WO2006088603A1 - Agents de deviation solubles - Google Patents

Agents de deviation solubles Download PDF

Info

Publication number
WO2006088603A1
WO2006088603A1 PCT/US2006/001916 US2006001916W WO2006088603A1 WO 2006088603 A1 WO2006088603 A1 WO 2006088603A1 US 2006001916 W US2006001916 W US 2006001916W WO 2006088603 A1 WO2006088603 A1 WO 2006088603A1
Authority
WO
WIPO (PCT)
Prior art keywords
diverting
fluid
poly
collagen
water
Prior art date
Application number
PCT/US2006/001916
Other languages
English (en)
Inventor
A. Richard Sinclair
Syed Akbar
Patrick R. Okell
Original Assignee
Fairmount Minerals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairmount Minerals, Ltd. filed Critical Fairmount Minerals, Ltd.
Priority to GB0714796A priority Critical patent/GB2437869B/en
Priority to MX2007008850A priority patent/MX2007008850A/es
Priority to CN2006800093692A priority patent/CN101146888B/zh
Priority to CA2595686A priority patent/CA2595686C/fr
Publication of WO2006088603A1 publication Critical patent/WO2006088603A1/fr
Priority to NO20074239A priority patent/NO20074239L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation

Definitions

  • the present invention provides methods and compositions for treating subterranean wells and, more specifically, provides methods and compositions for stimulating multiple intervals in subterranean wells.
  • this invention provides methods and compositions for diverting well treatment fluids into multiple intervals by introducing propping materials coated with a water soluble polymer e.g. collagen, polyvinyl acetate/polyvinyl alcohol, polyalkyl oxides, poly(lactic acid), periodic chart elements of group I or II (alkali metal or alkaline earth metal) silicate polymer, or combinations thereof with materials that are slowly water soluble for use in redirecting the flow of stimulation fluids from a tubing string into the subterranean environment.
  • a water soluble polymer e.g. collagen, polyvinyl acetate/polyvinyl alcohol, polyalkyl oxides, poly(lactic acid), periodic chart elements of group I or II (alkali metal or alkaline earth metal) silicate polymer, or combinations thereof with materials that are slowly water soluble for use in
  • a subterranean formation may include two or more intervals having varying permeability and/or injectivity. Some intervals may possess relatively low injectivity, or ability to accept injected fluids, due to relatively low permeability, high in-situ stress, and/or formation damage. Such intervals may be completed through preparations in a cased wellbore and/or may be completed open hole.
  • such formation intervals may be present in a highly deviated or horizontal section of a wellbore, for example, a lateral open hole section, hi any case, when treating multiple intervals having variable injectivity it is often the case that most, if not all, of the introduced well treatment fluid will be displaced into one, or only a few, of the intervals having the highest injectivity. Even if there is only one interval to be treated, the tendency for the growth of the fracture can be either up or down. This depends on the in situ formation stress and the permeability variation in the formation layer. Below the created fracture can be a water zone. If the created fracture breaks into this zone, the well can be ruined due to excess water and a cut off of the petroleum components of the productive interval. Above the created fracture zone a gas cap may exist which would cause harm to the production of the well because of gas bypassing the liquid petroleum components of the well.
  • Naphthalene (moth balls) and sodium chloride particles have also been described to be useful as effective diverting agents. Naphthalene particles are readily soluble in oil, but melt at about 180 0 F, thereby limiting their use to applications in lower-temperature formations.
  • Sodium chloride having a melting point of about 1,470 0 F, while useful at high temperatures, requires that the well be cleaned with water or dilute acid after the formation has been treated in order to fully remove the sodium chloride particles.
  • sodium chloride cannot be used with hydrofluoric acid to treat subterranean wells due to the formation of insoluble precipitates which can problematically block the wellbore.
  • diversion agents such as polymers, suspended solid materials and/or foam have been employed when simultaneously treating multiple intervals of variable injectivity.
  • diversion agents are typically pumped into a subterranean formation prior to a well treatment fluid in order to seal off intervals of higher permeability and divert the well treatment fluid to intervals of lower permeability.
  • the diverting action of such diversion agents is often difficult to predict and monitor, and may not be successful in diverting treatment fluid into all desired intervals. These problems may be further aggravated in open hole completions, especially in highly deviated completions having large areas of a formation open to the wellbore. The presence of natural fractures may also make diversion more difficult.
  • U.S. Patent No. 3,797,575 assigned to Halliburton discloses diverting-forming additives comprised of relatively water insoluble solid material dissolved in a solvent such as methanol or isopropanol. When the additive is combined with an aqueous treatment fluid, the solid material, dissolved in the additive, is precipitated in the aqueous treating fluid into a finally divided form, which then act as a diverting agent.
  • U.S. Patent No. 3,724,549, also assigned to Halliburton describes a diverting agent material for diverting aqueous treatment fluids into progressively less permeable subterranean formations.
  • the material is composed of a carrier liquid and graded particles of cyclic or linear hydrocarbon resins having between about 20 and about 1,400 carbon atoms, and a melting point of about 200 0 F.
  • This material is described as being largely water and acid insoluble, but soluble in oil, such that the resin can be removed by the produced oil after the completion of the oil treatment operation.
  • the use of radiation-induced polymers as either temporary or permanent diverting agents has been described by Knight, et al. in U.S. Patent No. 3,872,923.
  • temporary or permanent reductions in permeability can be obtained by injecting an aqueous solution containing a water-soluble polymer obtained by radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts of such acids.
  • the resultant polymeric diverting agent has properties, such as temperature and pH stability, so as to effect a reduction of permeability of the porous medium. Permeability within the formation can be restored by subsequent treatment with a chemical to break down the polymer, such as hydrazine hypochlorite solution or strong mineral acids.
  • U.S. Patent Nos. 3,954,629 and 4,005,753 to Scheffel, et al offer polymeric diverting agents, and methods of treating subterranean formations with such polymeric diverting agents, respectively.
  • the polymeric composition is described to comprise solid particles of a homogenous mixture of polyethylene, ethylene-vinyl acetate copolymer, a polyamide, and a softening agent such as long chain aliphatic diamides. These polymeric diverting agents are reported to be suitable for use in subterranean formations where formation temperatures are 350 0 F or greater.
  • the diverting agent is preferably Hansa Yellow G (Fanchon Yellow YH-5707 pigment) or Fast Yellow 4RLF dye, both of which have an azo component and a methylenic component and are further characterized as having a melting point of at least 332.6 °F, a degree of solubility in water at a temperature of water from about 200 to about 425 °F, and a degree of solubility in kerosene at a temperature of from about 200 °F to about 425 °F.
  • Hansa Yellow G Franchon Yellow YH-5707 pigment
  • Fast Yellow 4RLF dye both of which have an azo component and a methylenic component and are further characterized as having a melting point of at least 332.6 °F, a degree of solubility in water at a temperature of water from about 200 to about 425 °F, and a degree of solubility in kerosene at a temperature of from about 200 °F to about 425 °F.
  • TMFUD Technique of Multi-Fracture Fracturing Using a Diverting Agent
  • SPE 30816, pp. 80-86 (1988) the latter of which has shown an average oil production improvement of 15.0 t/d for each well, and a cumulative production improvement of 340.3 x 10 4 tons.
  • a viscoelastic surfactant-based diverting agent for use in acid stimulations has also been described (Alleman, D., et ah, SPE 80222 (2003)), which is a VES gel (polyQuat) characterized by a distinctive vesicle structure stable at high pH and a thermal stability of about 250 °F.
  • This gel-type diversion agent is typically pumped into a subterranean formation prior to a well stimulation fluid in order to seal off intervals of high permeability and divert the well treatment fluid to intervals of low permeability.
  • the present invention provides a method of using particles having a soluble outer coating as diverting agents in subterranean formations.
  • the soluble outer coating will dissolve after a desired period of time at downhole temperatures and pressures in the presence of standard downhole fracturing fluids and breaker compositions.
  • Examples of the soluble outer coating include collagen, poly(alkylene) oxides, poly(lactic acid), polyvinylacetate, polyvinyl alcohol, polyvinylacetate/polyvinylalcohol, polylactone, polyacrylate, latex, polyester, group I or II silicate polymer or mixtures thereof.
  • the present invention provides water soluble polymer coated proppants as diverting agents and methods of using such diverting agents for treating a subterranean formation.
  • the diverting agent together with a carrier liquid is introduced into a subterranean formation.
  • the liquid carrier flows into fractures and/or intervals within the subterranean formation.
  • the fractures or intervals present varying degrees of permeability.
  • the liquid carrier with diverting agent will flow to the most permeable interval first.
  • the temperature of the formation will cause the water soluble polymer coating of the diverting agent to soften and swell, thereby plugging the fracture.
  • a diverting agent suitable for diverting well treatment fluids into a single or a multiple interval wherein the diverting agent is comprised of a particulate substrate and a water-soluble outer layer.
  • water soluble outer layer polymer is exemplified, without limitation, by collagen, poly(alkylene) oxides, poly(lactic acid) polyvinylacetate, polyvinylalcohols, polyvinylacetate/polyvinylalcohol, polymeric lactones, water-soluble acrylics, latex, polyester, group I or II silicate polymer, and admixtures thereof.
  • a diverting agent suitable for diverting well treatment fluids into a single or a multiple interval wherein the diverting agent is comprised of a particulate substrate an intermediate water insoluble layer and a water soluble polymer outer layer.
  • the water soluble outer layer polymer is exemplified, without limitation, by collagen, poly(alkylene) oxides, poly(lactic acid), polyvinylacetate, polyvinylalcohols, polyvinylacetate/polyvinylalcohol, polymeric lactones, water-soluble acrylics, latex, polyester, group I or II silicate polymer and admixtures thereof.
  • the water insoluble intermediate layer is exemplified by phenol-aldehyde novolac polymers and phenol-aldehyde resole polymers.
  • a diverting agent suitable for diverting well treatment fluids into a single or a multiple interval within a wellbore wherein the diverting agent is substantially a water-soluble polymer particle such as a collagen bead or granular particles of poly(alkylene) oxide, poly(lactic acid), polyvinylacetate, polyvinylalcohol, polyvinylacetate/polyvinylalcohol, polymeric lactones, water-soluble acrylics, latex, polyester, group I or II silicate polymer, or mixtures thereof.
  • a method of stimulating individual intervals of a subterranean formation including the steps of introducing a diverting agent having a water-soluble component on its outer layer into an inner pipe of a wellbore in combination with a low viscosity fluid or a fracturing fluid; displacing the diverting agent and fracturing fluid into the subterranean formation, allowing the diverting agent to progressively plug portions of the formation being treated; and repeating the process as necessary, adding the diverting agent to the carrier fluid in slugs during the fracturing operation.
  • FIG. 1 shows an elevational cross-sectional view of a downhole portion of a subterranean formation having a vertical casing and a single treatment interval, wherein variously coated diverting agents are being injected into the hydrocarbon-bearing formation in accordance with an aspect of the present disclosure.
  • FIG. 2 illustrates the elevational cross-sectional view of the subterranean formation of FIG. 1, wherein proppants are being injected into a hydrocarbon-bearing formation having diverting agents of the present invention injected.
  • FIG. 3 shows a well with a vertical casing and multiple treatment intervals 58, 60 and 62 and variously coated diverting agents being injected, in accordance with an aspect of the present disclosure.
  • carrier liquid refers to oil or water based liquids that are capable of moving particles (e.g., proppants) that are in suspension.
  • Low viscosity carrier fluid have less carrying capacity and the particles can be affected by gravity so that they either rise if they are less dense than the liquid or sink if they are more dense than the liquid.
  • High viscosity liquids can carry particles with less settling or rising since the viscosity overcomes gravity effects.
  • crosslinker or "cross-linking agent”, as used herein, refers to those compounds used to covalently modify proteins, such as collagen, and includes both homobifunctional crosslinkers that contain two identical reactive groups, and heterobifunctional crosslinkers which contain two different reactive groups.
  • splitting agent means and refers generally to an agent that functions to prevent, either temporarily or permanently, the flow of a liquid into a particular location, usually located in a subterranean formation, wherein the agent serves to seal the location and thereby cause the liquid to "divert" to a different location.
  • proppant refers to those sized particles that are used in well work-overs and treatments, such as hydraulic fracturing operations, to hold fractures open following the treatment. Such sized particles are often mixed with fracturing fluid(s) to hold fractures open after a hydraulic fracturing treatment or similar downhole well treatment.
  • proppant includes man-made or specially engineered proppants, such as resin-coated sand or high-strength ceramic materials like sintered bauxite.
  • Resin coated proppants are typified by those that are coated with phenol- aldehyde novolac polymers or phenol-aldehyde resole polymers. Typically, but not necessarily, proppant materials are carefully sorted for size and sphericity to provide an efficient conduit for production of fluid from the reservoir to the wellbore.
