased particle size for the formation of blood clots |
US20060178609A1 (en) | 2005-02-09 | 2006-08-10 | Z-Medica, Llc | Devices and methods for the delivery of molecular sieve materials for the formation of blood clots |
AU2006214371A1 (en) | 2005-02-15 | 2006-08-24 | Virginia Commonwealth University | Mineral technologies (MT) for acute hemostasis and for the treatment of acute wounds and chronic ulcers |
GB0504445D0 (en) | 2005-03-03 | 2005-04-06 | Univ Cambridge Tech | Oxygen generation apparatus and method |
US20060211971A1 (en) | 2005-03-16 | 2006-09-21 | Z-Medica, Llc | Pillow for the delivery of blood clotting materials to a wound site |
US20060211965A1 (en) | 2005-03-16 | 2006-09-21 | Z-Medica, Llc | Device for the delivery of blood clotting materials to a wound site |
CA2602613A1 (en) | 2005-04-04 | 2006-10-19 | The Regents Of The University Of California | Inorganic materials for hemostatic modulation and therapeutic wound healing |
US9326995B2 (en) | 2005-04-04 | 2016-05-03 | The Regents Of The University Of California | Oxides for wound healing and body repair |
EP1714642A1 (en) | 2005-04-18 | 2006-10-25 | Bracco Research S.A. | Pharmaceutical composition comprising gas-filled microcapsules for ultrasound mediated delivery |
US20070004995A1 (en) | 2005-06-30 | 2007-01-04 | Horn Jeffrey L | Swab device and kit for the delivery of blood clotting materials to a wound site |
US7438705B2 (en) | 2005-07-14 | 2008-10-21 | Boehringer Technologies, L.P. | System for treating a wound with suction and method detecting loss of suction |
US8063264B2 (en) | 2005-08-26 | 2011-11-22 | Michael Spearman | Hemostatic media |
CA2622200A1 (en) | 2005-09-13 | 2007-03-22 | Elan Pharma International, Limited | Nanoparticulate tadalafil formulations |
US20070104768A1 (en) | 2005-11-07 | 2007-05-10 | Z-Medica Corporation | Devices for the delivery of molecular sieve materials for the formation of blood clots |
US20090076475A1 (en) | 2005-11-09 | 2009-03-19 | Oxysure Systems Inc. | Method and apparatus for delivering therapeutic oxygen treatments |
US8911472B2 (en) | 2005-12-13 | 2014-12-16 | Cardiva Medical, Inc. | Apparatus and methods for delivering hemostatic materials for blood vessel closure |
US9179897B2 (en) | 2005-12-13 | 2015-11-10 | Cardiva Medical, Inc. | Vascular closure devices and methods providing hemostatic enhancement |
US20100168767A1 (en) | 2008-06-30 | 2010-07-01 | Cardiva Medical, Inc. | Apparatus and methods for delivering hemostatic materials for blood vessel closure |
US7691127B2 (en) | 2005-12-13 | 2010-04-06 | Cardiva Medical, Inc. | Drug eluting vascular closure devices and methods |
US20070142783A1 (en) | 2005-12-16 | 2007-06-21 | Huey Raymond J | Devices and methods for promoting the formation of blood clots at dialysis access sites |
US20070154510A1 (en) | 2005-12-30 | 2007-07-05 | Wilcher Steve A | Adsorbent-Containing Hemostatic Devices |
US20070154509A1 (en) | 2005-12-30 | 2007-07-05 | Wilcher Steve A | Adsorbent-Containing Hemostatic Devices |
US8609129B2 (en) | 2006-01-09 | 2013-12-17 | Jack Mentkow | Hemostatic agent composition, delivery system and method |
US9474652B2 (en) | 2006-01-09 | 2016-10-25 | Jack Mentkow | Hemostatic agent delivery system |
US8409629B2 (en) | 2006-01-09 | 2013-04-02 | Jack Mentkow | Hemostatic agent composition and method of delivery |
US8277837B2 (en) | 2006-01-11 | 2012-10-02 | Entegrion, Inc. | Hemostatic textile |
US20070167971A1 (en) | 2006-01-17 | 2007-07-19 | Raymond Huey | Devices and methods for promoting the formation of blood clots in esophageal varices |
FR2899479B1 (en) | 2006-04-10 | 2009-07-24 | Agelys Lab | CICATRISANTE COMPOSITION |
