WO2006088253A1 - Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts - Google Patents

Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts Download PDF

Info

Publication number
WO2006088253A1
WO2006088253A1 PCT/JP2006/303510 JP2006303510W WO2006088253A1 WO 2006088253 A1 WO2006088253 A1 WO 2006088253A1 JP 2006303510 W JP2006303510 W JP 2006303510W WO 2006088253 A1 WO2006088253 A1 WO 2006088253A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
formate
alkali metal
aromatic ring
Prior art date
Application number
PCT/JP2006/303510
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Yamane
Kenichiro Fujimoto
Kaoru Fujimoto
Original Assignee
Nippon Steel Corporation
Nippon Steel Engineering Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Nippon Steel Engineering Co., Ltd filed Critical Nippon Steel Corporation
Priority to JP2007503806A priority Critical patent/JP4990125B2/en
Publication of WO2006088253A1 publication Critical patent/WO2006088253A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing formate and methanol. Akira
  • the present invention relates to a method for obtaining a product with high efficiency by using a catalyst having high resistance to decrease in activity due to water, carbon dioxide, etc., when producing methanol from carbon monoxide and hydrogen, and the catalyst described therein.
  • the present inventors have heretofore used a system in which one or both of an alkali metal catalyst and an alkaline earth metal catalyst excluding alkali metal alkoxide are used as a catalyst whose activity decrease due to water and carbon dioxide is small.
  • a batch reactor Japanese Patent Application No. 2001-561711
  • the charged Al-metal catalyst was changed to a low-activity, stable Al-metal formate, and the CO conversion rate over time It turned out to decrease with.
  • An object of the present invention is to solve the above-mentioned problems.
  • a method for producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, wherein the alkaline earth metal catalyst is added to the alkali metal formate. And / or an ether having an aromatic ring in the molecular structure, and a reaction in the presence of an alcohol.
  • a method of producing methanol by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to alkali metal formate, Reaction is carried out in the presence of one or both of the catalyst and ether having an aromatic ring in the molecular structure, a hydrocracking catalyst, and alcohols to produce formate ester and methanol, and the produced formate ester is hydrogenated to methanol.
  • Manufacturing method of methanol characterized by manufacturing.
  • a source gas containing at least one of carbon monoxide and carbon dioxide and hydrogen is added to the alkali metal formate, and one of the alkaline earth metal catalyst and the ether having an aromatic ring in the molecular structure.
  • the product obtained by carrying out the reaction in the presence of both alcohols and alcohols is separated from the reaction system, and then the formate ester in the product is hydrogenated with a hydrogenolysis catalyst to produce methanol.
  • the alkali metal formate is potassium formate.
  • the production method according to any one of (1) to (4).
  • the hydrocracking catalyst is a solid catalyst, and an alkali metal formate and an alkaline earth metal catalyst are supported on the solid catalyst and used for the reaction.
  • (2) to (12 The method for producing methanol according to any one of the above.
  • a methanol production catalyst comprising an alkali metal formate and an alkaline earth metal catalyst supported on a formate hydrocracking solid catalyst.
  • a catalyst for methanol production comprising a catalyst.
  • a catalyst for methanol production comprising a chemical decomposition catalyst.
  • the ether having an aromatic ring in the previous molecular structure is benzyl ether.
  • FIG. 1 shows a reactor for carrying out the low-temperature liquid phase methanol synthesis of the present invention.
  • 1 synthesis gas
  • 2 semi-batch reactor
  • 3 product, mixture of unreacted gas
  • 4 cooler
  • 5 unreacted gas
  • 6 liquid mixture of formate ester and methanol
  • 7 Distillation tower
  • 8 formic acid ester
  • 9 methanol.
  • Figure 2 shows the relationship between pH and CO conversion controlled when Cu / MgO x is prepared by coprecipitation.
  • the present inventors have found that when one or both of an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure are used in addition to the alkali metal formate in a semi-batch continuous reaction, In the production of formic acid ester or methanol from at least one of carbon oxide and carbon dioxide, and hydrogen and alcohols, it was found that it can be produced in high yield, and the present invention has been achieved.
  • methanol can be produced continuously by the reaction process shown in Figure 1.
  • semi-batch reactor 2 is charged with alkali earth metal catalyst, one or both of ethers having an aromatic ring in the molecular structure, and powdered hydrocracking catalyst with solvent alcohol.
  • Syngas 1 is supplied.
  • the product 3 at the outlet of the reactor (formate ester, methanol) and unreacted gas mixture 3 is cooled by cooler 4 and separated into unreacted gas 5 and liquid mixture 6 of formate ester and alcohol.
  • the latter is separated into formate ester 8 and methanol 9 in distillation column 7 installed in the next stage. If the conversion rate is low, the unreacted gas 5 can be supplied again to the semi-batch reactor 2, but if it is obtained in high yield, the unreacted gas can be used as a heat source (fuel) for syngas production. Use.
  • the semi-batch reactor 2 is charged with one or both of an alkali metal formate, an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure together with a solvent alcohol. Syngas 1 is supplied.
  • the formate ester thus obtained can be hydrocracked to obtain methanol, and the mixture of formate ester and unreacted gas is supplied to a tubular reactor filled with a hydrocracking catalyst, The formate is hydrocracked to produce methanol.
  • the highly active alkali metal alkoxide used in the conventional low-temperature liquid phase method gradually changes to alkali metal formate during the reaction, and the alkali metal formate is low in activity and stable. There was deterioration.
  • the Al-rich metal formate of the present invention has low activity by itself, but its activity is significantly improved when it coexists with one or more of Al-earth metal catalysts or ethers having an aromatic ring in the molecular structure. Moreover, no deterioration in yield over time is confirmed.
  • alkali metal formate examples include potassium formate, sodium formate, cesium formate, and rubidium formate.
  • potassium formate is preferred because the catalytic activity is increased.
  • alkali metal catalyst that can take the form of formate during the reaction may be used. There is no particular limitation.
  • Examples of such an alkali metal catalyst include potassium carbonate and calcium methoxide.
  • potassium carbonate When using calcium carbonate, it is presumed that it changed to calcium formate by the reaction shown below. It is presumed that even when charged in other forms, it changes to a stable formate.
  • alkaline earth metal catalyst examples include metal compounds such as calcium, magnesium, barium, and strontium, or simple substances. These metal compounds are preferably metal salts or metal oxides, more preferably metal salts such as carbonates, nitrates, phosphates, acetates, and formates, more preferably carbonates. Salt, formate. Among them, when calcium salt is used, the catalytic activity becomes high and the molar ratio of the preferred Al-rich metal formate and the Al-rich earth-based metal catalyst is not particularly limited.
  • alkali metal formate mole number is preferably in the range of 0.5 to 100, more preferably 1 to 50, More preferably, it is 2-20.
  • alkaline earth metal catalysts have high yields of formate and methanol, even in trace amounts.
  • alkali metal catalysts and alkaline earth metal catalysts do not have to be in one form each, but there are multiple types of alkali metal catalysts that can take the form of formate, and alkaline earth. Multiple types of metal-based catalysts may be mixed.
  • These catalysts can be used by being supported on a general carrier by a conventional method. You can also.
  • ethers having an aromatic ring in the molecular structure include compounds having a single ring such as anisole, compounds having two rings such as ethoxynaphthalene, and compounds having more than one ring. Further, compounds having a plurality of aromatic rings such as diphenyl ether and benzil ether are not limited thereto.