  • introducing includes pumping, injecting, pouring, releasing, displacing, spotting, circulating, or otherwise placing a fluid or material within a well, wellbore, or subterranean formation using any suitable manner known in the art.
  • combining includes any known suitable methods for admixing, exposing, or otherwise causing two or more materials, compounds, or components to come together in a manner sufficient to cause at least partial reaction or other interaction to occur between the materials, compounds, or components.
  • water soluble refers to resins, polymers, or coatings which are stable (do not dissolve) under ambient, surface conditions, but which become soluble after a given time (usually over several hours or several days) when placed in a subterranean environment.
  • treatment refers to any of numerous operations on or within the downhole well, wellbore, or reservoir, including but not limited to a workover type of treatment, a stimulation type of treatment, such as a hydraulic fracturing treatment or an acid treatment, isolation treatments, control of reservoir fluid treatments, or other remedial types of treatments performed to improve the overall well operation and productivity.
  • a workover type of treatment such as a hydraulic fracturing treatment or an acid treatment
  • isolation treatments such as a hydraulic fracturing treatment or an acid treatment
  • control of reservoir fluid treatments or other remedial types of treatments performed to improve the overall well operation and productivity.
  • stimulation refers to productivity improvement or restoration operations on a well as a result of a hydraulic fracturing, acid fracturing, matrix acidizing, sand treatment, or other type of treatment intended to increase and/or maximize the well's production rate or its longevity, often by creating highly conductive reservoir flow paths.
  • single and multiple intervals of a subterranean formation can be treated or stimulated in stages by successively introducing the diverting agent comprising a particulate substrate and a slowly water-soluble outer coating comprising collagen or a combination of collagen and a slowly water-soluble, non-collagenous material.
  • the invention provides particle compositions comprising soluble material coatings comprising collagen, as well as processes for preparing such compositions. These compositions are useful in subterranean formations for diverting well treatment fluids in a single interval to increase the fracture length or in multiple intervals of a subterranean formation having varying permeability and/or injectivity during a hydraulic fracturing operation.
  • the proppant (or particulate substrate) coated with a slowly water-soluble coating such as a collagen alone or in combination with a non-collagenic water-soluble, plastic coating material acts to divert the fracture, as the coatings on the proppants act as the defining boundaries of the initial fracture.
  • the coating can be removed due to the slow-dissolution characteristics of the coating, leaving standard propping agents with high permeability to flow into the fracture and act as proppants.
  • compositions and methods are described in terms of “comprising” various components or steps, the compositions and methods can also “consist essentially of or “consist of the various components and steps.
  • Particulate material also referred to herein as substrate material, suitable for use with the present invention includes a variety of particulate materials known to be suitable or potentially suitable propping agents which can be employed in downhole operations.
  • the particulate material (or substrate material) which can be used include any propping agent suitable for hydraulic fracturing known in the art. Examples of such particulate materials include, but are not limited to, natural materials, silica proppants, ceramic proppants, metallic proppants, synthetic organic proppants, mixtures thereof, and the like.
  • Natural products suitable for use as proppants include, but are not limited to, nut shells such as walnut, brazil nut, and macadamia nut, as well as fruit pits such as peach pits, apricot pits, olive pits, and any resin impregnated or resin coated version of these.
  • Typical resin coatings or impregnations include bisphenols, bisphenol homopolymers, blends of bisphenol homopolymers with phenol-aldehyde polymer, bisphenol-aldehyde resins and/or polymers, phenol-aldehyde polymers and homopolymers, modified and unmodified resoles, phenolic materials including arylphenols, alkylphenols, alkoxyphenols, and aryloxyphenols, resorcinol resins, epoxy resins, novolak polymer resins, novolak bisphenol-aldehyde polymers, and waxes, as well as the precured or curable versions of such resin coatings.
  • Silica proppants suitable for use with the present invention include, but are not limited to, glass spheres and glass microspheres, glass beads, silica quartz sand, and sands of all types such as white or brown.
  • Typical silica sands suitable for use include Northern White Sands (Fairmount Minerals, Chardon, OH), Ottawa, Jordan, Brady, Hickory, Arizona, St. Peter, Wonowoc, and Chalfort, as well as any resin coated version of these sands.
  • the fibers can be straight, curved, crimped, or spiral shaped, and can be of any grade, such as E-grade, S-grade, and AR-grade.
  • suitable resin-coated silica proppants for use with the present invention include deforniable proppants such as FLEXSAND LSTM and FLEXSAND MSTM (available from BJ Services, Inc., Houston, TX) and Tempered HS®, Tempered LC®, Tempered DC®, and Tempered TF® tempered proppants, all available from Santrol, Fresno, TX.
  • deforniable proppants such as FLEXSAND LSTM and FLEXSAND MSTM (available from BJ Services, Inc., Houston, TX) and Tempered HS®, Tempered LC®, Tempered DC®, and Tempered TF® tempered proppants, all available from Santrol, Fresno, TX.
  • Ceramic proppants suitable for use with the methods of the present invention include, but are not limited to, ceramic beads; spent fluid-cracking catalysts (FCC) such as those described in U.S. Patent No. 6,372,378, which is incorporated herein in its entirety; ultra lightweight porous ceramics; economy lightweight ceramics such as "ECONOPROPTM” (Carbo Ceramics, Inc., Irving, TX); lightweight ceramics such as "CARBOLITETM”; intermediate strength ceramics such as “CARBOPROPTM” (available from Carbo Ceramics, Inc., Irving, TX); high strength ceramics such as "CARBOHSPTM” and “Sintered Bauxite” (Carbo Ceramics, Inc., Irving, TX), and HYPERPROP G2TM, DYNAPROP G2TM, or OPTIPROP G2TM encapsulated, curable ceramic proppants (available from Santrol, Fresno, TX) as well as any resin coated or resin impregnated versions of these, such
  • Metallic proppants suitable for use with the embodiments of the present invention include, but are not limited to, aluminum shot, aluminum pellets, aluminum needles, aluminum wire, iron shot, steel shot, and the like, as well as any resin coated versions of these metallic proppants.
  • Synthetic proppants are also suitable for use with the present invention.
  • suitable synthetic proppants include, but are not limited to, plastic particles or beads, nylon beads, nylon pellets, SDVB (styrene divinyl benzene) beads, carbon fibers such as PANEXTM carbon fibers from Zoltek Corporation (Van Nuys, CA), and resin agglomerate particles similar to "FLEXSAND MSTM” (BJ Services Company, Houston, TX), as well as resin coated versions thereof.
  • soluble materials suitable for use as proppants are also envisioned to be useful with the methods of the present invention.
  • soluble proppants which are placed in the channels of the created perforations include, but are not limited to, marble or limestone chips or any other suitable carbonate particulates.
  • wax, plastic, or resin particles, either coated or uncoated, which are either soluble through contact with a treatment chemical or can melt and flowback from the fracture are suitable for use as proppants with the present invention.
  • propping agents are typically used in concentrations from about 1 to about 18 pounds per gallon (about 120 g/L to about 2,160 g/L) of fracturing fluid composition, but higher or lower concentrations may also be used as required.
  • the particulate substrate suitable for use with the present invention has a particle size in the range of USA Standard Testing screen numbers from about 4 to about 200 (i.e., screen openings of about 0.18 inch to about 0.003 inch). More particularly, particulate substrate sizes suitable for use with the present invention include size ranges from about 4 mesh (4750 microns) to about 200 mesh (75 microns).
  • particulate materials or proppants having size designations of 6/12, 8/16, 12/18, 12/20, 16/20, 16/30, 20/40, 30/50, 40/70 and 70/140, although any desired size distribution can be used, such as 10/40, 14/20, 14/30, 14/40, 18/40, and the like, as well as any combination thereof (e.g., a mixture of 10/40 and 14/40).
  • the preferred mesh size in accordance with the present invention, is 20/40 mesh.
  • the soluble coatings used in accordance with the present invention can be any number of known soluble agents that are slowly soluble in downhole, subterranean formations over a period of time.
  • Soluble polymer materials used in accordance with the present invention should be soluble (that is, capable of dissolving in) in brines, water, oil, organic solvents, acid or acidic media, and/or in fluids having a pH in the range from about 1 to about 14, as well as mixtures thereof under the conditions found in downhole, subterranean formation.
  • the soluble coating is a structural protein such as collagen or atelocollagen, a vegetable protein such as found in wheat, maize, oat or almonds, or a collgen originating from a marine environment.
  • the latter type of collagen can be extracted from fish, algae, plankton, micro-plankton, and the like.
  • the soluble coating is collagen, including Type I collagen, Type II collagen, Type III collagen, Type IV, or Type V collagen, as well as combinations thereof.
  • the soluble coating is a Type I collagen or an atelocollagen.
  • Type I collagens or atelocollagens suitable for use as soluble coatings in accordance with the present invention are those collagens containing at least one hydroxyproline residue.
  • Such Type I collagens or atelocollagens include collagens found in tendons, skin, bone, scar tissue, and the like, such as tropocollagens, as well as products derived from the controlled, enzymatic or chemical reduction of collagen proteins.
  • Such collagens preferably have a molecular weight from about 10,000 Daltons to about 500,000 Daltons, and more preferably from about 100,000 Daltons to about 300,000 Daltons.
  • a preferred Type I collagen suitable for use with the present invention is tropocollagen with a molecular weight of about 250,000 as supplied by Milligans and Higgins, Inc. (Johnstown, NY).
  • Collagens suitable for use within the present invention have Bloom strengths from about 100 psi to about 900 psi, and more preferably from about 300 psi to about 700 psi. Most preferably, collagens suitable for use with the present invention have Bloom strengths from about 400 psi to about 600 psi.
  • Suitable Bloom strengths are about 400 psi, about 410 psi, about 420 psi, about 430 psi, about 440 psi, about 450 psi, about 460 psi, about 470 psi, about 480 psi, about 490 psi, about 500 psi, about 510 psi, about 520 psi, about 530 psi, about 540 psi, about 550 psi, about 560 psi, about 570 psi, about 580 psi, about 590 psi, and about 600 psi, as well as Bloom strengths between any two of these values, e.g., from about 400 psi to about 520 psi, such as 512 psi.
  • Bloom strength refers to the measured value of the strength and/or rigidity of a gelatinous substance, such as collagen, formed by a standard solution of definite concentration that has been retained at a constant temperature for a specified period of time, in accordance with standardized bloom testing procedures, such as BS757:1975, GMIA Testing Standard B5757, International Standard ISO9665 for testing adhesive animal glues, or similar standards as described in "Official Methods of Analysis of AOAC INTERNATIONAL (OMA) ", 17th Edition, Volume II; AOAC International Publications (2003).
  • Bloom strength values are typically given in "pounds per square inch” (psi) or grams, reflecting the force required to depress a chosen area of the surface of the sample a distance of 4 mm.
  • a gel product such as collagen or gelatin, is formed to a specified consistency (e.g., 6 and 2/3 % solution) and kept at a constant temperature in a constant temperature bath at 10 C for 18 hours.
  • a device called a Texture Analyzer e.g., the TA.XT2i Texture Analyzer, Scarsdale, NY
  • a Texture Analyzer measures the weight in grams (or the pressure, in psi) required to depress a standard AOAC® [Associateion of Official Analytical Chemists] gelometer plunger having a sharp, lower edge 4 mm into the gel; alternatively, a BS plunger which has a bottom edge rounded to a radius of 0.4 mm can be used as the plunger. For example, if this procedure requires 200 grams to depress the plunger, then the gelatin has a Bloom strength of 200.
  • Type I collagens suitable for use within the present invention have a sieve distribution /size designation of 6/12, 8/16, 12/18, 12/20, 16/20, 16/30, 20/40, 30/50, 40/70 and 70/140, as well as sieve distributions between any two of these designations, although any desired size distribution can be used, such as 8/40, 10/40, 14/20, 14/30, 14/40, 18/40, and the like, as well as any combination thereof (e.g., a mixture of 10/40 and 14/40).
  • the preferred mesh size, in accordance with the present invention is 8/40 mesh.
  • Collagens as used herein as soluble coatings, can be either cross-linked, uncross-linked, or a combination of both, and the type and degree of cross-linking will depend upon the specific application of the collagen-based soluble coating. There are four fundamental strategies for fixing collagenous materials and materials constructed of processed collagen fibers or purified collagen.
  • the collagen used as a soluble coating is preferably cross-linked using chemical cross-linking techniques. These include, but are not limited to, aldehyde-based cross-linking techniques, polyepoxy compound- based cross-linking techniques, the use of isocyanates, carbodiimide cross- linking, and acyl azide based crosslinking. More preferably, the collagen is cross-linked using aldehyde-based cross- linking techniques, such as by using glutaraldehyde or formaldehyde.
  • Aldehyde-based cross-linking techniques includes those techniques using a reagent containing two reactive aldehyde groups to form covalent cross-links between neighboring collagen proteins, especially the e-amino groups of lysine residues in collagen [Khor, E., Biomaterials, Vol. 18: pp. 95-105 (1997)].
  • Aldehydes suitable for use with the present invention include but are not limited to glutaraldehyde, formaldehyde, propionaldehyde, and butyraldehyde.