US20090011394A1 (en) | 2006-04-14 | 2009-01-08 | Simquest Llc | Limb hemorrhage trauma simulator |
FR2900824A1 (en) | 2006-05-10 | 2007-11-16 | Prod Dentaires Pierre Rolland | PASTE FOR STOPPING BLEEDINGS, USES, AND SYRINGE CONTAINING SAME |
US7968114B2 (en) | 2006-05-26 | 2011-06-28 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
US8202532B2 (en) | 2006-05-26 | 2012-06-19 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
US7604819B2 (en) | 2006-05-26 | 2009-10-20 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
US20070276308A1 (en) | 2006-05-26 | 2007-11-29 | Huey Raymond J | Hemostatic agents and devices for the delivery thereof |
MX2008015275A (en) | 2006-05-30 | 2009-02-06 | Elan Pharma Int Ltd | Nanoparticulate posaconazole formulations. |
US20080027365A1 (en) | 2006-06-01 | 2008-01-31 | Huey Raymond J | Hemostatic device with oxidized cellulose pad |
CN1970090B (en) | 2006-09-14 | 2015-11-25 | 华东理工大学 | Nanometer mesoporous silicon based xerogel hemostatic material and its preparation method and application |
WO2008036225A2 (en) | 2006-09-20 | 2008-03-27 | Entek Manufacturing, Inc. | Conformable structured therapeutic dressing |
US20080145455A1 (en) | 2006-12-13 | 2008-06-19 | Bedard Robert L | Combination of Inorganic Hemostatic Agents with Other Hemostatic Agents |
US20100184348A1 (en) | 2006-12-20 | 2010-07-22 | Imerys Pigments, Inc. | Spunlaid Fibers Comprising Coated Calcium Carbonate, Processes For Their Production, and Nonwoven Products |
WO2008127497A2 (en) | 2007-02-21 | 2008-10-23 | The Regents Of The University Of California | Hemostatic compositions and methods of use |
CN101104080B (en) | 2007-04-24 | 2011-06-22 | 深圳市鸿华投资有限公司 | Zeolite hemostatic dressings and preparation method and application thereof |
US20080319476A1 (en) | 2007-05-22 | 2008-12-25 | Ward Kevin R | Hemostatic mineral compositions and uses thereof |
WO2009021047A2 (en) | 2007-08-06 | 2009-02-12 | Ohio Medical Corporation | Wound treatment system and suction regulator for use therewith |
US20090047366A1 (en) | 2007-08-15 | 2009-02-19 | Bedard Robert L | Inorganic Coagulation Accelerators for Individuals taking Platelet Blockers or Anticoagulants |
US20090053288A1 (en) | 2007-08-20 | 2009-02-26 | Eskridge Jr E Stan | Hemostatic woven fabric |
US8287506B2 (en) | 2007-10-26 | 2012-10-16 | Electrochemical Oxygen Concepts, Inc. | Apparatus and methods for controlling tissue oxygenation for wound healing and promoting tissue viability |
US8883194B2 (en) | 2007-11-09 | 2014-11-11 | Honeywell International, Inc. | Adsorbent-containing hemostatic devices |
US8319002B2 (en) | 2007-12-06 | 2012-11-27 | Nanosys, Inc. | Nanostructure-enhanced platelet binding and hemostatic structures |
US20110059287A1 (en) | 2008-01-21 | 2011-03-10 | Imerys Pigments, Inc. | Fibers comprising at least one filler, processes for their production, and uses thereof |
US20100035045A1 (en) | 2008-01-21 | 2010-02-11 | Imerys Pigments, Inc. | Fibers comprising at least one filler and processes for their production |
KR101511405B1 (en) | 2008-02-25 | 2015-04-15 | 데이고꾸세이약꾸가부시끼가이샤 | Wound-covering hydrogel material |
CN102014973A (en) | 2008-02-29 | 2011-04-13 | 弗罗桑医疗设备公司 | Device for promotion of hemostasis and/or wound healing |
EP2276879B1 (en) | 2008-04-11 | 2015-11-25 | Virginia Commonwealth University | Electrospun dextran fibers and devices formed therefrom |
US9205170B2 (en) | 2008-05-02 | 2015-12-08 | Hemcon Medical Technologies, Inc. | Wound dressing devices and methods |
CA2723183C (en) | 2008-05-06 | 2014-04-22 | Richard W. Ducharme | Apparatus and methods for delivering therapeutic agents |
WO2010036050A2 (en) | 2008-09-26 | 2010-04-01 | Lg Electronics Inc. | Mobile terminal and control method thereof |