  • diphenyl ether diphenyl ether, benzyl ether, and anisol are preferred because of high catalytic activity.
  • ethers having an aromatic ring in these molecular structures can be used in combination.
  • the molar ratio of the alkali metal formate to the ether having an aromatic ring in the molecular structure is not particularly limited, but a small amount of ether having an aromatic ring in the molecular structure may be present.
  • Number) / (number of moles of ether having an aromatic ring in the molecular structure) is preferably in the range of 0.5 to 100, more preferably 1 to 50, and even more preferably 2 to 20.
  • the yield of formate and methanol increases even in the presence of trace amounts.
  • An alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure can be used at the same time.
  • the alcohol used in the reaction may be a chain or alicyclic hydrocarbon having a hydroxyl group, phenol and a substituted product thereof, and further a thiol and a substituted product thereof.
  • These alcohols may be any of primary, secondary and tertiary, but primary alcohols are preferred from the viewpoint of reaction efficiency, etc., and lower alcohols such as methyl alcohol and ethyl alcohol are the most common. is there.
  • the reaction can be carried out in either the liquid phase or the gas phase, but a system capable of selecting mild conditions can be employed. Specifically, temperature 70 ⁇ It is selected from about 250 ° C and a pressure of 3 to 70 atmospheres, and the liquid phase is preferable, but not limited thereto. Alcohols need only have such an amount that the reaction proceeds, for example, an amount enough to immerse the entire catalyst, but the reaction proceeds even below that amount. Further, a larger amount can be used as the solvent. In addition to the alcohols, an organic solvent can be appropriately used in the above reaction.
  • the resulting formic acid ester can be used for the production of methanol as it is, as it can be purified by a conventional method such as distillation. That is, methanol can be produced by hydrogenolysis of formate.
  • Hydrocracking catalysts are used for hydrocracking.
  • Pt, i, Co, Ru, Pd common hydrocracking catalysts can be used.
  • Cu / MgO x / NaY (X is a chemically acceptable value, Y is a chemically acceptable element or compound)
  • Cu / MnO x (X is a chemically acceptable value)
  • Cu / ReO x (X is a chemically acceptable value)
  • Cu / ZnO, Cu / Cr 2 0 3 copper catalysts such as Raney copper, and nickel catalysts are preferred.
  • a Cu / MgO x prepared by co-precipitation method this Cu / MgO x / NaY was added pressure to the Na evaporation to dryness method has an extremely high activity in the reaction, one of water and carbon dioxide or Even if both are mixed, a high methanol yield can be obtained.
  • the CO conversion rate varies greatly depending on the pH controlled when preparing by the coprecipitation method, and the pH when preparing Cu / MgO x by the coprecipitation method is preferably 8 to 11, more preferably Is 8.5 to 10.5, more preferably 9 to 10.5.
  • the amount of Na supported on Cu / MgO x is not particularly limited, but is preferably in the range of 0.1 to 60 wt%, more preferably 1 to 40 wt%, more preferably 3 to 30wt%.
  • NaY is preferably sodium formate or sodium carbonate.
  • Preparation of these hydrocracking catalysts may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, and evaporation to dryness method, and is not particularly limited.
  • the coprecipitation method makes it possible to prepare a catalyst with a high loading rate, and it is easy to obtain good results.
  • methanol can be produced in a so-called one-step process.
  • This hydrocracking reaction can be basically performed under the above reaction conditions, but can be further optimized by appropriately changing the temperature and pressure.
  • the hydrogen / carbon monoxide ratio is generally selected from about 0.2 to 5.
  • the reaction when the reaction is carried out with the hydrocracking catalyst coexisting with the Al-rich metal catalyst, etc., it may be used as a simple mixture.
  • the catalyst when used, it becomes a heterogeneous system, and the separation of the catalyst from the reaction system is a solid-liquid separation.
  • the supporting method itself can be a conventional method for preparing a catalyst as described above.
  • the product obtained in the reaction is separated from the reaction system by a distillation method, etc. It is possible to obtain methanol by hydrocracking the formate in the product in the presence of a hydrocracking catalyst and hydrogen.
  • the concentration of C0 2 and H 20 contained in the raw material gas the higher the yield of methanol, but each contains about 1%.
  • the CO conversion rate and methanol yield are almost unaffected.
  • the concentration is higher than that, CO conversion rate and methanol yield will decrease.
  • the method for producing formate and methanol in the present invention is presumed to be based on the following reaction formula (in the case where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto) )
  • the raw materials for producing methanol are carbon monoxide and hydrogen, and alcohols can be recovered and reused.
  • Example 10 The method described in Example 5, except that only lOmmol potassium formate is added. The reaction was done. Only methyl formate was obtained with a CO conversion of 1.45%.
  • Example 10 The method described in Example 5, except that only lOmmol potassium formate is added. The reaction was done. Only methyl formate was obtained with a CO conversion of 1.45%.
  • the reaction was carried out by the method described in Example 10 except that diphenyl ether was used instead of calcium carbonate 2 mmo 1.
  • the C0 conversion was 55.6% and the methanol yield was 54.3%.
  • the reaction was carried out by the method described in Example 6 except that Cu / Cr 2 0 3 (ENGELHARD, Cu-1987T 1/8) was added instead of Cu / Mg0 x / NaY.
  • the C0 conversion was 27.7%, and the methanol yield was 27.5.
  • Example 14 The reaction was carried out by the method described in Example 6 except that the amount of synthesis gas supplied was 30 ml / iniii. The C0 conversion was 60.9%, and the methanol yield was 60.1%.
  • Example 13 The reaction was carried out by the method described in Example 6 except that the synthesis gas supply rate was 90 ml / min. The CO conversion was 28.0%, and the methanol yield was 27.9%.
  • Example 14 The reaction was carried out by the method described in Example 6 except that the amount of synthesis gas supplied was 30 ml / iniii. The C0 conversion was 60.9%, and the methanol yield was 60.1%.
  • Example 13 The reaction was carried out by the method described in Example 6 except that the synthesis gas supply rate was 90 ml / min. The CO conversion was 28.0%, and the methanol yield was 27.9%.
  • Example 14 The reaction was carried out by the method described in Example 6 except that the amount of synthesis gas supplied was 30 ml / iniii. The
  • the reaction was carried out by the method described in Example 6 except that synthesis gas having different composition (CO 48%, H 2 48%, C0 2 13 ⁇ 4, Ar balance) was used.
  • the CO conversion was 28.5%, and the methanol yield was 27.9%.
  • the reaction was carried out by the method described in Example 6 except that H 2 01 was continuously added by bubbling the source gas to temperature-controlled H 20 .
  • the CO conversion was 29.3% and the methanol yield was 28.6%.
  • Example 4 30. 1 10. 91
  • Example 10 32. 9 32.7, hydrocracking catalyst
  • Example 12 60. 9 60.1, continuous change of gas supply, hydrogen
  • Example 13 28. 0 27.9 Gas supply amount change Continuous reaction, Hydrogen
  • an alkaline earth metal catalyst in addition to the alkali metal formate, an alkaline earth metal catalyst, a system using one or both of ethers having an aromatic ring in the molecular structure, or an alkali metal formate, A system using a metal earth catalyst, one or both of ethers having an aromatic ring in the molecular structure, and a hydrocracking catalyst.
  • Cu an alkaline earth metal element, and an alkali as a hydrocracking catalyst.
  • formate and methanol are produced from any of them and hydrogen in the presence of solvent alcohol, the formate or methanol is stably increased in a continuous reaction at low temperature and low pressure. It became possible to synthesize with efficiency. In addition, even if water, carbon dioxide, etc. are mixed in the synthesis raw material gas, it is possible to produce formate or methanol at a low cost because the degree of decrease in the activity of the catalyst is low.