  • Polyepoxy based cross-linking techniques and agents include the use of compounds, such as short, branched polymers, terminating in reactive epoxy functionalities.
  • Polyepoxy compounds suitable for use as cross-linking agents in the present invention include but are not limited to glycerol ethers, glycol, and glycerol polyglycidyl ethers.
  • Isocyanates are also suitable for use as cross-linking agents in the present invention.
  • the isocyanates (R-NCO) react with primary amines to form a urea bond (R — H — CO — NH — R); difunctional isocyanates therefore have the ability to cross-link collagen via its lysine side chains.
  • Isocyanates suitable for use as cross-linking agents in the present invention are preferably diisocyanates, including biphenyl diisocyanate, dimethoxy-4,4'-biphenyl diisocyanante, dimethyl-4,4' -biphenyl diisocyanate, l,3-bis(isocyanatomethyl)benzene, phenyl diisocyanate, toluene diisocyanate, tolylene diisocyanate, diisocyanato hexane, diisocyanato octane, diisocyanato butane, isophorone diisocyanante, xylene diisocyanate, hexamethylene diisocyanante, octamethylene diisocyanante, phenylene diisocyanate, and poly(hexamethylene diisocyanate).
  • the isocyanate used as a cross-linking agent of the collagen molecules of the present invention is hex
  • Carbodiimide cross-linking agents and techniques can also be used within the scope of the present invention. These agents react with the carboxyl groups of aspartic and glutamic acid side chains within the collagen to form isoacylurea derivatives/iso-peptide bonds [Khor, E., ibid.].
  • Carbodiimides suitable for use as cross-linking agents with the collagen of the present invention include but are not limited to NjN'-dicyclohexylcarbodiimide (DCC); N 9 N'- diisopropylcarbodiimide (DIC); N,N'-di-tert-butylcarbodiimide; l-ethyl-3-(3- dimethylamino ⁇ ropyl)carbodiimide (EDC; EDAC); water-soluble EDC (WSC); l-tert-butyl-3- ethylcarbodiimide; 1 -(3-dimethylaminopropyl)-3-ethylcarbodiimide; bis(trimethylsilyl)- carbodiimide; l,3-bis(2,2-dimethyl-l,3-dioxolan-4-ylmethyl)carbodiimide (BDDC, as described in U.S.
  • DCC NjN'-dicyclohex
  • Patent No. 5,602,264 N-cyclohexyl-N'-(2-morpholinoethyl) carbodiimide; N,N'- diethylcarbodiimide (DEC); l-cyclohexyl-3-(2-morpholinoethyl)carbodiimide methyl-p- toluenesulfonate [e.g., Sheehan, J.C., et al, J. Org. Chem., Vol. 21: pp. 439-441 (1956)]; oligomeric alkyl cyclohexylcarbodiimides, such as those described by Zhang, et al. [J. Org. Chem., Vol. 69: pp.
  • polymer bound DCC polymer bound EDC, such as cross-linked N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide on JAND AJELTM.
  • EDC cross-linked N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide on JAND AJELTM.
  • N-hydroxysuccinimide (NHS), 1 -hydroxy- 7-azabenzotriazole (HOAt), or similar reagents can be utilized in conjunction with the carbodiimide to minimize internal rearrangement of the activated isoacylurea derivative and provide more efficient cross-linking.
  • acyl azide crosslinking agents produce covalent bonds between the carboxylic acid side chains of aspartic acid and glutamic acids and the ⁇ -amino groups of the lysines of collagen [Petit, H., et al., J. Biomed. Mater. Res., Vol. 24: pp. 179-187 (1990)].
  • the biomaterial is treated with hydrazine to form the corresponding hydrazide; sodium nitride is then added to react with the hydrazide and form the acyl azide.
  • Any number of hydrazines known in the art can be used in this method, including maleimidopropionic acid hydrazide (MPH).
  • Other chemical cross-linking agents suitable for use in the present invention to provide cross-linked collagen molecules which act as soluble coatings on proppant particles include but are not limited to homobifunctional cross-linkers such as BMME, BSOCOES, DSP (a thio- cleavable cross-linker), DSS, EGS, water-soluble EGS, and SATA, as well as heterobifunctional cross-linking agents including GMB, MBS, PMPI, SMCC, SPDP, and MPH (maleimidopropionic acid hydrazide), MCH, EMCH (maleimidocaprionic acid hydrazide), KMUH (N-(k-Maleimidoundecanoic acid)hydrazide), and MPBH (4-(4-N- MaleimidoPhenyl)butyric acid hydrazide), all available from Interchim (Cedex, France).
  • homobifunctional cross-linkers such as BMME, BSOCOES, DSP (a thi
  • Other techniques suitable for crosslinking the collagen fibers for use as soluble proppant coatings include but are not limited to dehydration, UV irradiation at 254 nm, glucose-mediated cross-linking (glycation) in conjunction with UV irradiation, and biological cross-linking.
  • the latter technique includes using natural products such as genipin and its related iridoid compounds which are isolated from the fruits of the gardenia plant (Gardenia jasminoides), which are dialdehydes in aqueous solution and thereby can react with the ⁇ -amino groups on lysine side chains of neighboring collagen molecules to provide a cross-link.
  • NDGA nordihydroguaiaretic acid
  • the slowly water-soluble coatings on the particulate substrates can also be non-collagenic materials such as synthetic polymers that are slowly water soluble.
  • non-collagenic materials include but are not limited to: polyethylene oxides, polypropylene oxides, polycaprolactones; grafts of polyethylene/polypropylene and polycaprolenes; grafts of polyethylene/polypropylene oxides and polycaprolactones; water soluble or water reducible acrylics; water reducible phenoxy resin; latex; polyesters; soluble block copolymers; grafts of polyvinyl alcohol (PVA) and polyvinyl acetates; polyactides and derivatives of polylactic acid; polyglycolic acid (PGA); polyglycoliclactic acid (PGLA).
  • PVA polyvinyl alcohol
  • PGA polyglycoliclactic acid
  • PGLA polyglycoliclactic acid
  • Periodic chart elements of group I or II (alkali metal or alkaline earth metal) silicate polymers e.g. SOLOSILTM (Foseco International, Ltd., Great Britain), a sodium silicate polymer.
  • single or multiple intervals of a subterranean formation may be treated or stimulated in stages by successively introducing diverting agent of the present invention into the formation followed by introduction of well treatment fluid into the formation.
  • wellbore includes cased and/or open hole sections of a well, it being understood that a wellbore may be vertical, horizontal, or a combination thereof.
  • pipe string refers to any conduit suitable for placement and transportation of fluids into a wellbore including, but not limited to, tubing, work string, drill pipe, coil tubing, etc.
  • the disclosed diversion agents and diversion treatment techniques are suitable for use with any type of well treatment fluid including, but not limited to, acid treatments, condensate treatments, hydraulic fracture treatments, and the like. Furthermore, it will be understood that the benefits of the disclosed methods and compositions may be realized with well treatments performed below, at, or above a fracturing pressure of a formation.
  • WELLBORE USE In this aspect of the invention, the use of fully soluble particles in the wellbore (such as collagen or other water soluble polymer plastics or mixtures of these) to divert fluid flow from one zone to another and then dissolve is disclosed.
  • the use of collagen (in both the uncrosslinked and crosslinked form) and soluble plastics are useful in diverting the flow of fluids in the well.
  • These diverting materials should be in the range of 1 to 100 mesh size, preferably 4 to 50 mesh size and can be used in combination with other additives or plastic materials to enhance performance by diverting the flow of fluids from one zone to another.
  • These materials have been used as diverting ball sealers but recent tests have shown that the material could be used as a diverting agent to block fluid from flowing into one zone and into another of either higher pore pressure or lower permeability.
  • the present invention provides a method treating a cased wellbore to divert flow of fluids from one zone to another.
  • the method involves pumping into a wellbore a diverting fluid that is made up of an aqueous carrier liquid having dispersed therein a particulate form of a water soluble polymer and wherein the particulate polymer has a density greater than or less than the density of the carrier liquid.
  • the diverting fluid is pumped into the wellbore the particulate polymer settles into zones of the wellbore and thereby diverts flow of a treating fluid from one zone to another.
  • the treating fluid is diverted or blocked from flowing into a zone of higher pore pressure or lower permeability.
  • the water-soluble particulate polymer is collagen, poly(alkylene) oxide, poly(lactic acid), polyvinylacetate, polyvinylalcohol, polyvinylacetate/polyvinylalcohol, polylactone, polyacrylate, latex, polyester, periodic chart elements of group I or II (alkali metal or alkaline-earth metal) silicate polymer or mixtures thereof.
  • the particulate polymer is present in the carrier liquid in an amount from about 0.001 pounds per gallon to about 10 pounds per gallon of the carrier liquid.
  • the particulate polymer is comprised of varying densities greater or less than the density of the carrier fluid.
  • the carrier liquid is water, brine, aqueous acid solutions, or gelled acid solutions.
  • the use of coated particles of various propping agents can be pumped into the fractured formations to prevent fractures from diverting out of the producing zone.
  • a dense sintered bauxite particle with a soluble or partially soluble coating would fall to the bottom of the fracture and divert the fracture from the lower strata or a water zone.
  • a low- density walnut shell with a soluble or partially soluble coating would tend to rise inside the fracture to divert the fracture from upward growth into a gas or water zone.
  • the coating can be either fully or partially soluble since the proppant will remain in place in the fracture and provide conductivity in the fracture after the frac job is completed. Some of the coating on the proppant should be soluble but a mixture of both soluble and insoluble plastics or collagen is desirable to prevent movement of the propping agent in the fracture.
  • a proppant or propping agent would be coated with a soluble or partially soluble coating - using a collagen and/or polymeric plastic coating material or any mixture of these.
  • the fracture would be diverted by using these soluble coatings on proppants as the defining boundaries of the initial fracture. After the fracturing treatment, the coating would disappear and the previously coated particles would return to normal propping agents, which have high permeability.
  • Coatings on various density proppants could cause the fracture boundaries to be set early in the fracture process since a low viscosity fluid would allow a high density coated proppant to settle or fall inside the fracture to make a lower boundary on the fracture and divert it out from the wellbore to make a longer fracture and increase the productivity of the well.
  • a low density coated proppant would tend to rise to the top part of the growing fracture to form a top boundary and divert the growing fracture away from upper zones that may harm the production of the well. With the fracture contained at top and bottom the fracture could grow outward and a longer contained fracture would improve the well potential productivity.
  • Figure 1 illustrates a well with a vertical cased wellbore section and a single interval formation that is to be treated in accordance with one embodiment of the present disclosure.
  • the well 10 of FIG. 1 has a casing 12 extending from the wellhead 11 for at least a portion of its length and is cemented around the outside with cement sheath 14 to hold the casing 12 in place and isolate the penetrated formation or intervals.
  • the cement sheath 14 extends upward from the bottom of the wellbore in the annulus between the outside of the casing 12 and the inside wall of the wellbore at least to a point above the producing strata/hydrocarbon bearing formation 18.
  • this sheath 14 helps to ensure the integrity of the well-bore (i.e., so it does not collapse), or to isolate specific, different geologic zones (i.e., an oil-bearing zone from an (undesirable) water-producing zone).
  • the wellbore is also optionally equipped with a casing or liner shoe 16 so as to help guide the casing string 12 past ledges or obstacles during its placement in the wellbore.
  • a casing or liner shoe 16 so as to help guide the casing string 12 past ledges or obstacles during its placement in the wellbore.
  • perforations 15 made through casing 12 and the cement sheath 14 by means known to those of ordinary skill in the art.
  • Such means include, but are not limited to, perforation guns, shaped charge devices, and phase charge devices, such as those described in U.S. Patent Nos. 6,755,249, 5,095,099, and 5,816,343; Horizontal Oriented Perforating Systems (HOPS), such as those manufactured by Owen Oil Tubes, Inc. (Ft. Worth, TX); mechanical perforating devices such as laterally movable punches (U.S. Patent No. 2,482,913), needle punch perforators, and toothed wheel perforators such as those described in U.S. Patent No. 4,220,201; and shearable plugs such as described in U.S. Patent No. 4,498,543.
  • the perforations 15 form a flow path for fluid from the formation into the casing 12, and vice- versa.
  • the hydrocarbons flowing out of the producing strata 18 through the perforations 15 and into the interior of the casing 12 can be transported to the surface through a production tubing 20.
  • a production packer, 22, can optionally be installed near the lower end of the production tubing 20 and above the highest perforation 15 in order to achieve a pressure seal between the production tubing 20 and the casing 12.
  • production tubings 20 need not be used, in which case the entire volume of casing 12 is used to conduct the hydrocarbons to the surface of the earth.
  • heavy weight proppant diverting agents 26a and/or light weight proppant diverting agents 26b are used to substantially seal the upper and lower sections of the producing strata 18. This substantial sealing, or border formation, occurs when the temporary diverting agents 26a and/or 26b are introduced into the casing 12 at a predetermined time during the treatment.
  • the diverting agents 26a and/or 26b are introduced into the fluid upstream of the perforated parts of the casing 12, they are carried down the production tubing 20 or casing 12 by the treating fluid 24 flow.
  • the treating fluid 24 arrives at the perforated interval in the casing, it flows outwardly through the perforations 15 and into the strata 18 being treated.
  • the flow of the treating fluid 24 through the perforations 15 carries the temporary diverting agents 26a and/or 26b through the perforations and out into the strata 18.
  • the heavy weight proppant diverting agents 26a having a density greater than that of the treating fluid 24, settle to the bottom of the created fracture (as indicated by the arrows), forming a temporary "lower border" between the fracture and, for example a sand, shale or clay layer 19 or other area to which it is desirable to seal off from the producing strata.
