WO2006087901A1 - 苗の移植補助ステーション - Google Patents

苗の移植補助ステーション Download PDF

Info

Publication number
WO2006087901A1
WO2006087901A1 PCT/JP2006/301529 JP2006301529W WO2006087901A1 WO 2006087901 A1 WO2006087901 A1 WO 2006087901A1 JP 2006301529 W JP2006301529 W JP 2006301529W WO 2006087901 A1 WO2006087901 A1 WO 2006087901A1
Authority
WO
WIPO (PCT)
Prior art keywords
seedling
gripping
hand
rotary table
seedlings
Prior art date
Application number
PCT/JP2006/301529
Other languages
English (en)
French (fr)
Inventor
Seiji Hata
Satoru Takahashi
Hirotaka Hojo
Shinya Satake
Hiroshi Okada
Original Assignee
National University Corporation Kagawa University
Purex Corporation
Takarada Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005038495A external-priority patent/JP2006180863A/ja
Application filed by National University Corporation Kagawa University, Purex Corporation, Takarada Electric Industry Co., Ltd. filed Critical National University Corporation Kagawa University
Publication of WO2006087901A1 publication Critical patent/WO2006087901A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/08Devices for filling-up flower-pots or pots for seedlings; Devices for setting plants or seeds in pots
    • A01G9/086Devices for repotting

Definitions

  • the present invention relates to a seedling transplantation assisting station capable of mechanically adjusting the lower leaves and the like of larvae when culturing the buds in vitro, particularly for transplanting sterile clonal seedlings!
  • Background art on a seedling transplantation assisting station that makes it possible to automate operations in a clean bench, such as dividing cultured aseptic seedlings, adjusting lower leaves, etc., and transferring them to rooting containers
  • the growing tissue point is cut out in a sterile environment and the plant is cultivated in an in vitro mouth (in a sterile transparent container), grown into multi-buds, and further propagated in large quantities by subculture. After each large-sized shoot is grown to an optimal size in vitro, the shoot is again separated in a sterile environment, transferred to a container for rooting, cultured again in vitro, and germinated after completion of rooting. Some are seedling products. This is a technique that makes use of the fact that, even in an infected seedling, the virus does not enter the growth point tissue that is the source of plant growth.
  • production processes in a plant factory mainly include a transplanting process in which separated seedlings are planted in an in vitro culture container and a culture process in an in vitro mouth.
  • the seedling culture process is almost automated.
  • the transplanting process is still carried out manually, and there is a need for mechanization because it is necessary to secure a large number of excellent workers during the busy season.
  • Patent Documents 1 and 2 As a seedling division transplantation device, there is a device that recognizes the shape of a seedling by a recognition device using a laser beam and guides a gripping mechanism and a cutting mechanism to a predetermined height position of the seedling based on the recognition result. It has been proposed (Patent Documents 1 and 2).
  • Non-Patent Documents 1 and 2 Some proposals have been made for automatic production (Non-Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 3-228607
  • Patent Document 2 JP-A-5-3707
  • Non-patent literature 1 M. Takatsuji, Handbook of Plant Factory. Tokai University Press, pp. 123 (159, 1997. Tokai University Press: “Plant Factory Handbook”, Tokai University Press (199 7), ppl23-159
  • Non-Patent Document 2 Takayama Kosaku CMC Publishing Seedling Production System (1992 First Edition 2002 Popular Edition PP180)
  • FIG. 1 is a flow chart of a clone seedling growing process.
  • the present invention aims to automate the steps 13 and 15, which are the transplanting process to a culture container in vitro.
  • the above devices are devices that focus on seedling separation, and it has been difficult to perform any work if the lower leaves of the seedlings are cut and adjusted to be suitable for in vitro culture. .
  • the device when there is an obstacle (a leaf) in the vicinity of a gripping portion such as a plant, the device is powerful enough to avoid the obstacle and grip the target.
  • the present invention automates a transplanting process in which a cultured aseptic plant is divided and transferred to a rooting container in a place where obstacles are densely packed or in a narrow work space such as in vitro. It is an object of the present invention to provide a seedling transplantation assisting station. Means for solving the problem
  • the present invention provides a seedling transplantation assisting station including a sensor unit and a robot hand unit.
  • a seedling transplantation assisting station including a sensor unit and a robot hand unit.
  • the configuration including the rotary table can minimize the movement of the articulated robot that cannot operate at high speed, and can provide a practical apparatus with high processing capability.
  • by providing a hand for delivery it is possible to achieve high quality in the implantation process.
  • the gist of the present invention is a seedling transplantation assisting station of the following (1) to (11).