Abstract

Formic esters or methanol can be stably produced through a continuous reaction at low temperature under low pressure with reduced lowering in the activity even when the starting material contains water, carbon dioxide, or the like. A process for producing formic esters and methanol by reacting a starting material gas containing either carbon monoxide or carbon dioxide or both and hydrogen, characterized in that the reaction is carried out in the presence of an alkali metal formate, either an alkaline earth metal catalyst or an ether having an aromatic ring in the molecular structure or both, a hydrogenolysis catalyst, and an alcohol to thereby obtain methanol.

Description

ギ酸エステル及びメタノールの製造方法、 メタノール製造用触媒、 並びに当該触媒の製造方法 Method for producing formate and methanol, catalyst for methanol production, and method for producing the catalyst
技術分野 Technical field
本発明は、 ギ酸エステル及びメタノールの製造方法に関する。 さ 明  The present invention relates to a method for producing formate and methanol. Akira
らに詳しく は、 一酸化炭素と水素からメタノールを製造する際に、 水、 二酸化炭素などによる活性低下に対する耐性の高い触媒を用い て、 高効率で生成物を得る方法及びそ書の触媒に関する。 More specifically, the present invention relates to a method for obtaining a product with high efficiency by using a catalyst having high resistance to decrease in activity due to water, carbon dioxide, etc., when producing methanol from carbon monoxide and hydrogen, and the catalyst described therein.
背景技術 Background art
一般的に、 工業的にメタノールを合成する際には、 メタンを主成 分とする天然ガスを水蒸気改質して得られる一酸化炭素と水素 (合 成ガス)を原料とし、 銅 , 亜鉛系等の触媒を用いて固定床気相法に て、 200〜 300°C、 5〜25MPaという厳しい条件で合成される (J. C. J . Bart et al. , Catal. Today, 2, 1 (1987))。 反応機構としては 以下に示すよう に、 二酸化炭素の水素化により、 メタノール、 水が 生成し、 次いで生成水が一酸化炭素と反応し二酸化炭素と水素が生 成(水性ガスシフ ト反応)する逐次反応であるとする説が一般的に受 け入れられている。  In general, when synthesizing methanol industrially, carbon monoxide and hydrogen (synthetic gas) obtained by steam reforming natural gas mainly composed of methane are used as raw materials. (JC J. Bart et al., Catal. Today, 2, 1 (1987)) . As shown below, methanol and water are produced by hydrogenation of carbon dioxide, and then the sequential reaction in which the produced water reacts with carbon monoxide to produce carbon dioxide and hydrogen (water gas shift reaction). The theory that this is true is generally accepted.
C02 + 3H2 → CH30H + H20 (1) C0 2 + 3H 2 → CH 3 0H + H 2 0 (1)
H20 + CO —→ C0? _+ _H, (2) H 2 0 + CO — → C0 ? _ + _H, (2)
CO I 2H2 → CH30H (3) CO I 2H 2 → CH 3 0H (3)
本反応は発熱反応であるが、 気相法では熱伝導が悪いために、 効率 的な抜熱が困難であることから、 反応器通過時の転化率を低く抑え て、 未反応の高圧原料ガスをリサイクルするという効率に難点のあ るプロセスとなっている。 しかし、 合成ガス中に含まれる、 水、 二 酸化炭素による反応阻害は受けにく いという長所を活かして、 様々 なプラントが稼働中である。 Although this reaction is an exothermic reaction, heat transfer is poor in the gas phase method, so efficient heat removal is difficult.Therefore, the conversion rate when passing through the reactor is kept low, and the unreacted high-pressure raw material gas The efficiency of recycling It is a process. However, various plants are in operation, taking advantage of the fact that reaction inhibition by water and carbon dioxide contained in synthesis gas is difficult to receive.
一方、 液相でメタノールを合成して、 抜熱速度を向上させる様々 の方法が検討されている。 中でも、 低温(100〜180°C程度)で活性の 高い触媒を用いる方法は、 熱力学的にも生成系に有利であり、 注目 を集めている (たとえば、 大山聖ー, PETROTECH, 18 (1), 27 (1995) )。 使用される触媒はアルカ リ金属アルコキサイ ドであるが、 これ らの方法では、 合成ガス中に必ず含有される水、 二酸化炭素による 活性低下が報告され、 何れも実用には至っていない (S. Ohyama, Ap plied Catalysis A: General, 180, 217 ( 1999))。 これは活性の高 いアル力リ金属アルコキサイ ドが反応中に、 低活性で安定なギ酸塩 等に変化するためである。 活性低下を防ぐためには PPbオーダーま で、 原料ガス中の水、 二酸化炭素を除去する必要があるが、 そのよ うな前処理を行う とコス トが高くなり現実的ではない。  On the other hand, various methods for improving the heat removal rate by synthesizing methanol in the liquid phase are being studied. Among them, the method using a highly active catalyst at low temperatures (about 100 to 180 ° C) is thermodynamically advantageous for the production system, and has attracted attention (for example, Sei Oyama, PETROTECH, 18 (1 ), 27 (1995)). The catalysts used are alkali metal alkoxides, but these methods have reported a decrease in activity due to water and carbon dioxide that are always contained in the synthesis gas, and none of them have been put into practical use (S. Ohyama). , Applied Catalysis A: General, 180, 217 (1999)). This is because a highly active metal alkoxide is converted into a low activity and stable formate during the reaction. In order to prevent the decrease in activity, it is necessary to remove water and carbon dioxide in the raw material gas up to the PPb order. However, such pretreatment increases costs and is not practical.
本発明者らはこれまでに、 水、 二酸化炭素による活性低下が小さ い触媒として、 アルカ リ金属アルコキサイ ドを除く アルカ リ金属系 触媒とアルカ リ土類金属系触媒の一方又は双方を使用する系を回分 式反応器による評価において見出している (特願 2001-561711号)。 しかし、 その後の検討で、 半回分式反応器を用いた連続反応では、 仕込んだアル力 リ金属系触媒は低活性で安定なアル力 リ金属ギ酸塩 に変化し、 CO転化率は時間の経過と共に減少することが判明した。 本発明は、 上記の課題を解決することを目的とするものであり、 低活性で安定なアルカ リ金属ギ酸塩の活性を向上することで、 ギ酸 エステルまたはメタノールの合成原料ガス中に、 二酸化炭素、 水等 が混在しても触媒の活性低下の度合いが低く、 かつ、 低温、 低圧で 連続反応においても安定的にギ酸エステルまたはメタノールを合成 することを可能とする、 触媒及び方法を提供するものである。 発明の開示 The present inventors have heretofore used a system in which one or both of an alkali metal catalyst and an alkaline earth metal catalyst excluding alkali metal alkoxide are used as a catalyst whose activity decrease due to water and carbon dioxide is small. Has been found in an evaluation using a batch reactor (Japanese Patent Application No. 2001-561711). However, in a subsequent study, in a continuous reaction using a semi-batch reactor, the charged Al-metal catalyst was changed to a low-activity, stable Al-metal formate, and the CO conversion rate over time It turned out to decrease with. An object of the present invention is to solve the above-mentioned problems. By improving the activity of a low activity and stable alkali metal formate, carbon dioxide is synthesized in a synthesis raw material gas of formate ester or methanol. Even if water etc. are mixed, the degree of catalyst activity decrease is low, and formate ester or methanol is stably synthesized even in continuous reaction at low temperature and low pressure The present invention provides a catalyst and a method that can be used. Disclosure of the invention
本発明の特徴とするところは、 以下に記す通りである。  The features of the present invention are as described below.
( 1 ) 一酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを反応させてギ酸エステルを製造する方法であって、 アルカリ金属ギ酸塩に加えて、 アルカ リ土類金属系触媒と分子構造 に芳香環を有するエーテルの一方又は双方、 及びアルコール類の存 在下に反応を行う ことを特徴とするギ酸エステルの製造方法。  (1) A method for producing a formate by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, wherein the alkaline earth metal catalyst is added to the alkali metal formate. And / or an ether having an aromatic ring in the molecular structure, and a reaction in the presence of an alcohol.
( 2 ) 一酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを反応させてメタノールを製造する方法であって、 ァ ルカリ金属ギ酸塩に加えて、 アル力 リ土類金属系触媒と分子構造に 芳香環を有するエーテルの一方又は双方、 水素化分解触媒、 及びァ ルコール類の存在下に反応を行い、 ギ酸エステル及びメタノールを 生成すると共に、 生成したギ酸エステルを水素化してメタノールを 製造することを特徴とするメタノールの製造方法。  (2) A method of producing methanol by reacting a raw material gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to alkali metal formate, Reaction is carried out in the presence of one or both of the catalyst and ether having an aromatic ring in the molecular structure, a hydrocracking catalyst, and alcohols to produce formate ester and methanol, and the produced formate ester is hydrogenated to methanol. Manufacturing method of methanol characterized by manufacturing.
(3) 一酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを、 アルカ リ金属ギ酸塩に加えて、 アルカ リ土類金属 系触媒と分子構造に芳香環を有するエーテルの一方又は双方、 及び アルコール類の存在下に反応を行う ことで得られた生成物を反応系 から分離した後、 該生成物中のギ酸エステルを水素化分解触媒で水 素化してメタノールを製造することを特徴とするメタノールの製造 方法。  (3) A source gas containing at least one of carbon monoxide and carbon dioxide and hydrogen is added to the alkali metal formate, and one of the alkaline earth metal catalyst and the ether having an aromatic ring in the molecular structure. Alternatively, the product obtained by carrying out the reaction in the presence of both alcohols and alcohols is separated from the reaction system, and then the formate ester in the product is hydrogenated with a hydrogenolysis catalyst to produce methanol. A process for producing methanol characterized by
(4) 前記アルカリ金属ギ酸塩に替えて、 反応中にアルカリ金属ギ 酸塩に変化し得るアルカ リ金属系触媒を用いることを特徴とする (1 )〜 (3)のいずれかに記載の製造方法。  (4) The production according to any one of (1) to (3), wherein an alkali metal catalyst that can change into an alkali metal formate during the reaction is used instead of the alkali metal formate. Method.
(5 ) 前記アルカリ金属ギ酸塩がギ酸カ リウムであることを特徴と する(1 )〜(4)のいずれかに記載の製造方法。 (5) The alkali metal formate is potassium formate. The production method according to any one of (1) to (4).