  • light weight proppant diverting agents 26a having a density less than that of treating fluid 24, rise to the top of the created fracture (as indicated by the arrows), thereby forming another temporary "upper border” between the fracture and an undesirable layer, such as a shale or clay band of strata.
  • Figure 2 illustrates the next step of this aspect of the present invention.
  • FIG. 3 illustrates a further embodiment of the present invention.
  • a well 50 having a vertical cased wellbore with a casing 54 extended from the wellhead 52 for at least a portion of the length of the wellbore, and a cement sheath 56 extending upwards from the bottom of the wellbore in the annulus between the outside of the casing 54 and the inside wall of the wellbore, at least to a point above the existing strata, similar to that shown in FIG. 1.
  • FIG. 3 illustrates a fully cased wellbore
  • disclosed treatment methods may be utilized with virtually any type of wellbore completion scenario.
  • the disclosed methods may advantageously be employed to treat well configurations including, but not limited to, vertical wellbores, fully cased wellbores, horizontal wellbores, wellbores having multiple laterals, and wellbores sharing one or more of these characteristics.
  • treatment intervals 58, 60 and 62 represent identified intervals of a subterranean formation that have been identified for treatment. In this regard, any number of intervals or only a portion thereof present in the subterranean formation may be so identified. Alternatively, such intervals may also represent perforated intervals in a cased wellbore. As shown in FIG. 3, perforations 66 extend through casing 54 and cement sheath 56 by means known to those of skill in the art, and in doing so form a flow path for fluid from the formation into the casing 54, and vice- versa.
  • the hydrocarbons flowing out of the producing strata in treatment intervals 58, 60 and 62 through the perforations 66 and into the interior of the casing can be transported to the surface through a production tubing, 64.
  • a production packer 68 can be optionally installed substantially near the lower end of the production tubing 64 and above the highest perforation 66 in order to achieve a pressure seal between the production tubing 64 and the casing 54.
  • Production tubing 64 need not always be used, and in those instances the entire interior volume of casing 54 is used to conduct the hydrocarbons to the surface to wellhead 52.
  • diverting agents 72 are used to substantially seal some of the perforations 66.
  • diverting agents 72 are preferred to be substantially spherical in shape, although other geometries can be used.
  • Using diverting agents 72 of the present invention to plug some of the perforations 66 is accomplished by introducing the diverting agents 72 into the casing 12 at a pre-determined time during the treatment. When the diverting agents 72 are introduced into the fluid upstream of the perforated parts (66) of the casing 12, they are carried down the production tubing 64 or casing 12 by a flowing fracturing fluid 70.
  • the fracturing fluid 70 arrives at the perforated interval in the casing, it flows outwardly through perforations 66 and into the treatment intervals 58, 60, and 62 being treated.
  • the flow of the fracturing fluid 70 through the perforations 66 carries the diverting agents 72 toward the perforations 66, causing them to seat on the perforations 66.
  • diverting agents 72 are held onto the perforations 66 by the fluid pressure differential which exists between the inside of the casing 54 and the treatment intervals 58, 60 and 62 on the outside of casing 54.
  • the diverting agents 72 are preferentially sized to substantially seal the perforations 66 when seated upon them.
  • the seated diverting agents 72 thereby serve to effectively close those perforations 66 until such time as the pressure differential is reversed and the diverting agents released, or the diverting agents 72 dissolve over a period of time due to changes in their environment (e.g., the introduction of water).
  • the diverting agents 72 will tend to first seal the perforations 66 through which the fracturing fluid 70 is flowing most rapidly.
  • the preferential closing of the high flow rate perforations 66 tends to equalize treatment of the treatment intervals 58, 60 and 62 over the entire, perforated interval.
  • the diverting agents 72 should have a density less than the density of the treating fluid 70 in the wellbore at the temperature and pressure conditions encountered in the perforated area downhole.
  • the diverting agent 72 will have at least a substantial outer surface comprised of collagen or a mixture of collagens.
  • the number of diverting agents 72 needed during a workover or well treatment depends upon the objectives and characteristics of the individual well and the stimulation treatment to be used, and can be determined by one skilled in the art.
  • the diverting agent or medium suitable for achieving diversion of fluids into the identified treatment intervals that is employed is the diverting agent of the present invention comprising a particulate substrate and a slowly water-soluble collagen outer layer.
  • a neutrally buoyant variation of this collagen-containing diverting system can be employed, so as to reduce the chance of segregation of the diverting agent and particulate diverting agent carrier fluid.
  • a "neutrally buoyant" diverting system is a system in which a particulate diverting agent is suspended in a carrier fluid having sufficiently close density or specific gravities to result in a mixture in which solid components of the diverting agent do not substantially settle or rise in the system under static conditions.
  • Neutrally buoyant diverting systems may be of particular advantage in highly deviated or horizontal wells, where gravity segregation of a non-neutrally buoyant diverting system may prevent efficient blockage or reduction in permeability of the entire circumference of formation face exposed in the wellbore due, for example, to migration of diverting agent upwards or downwards in the highly deviated or horizontal section of the wellbore.
  • Diverting agents which may be employed include the diverting agents of the present invention, having a slowly water-soluble outer coating, alone or in combination with any diverting agent (e.g., oil soluble, acid soluble, etc.) suitable for diverting subsequent treatment fluids into intervals having lower injectivity.
  • Any diverting agent e.g., oil soluble, acid soluble, etc.
  • One suitable diverting agent in accordance with the present invention is a diverting agent that is substantially collagen.
  • Suitable diverting agents which can be combined with the diverting agent of the present invention include, but are not limited to, benzoic acid flakes, wax (such as "Divert VI” available from BJ Services), cement grade gilsonite or unitaite, polymers (including, but not limited to, natural polymers such as guar, or synthetic polymers such as polyacrylate), rock salt, and the like.
  • Other types of suitable diverting agents that can be employed include, but are not limited to, acid soluble diverting agents such as those described in U.S. Pat. No. 3,353,874, and phtalimide particles such as those as described in U.S. Pat. No. 4,444,264.
  • any type of carrier fluid having a density suitable for forming a neutrally buoyant diverter system may be employed, including natural or synthetic brines (such as KCl water, etc.) and carrier fluids including gelling agents (such as normal or synthetic polymers) or other weighting materials known in the art.
  • Cement grade gilsonite also known as "Uintate" is a natural variety of asphalt that is crushed and sorted into multiple-size particles.
  • This diverting agent composition may be blended at the well site with specific chemically-modified fresh water (water containing for example, about 0.05% to about 1% of a wetting surfactant) to disperse the gilsonite and optionally, a weighting agent (including but not limited to salts such as KCl, NH 4 Cl, NaCl, CaCl 2 , etc.) for density adjustment and/or formation-clay control, and a gelling agent (a polymer such as guar gum, hydroxy propylguar, carboxy methylhydroxy proprylguar, carboxy methyl hydroxyethyl cellulose, xanthan gum, carboxy methyl cellulose, etc.) for viscosity adjustment and/or drag reduction.
  • a weighting agent including but not limited to salts such as KCl, NH 4 Cl, NaCl, CaCl 2 , etc.
  • a gelling agent a polymer such as guar gum, hydroxy propylguar, carboxy methylhydroxy propryl
  • the diverting agent of the present invention is preferably present in the carrier fluid in concentrations of from about 0.001 pounds per gallon to about 10 pounds per gallon of carrier liquid but concentrations outside this range can also be used.
  • concentrations outside this range can also be used.
  • the most preferred concentrations of diverting agents are from about 0.01 to about 6 pounds per gallon of carrier fluid. Diverting agent concentrations of less than about 0.001 pound per gallon will not as readily plug formations when used in carrier fluids volumes which are normally available at an oil well site. A progressively large volume of carrier fluid would be required to create adequate formation plugs at concentrations of less than 0.001 pounds per gallon.
  • the carrier liquid is typically composed of water, brine, aqueous acid solutions, or gelled acid solutions.
  • the acid solutions can be gelled with a celluloses, gums, polysaccharides, polyacrylamides, alkoxylated fatty amines and mixtures thereof.
  • the diverting agent may be added to the carrier fluid as the treatment is started, continuously as the treating fluid is pumped into the well bore or may be added in intervals in the carrier fluid between stages of the treatment. For instance, in acidizing procedures the diverting agent may be added to the acidizing fluid continuously. Thus, the diverting agent will progressively plug portions of the formation being treated, thereby frustrating the tendency of the acid to flow only into the most permeable portions of the formation and, instead, creating an evenly acidized formation.
  • the first stage is followed by a volume of the diverting material composed of a carrier fluid, usually gelled or emulsified water or acid, containing the bridging agent.
  • the diverting agent seals off the portion of the formation penetrated by the first stage of treating fluid.
  • the second stage of treating fluid is then pumped into another portion of the formation. Alternating volumes of treating fluid and diverting material may be continued to provide a uniformly acidized formation.
  • the same technique of continuously introducing the diverting agent in the carrier fluid may be used for fracturing treatments, it is usual for the diverting agent to be added to the carrier fluid in slugs during fracturing operations.
  • a fracturing liquid is known to preferentially flow into the portion of the subterranean formation which most readily accepts the liquid.
  • the bridging agent may be added to the fracturing liquid so that it will plug the already fractured portion of the formation. Because the fracturing fluid is preferentially flowing into the fracture zone, it will carry the bridging agent with it. The fractured zone is thereby plugged and the fracturing fluid is diverted to the most permeable portion of the formation that is still accepting fluids.
  • This method of fracturing and diverting can, in one aspect of the present invention, be repeated to obtain multiple fractures.
  • the diverting agent is removed from the formation by means of sublimation of the diverting agent or by solubilization of the diverting agent by the produced fluids.
  • Increasing formation temperatures result in a greater rate of dissolution or sublimation of the diverting agent. For instance, it has been found that at about 250 0 F, approximately 80 percent by weight of the slightly water-soluble collagen sublimates in 24 hours, while at 300 °F, about 95 percent by weight sublimates in 24 hours, and at a temperature of about 400 °F, about 99% of the slightly water-soluble collagen sublimates/dissolves in about 24 hours. This shows that the rate of sublimation/dissolution of the diverting agent increases with increasing formation temperature.
  • Example 1 Prophetic Example
  • the following prophetic example describes a method of how the soluble coating on the propping agent or agents of the present invention can be used to divert fracture growth and extend the fractures into the productive zone of an oil or gas well.
  • the primary purpose of the soluble coated proppant is to define an upper and lower boundary in the hydraulically generated vertical fracture so that the main direction of growth continues to extend outward in length away from the wellbore. This additional length of the conductive fracture aids in draining additional areas of the productive formation, allowing oil, gas, and/or water recovery production to be improved and greater flow rates to be established as a result of longer fracture length.
  • a fracture injection rate is established with a low viscosity fracturing fluid.
  • a soluble coated proppant such as walnut hulls coated with a cross-linked collagen, bauxite coated with cross-linked collagen, or a combination of both, is added at the blender tub in order to form a slurry in the fracturing fluid.
  • the fracturing fluid containing the soluble coated proppant is pumped downhole.
  • the first part of the slurry enters the initial crack, taking the most fluid, hi doing so, it slowly plugs the borders of the created fracture due to the use of a soluble diverting agent, such as collagen, that slowly softens and swells in the fluid.
  • both the top and the bottom of the fracture need to be contained by the soluble coated proppant, two different proppant densities are preferably used.
  • a high density bauxite particle is coated with a soluble, collagen coating that slowly softens and swells as it falls in the fracture to the bottom of the vertically-created fracture.
  • a second proppant of low density such as a soluble-coated walnut hull, is added to the injection fluid.
  • the low-density, soluble-material coated proppant rises in the vertical fracture and slows down fluid loss and growth in an upward direction.
  • Standard, non-soluble coated proppants such as Ottawa Sand (20/40), ceramic, or any number of resin-coated proppants, are injected into the formation, once the top and bottom growth is diminished. Pumping is continued until the full amount of designated proppant (or proppants) are placed in the created fractures.
  • the well is returned to production, and the soluble collagen-coating on the walnut hulls or bauxite is removed as the water in the formation dissolves the soluble coating on the proppant over time.
  • compositions, methods, and/or processes disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions, methods, and/or processes and in the steps or in the sequence of steps of the methods described herein without departing from the concept and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention.