EP2172167A1 (en) | 2008-10-02 | 2010-04-07 | 3M Innovative Properties Company | Dental retraction device and process of its production |
RU2506300C2 (en) | 2008-12-18 | 2014-02-10 | Фмк Корпорейшн | Oil-field biocide made from peracetic acid and method for use thereof |
JP5631332B2 (en) | 2008-12-23 | 2014-11-26 | クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc | Apparatus and method for containing and delivering therapeutic agents |
US8118777B2 (en) | 2009-05-29 | 2012-02-21 | Cook Medical Technologies Llc | Systems and methods for delivering therapeutic agents |
US9142144B2 (en) | 2009-06-16 | 2015-09-22 | Simquest Llc | Hemorrhage control simulator |
US9370347B2 (en) | 2010-02-10 | 2016-06-21 | Cardiva Medical, Inc. | Bilateral vessel closure |
US20110237994A1 (en) | 2010-03-25 | 2011-09-29 | Combat Medical Systems, Llc | Void-filling wound dressing |
US8858969B2 (en) | 2010-09-22 | 2014-10-14 | Z-Medica, Llc | Hemostatic compositions, devices, and methods |
CN201920992U (en) | 2010-12-29 | 2011-08-10 | 稳健实业(深圳)有限公司 | Medical dressing |
US20130060279A1 (en) | 2011-09-02 | 2013-03-07 | Cardiva Medical, Inc. | Catheter with sealed hydratable hemostatic occlusion element |
AU2013277643B2 (en) | 2012-06-22 | 2015-09-10 | Teleflex Life Sciences Ii Llc | Hemostatic devices |
US9867931B2 (en) | 2013-10-02 | 2018-01-16 | Cook Medical Technologies Llc | Therapeutic agents for delivery using a catheter and pressure source |
US9502099B2 (en) | 2014-11-14 | 2016-11-22 | Cavium, Inc. | Managing skew in data signals with multiple modes |
US10531868B2 (en) | 2017-12-01 | 2020-01-14 | Cardiva Medical, Inc. | Apparatus and methods for accessing and closing multiple penetrations on a blood vessel |
-
2006
- 2006-02-15 AU AU2006214371A patent/AU2006214371A1/en not_active Abandoned
- 2006-02-15 US US11/884,363 patent/US11167058B2/en active Active
- 2006-02-15 JP JP2007556251A patent/JP2008531498A/en active Pending
- 2006-02-15 WO PCT/US2006/005251 patent/WO2006088912A2/en active Application Filing
- 2006-02-15 CA CA002597940A patent/CA2597940A1/en not_active Abandoned
- 2006-02-15 CN CNA2006800123541A patent/CN101160143A/en active Pending
- 2006-02-15 KR KR1020077021046A patent/KR20070117589A/en not_active Application Discontinuation
- 2006-02-15 EP EP06735080.1A patent/EP1853326B1/en active Active
-
2007
- 2007-08-12 IL IL185211A patent/IL185211A0/en unknown
-
2010
- 2010-06-10 US US12/797,662 patent/US9821084B2/en active Active
-
2012
- 2012-05-10 US US13/468,100 patent/US20120219612A1/en not_active Abandoned
Non-Patent Citations (4)
Title |
---|
ACHESON ET AL.: "Comparison of Hemorrhage Control Agents Applied to Lethal Extremity Arterial Hemorrhage", SWINE. J TRAUMA, vol. 59, 2005, pages 865 - 875 |
ALAM ET AL., J TRAUMA, vol. 54, 2003, pages 1077 - 1082 |
ALAM ET AL., J TRAUMA, vol. 56, 2004, pages 974 - 983 |
See also references of EP1853326A4 |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8252344B2 (en) | 2003-09-12 | 2012-08-28 | Z-Medica Corporation | Partially hydrated hemostatic agent |
US8252318B2 (en) | 2005-02-09 | 2012-08-28 | Z-Medica Corporation | Devices and methods for the delivery of blood clotting materials to bleeding wounds |
US11167058B2 (en) | 2005-02-15 | 2021-11-09 | Virginia Commonwealth University | Hemostasis of wound having high pressure blood flow |
US9821084B2 (en) | 2005-02-15 | 2017-11-21 | Virginia Commonwealth University | Hemostasis of wound having high pressure blood flow using kaolin and bentonite |
US7858123B2 (en) | 2005-04-04 | 2010-12-28 | The Regents Of The University Of California | Inorganic materials for hemostatic modulation and therapeutic wound healing |