(6) 前記反応中にアル力リ金属ギ酸塩に変化し得るアル力リ金属 系触媒が炭酸カリウムであることを特徴とする (4)に記載の製造方 法。  (6) The production method according to (4), wherein the alkali metal catalyst which can be converted into an alkaline metal formate during the reaction is potassium carbonate.
(7) 前記アルカリ土類金属系触媒が、 カルシウム塩を含む触媒で あることを特徴とする (1)〜(6)のいずれかに記載の製造方法。  (7) The production method according to any one of (1) to (6), wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
(8) 前記分子構造に芳香環を有するエーテルの芳香環が単環であ ることを特徴とする (1 )〜(7)のいずれかに記載の製造方法。  (8) The production method according to any one of (1) to (7), wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring.
(9) 前記分子構造に芳香環を有するエーテルがジフエ二ルェ一テ ルであることを特徴とする )〜(8)のいずれかに記載の製造方法。 (9) The method according to any one of (8) to (8), wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
( 10) 前記分子構造に芳香環を有するエーテルがベンジルエーテル であることを特徴とする(1)〜(8)のいずれかに記載の製造方法。(10) The production method according to any one of (1) to (8), wherein the ether having an aromatic ring in the molecular structure is benzyl ether.
( 1 1) 前記水素化分解触媒が Cuに加え、 Mn、 Reの少なく ともいずれ か、 及びアルカリ金属元素を含有する触媒であることを特徴とする )〜(10)のいずれかに記載のメタノールの製造方法。 (11) The methanol according to any one of (10) to (10), wherein the hydrocracking catalyst is a catalyst containing at least one of Mn and Re and an alkali metal element in addition to Cu. Manufacturing method.
( 12) 前記水素化分解触媒が Cu、 アルカリ土類金属元素、 及びアル カリ金属元素を含有する触媒であることを特徴とする (2)〜(10)の いずれかに記載のメタノールの製造方法。  (12) The method for producing methanol according to any one of (2) to (10), wherein the hydrocracking catalyst is a catalyst containing Cu, an alkaline earth metal element, and an alkali metal element. .
( 13) 前記水素化分解触媒が固体触媒であり、 この固体触媒にアル カリ金属ギ酸塩及びアルカリ土類金属系触媒を担持して、 反応に供 することを特徴とする (2)〜(12)のいずれかに記載のメタノールの 製造方法。  (13) The hydrocracking catalyst is a solid catalyst, and an alkali metal formate and an alkaline earth metal catalyst are supported on the solid catalyst and used for the reaction. (2) to (12 The method for producing methanol according to any one of the above.
( 14) 前記アルコール類が第一級アルコールであることを特徴とす る (1)〜(13)のいずれかに記載の製造方法。  (14) The production method according to any one of (1) to (13), wherein the alcohol is a primary alcohol.
( 15) ギ酸エステルの水素化分解固体触媒に、 アルカリ金属ギ酸塩 及びアルカリ土類金属系触媒を担持してなることを特徴とするメタ ノール製造用触媒。 ( 16) アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造 に芳香環を有するエーテルの一方又は双方に加え、 Cu、 アルカリ土 類金属元素、 及びアル力リ金属元素を含有する水素化分解触媒から 構成されることを特徴とするメタノール製造用触媒。 (15) A methanol production catalyst comprising an alkali metal formate and an alkaline earth metal catalyst supported on a formate hydrocracking solid catalyst. (16) Hydrocracking containing Cu, alkaline earth metal elements, and alkaline metal elements in addition to one or both of alkali metal formate and alkaline earth metal catalysts and ethers having an aromatic ring in the molecular structure A catalyst for methanol production comprising a catalyst.
( 17) アルカリ金属ギ酸塩及びアルカリ土類金属系触媒と分子構造 に芳香環を有するエーテルの一方又は双方に加え、 Cuと、 Mn、 Reの 少なく ともいずれか、 及びアルカリ金属元素を含有する水素化分解 触媒から構成されることを特徴とするメタノール製造用触媒。  (17) Hydrogen containing at least one of Cu, Mn, Re, and an alkali metal element in addition to one or both of an alkali metal formate and alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure A catalyst for methanol production comprising a chemical decomposition catalyst.
( 18) 前記アルカリ土類金属系触媒が、 カルシウム塩を含む触媒で あることを特徴とする (1 5)〜(17)のいずれかに記載のメタノール製 造用触媒。  (18) The catalyst for methanol production according to any one of (15) to (17), wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
( 19) 前記アルカリ金属ギ酸塩に替えて、 反応中にアルカリ金属ギ 酸塩に変化し得るアルカリ金属系触媒を有することを特徴とする (1 5)〜(18)のいずれかに記載のメタノール製造用触媒。  (19) The methanol according to any one of (15) to (18), which has an alkali metal catalyst capable of changing to an alkali metal formate during the reaction instead of the alkali metal formate. Catalyst for production.
(20) 前記水素化分解触媒に含有されるアル力リ土類金属元素がマ グネシゥムであることを特徴とする (16)、 (18)又は(19)に記載のメ 夕ノール製造用触媒。  (20) The catalyst for methanol production according to (16), (18) or (19), wherein the alkaline earth metal element contained in the hydrocracking catalyst is magnesium.
(2 1) 前記水素化分解触媒に含有されるアル力リ金属元素がナ卜リ ゥムであることを特徴とする (16)〜(20)のいずれかに記載のメ夕ノ ール製造用触媒。  (2 1) The methanol production according to any one of (16) to (20), wherein the alkali metal element contained in the hydrocracking catalyst is sodium. Catalyst.
(22) 前記分子構造に芳香環を有するエーテルの芳香環が単環であ ることを特徴とする (16)〜(2 1 )のいずれかに記載のメタノール製造 用触媒。  (22) The catalyst for methanol production according to any one of (16) to (2 1), wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring.
(23) 前記分子構造に芳香環を有するエーテルがジフエニルエーテ ルであることを特徴とする (16)〜(22)のいずれかに記載のメタノー ル製造用触媒。  (23) The methanol production catalyst according to any one of (16) to (22), wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
(24) 前分子構造に芳香環を有するエーテルがベンジルエーテルで あることを特徴とする (1 6)〜(22 )のいずれかに記載のメタノール製 造用触媒。 (24) The ether having an aromatic ring in the previous molecular structure is benzyl ether. (16) The catalyst for methanol production according to any one of (16) to (22).
(25 ) 前記水素化分解触媒が、 共沈法において pH= 8〜l lの範囲で一 定に保ちながら調製することを特徴とする (1 5 )〜(24)のいずれかに 記載のメタノール製造用触媒の製造方法。 図面の簡単な説明  (25) The methanol production according to any one of (15) to (24), wherein the hydrocracking catalyst is prepared while being kept constant in a pH = 8 to ll range in a coprecipitation method. For producing a catalyst for use. Brief Description of Drawings
図 1 は、 本発明の低温液相メタノール合成を実施する反応装置で ある。 図において、 1 : 合成ガス、 2 : 半回分式反応器、 3 : 生成 物、 未反応ガスの混合物、 4 : 冷却器、 5 : 未反応ガス、 6 : ギ酸 エステルとメタノールの液体混合物、 7 : 蒸留塔、 8 : ギ酸エステ ル、 9 : メタノール。  FIG. 1 shows a reactor for carrying out the low-temperature liquid phase methanol synthesis of the present invention. In the figure, 1: synthesis gas, 2: semi-batch reactor, 3: product, mixture of unreacted gas, 4: cooler, 5: unreacted gas, 6: liquid mixture of formate ester and methanol, 7: Distillation tower, 8: formic acid ester, 9: methanol.
図 2は、 C u/MgOxを共沈法で調製する際に制御する pHと CO転化率 の関係である。 発明を実施するための最良の形態 Figure 2 shows the relationship between pH and CO conversion controlled when Cu / MgO x is prepared by coprecipitation. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明者らは、 鋭意検討した結果、 半回分式の連続反応において アルカリ金属ギ酸塩に加えて、 アルカリ土類金属系触媒、 分子構造 に芳香環を有するエーテルの一方又は双方を用いると、 一酸化炭素 、 二酸化炭素の少なく ともいずれか、 及び水素とアルコール類から ギ酸エステル又はメタノールの製造において、 高収率で製造可能で あることを見出し、 本発明に至った。  As a result of intensive studies, the present inventors have found that when one or both of an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure are used in addition to the alkali metal formate in a semi-batch continuous reaction, In the production of formic acid ester or methanol from at least one of carbon oxide and carbon dioxide, and hydrogen and alcohols, it was found that it can be produced in high yield, and the present invention has been achieved.
例えば、 図 1 に示すような反応プロセスで連続的にメタノールを 製造し得る。 半回分式反応器 2にアルカリ金属ギ酸塩に加えて、 ァ ルカリ土類金属系触媒、 分子構造に芳香環を有するエーテルの一方 又は双方、 及び粉状の水素化分解触媒を溶媒アルコールと共に仕込 み、 合成ガス 1を供給する。 反応器出口の生成物(ギ酸エステル、 メ 夕ノール)、 未反応ガスの混合物 3を冷却器 4で冷却し、 未反応ガス 5 、 ギ酸エステルとアルコールの液体混合物 6に分離する。 後者は次 段に設置した蒸留塔 7においてギ酸エステル 8、 メタノール 9に分離 する。 転化率が低い場合は未反応ガス 5を再度半回分式反応器 2に供 給することも可能であるが、 高収率で得られる場合は未反応ガスを 合成ガス製造の熱源(燃料) として利用する。 For example, methanol can be produced continuously by the reaction process shown in Figure 1. In addition to alkali metal formate, semi-batch reactor 2 is charged with alkali earth metal catalyst, one or both of ethers having an aromatic ring in the molecular structure, and powdered hydrocracking catalyst with solvent alcohol. Syngas 1 is supplied. The product 3 at the outlet of the reactor (formate ester, methanol) and unreacted gas mixture 3 is cooled by cooler 4 and separated into unreacted gas 5 and liquid mixture 6 of formate ester and alcohol. The latter is separated into formate ester 8 and methanol 9 in distillation column 7 installed in the next stage. If the conversion rate is low, the unreacted gas 5 can be supplied again to the semi-batch reactor 2, but if it is obtained in high yield, the unreacted gas can be used as a heat source (fuel) for syngas production. Use.
また、 ギ酸エステルを製品として得る'場合は、 半回分式反応器 2 にアルカ リ金属ギ酸塩、 アルカ リ土類金属系触媒と分子構造に芳香 環を有するエーテルの一方又は双方を溶媒アルコールと共に仕込み 、 合成ガス 1を供給する。 このよう にして得たギ酸エステルを水素 化分解してメタノールを得ることも可能であり、 ギ酸エステルと未 反応ガスの混合物を水素化分解触媒を充填した管型反応器に供給し 、 該混合物中のギ酸エステルを水素化分解してメタノールを製造す る。  In the case of obtaining a formate ester as a product, the semi-batch reactor 2 is charged with one or both of an alkali metal formate, an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure together with a solvent alcohol. Syngas 1 is supplied. The formate ester thus obtained can be hydrocracked to obtain methanol, and the mixture of formate ester and unreacted gas is supplied to a tubular reactor filled with a hydrocracking catalyst, The formate is hydrocracked to produce methanol.