Abstract

L'invention concerne des procédés et des compositions permettant de stimuler des intervalles uniques et multiples dans des puits souterrains par déviation des fluides de traitement de puits dans une direction particulière ou dans de multiples intervalles à l'aide d'agents de déviation revêtus solubles dans l'eau. Le revêtement soluble dans l'eau du matériau de déviation est de préférence un polymère de collagène, d'oxyde de poly(alkylène), de poly(acide lactique), de polyvinylacétate, de polyvinylalcool, de polyvinylacétate/polyvinylalcool ou un mélange de ceux-ci appliqué en tant que revêtement sur un nombre quelconque d'agents de soutènement. Le procédé permet de dévier l'écoulement de fluides dans une formation de fond de trou au cours d'un traitement de puits, tel qu'au cours d'une fracturation. Après achèvement d'un traitement tel qu'une stimulation hydraulique, l'agent de déviation soluble peut être dissous et éliminé par le constituant eau de la production du puits.
PCT/US2006/001916 2005-01-21 2006-01-20 Agents de deviation solubles WO2006088603A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB0714796A GB2437869B (en) 2005-01-21 2006-01-20 Soluble diverting agents
MX2007008850A MX2007008850A (es) 2005-01-21 2006-01-20 Agentes solubles de derivacion.
CN2006800093692A CN101146888B (zh) 2005-01-21 2006-01-20 可溶性转向剂
CA2595686A CA2595686C (fr) 2005-01-21 2006-01-20 Agents de deviation solubles
NO20074239A NO20074239L (no) 2005-01-21 2007-08-20 Loselige avledningsmidler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64623105P 2005-01-21 2005-01-21
US60/646,231 2005-01-21