  • a pair of gripping claws and a gripping force transmission system which is partly or entirely connected to the gripping claws and the actuator, is made of a material force having inertia characteristics, and the gripping force transmission system and the Z are driven by the actuator.
  • a seedling transplantation assisting station that connects a robot hand that grips fragile objects while causing itching to the gripping claws to a manipulator that can move in the XYZ directions.
  • the pair of gripping claws are opened and closed with a predetermined gripping force at a predetermined position.
  • a seedling transplantation assisting station which holds a seedling while holding it in a predetermined route.
  • a sensor unit capable of recognizing the shape of the seedling is provided, the shape of the seedling is measured by the sensor unit, and the seedling is gripped based on the measurement data.
  • Transplantation support station (1) or (2) Transplantation support station.
  • the pair of gripping claws are reverse tweezers set in advance so as to give an optimal gripping force in advance.
  • a plurality of the pair of gripping claws are arranged in parallel, (1) and (4), either of the seedling transplantation assisting stations.
  • a seedling transplantation assisting station in which a robot hand equipped with a cutting blade and an actuator that opens and closes the cutting blade is connected to a manipulator movable in the XYZ directions.
  • a sensor unit capable of recognizing the shape of the seedling is measured, the shape of the seedling is measured by the sensor unit, and unnecessary portions of the seedling are cut based on the measurement data. Stationery.
  • the robot has a delivery hand for receiving seedlings from the robot, and the delivery hand grips the seedlings in a swingable state, and delivers the seedlings to the planting process (5) or (6 ) Seedling transplantation auxiliary station.
  • the seedling is a seedling in a container placed on a rotary table (1) to (7)! , The planting assistance station for any seedlings.
  • the rotary table is composed of a large rotary table and one or more small rotary tables arranged on a large rotary table, and the container can be moved by the large rotary table.
  • the present invention it is possible to automate the cutting operation of lower leaves and the like necessary for making a seedling suitable for culturing at an in vitro mouth, which has been performed manually.
  • the device configuration can be greatly reduced in space compared to the conventional one. In other words, since it is possible to work in a clean bench without having to provide a clean room, the production cost of cloned seedlings can be reduced in terms of equipment.
  • FIG. 1 is a flowchart of a clonal seedling growing process.
  • FIG. 2 is a system configuration diagram of a seedling transplanting assistance station according to the present invention.
  • FIG. 3 is an explanatory diagram of a rotary table.
  • FIG. 4 is an explanatory diagram of a tilt optical system.
  • FIG. 5 is an explanatory diagram of a composite work hand.
  • FIG. 6 is a flowchart of seedling separation work by the adjustment station of the present invention.
  • FIG. 7 is an explanatory diagram of a processing pattern in seedling separation work.
  • the priority level at the time of judgment shall be [High] (1)> (2)> (3) [Low].
  • FIG. 8 is an explanatory diagram of seedling separation work and seedling adjustment work.
  • FIG. 9 This is a position change model of an object and a gripping claw.
  • FIG. 10 is a deformation model in the transmission path in one of the gripping claws.
  • FIG. 11 is a drawing of a hand unit using a torsion panel near the drive unit.
  • FIG. 12 is a flowchart of seedling adjustment work by the adjustment station of the present invention.
  • FIG. 13 is a side view of the transplant assisting station according to the first embodiment.
  • FIG. 14 is a plan view of a transplantation assistance station according to Example 1.
  • FIG. 15 is a plan view of a hand portion in which the grip portion is tweezers.
  • FIG. 16 is an explanatory diagram of an adjustment mechanism for transplantation assistance according to Example 2.
  • FIG. 17 is an explanatory diagram of the delivery mechanism of the adjustment station according to the second embodiment.
  • FIG. 18 is an explanatory diagram of an implantation station according to Example 3.
  • FIG. 19 is a photograph showing an example of using an implantation station according to Example 3. Explanation of symbols
  • the seedling transplanting assistance station of the present invention includes a rotary table 21, a sensor unit 22, and an adjustment hand unit as main components.
  • Each component is connected to the integrated controller 6 through a general-purpose communication method such as Ethernet (registered trademark) or RS-232C cable, and is controlled cooperatively.
  • the rotary table 21 is a circular rotary table that can rotate clockwise and counterclockwise, and is composed of a large rotary table and a small rotary table.
  • an implantation container, a separation container, a disinfection container, and a cutting dust dish are placed, and the position of each container is adjusted by rotating a large rotary table in each work stage.
  • the small rotary table provided on the rotary table 21 allows each container to rotate individually.By rotating each container individually at each work stage, the work range can be expanded and work accuracy can be improved. (See Figure 3)
  • the sensor unit 22 includes a pair of stereo cameras and a slit projector, and can take a stereo image.