従来の低温液相法で使用される高活性アルカリ金属アルコキサイ ドは、 反応中にアルカリ金属ギ酸塩に徐々に変化し、 アルカ リ金属 ギ酸塩が低活性でかつ安定であるため、 収率の経時劣化があった。 本発明のアル力 リ金属ギ酸塩は単独では低活性であるが、 アル力 リ土類金属系触媒、 又は分子構造に芳香環を有するエーテルの 1種 又は 2種以上と共存すると著しく活性が向上し、 また、 収率の経時 劣化は確認されない。  The highly active alkali metal alkoxide used in the conventional low-temperature liquid phase method gradually changes to alkali metal formate during the reaction, and the alkali metal formate is low in activity and stable. There was deterioration. The Al-rich metal formate of the present invention has low activity by itself, but its activity is significantly improved when it coexists with one or more of Al-earth metal catalysts or ethers having an aromatic ring in the molecular structure. Moreover, no deterioration in yield over time is confirmed.
アルカ リ金属ギ酸塩としてはギ酸カリ ウム、 ギ酸ナトリウム、 ギ 酸セシウム、 ギ酸ルビジウム等が挙げられる。 特にギ酸カリ ウムを 用いると触媒活性が高くなり好ましい。  Examples of the alkali metal formate include potassium formate, sodium formate, cesium formate, and rubidium formate. In particular, the use of potassium formate is preferred because the catalytic activity is increased.
また、 アルカリ金属ギ酸塩に替えて、 反応中にギ酸塩の形態を取 り得るアルカ リ金属系触媒を用いても良く、 反応仕込み時の形態は 特に限定されない。 Instead of alkali metal formate, an alkali metal catalyst that can take the form of formate during the reaction may be used. There is no particular limitation.
このようなアルカリ金属系触媒としては、 例えば炭酸カリ ウムや カ リ ウムメ トキサイ ドが挙げられる。 炭酸カ リ ウムを用いた場合、 以下に示す反応でギ酸カ リ ウムに変化していると推察される。 他の 形態で仕込んだ場合も、 安定なギ酸塩に変化するものと推察される  Examples of such an alkali metal catalyst include potassium carbonate and calcium methoxide. When using calcium carbonate, it is presumed that it changed to calcium formate by the reaction shown below. It is presumed that even when charged in other forms, it changes to a stable formate.
K2 C03 + H2 0→2K0H+ C02 (4) K 2 C0 3 + H 2 0 → 2K0H + C0 2 (4)
K0H + C0→HC00K (5)  K0H + C0 → HC00K (5)
アルカ リ土類金属系触媒としては、 カルシウム、 マグネシウム、 バリ ウム、 ス トロンチウム等の金属化合物もしく は単体が挙げられ る。 これらの金属化合物としては、 金属塩もしく は金属酸化物が好 ましく、 より好ましくは金属塩、 例えば炭酸塩、 硝酸塩、 リ ン酸塩 、 酢酸塩、 ギ酸塩が挙げられ、 更に好ましく は炭酸塩、 ギ酸塩であ る。 中でも、 カルシウム塩を用いると触媒活性が高くなり好ましい アル力リ金属ギ酸塩とアル力 リ土類金属系触媒のモル比は、 特に 限定されることは無いが、 アル力 リ土類金属系触媒は少量存在すれ ば十分であり、 (アルカ リ金属ギ酸塩モル数)/ (アルカ リ土類金属モ ル数)比は 0. 5〜 100の範囲が好ましく、 より好ましくは 1〜50であり 、 更に好ましくは 2〜20である。 アルカリ金属ギ酸塩に対してアル カリ土類金属系触媒は微量でもギ酸エステル、 メタノール収率が高 くなる。  Examples of the alkaline earth metal catalyst include metal compounds such as calcium, magnesium, barium, and strontium, or simple substances. These metal compounds are preferably metal salts or metal oxides, more preferably metal salts such as carbonates, nitrates, phosphates, acetates, and formates, more preferably carbonates. Salt, formate. Among them, when calcium salt is used, the catalytic activity becomes high and the molar ratio of the preferred Al-rich metal formate and the Al-rich earth-based metal catalyst is not particularly limited. Is sufficient if it is present in a small amount, and the (alkali metal formate mole number) / (alkali earth metal mole number) ratio is preferably in the range of 0.5 to 100, more preferably 1 to 50, More preferably, it is 2-20. For alkaline metal formates, alkaline earth metal catalysts have high yields of formate and methanol, even in trace amounts.
これらアルカリ金属系触媒、 アルカリ土類金属系触媒の反応仕込 み時の形態は、 それぞれ 1種類である必要は無く、 ギ酸塩の形態を 取り得るアルカ リ金属系触媒の複数種類と、 アルカ リ土類金属系触 媒の複数種類を混合しても良い。  These alkali metal catalysts and alkaline earth metal catalysts do not have to be in one form each, but there are multiple types of alkali metal catalysts that can take the form of formate, and alkaline earth. Multiple types of metal-based catalysts may be mixed.
これらの触媒は、 常法により一般的な担体に担持させて用いるこ ともできる。 These catalysts can be used by being supported on a general carrier by a conventional method. You can also.
分子構造に芳香環を有するエーテルとしては、 ァニソールのよう な単環を有する化合物の他、 エトキシナフタレンのような 2環を有 する化合物、 それ以上の複環を有する化合物が挙げられる。 また、 芳香環を複数有する化合物、 例えば、 ジフエ二ルェ一テル、 ベンジ ルェ一テルが挙げられる力 これらに限定されない。  Examples of ethers having an aromatic ring in the molecular structure include compounds having a single ring such as anisole, compounds having two rings such as ethoxynaphthalene, and compounds having more than one ring. Further, compounds having a plurality of aromatic rings such as diphenyl ether and benzil ether are not limited thereto.
中でもジフエニルエーテル、 ベンジルェ一テル、 ァニソ一ルを用 いると触媒活性が高くなり好ましい。  Of these, diphenyl ether, benzyl ether, and anisol are preferred because of high catalytic activity.
また、 これらの分子構造に芳香環を有するエーテルは複数種を組 み合わせて使用することも可能である。  In addition, ethers having an aromatic ring in these molecular structures can be used in combination.
アルカリ金属ギ酸塩と分子構造に芳香環を有するエーテルのモル 比は、 特に限定されることは無いが、 分子構造に芳香環を有するェ —テルは少量存在すれば良く、 (アルカリ金属ギ酸塩モル数)/ (分子 構造に芳香環を有するェ一テルのモル数)は 0. 5〜 100の範囲が好ま しく、 より好ましくは 1〜50であり、 更に好ましくは 2〜20である。 アルカリ土類金属系触媒と同様に微量の存在でもギ酸エステル、 メ 夕ノ一ル収率が向上する。  The molar ratio of the alkali metal formate to the ether having an aromatic ring in the molecular structure is not particularly limited, but a small amount of ether having an aromatic ring in the molecular structure may be present. Number) / (number of moles of ether having an aromatic ring in the molecular structure) is preferably in the range of 0.5 to 100, more preferably 1 to 50, and even more preferably 2 to 20. As with alkaline earth metal catalysts, the yield of formate and methanol increases even in the presence of trace amounts.
アルカリ土類金属系触媒と分子構造に芳香環を有するエーテルは 同時に使用することもできる。  An alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure can be used at the same time.
反応に用いるアルコール類としては、 鎖状または脂環式炭化水素 類に水酸基が付いたものの他、 フエノール及びその置換体、 更には 、 チオール及びその置換体でも良い。 これらアルコール類は、 第 1 級、 第 2級および第 3級のいずれでもよいが、 反応効率等の点からは 第 1級アルコールが好ましく、 メチルアルコール、 ェチルアルコー ル等の低級アルコールが最も一般的である。  The alcohol used in the reaction may be a chain or alicyclic hydrocarbon having a hydroxyl group, phenol and a substituted product thereof, and further a thiol and a substituted product thereof. These alcohols may be any of primary, secondary and tertiary, but primary alcohols are preferred from the viewpoint of reaction efficiency, etc., and lower alcohols such as methyl alcohol and ethyl alcohol are the most common. is there.
反応は、 液相、 気相のいずれでも行う ことができるが、 温和な条 件を選定しうる系を採用することができる。 具体的には、 温度 70〜 250°C、 圧力 3〜70気圧、 程度から選ばれ、 液相となる条件が好まし いが、 これらに限定されない。 アルコール類は、 反応が進行する程 度の量、 例えば触媒全体が浸かる程度の量があればよいが、 それ以 下でも反応は進行する。 また、 それ以上の量を溶媒として用いるこ ともできる。 また、 上記反応に際してアルコール類の他に、 適宜有 機溶媒を併せて用いることができる。 溶媒アルコールと芳香環を有 するエーテルのモル比は、 特に限定されることはないが、 芳香環を 有するエーテルは微量存在していれば良く、 (溶媒アルコールモル 数)/ (芳香環を有するエーテルモル数) =50以上で好結果を得られゃ すい。 The reaction can be carried out in either the liquid phase or the gas phase, but a system capable of selecting mild conditions can be employed. Specifically, temperature 70 ~ It is selected from about 250 ° C and a pressure of 3 to 70 atmospheres, and the liquid phase is preferable, but not limited thereto. Alcohols need only have such an amount that the reaction proceeds, for example, an amount enough to immerse the entire catalyst, but the reaction proceeds even below that amount. Further, a larger amount can be used as the solvent. In addition to the alcohols, an organic solvent can be appropriately used in the above reaction. The molar ratio of the solvent alcohol and the ether having an aromatic ring is not particularly limited, but a trace amount of the ether having an aromatic ring may be present, and (solvent alcohol mole number) / (ether having an aromatic ring). If the number of moles) = 50 or more, good results will be obtained.
得られるギ酸エステルは、 蒸留等の常法により精製することがで きる力 そのままメタノールの製造に供することもできる。 すなわ ち、 ギ酸エステルを水素化分解してメタノールを製造しうる。  The resulting formic acid ester can be used for the production of methanol as it is, as it can be purified by a conventional method such as distillation. That is, methanol can be produced by hydrogenolysis of formate.
水素化分解には水素化分解触媒が用いられ、 たとえば 、 P t、 i 、 Co、 Ru、 Pd系の一般的な水素化分解触媒を用いることができ、 具 体的には Cu/MgOx /NaY (Xは化学的に許容し得る値、 Yは化学的に許容 し得る元素又は化合物)、 Cu/MnOx (Xは化学的に許容し得る値)、 Cu/ ReOx (Xは化学的に許容し得る値)、 Cu/ZnO、 Cu/C r2 03、 ラネー銅等 の銅系触媒、 さらにはニッケル系触媒が好適である。 Hydrocracking catalysts are used for hydrocracking. For example, Pt, i, Co, Ru, Pd common hydrocracking catalysts can be used. Specifically, Cu / MgO x / NaY (X is a chemically acceptable value, Y is a chemically acceptable element or compound), Cu / MnO x (X is a chemically acceptable value), Cu / ReO x (X is a chemically acceptable value) Cu / ZnO, Cu / Cr 2 0 3 , copper catalysts such as Raney copper, and nickel catalysts are preferred.