Publications (1)

Publication Number Publication Date
WO2006088603A1 true WO2006088603A1 (fr) 2006-08-24

Family

ID=36590218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/001916 WO2006088603A1 (fr) 2005-01-21 2006-01-20 Agents de deviation solubles

Country Status (8)

Country Link
US (1) US20060175059A1 (fr)
CN (1) CN101146888B (fr)
CA (1) CA2595686C (fr)
GB (1) GB2437869B (fr)
MX (1) MX2007008850A (fr)
NO (1) NO20074239L (fr)
RU (1) RU2433157C2 (fr)
WO (1) WO2006088603A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050286A1 (fr) * 2006-10-24 2008-05-02 Schlumberger Canada Limited Diversion assistée en matériau dégradable
WO2010049467A1 (fr) * 2008-10-29 2010-05-06 Basf Se Agent de soutènement
CN101724384B (zh) * 2008-10-29 2012-07-18 中国石油天然气股份有限公司 一种高强弹性缓膨吸水颗粒转向剂的制备方法
WO2015073292A1 (fr) * 2013-11-15 2015-05-21 Dow Global Technologies Llc Agents de soutènement présentant un pouvoir de dépoussiérage renforcé
US9714378B2 (en) 2008-10-29 2017-07-25 Basf Se Proppant
WO2018125667A1 (fr) * 2016-12-29 2018-07-05 Shell Oil Company Fracturation d'une formation avec une suspension de mortier
WO2018231236A1 (fr) * 2017-06-15 2018-12-20 Halliburton Energy Services, Inc. Matériaux de dérivation plastifiés à base d'alcool polyvinylique
US10240445B2 (en) 2013-06-10 2019-03-26 Sumitomo Seika Chemicals Co., Ltd. Fracturing fluid viscosity-controlling agent to be used in hydraulic fracturing
WO2020047139A1 (fr) 2018-08-28 2020-03-05 Kuraray Co., Ltd. Agents de déviation à base de granulés d'alcool polyvinylique thermoplastique
WO2020047149A1 (fr) 2018-08-28 2020-03-05 Kuraray Co., Ltd. Agents de déviation à base d'alcool polyvinylique