  • an optical system in the imaging optical system That is, as shown in FIG. 4, with the two cameras kept parallel to each other, the center of the lenses 50a and 50b and the center of the CCD image sensor 51a and 51b are shifted, and a pair of CCD image sensors and the lens center are connected.
  • the tilt optical system is an effective optical system for stereo image processing because the area that can be captured in common by the left and right cameras is larger than that of a normal optical system. As a result, an accurate relative distance image can be obtained even for a target object located near the camera power.
  • a slit projector that emits a laser diode light source in an oblique slit pattern.
  • the illumination light source preferably an LED
  • the illumination light source preferably an LED
  • the robot hand part is composed of an adjusting hand 23, a separating hand 24, and an implantation hand 25.
  • the robot node may be configured separately for some hands that do not necessarily have all of them.
  • the adjusting hand 23 moves to a position opposite to the separating hand 24 and performs cutting processing of unnecessary lower leaves and the like.
  • the transplanting hand 25 holds the young buds after the adjustment of the lower leaves, etc., so as not to damage the conduit of the stem, and performs the implantation.
  • Fig. 5 (a) is an example of a separation hand, and (b) is an example of an implantation hand (hereinafter, "separation hand” and “implantation hand” are collectively referred to as " Sometimes referred to as “complex work”.
  • Both hands are provided with upper gripping portions 61 and 63 which are gripping force control mechanisms, and the upper gripping portion can be moved up and down to adjust the gripping position when the actuator moves directly. Further, when the actuator 42 is rotated, the gripping parts 61 and 63 and the cutting part 62 are opened and closed.
  • the integrated controller controls the actuator and controls each hand.
  • the gripping portions 61, 63 and 64 are connected to a material 65 having an elastic characteristic, which allows a fine gripping force control to be performed without damaging a fragile plant.
  • the lower gripping part can be moved up and down with only the upper gripping part.
  • the distance between the gripping nails and the lowest end of the plant stem which is particularly fragile, may be buckled by the reaction force from the medium during implantation, but the above distance can be increased by moving the lower gripping part up and down. It becomes shorter and can be planted several times.
  • the lower gripping claws are released and the lower After moving the gripping nail upward, repeat the operation of holding again with the lower gripping nail and implanting. It can be done. This can prevent plant damage during planting operations.
  • Both the separating hand and the implanting hand have the same structure for driving the vertical movement unit, transmitting the gripping force, and the gripping unit.
  • the cutting part 64 is disposed below the gripping part 63, and the cutting part 62 increases the rigidity of the force transmission path so that it can withstand the moment during cutting.
  • preferable gripping claw and rod angles include 30 °, 45 °, 60 °, 90 °, 120 °, and 135 ° forces.
  • gripping claws and the Z or cutting blade may be rotated together, or when one of them is not rotated, the other may be a sheathed tube joint type.
  • the gripping claw is preferably made of a material that does not cause reflection on the surface of the hand to measure the distance between the gripping point position of the plant and the gripping position of the hand when recognizing the shape of the plant. Is mentioned.
  • the present invention is applicable to all clone seedlings, and examples of other preferable seedlings include eucalyptus seedlings.
  • the integrated controller 6 (control device) issues a request for detection of the presence or absence of seedlings to the sensor unit 22 (STEP 40).
  • the results of detection of presence / absence of seedlings are classified into the three patterns shown in FIG. 7 and returned to the integrated controller 6 (STEP 41).
  • the controller determines that the latter is the case (STEP 43), stops processing in the container, and automatically replaces the container with a mechanical mechanism. A signal is sent to prompt the operator to replace the container (STEP 46). If the small rotary table is not rotated 360 degrees, seedlings may exist in the blind spot, so rotate the container and repeat the process from STEP40. The container is not necessarily rotated 360 degrees, and an arbitrary angle may be designated in order to increase the processing capacity.
  • the separation hand 24 may collide with the seedling when it enters the container. Therefore, if the small rotary table is not rotated 360 degrees, it is rotated to avoid a collision between the separating hand 24 and the seedling (STEP 44, 45) 0 Although it has been rotated 360 degrees If there is a seedling at the entry point, it is determined that the situation will not be improved even if it is further rotated (STEP 44), and the processing of STEPs 42a to 42e is performed.
  • the rotation angle of the container can be set to an arbitrary angle, and the rotation angles in the case of pattern (1) and (2) can be different.
  • the control device moves the separation hand 24 to the vicinity of the seedling to be separated (STEP 42a).
  • the sensor unit 22 transmits to the sensor controller 3 the information about the gripping position of the Symbidium, the relative distance information of the hand, and the diameter information of the Symbidium stem (STEP 42b). Based on the transmission information, the sensor controller 3 calculates the distance to the gripping position and the optimum gripping force, and transmits them to the control device (STEP 42c).