中でも、 共沈法で Cu/MgOxを調製し、 これに蒸発乾固法で Naを添 加した Cu/MgOx /NaYは本反応に極めて高い活性を有し、 水と二酸化 炭素の一方又は双方が混在しても高メタノール収率を得ることがで きる。 図 2に示すように共沈法で調製する際に制御する pHによって 、 CO転化率は大きく異なり、 共沈法で Cu/MgOxを調製する際の pHは 8 〜 1 1が好ましく、 より好ましくは 8. 5〜 10. 5であり、 更に好ましく は 9〜 10. 5である。 pHが 1 1を超える範囲については、 高アルカリ雰 囲気に保持する為に沈殿剤として使用するアル力リ性化合物の使用 量が著しく増加する為、 経済的でない。 Cu/MgOxに対する Naの担持 量は、 特に限定されることは無いが、 0. l〜60w t %の範囲が好まし く、 より好ましくは l〜40w t %であり、 更に好ましくは 3〜30wt %で ある。 また、 NaYはギ酸ナトリウム、 炭酸ナトリウムなどが好まし い。 Among them, a Cu / MgO x prepared by co-precipitation method, this Cu / MgO x / NaY was added pressure to the Na evaporation to dryness method has an extremely high activity in the reaction, one of water and carbon dioxide or Even if both are mixed, a high methanol yield can be obtained. As shown in Fig. 2, the CO conversion rate varies greatly depending on the pH controlled when preparing by the coprecipitation method, and the pH when preparing Cu / MgO x by the coprecipitation method is preferably 8 to 11, more preferably Is 8.5 to 10.5, more preferably 9 to 10.5. In the range where pH exceeds 11, use of an alkaline compound used as a precipitating agent to maintain a high alkaline atmosphere It is not economical because the amount increases significantly. The amount of Na supported on Cu / MgO x is not particularly limited, but is preferably in the range of 0.1 to 60 wt%, more preferably 1 to 40 wt%, more preferably 3 to 30wt%. NaY is preferably sodium formate or sodium carbonate.
これら水素化分解触媒の調製は、 含浸法、 沈殿法、 ゾルゲル法、 共沈法、 イオン交換法、 混練法、 蒸発乾固法などの通常の方法によ れば良く、 特に限定されるものではないが、 共沈法によると高担持 率触媒の調製が可能となり、 好結果が得られやすい。  Preparation of these hydrocracking catalysts may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, and evaporation to dryness method, and is not particularly limited. However, the coprecipitation method makes it possible to prepare a catalyst with a high loading rate, and it is easy to obtain good results.
本発明においては、 一酸化炭素とアルコール類からギ酸エステル を生成させる前記反応系にこれらの水素化分解触媒および水素を共 存させておく ことにより、 いわゆる一段階でメタノールを製造する ことができる。 この水素化分解反応は、 基本的には前記反応条件で 行う ことができるが、 温度、 圧力を適宜変更してより適正化を図る ことができる。 この場合、 水素/一酸化炭素比は 0. 2〜5程度から選 定するのが一般的である。  In the present invention, by making these hydrocracking catalyst and hydrogen coexist in the reaction system for producing formate from carbon monoxide and alcohols, methanol can be produced in a so-called one-step process. This hydrocracking reaction can be basically performed under the above reaction conditions, but can be further optimized by appropriately changing the temperature and pressure. In this case, the hydrogen / carbon monoxide ratio is generally selected from about 0.2 to 5.
上記のように、 水素化分解触媒をアル力リ金属系触媒等と共存さ せて反応を行う場合、 単純な混合物として用いても良いが、 水素化 分解固体触媒にアル力リ金属系触媒等を担持させて用いると不均一 系となり、 触媒の反応系からの分離は固液分離となるため、 回収が 容易になり好適である。 担持の方法自体は、 上述したような触媒調 製の常法によることができる。  As mentioned above, when the reaction is carried out with the hydrocracking catalyst coexisting with the Al-rich metal catalyst, etc., it may be used as a simple mixture. When the catalyst is used, it becomes a heterogeneous system, and the separation of the catalyst from the reaction system is a solid-liquid separation. The supporting method itself can be a conventional method for preparing a catalyst as described above.
また、 ギ酸エステル選択率が高い特性の触媒を使用し、 一段階で メタノールを製造することが困難な場合は、 反応で得られた生成物 を反応系から蒸留法等で分離した後、 該生成物中のギ酸エステルを 水素化分解触媒および水素を共存させて、 水素化分解してメタノー ルを得ることも可能である。 本発明の触媒を用いた方法では、 原料ガス中に含有される C02、 H 2 0濃度は、 低いほど高収率でメタノールを得ることができるが、 そ れぞれ 1 %程度含有しても、 CO転化率、 メタノール収率はほとんど影 響を受けない。 しかし、 それ以上の濃度で含有すると CO転化率、 メ 夕ノール収率は低下する。 If it is difficult to produce methanol in a single stage using a catalyst with a high selectivity for formate ester, the product obtained in the reaction is separated from the reaction system by a distillation method, etc. It is possible to obtain methanol by hydrocracking the formate in the product in the presence of a hydrocracking catalyst and hydrogen. In the method using the catalyst of the present invention, the lower the concentration of C0 2 and H 20 contained in the raw material gas, the higher the yield of methanol, but each contains about 1%. However, the CO conversion rate and methanol yield are almost unaffected. However, if the concentration is higher than that, CO conversion rate and methanol yield will decrease.
本発明におけるギ酸エステル、 そしてメタノールの製造方法は、 次の反応式に基づく ものと推定される (アルコール類が鎖状または 脂環式炭化水素類に水酸基が付いたものである場合を例にとって示 す) 。  The method for producing formate and methanol in the present invention is presumed to be based on the following reaction formula (in the case where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto) )
ROH + CO→HC00R (6)  ROH + CO → HC00R (6)
HC00R + 2H2→CH3 OH + ROH (7) HC00R + 2H 2 → CH 3 OH + ROH (7)
(ここで Rはアルキル基を示す)  (Where R represents an alkyl group)
したがって、 メタノールの製造原料は、 一酸化炭素と水素であり 、 アルコール類は回収、 再利用しうる。  Therefore, the raw materials for producing methanol are carbon monoxide and hydrogen, and alcohols can be recovered and reused.
また、 本発明のアルカリ金属ギ酸塩、 アルカリ土類金属系触媒と 分子構造に芳香環を有するエーテルの一方又は双方を用いることで 、 原料ガス中に水、 二酸化炭素が、 かなりの量で存在していても触 媒の活性が失われることなく、 ギ酸エステル、 メタノールを得るこ とができる。 実施例  In addition, by using one or both of the alkali metal formate, the alkaline earth metal catalyst of the present invention and the ether having an aromatic ring in the molecular structure, water and carbon dioxide are present in a considerable amount in the raw material gas. In this case, formate and methanol can be obtained without losing the activity of the catalyst. Example
以下、 実施例により本発明をさらに詳細に説明するが、 本発明は これら実施例に限定されない。  EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
以下の実施例に記載した、 CO転化率、 メタノール収率はそれぞれ 次に示す式により算出した。  The CO conversion rate and methanol yield described in the following examples were calculated by the following formulas.
• CO転化率 W = [ 1 - (反応後に回収された COモル数)/ (仕込んだ CO モル数)] X 100 • ギ酸エステル収率は) = [ (生成したギ酸エステルモル数)/ (仕込ん だ COモル数) ] X 100 • CO conversion rate W = [1-(number of moles of CO recovered after reaction) / (number of moles of charged CO)] X 100 • Formic acid ester yield) = [(Moleic acid ester moles) / (Mole of CO charged)] X 100
• メタノール収率は) = [ (生成したメタノールモル数) / (仕込んだ CO + C02モル数)] X 100 • Methanol yield) = [(Mole moles produced) / ( 2 moles charged CO + C0)] X 100
* co2からメタノールが生成する経路も並行して進行していると 考えられる為、 co2共存系の場合は仕込んだ co2モル数も考慮する。 実施例 1 * Since the pathway for the production of methanol from co 2 is thought to proceed in parallel, the number of co 2 moles charged is also taken into account when co 2 coexists. Example 1
内容積 100mlのォ一 トク レーブを用い、 溶媒としてメタノール 15m 1に、 ギ酸カリウム 5匪 olとギ酸カルシウム 1匪 olを添加し、 合成ガ ス (CO 48%、 H2 48%、 Arバランス) を 3.0MPaで充填し、 150°C、 1 時間、 反応を行い、 反応生成物をガスクロマ トグラフィーで分析し た。 C0転化率 15.9%で、 5.57匪 olのギ酸メチルが得られた。 Using an autoclave with an internal volume of 100 ml, add 5 匪 ol of potassium formate and 1 匪 ol of calcium formate to 15m1 of methanol as a solvent, and add synthetic gas (CO 48%, H 2 48%, Ar balance). The reaction was carried out at 150 ° C for 1 hour after filling with 3.0 MPa, and the reaction product was analyzed by gas chromatography. 5.57 mol of formate was obtained with a C0 conversion of 15.9%.
実施例 2  Example 2
ギ酸カルシウム lmmo 1の代わりに炭酸カルシウム lmmo 1を添加する 他は、 実施例 1に記載の方法で反応を行った。 C0転化率 13.5%で、 5. 21隱01のギ酸メチルが得られた。  The reaction was carried out by the method described in Example 1 except that calcium carbonate lmmo 1 was added instead of calcium formate lmmo 1. A methyl formate of 5.21% 01 was obtained with a C0 conversion of 13.5%.
実施例 3  Example 3
ギ酸カルシウム lmmo 1の代わりにジフエ二ルエーテル 1龍 01を添加 する他は、 実施例 1に記載の方法で反応を行った。 C0転化率は 31.8 で、 11.55mmolのギ酸メチルが得られた。  The reaction was carried out by the method described in Example 1 except that diphenyl ether 1 Dragon 01 was added instead of calcium formate lmmo 1. The C0 conversion was 31.8 and 11.55 mmol methyl formate was obtained.
実施例 4  Example 4
ギ酸カルシウム lmmolの代わりにべンジルエーテル lmmolを添加す る他は、 実施例 1に記載の方法で反応を行った。 C0転化率 30. 1%で、 10.9 lmmo 1のギ酸メチルが得られた。  The reaction was carried out by the method described in Example 1, except that 1 mmol of benzyl ether was added instead of 1 mmol of calcium formate. 10.9 lmmo 1 methyl formate was obtained with a C0 conversion of 30.1%.
実施例 5  Example 5
ギ酸カルシウム lmmolの代わりにァニソールを添加する他は、 実 施例 1に記載の方法で反応を行った。 CO転化率 27.5¾で、 9.98顏 olの ギ酸メチルが得られた。 Calcium formate Other than adding anisole instead of lmmol, The reaction was carried out by the method described in Example 1. With a CO conversion of 27.5¾, 9.98 ol of methyl formate was obtained.
比較例 1  Comparative Example 1
ギ酸カ リゥム 5mmolのみを添加する他は、 実施例 1に記載の方法で 反応を行った。 CO転化率 10.7%で、 3.00皿 olのギ酸メチルが得られ た。  The reaction was carried out by the method described in Example 1, except that only 5 mmol of potassium formate was added. With a CO conversion of 10.7%, 3.00 ol of methyl formate was obtained.
実施例 6  Example 6
ギ酸カルシウム lmmolの代わり に炭酸カルシウム lOmmolを添加す る他は、 実施例 1に記載の方法で反応を行った。 CO転化率 7.4%で、 3 .55mmo 1のギ酸メチルが得られた。  The reaction was performed by the method described in Example 1 except that calcium carbonate lOmmol was added instead of calcium formate lmmol. A CO conversion of 7.4% and 3.55 mmo methyl formate were obtained.
実施例 7  Example 7