EP1983951A4 (en) * | 2005-12-30 | 2012-05-30 | Uop Llc | Adsorbent-containing hemostatic devices |
EP1983951A2 (en) * | 2005-12-30 | 2008-10-29 | Uop Llc | Adsorbent-containing hemostatic devices |
US8609129B2 (en) | 2006-01-09 | 2013-12-17 | Jack Mentkow | Hemostatic agent composition, delivery system and method |
US20070160638A1 (en) * | 2006-01-09 | 2007-07-12 | Jack Mentkow | Hemostatic agent delivery system |
US9474652B2 (en) | 2006-01-09 | 2016-10-25 | Jack Mentkow | Hemostatic agent delivery system |
US8409629B2 (en) | 2006-01-09 | 2013-04-02 | Jack Mentkow | Hemostatic agent composition and method of delivery |
US8938898B2 (en) | 2006-04-27 | 2015-01-27 | Z-Medica, Llc | Devices for the identification of medical products |
US9867898B2 (en) | 2006-05-26 | 2018-01-16 | Z-Medica, Llc | Clay-based hemostatic agents |
US7968114B2 (en) * | 2006-05-26 | 2011-06-28 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
US12076448B2 (en) | 2006-05-26 | 2024-09-03 | Teleflex Life Sciences Ii Llc | Hemostatic devices |
US10086106B2 (en) | 2006-05-26 | 2018-10-02 | Z-Medica, Llc | Clay-based hemostatic agents |
US11123451B2 (en) | 2006-05-26 | 2021-09-21 | Z-Medica, Llc | Hemostatic devices |
US10960101B2 (en) | 2006-05-26 | 2021-03-30 | Z-Medica, Llc | Clay-based hemostatic agents |
US8395010B2 (en) | 2006-08-11 | 2013-03-12 | Feg Holdings, Llc | High speed swelling, pressure exerting hemostatic device |
US7838716B2 (en) | 2006-08-11 | 2010-11-23 | Feg Holdings, Llc | High speed swelling, pressure exerting hemostatic device |
US9198995B2 (en) | 2006-09-20 | 2015-12-01 | Ore-Medix Llc | Conformable structured therapeutic dressing |
JP2010508064A (en) * | 2006-10-30 | 2010-03-18 | ゼット メディカ コーポレーション | Clay-based hemostatic agent and device for its delivery |
EP2292196A1 (en) * | 2006-10-30 | 2011-03-09 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
CN101541274A (en) * | 2006-10-30 | 2009-09-23 | Z-医疗公司 | Clay-based hemostatic agents and devices for the delivery thereof |
EP2446867A1 (en) * | 2006-10-30 | 2012-05-02 | Z-Medica Corporation | Clay-Based Hemostatic Agents and Devices for the Delivery Thereof |
JP2012096082A (en) * | 2006-10-30 | 2012-05-24 | Z-Medica Corp | Clay-based hemostat and device for delivery of the same |
WO2008054566A1 (en) * | 2006-10-30 | 2008-05-08 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
US8703634B2 (en) | 2007-02-21 | 2014-04-22 | The Regents Of The University Of California | Hemostatic compositions and methods of use |
US9302025B2 (en) | 2007-02-21 | 2016-04-05 | The Regents Of The University Of California | Hemostatic compositions and methods of use |
CN106110366B (en) * | 2007-03-06 | 2019-05-28 | Z-麦迪卡有限责任公司 | Hemostat and its transfer device based on clay |
CN101687056B (en) * | 2007-03-06 | 2016-08-10 | Z-麦迪卡有限责任公司 | Hemorrhage based on clay and transfer device thereof |
CN106110366A (en) * | 2007-03-06 | 2016-11-16 | Z-麦迪卡有限责任公司 | Hemorrhage based on clay and transfer device thereof |
EP2508209A1 (en) * | 2007-03-06 | 2012-10-10 | Z-Medica Corporation | Clay-based Hemostatic Agents and Devices for the Delivery Thereof |
JP2010520783A (en) * | 2007-03-06 | 2010-06-17 | ゼット−メディカ・コーポレイション | Clay-based hemostatic agent and instrument for its supply |
CN101687056A (en) * | 2007-03-06 | 2010-03-31 | Z-麦迪卡公司 | Hemorrhage and transfer device thereof based on clay |
WO2008109160A3 (en) * | 2007-03-06 | 2009-11-12 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
JP2013212412A (en) * | 2007-03-06 | 2013-10-17 | Z-Medica Llc | Clay-based hemostatic agents and devices for the delivery thereof |