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211247B2 (en) 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
CN101023243A (zh) 2004-09-14 2007-08-22 卡博陶粒有限公司 烧结球形颗粒
AU2006218614A1 (en) 2005-03-01 2006-09-08 Carbo Ceramics Inc. Methods for producing sintered particles from a slurry of an alumina-containing raw material
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
US8567494B2 (en) 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
US20070087941A1 (en) * 2005-10-19 2007-04-19 Bj Services Company Storable fracturing suspensions containing ultra lightweight proppants in xanthan based carriers and methods of using the same
US8231947B2 (en) * 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
US8220554B2 (en) * 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US7934556B2 (en) * 2006-06-28 2011-05-03 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
US8211248B2 (en) * 2009-02-16 2012-07-03 Schlumberger Technology Corporation Aged-hardenable aluminum alloy with environmental degradability, methods of use and making
US7828998B2 (en) 2006-07-11 2010-11-09 Carbo Ceramics, Inc. Material having a controlled microstructure, core-shell macrostructure, and method for its fabrication
US7708069B2 (en) * 2006-07-25 2010-05-04 Superior Energy Services, L.L.C. Method to enhance proppant conductivity from hydraulically fractured wells
CA2661799A1 (fr) 2006-08-30 2008-03-06 Carbo Ceramics Inc. Agent de soutenement de faible poids volumique et procedes destines a produire cet agent
US7490667B2 (en) * 2006-10-02 2009-02-17 Fairmount Minerals, Inc. Proppants with soluble composite coatings
US7637320B2 (en) * 2006-12-18 2009-12-29 Schlumberger Technology Corporation Differential filters for stopping water during oil production
US8205673B2 (en) * 2006-12-18 2012-06-26 Schlumberger Technology Corporation Differential filters for removing water during oil production
WO2009009370A1 (fr) * 2007-07-06 2009-01-15 Carbo Ceramics Inc. Agents de soutènement pour le nettoyage de gel
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US8490699B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US7784541B2 (en) * 2007-07-25 2010-08-31 Schlumberger Technology Corporation System and method for low damage fracturing
US8490698B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
US8119574B2 (en) * 2007-07-25 2012-02-21 Schlumberger Technology Corporation High solids content slurries and methods
US8936082B2 (en) 2007-07-25 2015-01-20 Schlumberger Technology Corporation High solids content slurry systems and methods
US8496056B2 (en) 2007-07-25 2013-07-30 Schlumberger Technology Corporation System and method for low damage fracturing
US7580796B2 (en) * 2007-07-31 2009-08-25 Halliburton Energy Services, Inc. Methods and systems for evaluating and treating previously-fractured subterranean formations
US8714250B2 (en) * 2007-10-18 2014-05-06 Schlumberger Technology Corporation Multilayered ball sealer and method of use thereof
US9856415B1 (en) 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US10920494B2 (en) 2007-12-11 2021-02-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US20170137703A1 (en) 2007-12-11 2017-05-18 Superior Silica Sands, LLC Hydraulic fracture composition and method
US9057014B2 (en) 2007-12-11 2015-06-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US8006760B2 (en) * 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US9212535B2 (en) * 2008-04-15 2015-12-15 Schlumberger Technology Corporation Diversion by combining dissolvable and degradable particles and fibers
US8936085B2 (en) 2008-04-15 2015-01-20 Schlumberger Technology Corporation Sealing by ball sealers
EP2110508A1 (fr) * 2008-04-16 2009-10-21 Schlumberger Holdings Limited Procédé d'activation de fonds de puits à base de micro-ondes pour applications de consolidation de trou de forage
US20100051274A1 (en) * 2008-08-28 2010-03-04 Tommy Johnson Methods, apparatus and products for drilling wells
US8561696B2 (en) 2008-11-18 2013-10-22 Schlumberger Technology Corporation Method of placing ball sealers for fluid diversion
CN101839124B (zh) * 2009-03-18 2013-03-27 中国石油天然气股份有限公司 一种控制油气田储层压裂裂缝延伸的方法
US8062997B2 (en) * 2009-04-24 2011-11-22 Halliburton Energy Services Inc. Method for enhancing stability of oil based drilling fluids at high temperatures
US7833947B1 (en) 2009-06-25 2010-11-16 Schlumberger Technology Corporation Method for treatment of a well using high solid content fluid delivery
US8109335B2 (en) * 2009-07-13 2012-02-07 Halliburton Energy Services, Inc. Degradable diverting agents and associated methods
US20110048697A1 (en) * 2009-08-25 2011-03-03 Sam Lewis Sonically activating settable compositions
US7923415B2 (en) * 2009-08-31 2011-04-12 Schlumberger Technology Corporation Methods to reduce settling rate of solids in a treatment fluid
US20110198089A1 (en) * 2009-08-31 2011-08-18 Panga Mohan K R Methods to reduce settling rate of solids in a treatment fluid
US8016034B2 (en) * 2009-09-01 2011-09-13 Halliburton Energy Services, Inc. Methods of fluid placement and diversion in subterranean formations
WO2011050046A1 (fr) * 2009-10-20 2011-04-28 Soane Energy, Llc Agents de soutènement pour techniques de fracturation hydraulique
US8833452B2 (en) 2009-12-21 2014-09-16 Schlumberger Technology Corporation Chemical diversion technique
US8646530B2 (en) * 2009-12-21 2014-02-11 Schlumberger Technology Corporation Chemical diversion technique
CA2691891A1 (fr) * 2010-02-04 2011-08-04 Trican Well Services Ltd. Applications de fluides intelligents dans le cadre de l'exploitation d'un puits de forage
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
CA2799362A1 (fr) * 2010-05-14 2011-11-17 Chemical Delivery Systems, Inc. Materiaux et methodes d'obstruction temporaire de parties de puits de forage
US8936095B2 (en) 2010-05-28 2015-01-20 Schlumberger Technology Corporation Methods of magnetic particle delivery for oil and gas wells
US8505628B2 (en) 2010-06-30 2013-08-13 Schlumberger Technology Corporation High solids content slurries, systems and methods
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US20120043085A1 (en) * 2010-08-19 2012-02-23 Schlumberger Technology Corporation Wellbore service fluid and methods of use
CN102399549B (zh) * 2010-09-15 2013-07-03 中国石油天然气集团公司 一种稳定井壁的破岩剂及其制备方法
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US8950476B2 (en) * 2011-03-04 2015-02-10 Accessesp Uk Limited Coiled tubing deployed ESP
US10808497B2 (en) 2011-05-11 2020-10-20 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion
US20120285695A1 (en) * 2011-05-11 2012-11-15 Schlumberger Technology Corporation Destructible containers for downhole material and chemical delivery
US8905133B2 (en) 2011-05-11 2014-12-09 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
BR112014004314A2 (pt) 2011-08-31 2017-09-12 Self Suspending Proppant Llc Propante modificado, formulação de fraturamento hidráulico, método de formar um propante modificado, método de fraturamento de um poço, método de fabricação de um propante modificado
US20140000891A1 (en) 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
CN102561989A (zh) * 2012-02-21 2012-07-11 重庆市能源投资集团科技有限责任公司 一种煤矿井下水力压裂封孔方法
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US20130292112A1 (en) * 2012-05-02 2013-11-07 Los Alamos National Security, Llc Composition and method for locating productive rock fractures for fluid flow
GB201216004D0 (en) * 2012-09-07 2012-10-24 Oilflow Solutions Holdings Ltd Subterranean formations
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US9598927B2 (en) 2012-11-15 2017-03-21 Halliburton Energy Services, Inc. Expandable coating for solid particles and associated methods of use in subterranean treatments
CN103849374B (zh) * 2012-11-30 2017-01-25 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
CA2895064A1 (fr) * 2012-12-14 2014-06-19 Basf Se Agent de soutenement
US9822625B2 (en) 2013-03-13 2017-11-21 Halliburton Energy Services, Inc. Methods for treatment of a subterranean formation
US20140262231A1 (en) * 2013-03-13 2014-09-18 Halliburton Energy Services, Inc. Methods for treatment of a subterranean formation
EP2986818A4 (fr) * 2013-04-19 2017-04-26 Lubrizol Oilfield Solutions, Inc. Systemes de deviation hydraulique pour ameliorer des traitements de matrice, et procedes d'utilisation de ceux-ci
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
US9546534B2 (en) * 2013-08-15 2017-01-17 Schlumberger Technology Corporation Technique and apparatus to form a downhole fluid barrier
WO2015026355A1 (fr) * 2013-08-22 2015-02-26 Halliburton Energy Services, Inc. Compositions comprenant un agent de pontage particulaire et des fibres et procédés de traitement d'une formation souterraine au moyen de celles-ci
US20150060069A1 (en) * 2013-08-27 2015-03-05 Schlumberger Technology Corporation Swellable ball sealers
AU2014202934B2 (en) * 2013-09-09 2016-03-17 Korea Institute Of Geoscience And Mineral Resources (Kigam) Apparatus and method for solution mining using cycling process
US20160145482A1 (en) * 2013-09-13 2016-05-26 Halliburton Energy Services, Inc. Compositions for treating subterranean formations
CA2919534C (fr) * 2013-09-16 2018-09-25 Halliburton Energy Services, Inc. Amelioration de la conductivite de reseaux de fractures complexes dans des formations souterraines
CN103484095B (zh) * 2013-10-11 2015-07-22 陕西延长石油(集团)有限责任公司研究院 一种压裂用包裹体自溶解转向剂及其制备方法
CN104695923A (zh) * 2013-12-05 2015-06-10 中国石油天然气股份有限公司 采用可溶球实现水平井分段多簇压裂的方法
CN103756659B (zh) * 2013-12-28 2016-08-03 北京国海能源技术研究院 柔性颗粒转向剂及其制备方法
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
CA2936851A1 (fr) 2014-02-21 2015-08-27 Terves, Inc. Systeme metallique de desintegration a activation par fluide
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
WO2015134022A1 (fr) * 2014-03-06 2015-09-11 Halliburton Energy Services, Inc. Dérivation de champ lointain avec agent de soutènement pulsé dans des opérations de fracturation souterraine
US10400535B1 (en) 2014-03-24 2019-09-03 Nine Downhole Technologies, Llc Retrievable downhole tool
US9915114B2 (en) * 2015-03-24 2018-03-13 Donald R. Greenlee Retrievable downhole tool
WO2015144091A1 (fr) * 2014-03-28 2015-10-01 北京仁创科技集团有限公司 Agent de soutènement auto-suspendu, sa préparation et son utilisation
CN110004339B (zh) 2014-04-18 2021-11-26 特维斯股份有限公司 用于受控速率溶解工具的电化活性的原位形成的颗粒
US9790422B2 (en) * 2014-04-30 2017-10-17 Preferred Technology, Llc Proppant mixtures
US10287865B2 (en) 2014-05-19 2019-05-14 Baker Hughes, A Ge Company, Llc Use of an acid soluble or degradable solid particulate and an acid liberating or acid generating composite in the stimulation of a subterranean formation
US10001613B2 (en) 2014-07-22 2018-06-19 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
US10738577B2 (en) 2014-07-22 2020-08-11 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
NZ730072A (en) * 2014-08-15 2018-02-23 Baker Hughes Inc Diverting systems for use in well treatment operations
CN105350948B (zh) * 2014-08-22 2019-01-01 中国石油化工股份有限公司 页岩气水平井分段压裂方法和页岩气水平井完井方法
US9470078B2 (en) * 2014-09-29 2016-10-18 Baker Hughes Incorporated Fluid diversion through selective fracture extension
WO2016056934A1 (fr) 2014-10-06 2016-04-14 Schlumberger Canada Limited Procédés d'isolement de zone et le traitement déviation, présentant des particules en forme
WO2016076747A1 (fr) * 2014-11-14 2016-05-19 Schlumberger Canada Limited Déviation sélective assistée chimiquement pendant des traitements de puits à plusieurs étapes
RU2679202C2 (ru) * 2014-11-14 2019-02-06 Шлюмбергер Текнолоджи Б.В. Способ обработки скважины
US9810051B2 (en) * 2014-11-20 2017-11-07 Thru Tubing Solutions, Inc. Well completion
US20160145483A1 (en) * 2014-11-26 2016-05-26 Schlumberger Technology Corporation Well treatment
CN104531116B (zh) * 2014-12-31 2017-03-08 中国石油天然气股份有限公司 一种油藏深部液流转向剂及其制备方法和应用
CN104624623B (zh) * 2015-01-30 2017-09-12 浙江博世华环保科技有限公司 一种污染场地原位抽提修复方法
CN104624633B (zh) * 2015-01-30 2017-09-12 浙江博世华环保科技有限公司 一种污染场地原位注药修复方法
US9976390B2 (en) * 2015-03-30 2018-05-22 Baker Hughes, A Ge Company, Llc Drilling fluids with leakoff control and drill cuttings removal sweeps
CN104974739B (zh) * 2015-07-10 2018-06-15 四川大学 一种纤维素共混改性聚乙烯醇压裂液及其制备方法
CN105041288A (zh) * 2015-07-13 2015-11-11 中国石油大学(北京) 一种碳酸盐岩油气藏裂缝转向酸压方法
US20170166798A1 (en) * 2015-08-25 2017-06-15 FracSolution Technologies, LLC Diversion sand and methods
US20170081585A1 (en) * 2015-09-18 2017-03-23 Baker Hughes Incorporated Method of Diversion and Zonal Isolation in a Subterranean Formation Using a Biodegradable Polymer
CA2997706C (fr) * 2015-10-15 2020-10-06 Halliburton Energy Services, Inc. Liquide de fracturation de micro-soutenement et compositions de concentre de boue
US10246632B2 (en) * 2015-10-30 2019-04-02 Carbo Ceramics Inc. Proppant having amphiphobic coatings and methods for making and using same
US10876045B2 (en) 2015-11-16 2020-12-29 Halliburton Energy Services, Inc. Subterranean stimulation operations utilizing degradable pre-coated particulates
US20170159404A1 (en) 2015-11-25 2017-06-08 Frederic D. Sewell Hydraulic Fracturing with Strong, Lightweight, Low Profile Diverters
US10815750B2 (en) 2015-11-25 2020-10-27 Frederic D. Sewell Hydraulic fracturing with strong, lightweight, low profile diverters
US11795377B2 (en) 2015-12-21 2023-10-24 Schlumberger Technology Corporation Pre-processed fiber flocks and methods of use thereof
US20170198179A1 (en) * 2016-01-12 2017-07-13 River Canyon Investments, Llc Ball sealers for use in subterranean wells, methods of making and using same
MX2018006853A (es) * 2016-01-28 2018-08-01 Halliburton Energy Services Inc Mezclas de particulado duro soluble en acido/ acido polilactico como agentes divergentes degradables.
US20190010383A1 (en) * 2016-03-18 2019-01-10 Halliburton Energy Services, Inc. Self-degradable diverters for propped fracture acidizing
US10161235B2 (en) 2016-06-03 2018-12-25 Enhanced Production, Inc. Hydraulic fracturing in highly heterogeneous formations by resisting formation and/or sealing micro-fractures
RU2656054C1 (ru) * 2016-06-14 2018-05-30 Открытое акционерное общество "Сургутнефтегаз" Способ гидравлического разрыва пласта
CN106350043B (zh) * 2016-07-22 2019-04-12 北京斯迪莱铂油气技术有限公司 用于暂堵转向压裂中的复合暂堵剂和复合暂堵方法
MX2019003209A (es) * 2016-09-20 2019-07-08 Fairmount Santrol Inc Selladores de bola degradables con caracteristicas de solubilidad mejoradas.
CN106957642A (zh) * 2016-11-28 2017-07-18 青岛科技大学 一种自悬浮支撑剂制备中聚合物废料再利用工艺
RU2723066C1 (ru) 2016-12-02 2020-06-08 Хэллибертон Энерджи Сервисиз, Инк. Растворимый скважинный отклонитель для ствола многоствольной скважины
CA3046487C (fr) * 2016-12-13 2021-04-20 Thru Tubing Solutions, Inc. Procedes de completion d'un puits et appareil associe
CN106677756B (zh) * 2017-03-07 2018-02-02 库尔勒金川矿业有限公司 一种煤岩软化活性压裂装置及煤岩压裂施工工艺
US11061154B2 (en) * 2017-06-12 2021-07-13 Battelle Memorial Institute Acoustic proppant for fracture diagnostic
CN110997861B (zh) * 2017-08-10 2024-01-12 三菱化学株式会社 转向剂及使用其的坑井的龟裂的堵塞方法
US10385261B2 (en) 2017-08-22 2019-08-20 Covestro Llc Coated particles, methods for their manufacture and for their use as proppants
CN107722958A (zh) * 2017-08-24 2018-02-23 中国石油天然气股份有限公司 一种60~90℃溶解的水溶转向剂及其制备方法
CN107699224B (zh) * 2017-10-10 2020-03-27 西南石油大学 一种控制水力压裂裂缝延伸上端高度的导向剂
WO2019088999A1 (fr) * 2017-10-31 2019-05-09 Halliburton Energy Services, Inc. Déviation à l'aide de particules solides
US10808162B2 (en) 2017-11-17 2020-10-20 Fairmount Santrol Inc. Crush resistant buoyant ball sealers
US10883036B2 (en) 2017-11-28 2021-01-05 Championx Usa Inc. Fluid diversion composition in well stimulation
US20200048532A1 (en) * 2018-08-10 2020-02-13 Bj Services, Llc Frac Fluids for Far Field Diversion
US20200063015A1 (en) 2018-08-22 2020-02-27 Carbo Ceramics Inc. Composite diversion particle agglomeration
EP3853320B1 (fr) 2018-09-21 2023-10-25 ConocoPhillips Company Contrôle de fuite dans une stimulation par acide à l'aide d'un matériau soluble
WO2020106655A1 (fr) 2018-11-21 2020-05-28 Self-Suspending Proppant Llc Agents de soutènement à auto-suspension résistant à la salinité fabriqués sans extrusion
CA3112252C (fr) * 2018-11-30 2023-12-19 Halliburton Energy Services, Inc. Fluides de traitement de trou de forage comprenant des agents de deviation sous forme de granules composites
CN109826590B (zh) * 2019-02-27 2021-05-14 杨凌单色生物科技有限公司 一种低渗油气田高含水老井堵水压裂方法
US11124700B2 (en) 2019-09-26 2021-09-21 Oil Field Packaging Llc Use of micro-particle amorphous silicate in well stimulation
CN110593841A (zh) * 2019-10-16 2019-12-20 荆州市现代石油科技发展有限公司 一种转向压裂用水溶性暂堵剂的在线加注装置和暂堵方法
CN111271037A (zh) * 2020-03-11 2020-06-12 西南石油大学 一种煤层气智能转向压裂工艺
US11293252B2 (en) * 2020-04-16 2022-04-05 Halliburton Energy Services, Inc. Fluid barriers for dissolvable plugs
CN111849441B (zh) * 2020-06-29 2022-06-03 山东华茂石油技术开发有限公司 低温油层炮眼封堵剂、其制备方法及使用方法
CN111892917B (zh) * 2020-10-09 2020-12-11 山东科兴化工有限责任公司 一种氯化钙基水溶性油田暂堵材料的制备方法
US11370962B1 (en) 2021-02-08 2022-06-28 Saudi Arabian Oil Company Methods for designing coated proppant in low viscosity carrier fluid
CN114033331A (zh) * 2021-03-24 2022-02-11 中国石油天然气集团有限公司 绳结式暂堵剂和暂堵方法
CN115849798A (zh) * 2023-03-01 2023-03-28 成都理工大学 基于表面改性陶瓷的地热井高强度暂堵水泥及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562879A2 (fr) * 1992-03-27 1993-09-29 Hepworth Minerals & Chemicals Limited Méthode pour supporter les fractures radiales à partir d'un puit de forage et composition destinée à être utilisée dans cette méthode
WO2005003514A1 (fr) * 2003-06-27 2005-01-13 Halliburton Energy Services, Inc. Procedes de derivation de fluides de traitement dans des zones souterraines et materiaux de derivation degradables