ギ酸カルシウム lmmolの代わり に炭酸カルシウム 0.5mmolを添加す る他は、 実施例 1に記載の方法で反応を行った。 C0転化率 12.2%で 、 5. 18顏 olのギ酸メチルが得られた。  The reaction was carried out by the method described in Example 1 except that 0.5 mmol of calcium carbonate was added instead of 1 mmol of calcium formate. A C18 conversion of 12.2% gave 5.18 ol of methyl formate.
実施例 8  Example 8
内容積 100mlのォー トクレーブを用い、 溶媒としてメタノール 27. 8mlに、 ギ酸カ リ ウム lOmmolと炭酸カルシウム 2匪 olを添加し、 合成 ガス (CO 48%、 H2 48%、 Arバランス) を 60ml/minで供給し、 150 °C-5. OMPaの条件で 20時間の連続反応を行った。 反応生成物はガス クロマ トグラフで分析した。 C0転化率 1.98%でギ酸メチルのみが得 られた。 Using an autoclave with an internal volume of 100 ml, adding 2Ool of calcium formate and 2 ol of calcium carbonate to 27.8 ml of methanol as a solvent, 60 ml of synthesis gas (CO 48%, H 2 48%, Ar balance) The reaction was continued for 20 hours at 150 ° C-5. OMPa. The reaction product was analyzed by gas chromatography. Only methyl formate was obtained with a C0 conversion of 1.98%.
実施例 9  Example 9
炭酸カルシウム 2mmolの代わり にジフェニルエーテル 2nimolを添加 する他は、 実施例 7に記載の方法で反応を行った。 C0転化率 3.95%で ギ酸メチルのみが得られた。  The reaction was carried out by the method described in Example 7 except that 2 nimol of diphenyl ether was added instead of 2 mmol of calcium carbonate. Only methyl formate was obtained at a C0 conversion of 3.95%.
比較例 2  Comparative Example 2
ギ酸カリゥム lOmmolのみを添加する他は、 実施例 5に記載の方法 で反応を行つた。 CO転化率 1.45%でギ酸メチルのみが得られた。 実施例 10 The method described in Example 5, except that only lOmmol potassium formate is added. The reaction was done. Only methyl formate was obtained with a CO conversion of 1.45%. Example 10
内容積 100mlのォ一 トクレーブを用い、 溶媒としてメタノール 27. 8mlに、 ギ酸カ リ ウム lOmmolと炭酸カルシウム 2mmol、 水素化分解触 媒として Cu (N03) 2 · 3H20、 Mg (N03) 2 · 6H20を原料として、 ρΗ=10· 0 に保ちながら共沈法により Cu/MgOx (Xは化学的に許容し得る値)を調 製し、 これに Na2 C03を原料として蒸発乾固法で Naを担持した Cu/MgO x/Na2C03 (Xは化学的に許容し得る値) を 3g添加し、 合成ガス (CO 4 8%、 H2 48%、 Arバランス) を 60ml/minで供給し、 170°C-5.0MPaの 条件で 20時間の連続反応を行った。 反応生成物はガスクロマトダラ フで分析した。 C0転化率 32.9%、 メタノール収率 32.7%であった。 実施例 11 Using an autoclave with an internal volume of 100 ml, methanol 27.8 ml as solvent, calcium formate lOmmol and calcium carbonate 2 mmol, hydrocracking catalyst Cu (N0 3 ) 2 3H 2 0, Mg (N0 3 ) Using 2 · 6H 2 0 as raw material, Cu / MgO x (X is a chemically acceptable value) was prepared by co-precipitation while maintaining ρΗ = 10 · 0, and Na 2 C0 3 was used as the raw material. Add 3g of Cu / MgO x / Na 2 C0 3 (X is a chemically acceptable value) with Na supported by evaporation to dryness, synthesis gas (CO 4 8%, H 2 48%, Ar balance) Was fed at a rate of 60 ml / min, and a continuous reaction was carried out for 20 hours under the conditions of 170 ° C-5.0 MPa. The reaction product was analyzed by gas chromatography. The C0 conversion was 32.9%, and the methanol yield was 32.7%. Example 11
炭酸カルシウム 2mmo 1の代わり にジフエ二ルェ一テルを使用する 他は、 実施例 10に記載の方法で反応を行った。 C0転化率 55.6%、 メ 夕ノ一ル収率 54.3%であつた。  The reaction was carried out by the method described in Example 10 except that diphenyl ether was used instead of calcium carbonate 2 mmo 1. The C0 conversion was 55.6% and the methanol yield was 54.3%.
比較例 3  Comparative Example 3
Cu/Mg0x/NaYの代わりに Cu/Cr203 (ENGELHARD, Cu - 1987T 1/8)を添 加する他は、 実施例 6に記載の方法で反応を行った。 C0転化率 27.7 %、 メタノール収率 27.5 であった。 The reaction was carried out by the method described in Example 6 except that Cu / Cr 2 0 3 (ENGELHARD, Cu-1987T 1/8) was added instead of Cu / Mg0 x / NaY. The C0 conversion was 27.7%, and the methanol yield was 27.5.
比較例 4  Comparative Example 4
Cu/MgOx/NaYの代わりに Cu/Si02 (ENGELHARD、 Cu - 0860 E 1/8)を添 加する他は、 実施例 6に記載の方法で反応を行った。 C0転化率 11. 1 %、 メタノール収率 10.9%であった。 Cu / MgO x / NaY in place of Cu / Si0 2 (ENGELHARD, Cu - 0860 E 1/8) addition to added pressure to Reaction was conducted in the procedure described in Example 6. The C0 conversion was 11.1% and the methanol yield was 10.9%.
実施例 12  Example 12
合成ガスの供給量を 30ml/iniiiとする他は、 実施例 6に記載の方法 で反応を行った。 C0転化率 60.9%、 メタノール収率 60.1%であった。 実施例 13 合成ガスの供給量を 90ml/minとする他は、 実施例 6に記載の方法 で反応を行った。 CO転化率 28.0%、 メタノール収率 27.9%であった。 実施例 14 The reaction was carried out by the method described in Example 6 except that the amount of synthesis gas supplied was 30 ml / iniii. The C0 conversion was 60.9%, and the methanol yield was 60.1%. Example 13 The reaction was carried out by the method described in Example 6 except that the synthesis gas supply rate was 90 ml / min. The CO conversion was 28.0%, and the methanol yield was 27.9%. Example 14
組成の異なる合成ガス (CO 48%、 H2 48%、 C02 1¾, Arバランス )を使用する他は、 実施例 6に記載の方法で反応を行った。 CO転化率 28.5%、 メタノール収率 27.9%であった。 The reaction was carried out by the method described in Example 6 except that synthesis gas having different composition (CO 48%, H 2 48%, C0 2 1¾, Ar balance) was used. The CO conversion was 28.5%, and the methanol yield was 27.9%.
実施例 15  Example 15
原料ガスを温度制御した H20にバブリ ングすることで、 H201%を連 続的に添加する他は、 実施例 6に記載の方法で反応を行った。 CO転 化率 29.3%、 メタノール収率 28.6%であった。 The reaction was carried out by the method described in Example 6 except that H 2 01 was continuously added by bubbling the source gas to temperature-controlled H 20 . The CO conversion was 29.3% and the methanol yield was 28.6%.
表 1 table 1
CO転化率 ギ酸メチル ギ酸メチル メタノール 実験の特徴  CO conversion rate Methyl formate Methyl formate Methanol Experimental features
(¾) 収量 (匪 ol) 収率(%) 収率(¾) 実施例 1 ベース実験 15. 9 5. 57  (¾) Yield (匪 ol) Yield (%) Yield (¾) Example 1 Base Experiment 15. 9 5. 57
実施例 2 添加 Ca塩変更 13. 5 5. 21 Example 2 Addition of Ca salt change 13. 5 5. 21
ジフエニルエー  Diphenyl A
実施例 3 31. 8 11. 55 Example 3 31. 8 11. 55
テル添加  Tell addition
ベンジルエーテ  Benzylate
実施例 4 30. 1 10. 91 Example 4 30. 1 10. 91
ル添加  Added
実施例 5 ァニソ一ル添加 27. 5 9. 98 Example 5 Anisol addition 27. 5 9. 98
添加 Ca塩変更、  Added Ca salt change,
実施例 6 7. 4 3. 55 Example 6 7. 4 3. 55
添加量変更  Addition change
添加 Ca塩変更、  Added Ca salt change,
実施例 7 12. 2 5. 18 Example 7 12. 2 5. 18
添加量変更  Addition change
連続反応、 炭酸  Continuous reaction, carbonic acid
実施例 8 1. 98 1. 98 Example 8 1.98 1.98
カルシウム添加  Calcium addition
連統反 M 、 ンフ  Anti-M, M
実施例 9 ェニルエーテル 3. 95 3. 95 Example 9 phenyl ether 3.95 3.95
添加  Addition
連続反応、 炭酸  Continuous reaction, carbonic acid
カルシウム添加  Calcium addition
実施例 10 32. 9 32. 7 、 水素化分解触 Example 10 32. 9 32.7, hydrocracking catalyst
媒共存  Coexistence
連続反〗心、 ジフ  Continuous rumination, gif
ェニルエーテル  Enyl ether
実施例 11 55. 6 54. 3 添加、 水素化分 Example 11 55. 6 54.3 Addition, hydrogenation content
解触媒共存、  Co-catalyst coexistence,
連続反応、 水素  Continuous reaction, hydrogen
化分解触媒共存  Pyrolysis catalyst coexistence
実施例 12 60. 9 60. 1 、 ガス供給量変 連続反応、 水素 Example 12 60. 9 60.1, continuous change of gas supply, hydrogen
化分解触媒共存  Pyrolysis catalyst coexistence
実施例 13 28. 0 27. 9 、 ガス供給量変 連続反応、 水素 Example 13 28. 0 27.9, Gas supply amount change Continuous reaction, Hydrogen
化分解触媒共存  Pyrolysis catalyst coexistence
実施例 14 28. 5 27. 9 、 ガス組成変更 Example 14 28. 5 27. 9, Gas composition change
(co2添加) (co 2 added)
連続反応、 水素  Continuous reaction, hydrogen
実施例 15 化分解触媒共存 29. 3 28. 6 Example 15 Co-decomposition catalyst 29. 3 28. 6
、 ¾0添加 表 2 , ¾0 addition Table 2
Figure imgf000019_0001
産業上の利用可能性
Figure imgf000019_0001
Industrial applicability
本発明における、 アルカ リ金属ギ酸塩に加えて、 アルカ リ土類金 属系触媒、 分子構造に芳香環を有するエーテルの一方又は双方を用 いた系、 またはアルカ リ金属ギ酸塩に加えて、 アルカ リ土類金属系 触媒、 分子構造に芳香環を有するエーテルの一方又は双方、 及び水 素化分解触媒を用いた系、 中でも、 水素化分解触媒として Cu、 アル カ リ土類金属元素、 及びアルカ リ金属元素を含有する触媒、 又は と Mn、 Reの少なく ともいずれか、 及びアルカ リ金属元素を含有する 触媒を共存させた系で、 合成原料ガスである、 一酸化炭素、 二酸化 炭素の少なく ともいずれか及び水素から溶媒アルコールの存在下ギ 酸エステル及びメタノールを製造すると、 低温、 低圧で連続反応に おいて安定的にギ酸エステルまたはメタノールを高効率で合成する ことが可能となった。 また、 合成原料ガス中に水、 二酸化炭素等が 混在しても触媒の活性低下の度合いが低いため安価でギ酸エステル またはメタノールを製造することが可能となった。  In the present invention, in addition to the alkali metal formate, an alkaline earth metal catalyst, a system using one or both of ethers having an aromatic ring in the molecular structure, or an alkali metal formate, A system using a metal earth catalyst, one or both of ethers having an aromatic ring in the molecular structure, and a hydrocracking catalyst. Among them, Cu, an alkaline earth metal element, and an alkali as a hydrocracking catalyst. A system that contains a catalyst containing a lithium metal element, or at least one of Mn and Re, and a catalyst containing an alkaline metal element, and at least carbon monoxide and carbon dioxide that are synthetic raw material gases. When formate and methanol are produced from any of them and hydrogen in the presence of solvent alcohol, the formate or methanol is stably increased in a continuous reaction at low temperature and low pressure. It became possible to synthesize with efficiency. In addition, even if water, carbon dioxide, etc. are mixed in the synthesis raw material gas, it is possible to produce formate or methanol at a low cost because the degree of decrease in the activity of the catalyst is low.