WO2008109160A2 (en) | 2007-03-06 | 2008-09-12 | Z-Medica Corporation | Clay-based hemostatic agents and devices for the delivery thereof |
EP2011523A1 (en) | 2007-05-15 | 2009-01-07 | Aesculap AG | Blood-stopping non-woven fabric |
DE102007024220A1 (en) | 2007-05-15 | 2008-11-20 | Aesculap Ag | Hemostatic fleece |
WO2008153714A1 (en) * | 2007-05-22 | 2008-12-18 | Virginia Commonwealth University | Hemostatic mineral compositions and uses thereof |
WO2008157536A2 (en) * | 2007-06-21 | 2008-12-24 | Z-Medica Corporation | Hemostatic sponge and method of making the same |
WO2008157536A3 (en) * | 2007-06-21 | 2009-11-12 | Z-Medica Corporation | Hemostatic sponge and method of making the same |
US8202549B2 (en) | 2007-08-14 | 2012-06-19 | The Regents Of The University Of California | Mesocellular oxide foams as hemostatic compositions and methods of use |
US8603543B2 (en) | 2007-08-14 | 2013-12-10 | The Regents Of The University Of California | Mesocellular oxide foams as hemostatic compositions and methods of use |
WO2009025782A3 (en) * | 2007-08-16 | 2009-04-09 | Jack Mentkow | Hemostatic agent composition and method of delivery |
WO2009025782A2 (en) * | 2007-08-16 | 2009-02-26 | Jack Mentkow | Hemostatic agent composition and method of delivery |
WO2009032884A1 (en) * | 2007-09-05 | 2009-03-12 | Z-Medica Corporation | Wound healing with zeolite-based hemostatic devices |
US8883194B2 (en) | 2007-11-09 | 2014-11-11 | Honeywell International, Inc. | Adsorbent-containing hemostatic devices |
EP2276879A2 (en) * | 2008-04-11 | 2011-01-26 | Virginia Commonwealth University | Electrospun dextran fibers and devices formed therefrom |
WO2009126870A2 (en) | 2008-04-11 | 2009-10-15 | Virginia Commonwealth Unversity | Electrospun dextran fibers and devices formed therefrom |
US9399082B2 (en) | 2008-04-11 | 2016-07-26 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Electrospun dextran fibers and devices formed therefrom |
WO2009126917A1 (en) * | 2008-04-11 | 2009-10-15 | Z-Medica Corporation | Method of providing hemostasis in anti-coagulated blood |
US10046081B2 (en) | 2008-04-11 | 2018-08-14 | The Henry M Jackson Foundation For The Advancement Of Military Medicine, Inc. | Electrospun dextran fibers and devices formed therefrom |
EP2276879A4 (en) * | 2008-04-11 | 2013-04-24 | Univ Virginia Commonwealth | Electrospun dextran fibers and devices formed therefrom |
JP2011516751A (en) * | 2008-04-11 | 2011-05-26 | ヴァージニア コモンウェルス ユニバーシティ | Electrospun dextran fibers and devices made therefrom |
US8795718B2 (en) | 2008-05-22 | 2014-08-05 | Honeywell International, Inc. | Functional nano-layered hemostatic material/device |
JP2009293168A (en) * | 2008-06-09 | 2009-12-17 | Panasonic Corp | Apparatus for producing non-connected cylinder and method for producing non-connected cylinder |
US11007218B2 (en) | 2010-09-22 | 2021-05-18 | Z-Medica, Llc | Hemostatic compositions, devices, and methods |
US9889154B2 (en) | 2010-09-22 | 2018-02-13 | Z-Medica, Llc | Hemostatic compositions, devices, and methods |
US9603964B2 (en) | 2012-06-22 | 2017-03-28 | Z-Medica, Llc | Hemostatic devices |
US10960100B2 (en) | 2012-06-22 | 2021-03-30 | Z-Medica, Llc | Hemostatic devices |
US11559601B2 (en) | 2012-06-22 | 2023-01-24 | Teleflex Life Sciences Limited | Hemostatic devices |
US9555157B2 (en) | 2013-11-12 | 2017-01-31 | St. Teresa Medical, Inc. | Method of inducing hemostasis in a wound |
US10751444B2 (en) | 2015-08-07 | 2020-08-25 | Victor Matthew Phillips | Flowable hemostatic gel composition and its methods of use |
US10660945B2 (en) | 2015-08-07 | 2020-05-26 | Victor Matthew Phillips | Flowable hemostatic gel composition and its methods of use |
US10828387B2 (en) | 2015-11-12 | 2020-11-10 | St. Teresa Medical, Inc. | Method of sealing a durotomy |