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803306A (en) * 1955-04-13 1957-08-20 Halliburton Oil Well Cementing Process for increasing permeability of underground formation
US3724549A (en) * 1971-02-01 1973-04-03 Halliburton Co Oil soluble diverting material and method of use for well treatment
US3797575A (en) * 1972-06-19 1974-03-19 Halliburton Co Additives for temporarily plugging portions of subterranean formations and methods of using the same
US3872923A (en) * 1972-11-06 1975-03-25 Ici America Inc Use of radiation-induced polymers as temporary or permanent diverting agent
US4005753A (en) * 1974-06-03 1977-02-01 Union Oil Company Of California Method of treating a subterranean formation with a polymeric diverting agent
US3954629A (en) * 1974-06-03 1976-05-04 Union Oil Company Of California Polymeric diverting agent
US4045398A (en) * 1975-11-24 1977-08-30 Monsanto Company Resole resin binder composition
US4269949A (en) * 1979-06-27 1981-05-26 Borden, Inc. Phenol formaldehyde resin for hardboard applications
US4240948A (en) * 1979-11-30 1980-12-23 Monsanto Company Accelerated resole binder
US4509598A (en) * 1983-03-25 1985-04-09 The Dow Chemical Company Fracturing fluids containing bouyant inorganic diverting agent and method of use in hydraulic fracturing of subterranean formations
US4527628A (en) * 1983-08-15 1985-07-09 Halliburton Company Method of temporarily plugging portions of a subterranean formation using a diverting agent
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US4904516A (en) * 1988-01-12 1990-02-27 Certain Teed Corp Phenol-formaldehyde resin solution containing water soluble alkaline earth metal salt
US5128390A (en) * 1991-01-22 1992-07-07 Halliburton Company Methods of forming consolidatable resin coated particulate materials in aqueous gels
EP0512908B2 (fr) * 1991-05-09 2003-02-05 Saint-Gobain Isover Procédé de préparation d'un liant phénolique
US5425994A (en) * 1992-08-04 1995-06-20 Technisand, Inc. Resin coated particulates comprissing a formaldehyde source-metal compound (FS-MC) complex
US5420174A (en) * 1992-11-02 1995-05-30 Halliburton Company Method of producing coated proppants compatible with oxidizing gel breakers
US6528157B1 (en) * 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
US6169058B1 (en) * 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US6114410A (en) * 1998-07-17 2000-09-05 Technisand, Inc. Proppant containing bondable particles and removable particles
US6367548B1 (en) * 1999-03-05 2002-04-09 Bj Services Company Diversion treatment method
US6380138B1 (en) * 1999-04-06 2002-04-30 Fairmount Minerals Ltd. Injection molded degradable casing perforation ball sealers fluid loss additive and method of use
US6279656B1 (en) * 1999-11-03 2001-08-28 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
US6605570B2 (en) * 2001-03-01 2003-08-12 Schlumberger Technology Corporation Compositions and methods to control fluid loss in surfactant-based wellbore service fluids
US7080688B2 (en) * 2003-08-14 2006-07-25 Halliburton Energy Services, Inc. Compositions and methods for degrading filter cake
US6699958B1 (en) * 2003-02-13 2004-03-02 Borden Chemical, Inc. Colorless phenol-formaldehyde resins that cure colorless
US7178596B2 (en) * 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7066258B2 (en) * 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562879A2 (fr) * 1992-03-27 1993-09-29 Hepworth Minerals & Chemicals Limited Méthode pour supporter les fractures radiales à partir d'un puit de forage et composition destinée à être utilisée dans cette méthode
WO2005003514A1 (fr) * 2003-06-27 2005-01-13 Halliburton Energy Services, Inc. Procedes de derivation de fluides de traitement dans des zones souterraines et materiaux de derivation degradables

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345759B1 (no) * 2006-10-24 2021-07-12 Schlumberger Technology Bv Avledning ved hjelp av nedbrytbart materiale
GB2455672A (en) * 2006-10-24 2009-06-24 Schlumberger Holdings Degradable material assisted diversion
WO2008050286A1 (fr) * 2006-10-24 2008-05-02 Schlumberger Canada Limited Diversion assistée en matériau dégradable
AU2007310513B2 (en) * 2006-10-24 2011-05-26 Schlumberger Technology B.V. Degradable material assisted diversion
US9719011B2 (en) 2008-10-29 2017-08-01 Basf Se Proppant
AU2009309692B2 (en) * 2008-10-29 2015-02-05 Basf Se A proppant
EA023407B1 (ru) * 2008-10-29 2016-06-30 Басф Се Пропант для гидравлического разрыва подземного пласта
US9714378B2 (en) 2008-10-29 2017-07-25 Basf Se Proppant
CN101724384B (zh) * 2008-10-29 2012-07-18 中国石油天然气股份有限公司 一种高强弹性缓膨吸水颗粒转向剂的制备方法
WO2010049467A1 (fr) * 2008-10-29 2010-05-06 Basf Se Agent de soutènement
US10240445B2 (en) 2013-06-10 2019-03-26 Sumitomo Seika Chemicals Co., Ltd. Fracturing fluid viscosity-controlling agent to be used in hydraulic fracturing
RU2691183C2 (ru) * 2013-06-10 2019-06-11 Сумитомо Сейка Кемикалз Ко., Лтд. Регулирующее вязкость жидкости для гидроразрыва вещество для применения в гидравлическом разрыве пласта
WO2015073292A1 (fr) * 2013-11-15 2015-05-21 Dow Global Technologies Llc Agents de soutènement présentant un pouvoir de dépoussiérage renforcé
US11104842B2 (en) 2013-11-15 2021-08-31 Dow Global Technologies Llc Proppants with improved dust control
US10316243B2 (en) 2013-11-15 2019-06-11 Dow Global Technologies Llc Proppants with improved dust control
WO2018125667A1 (fr) * 2016-12-29 2018-07-05 Shell Oil Company Fracturation d'une formation avec une suspension de mortier
WO2018231236A1 (fr) * 2017-06-15 2018-12-20 Halliburton Energy Services, Inc. Matériaux de dérivation plastifiés à base d'alcool polyvinylique
US11466193B2 (en) 2017-06-15 2022-10-11 Halliburton Energy Services, Inc. Plasticized polyvinyl alcohol diverter materials
US11920080B2 (en) 2017-06-15 2024-03-05 Halliburton Energy Services, Inc. Plasticized polyvinyl alcohol diverter materials
WO2020047149A1 (fr) 2018-08-28 2020-03-05 Kuraray Co., Ltd. Agents de déviation à base d'alcool polyvinylique
WO2020047139A1 (fr) 2018-08-28 2020-03-05 Kuraray Co., Ltd. Agents de déviation à base de granulés d'alcool polyvinylique thermoplastique

Also Published As

Publication number Publication date
RU2007131659A (ru) 2009-02-27
CA2595686A1 (fr) 2006-08-24
US20060175059A1 (en) 2006-08-10
CN101146888A (zh) 2008-03-19
CN101146888B (zh) 2012-08-08
RU2433157C2 (ru) 2011-11-10
MX2007008850A (es) 2008-01-16
GB0714796D0 (en) 2007-09-12
CA2595686C (fr) 2012-09-18
GB2437869B (en) 2010-06-16
GB2437869A (en) 2007-11-07
NO20074239L (no) 2007-10-15

Similar Documents

Publication Publication Date Title
CA2595686C (fr) Agents de deviation solubles
US7823642B2 (en) Control of fines migration in well treatments
US7216705B2 (en) Methods of placing treatment chemicals
US7325608B2 (en) Methods of hydraulic fracturing and of propping fractures in subterranean formations
CA2617279C (fr) Procedes permettant de constituer des amas dans une pluralite de perforations situees dans un tubage de puits de forage
US7281581B2 (en) Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7273099B2 (en) Methods of stimulating a subterranean formation comprising multiple production intervals
US20130048282A1 (en) Fracturing Process to Enhance Propping Agent Distribution to Maximize Connectivity Between the Formation and the Wellbore
US20160122618A1 (en) Compositions including a particulate bridging agent and fibers and methods of treating a subterranean formation with the same
AU2014262292B2 (en) Methods for minimizing overdisplacement of proppant in fracture treatments
CN106795750A (zh) 用于井处理操作的转向系统
US9309454B2 (en) Use of expandable self-removing filler material in fracturing operations
US11802231B2 (en) Pelletized diverting agents using degradable polymers
CN109689836A (zh) 使用远场转向体系增强裂缝复杂性的方法
WO2017100222A1 (fr) Procédé et composition pour le contrôle d'une géométrie de fracture
US9365763B2 (en) Low-viscosity treatment fluids for transporting proppant
WO2015020688A1 (fr) Fluide de fracturation ou de gravillonnage comprenant de la cmhec dans de la saumure
CA3021291C (fr) Amelioration de la conductivite de fractures etayees dans des puits souterrains
US9234124B2 (en) Dimer acid grafted polymer for stabilizing particulate in a well
US11981865B2 (en) In-situ composite polymeric structures for far-field diversion during hydraulic fracturing
US20230272268A1 (en) In-situ composite polymeric structures for far-field diversion during hydraulic fracturing
US11091977B2 (en) Methods for diversion and controlling fluid-loss using formate brine compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009369.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2595686

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/008850

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0714796

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060120

WWE Wipo information: entry into national phase

Ref document number: 0714796.0

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2007131659

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06748167

Country of ref document: EP

Kind code of ref document: A1