Claims

1 . 一酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを反応させてギ酸エステルを製造する方法であって、 アルカ リ金属ギ酸塩に加えて、 アルカリ土類金属系触媒、 分子構造 に芳香環を有するエーテルの一方又は双方、 及びアルコール類の存 1. A method for producing a formate by reacting a source gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to an alkali metal formate, an alkaline earth metal catalyst, One or both of ethers having an aromatic ring in the molecular structure and the presence of alcohols
一一口  Bite
在下に反応を行う ことを特徴とするギ酸エステルの製造方法。 A method for producing a formate ester, characterized by carrying out the reaction in the presence.
2 . 一酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを反応させてメタノールを製造する方法であって、 ァ ルカ リ金属ギ酸塩に加えて、 アルカリ土類金属系触媒、 分子構造に 芳香環を有するエーテルの一方又は双方、 水素化分解触媒、 及びァ 囲  2. A method for producing methanol by reacting a source gas containing at least one of carbon monoxide and carbon dioxide, and hydrogen, in addition to alkali metal formate, an alkaline earth metal catalyst, One or both ethers having an aromatic ring in the molecular structure, hydrocracking catalyst, and
ルコール類の存在下に反応を行い、 ギ酸エステル及びメタノールを 生成すると共に、 生成したギ酸エステルを水素化してメタノールを 製造することを特徴とするメタノールの製造方法。 A method for producing methanol, comprising reacting in the presence of alcohol to produce formate ester and methanol, and hydrogenating the produced formate ester to produce methanol.
3 . —酸化炭素、 二酸化炭素の少なく ともいずれか、 及び水素を 含む原料ガスを、 アルカ リ金属ギ酸塩に加えて、 アルカリ土類金属 系触媒、 分子構造に芳香環を有するエーテルの一方又は双方、 及び アルコール類の存在下に反応を行う ことで得られた生成物を反応系 から分離した後、 該生成物中のギ酸エステルを水素化分解触媒で水 素化してメタノールを製造することを特徴とするメタノールの製造 方法。  3. — A source gas containing at least one of carbon oxide, carbon dioxide, and hydrogen is added to the alkali metal formate, and one or both of an alkaline earth metal catalyst and an ether having an aromatic ring in the molecular structure. The product obtained by carrying out the reaction in the presence of alcohol and alcohol is separated from the reaction system, and then the formate ester in the product is hydrogenated with a hydrocracking catalyst to produce methanol. A method for producing methanol.
4 . 前記アルカ リ金属ギ酸塩に替えて、 反応中にアルカリ金属ギ 酸塩に変化し得るアルカ リ金属系触媒を用いることを特徴とする請 求項 1〜3のいずれか 1項に記載の製造方法。  4. The alkali metal formate according to any one of claims 1 to 3, wherein an alkali metal-based catalyst capable of changing to an alkali metal formate during the reaction is used instead of the alkali metal formate. Production method.
5 . 前記アルカ リ金属ギ酸塩がギ酸カ リ ウムであることを特徴と する請求項 1〜 4のいずれか 1項に記載の製造方法。  5. The production method according to any one of claims 1 to 4, wherein the alkali metal formate is potassium formate.
6 . 前記反応中にアル力 リ金属ギ酸塩に変化し得るアル力 リ金属 系触媒が炭酸カ リ ウムであるこ とを特徴とする請求項 4記載の製造 方法。 6. Al force Li metal that can be converted to Li metal formate during the reaction 5. The production method according to claim 4, wherein the system catalyst is calcium carbonate.
7 . 前記アルカ リ土類金属系触媒が、 カルシウム塩を含む触媒で あることを特徴とする請求項 1〜 6のいずれか 1項に記載の製造方法  7. The production method according to any one of claims 1 to 6, wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
8 . 前記分子構造に芳香環を有するエーテルの芳香環が単環であ ることを特徴とする請求項 1〜 7のいずれか 1項に記載の製造方法。 8. The production method according to any one of claims 1 to 7, wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring.
9 . 前記分子構造に芳香環を有するエーテルがジフエニルエーテ ルであることを特徴とする請求項 1〜8のいずれか 1項に記載の製造 方法。  9. The production method according to any one of claims 1 to 8, wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
1 0 . 前記分子構造に芳香環を有するェ一テルがベンジルエーテ ルであることを特徴とする請求項 1〜8のいずれか 1項に記載の製造 方法。  10. The production method according to any one of claims 1 to 8, wherein the ether having an aromatic ring in the molecular structure is benzyl ether.
1 1 . 前記水素化分解触媒が に加え、 Mn、 Reの少なく ともいず れか、 及びアルカ リ金属元素を含有する触媒であることを特徴とす る請求項 2〜 1 0のいずれか 1項に記載のメタノールの製造方法。  11. The hydrocracking catalyst is a catalyst containing at least one of Mn and Re, and an alkali metal element in addition to. A method for producing methanol as described in 1. above.
1 2 . 前記水素化分解触媒が Cu、 アルカ リ土類金属元素、 及びァ ルカ リ金属元素を含有する触媒であることを特徴とする請求項 2〜 1 0のいずれか 1項に記載のメタノールの製造方法。  1 2. The methanol according to any one of claims 2 to 10, wherein the hydrocracking catalyst is a catalyst containing Cu, an alkaline earth metal element, and an alkali metal element. Manufacturing method.
1 3 . 前記水素化分解触媒が固体触媒であり、 この固体触媒にァ ルカ リ金属ギ酸塩及びアル力 リ土類金属系触媒を担持して、 反応に 供することを特徴とする請求項 2〜 1 2のいずれか 1項に記載のメ夕ノ ールの製造方法。  13. The hydrocracking catalyst is a solid catalyst, and an alkali metal formate and an alkaline earth metal catalyst are supported on the solid catalyst for use in the reaction. [1] The method for producing a methanol according to any one of [1].
1 4 . 前記アルコール類が第一級アルコールであることを特徴と する請求項 1〜 1 3のいずれか 1項に記載の製造方法。  14. The production method according to any one of claims 1 to 13, wherein the alcohol is a primary alcohol.
1 5 . ギ酸エステルの水素化分解固体触媒に、 アルカ リ金属ギ酸 塩及びアル力 リ土類金属系触媒を担持してなることを特徴とするメ 夕ノール製造用触媒。 15. A mesomorphic acid hydrocracking solid catalyst carrying an alkali metal formate salt and an alkaline earth metal catalyst. Catalyst for the production of Yunol.
1 6 . アルカ リ金属ギ酸塩及びアルカ リ土類金属系触媒と分子構 造に芳香環を有するエーテルの一方又は双方に加え、 C u、 アルカ リ 土類金属元素、 及びアルカ リ金属元素を含有する水素化分解触媒か ら構成されることを特徴とするメタノール製造用触媒。  1 6. In addition to one or both of alkali metal formate and alkaline earth metal catalyst and ether having an aromatic ring in the molecular structure, Cu, alkaline earth metal element, and alkaline metal element are contained. A catalyst for methanol production, comprising a hydrocracking catalyst.
1 7 . アルカ リ金属ギ酸塩及びアルカ リ土類金属系触媒と分子構 造に芳香環を有するエーテルの一方又は双方に加え、 Cuと、 Mn、 Re の少なく ともいずれか、 及びアルカ リ金属元素を含有する水素化分 解触媒から構成されることを特徴とするメ夕ノール製造用触媒。  1 7. In addition to one or both of alkali metal formate and alkaline earth metal catalyst and ether having an aromatic ring in the molecular structure, at least one of Cu, Mn and Re, and alkali metal element A catalyst for producing methanol, comprising a hydrogenolysis catalyst containing
1 8 . 前記アルカ リ土類金属系触媒が、 カルシウム塩を含む触媒 であることを特徴とする請求項 1 5〜 1 7いずれか 1項に記載のメタノ ール製造用触媒。  18. The catalyst for methanol production according to any one of claims 15 to 17, wherein the alkaline earth metal catalyst is a catalyst containing a calcium salt.
1 9 . 前記アルカ リ金属ギ酸塩に替えて、 反応中にアルカ リ金属 ギ酸塩に変化し得るアルカ リ金属系触媒を有することを特徴とする 請求項 1 5〜 1 8のいずれか 1項に記載のメタノール製造用触媒。  1 9. The method according to any one of claims 15 to 18, characterized by having an alkali metal-based catalyst capable of changing to an alkali metal formate during the reaction instead of the alkali metal formate. The catalyst for methanol production as described.
2 0 . 前記水素化分解触媒に含有されるアル力 リ土類金属元素が マグネシウムであることを特徴とする請求項 1 6、 1 8又は 1 9に記載の メ夕ノール製造用触媒。  20. The catalyst for producing methanol according to claim 16, wherein the alkaline earth metal element contained in the hydrocracking catalyst is magnesium.
2 1 . 前記水素化分解触媒に含有されるアル力 リ金属元素がナ ト リ ウムであることを特徴とする請求項 1 6〜 20のいずれか 1項に記載 のメタノール製造用触媒。  21. The methanol production catalyst according to any one of claims 16 to 20, wherein the alkali metal element contained in the hydrocracking catalyst is sodium.
2 2 . 前記分子構造に芳香環を有するエーテルの芳香環が単環で あることを特徴とする請求項 16〜2 1のいずれか 1項に記載のメタノ ール製造用触媒。  2 2. The catalyst for methanol production according to any one of claims 16 to 21, wherein the aromatic ring of the ether having an aromatic ring in the molecular structure is a single ring.
2 3 . 前記分子構造に芳香環を有するエーテルがジフエニルエー テルであることを特徴とする請求項 16〜22のいずれか 1項に記載の メ夕ノール製造用触媒。 23. The catalyst for producing methanol according to any one of claims 16 to 22, wherein the ether having an aromatic ring in the molecular structure is diphenyl ether.
2 4. 前記分子構造に芳香環を有するエーテルがベンジルェ一テ ルであることを特徴とする請求項 16〜 22のいずれか 1項に記載のメ 夕ノール製造用触媒。 2 4. The catalyst for methanol production according to any one of claims 16 to 22, wherein the ether having an aromatic ring in the molecular structure is benzyl ether.
2 5. 前記水素化分解触媒が、 共沈法において pH=8〜llの範囲で 一定に保ちながら調製することを特徴とする請求項 15〜 24のいずれ か 1項に記載のメタノール製造用触媒の製造方法。  25. The catalyst for methanol production according to any one of claims 15 to 24, wherein the hydrocracking catalyst is prepared while being kept constant in a pH range of 8 to ll in a coprecipitation method. Manufacturing method.
PCT/JP2006/303510 2005-02-21 2006-02-20 Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts WO2006088253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503806A JP4990125B2 (en) 2005-02-21 2006-02-20 Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-044438 2005-02-21
JP2005044438 2005-02-21

Publications (1)

Publication Number Publication Date
WO2006088253A1 true WO2006088253A1 (en) 2006-08-24

Family

ID=36916635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303510 WO2006088253A1 (en) 2005-02-21 2006-02-20 Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts

Country Status (2)

Country Link
JP (1) JP4990125B2 (en)
WO (1) WO2006088253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537037A (en) * 2012-11-26 2015-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing methyl formate by reacting methanol with carbon monoxide in the presence of a catalyst system containing an alkali metal formate and an alkali metal alcoholate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490143A (en) * 1987-09-04 1989-04-06 Shell Int Research Manufacture of methanol and catalyst composition therefor
JPH11279090A (en) * 1997-02-27 1999-10-12 Petroleum Energy Center Found Production of methanol
WO2001062701A1 (en) * 2000-02-25 2001-08-30 Nippon Steel Corporation Process for preparation of formate esters or methanol and catalyst therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279030A (en) * 1998-03-24 1999-10-12 Shiseido Co Ltd Hair cosmetic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490143A (en) * 1987-09-04 1989-04-06 Shell Int Research Manufacture of methanol and catalyst composition therefor
JPH11279090A (en) * 1997-02-27 1999-10-12 Petroleum Energy Center Found Production of methanol
WO2001062701A1 (en) * 2000-02-25 2001-08-30 Nippon Steel Corporation Process for preparation of formate esters or methanol and catalyst therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537037A (en) * 2012-11-26 2015-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing methyl formate by reacting methanol with carbon monoxide in the presence of a catalyst system containing an alkali metal formate and an alkali metal alcoholate

Also Published As

Publication number Publication date
JPWO2006088253A1 (en) 2008-07-17
JP4990125B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
WO2006088253A1 (en) Process for production of formic esters and methanol, catalysts for the production thereof, and process for production of the catalysts
JP2005126427A (en) Method for producing formic acid ester and methanol
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
AU603700B2 (en) Process for the production of methanol and catalyst composition for said process
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5843250B2 (en) Method for producing methanol
JP5777043B2 (en) Method for producing methanol
JP2010215543A (en) Method for producing methanol
WO2005030686A1 (en) Method for producing organic compound
EP0317669A1 (en) Process for the production of methanol and catalyst composition for said process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714649

Country of ref document: EP

Kind code of ref document: A1