US11433223B2 (en) | 2016-07-01 | 2022-09-06 | Boston Scientific Scimed, Inc. | Delivery devices and methods |
US12048822B2 (en) | 2016-07-01 | 2024-07-30 | Boston Scientific Scimed, Inc. | Delivery devices and methods |
US11406771B2 (en) | 2017-01-10 | 2022-08-09 | Boston Scientific Scimed, Inc. | Apparatuses and methods for delivering powdered agents |
US10953128B2 (en) | 2017-11-02 | 2021-03-23 | St. Teresa Medical, Inc. | Fibrin sealant products |
CN107875433A (en) * | 2017-11-30 | 2018-04-06 | 英泰时尚服饰(苏州)有限公司 | A kind of preparation method of quick-acting haemostatic powder type looped fabric |
US11701448B2 (en) | 2018-01-12 | 2023-07-18 | Boston Scientific Scimed, Inc. | Powder for achieving hemostasis |
US11766546B2 (en) | 2018-01-31 | 2023-09-26 | Boston Scientific Scimed, Inc. | Apparatuses and methods for delivering powdered agents |
US11642281B2 (en) | 2018-10-02 | 2023-05-09 | Boston Scientific Scimed, Inc. | Endoscopic medical device for dispensing materials and method of use |
US11833539B2 (en) | 2018-10-02 | 2023-12-05 | Boston Scientific Scimed, Inc. | Fluidization devices and methods of use |
WO2020127745A1 (en) | 2018-12-20 | 2020-06-25 | Bk Giulini Gmbh | Products for treating bleeding wounds |
US11918780B2 (en) | 2019-12-03 | 2024-03-05 | Boston Scientific Scimed, Inc. | Agent administering medical device |
US11931003B2 (en) | 2019-12-03 | 2024-03-19 | Boston Scientific Scimed, Inc. | Medical devices for agent delivery and related methods of use |
US12053169B2 (en) | 2019-12-03 | 2024-08-06 | Boston Scientific Scimed, Inc. | Devices and methods for delivering powdered agents |
US12102749B2 (en) | 2020-01-06 | 2024-10-01 | Boston Scientific Scimed, Inc. | Agent delivery systems and methods of using the same |
US12083216B2 (en) | 2020-02-18 | 2024-09-10 | Boston Scientific Scimed, Inc. | Hemostatic compositions and related methods |
Also Published As
Publication number | Publication date |
---|---|
JP2008531498A (en) | 2008-08-14 |
US20120219612A1 (en) | 2012-08-30 |
CA2597940A1 (en) | 2006-08-24 |
KR20070117589A (en) | 2007-12-12 |
IL185211A0 (en) | 2008-01-06 |
WO2006088912A3 (en) | 2007-06-07 |
CN101160143A (en) | 2008-04-09 |
EP1853326B1 (en) | 2016-06-15 |
EP1853326A4 (en) | 2008-04-02 |
US9821084B2 (en) | 2017-11-21 |
EP1853326A2 (en) | 2007-11-14 |
US20090155342A1 (en) | 2009-06-18 |
US11167058B2 (en) | 2021-11-09 |
US20100292624A1 (en) | 2010-11-18 |
AU2006214371A1 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1853326B1 (en) | Mineral technologies (mt) for acute hemostasis and for the treatment of acute wounds and chronic ulcers | |
JP7321210B2 (en) | hemostatic device | |
US20080319476A1 (en) | Hemostatic mineral compositions and uses thereof | |
WO2008076598A1 (en) | Combination of inorganic hemostatic agents with other hemostatic agents | |
PL217898B1 (en) | Compress for controlling of external bleeding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680012354.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 185211 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2597940 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007556251 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006214371 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6906/DELNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 561433 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077021046 Country of ref document: KR Ref document number: 2006735080 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006214371 Country of ref document: AU Date of ref document: 20060215 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11884363 Country of ref document: US |