  • the control device issues a seedling separation processing request to the robot controller 2
  • the separation hand 24 is moved to the gripping position, holds the target seedling with the optimum gripping stroke, and removes it from the separation container (STEP42d).
  • the separation hand 24 is preferably infiltrated at an angle where the sheath tube or tweezers and the stem are approximately parallel to each other. After the separation, the separation hand 24 is transferred to the position of the adjustment hand 24 and the adjustment work is performed. At this time, the large rotary table rotates, and the cut dust petri dish is positioned below (see FIG. 8).
  • the shape of the plant and the spatial position are measured by a combination of the light cutting method and the relative stereo method.
  • the light cutting method is a method of measuring the distance using the principle of triangulation by irradiating a measurement object with a planar laser beam (slit light).
  • the relative stereo method basically uses stereo vision with multiple cameras as a method of distance measurement, but it uses the distance information to the reference point in the screen obtained by methods other than stereo vision to create a stereo image. This is a method to measure the relative height of the reference point force by processing. High-speed image processing is possible, and there is an advantage that external parameters such as force interval and mounting angle are not required.
  • the slit light When determining whether there is a stalk in the work space, the slit light reflects on the stalk whether the stalk with the set range of thickness is within the set three-dimensional space range. Judgment is made by measuring the position and measuring the position by the light cutting method. When a stem is detected in the work space range, it is detected which position of the stem is suitable as a gripping position. Specifically, the bifurcation point is determined by tracking from the light spot position of the stem, and the wrinkle part where no leaf exists is taken as the cutout point.
  • the relative distance between the gripping position and the hand can be calculated by the relative stereo method by moving the combined work node to the vicinity after the cut-out point is divided. As a result, the remaining amount of movement of the combined work and the work is increased.
  • Fig. 9 shows a model for changing the position of the object and the gripping claws when gripping force is applied to the gripping claws stepwise.
  • the gripping force is strengthened and the positions of the left and right gripping claws are also moved.
  • Optimal gripping force can be obtained by giving a rotation angle to the rod so that the torsional balance of the material having the left and right elastic characteristics is balanced and the gripping object is not damaged.
  • a deformation model in the force transmission path in the gripping claw 73 is as shown in FIG.
  • the amount of elastic deformation ⁇ of the material having the elastic characteristics when applying the gripping force F set here is calculated, and the forces of equations 1 and 2 are also calculated.
  • the optimum twist angle ⁇ corresponding to this can be calculated from Equation 3, and this rotation gives the control lever 71 the state force that the gripping claw is in contact with the object. You can gain power.
  • 3EI F gripping force
  • elastic deformation (stagnation amount)
  • longitudinal elastic modulus
  • 1 length of material having elastic properties
  • the minimum control angle of the step motor is 0.5 °. By adding a speed reducer, it is possible to perform control corresponding to finer positioning requirements.
  • the above formula is an example, and the rotation angle of the motor that generates the deformation amount to give the necessary gripping force is calculated using the elastic formula based on the hook rule according to the shape of the hand.
  • an elastic body using a torsion panel may be disposed in the vicinity of the drive unit without using a material that uses elastic characteristics for the rod.
  • one of the torsion panel 90 is joined to the rod 7 and the other is joined to the control lever 71, so that the rod 7 can be rotated.
  • the gripping claw comes into contact with the object and further rotates, the torsion panel is deformed, and as a result, an optimum gripping force is generated in the gripping portion.
  • the twist angle ⁇ of the torsion panel from the point where the necessary gripping claws abut can be obtained by the following equation.
  • L Effective length of torsion panel
  • E Longitudinal elastic modulus
  • D Coil average diameter
  • N Number of turns
  • d Wire diameter
  • I Secondary moment of section
  • the work shown in Fig. 12 is used to cut off unnecessary parts such as roots.
  • the sensor unit 22 takes an image of the separated seedling in order to determine the part of the separated seedling (STE P81).
  • Image processing is performed on the data obtained by imaging, and the part to be cut (the root part in the case of a symbium) is recognized (STEP 83).
  • the imaging of the separated seedlings is performed a plurality of times until reaching a predesignated angle (STEP 83).
  • the separated seedling is rotated (STEP 84) and images are taken with different angular forces.
  • an imaging pattern with a constant accuracy and good working efficiency is exemplified by imaging at three positions in the range of 60 to 90 degrees.
  • the cutting location is calculated based on all the imaging data, and the cutting location is determined by performing superposition or the like (STEP 85).
  • Unnecessary roots are cut (STEP 86), and the articulated robot 1 performs implantation or transfers to the implantation station (STEP 87). It should be noted that the leaves can be easily cut when the angle of the chisel is parallel to the inclination of the stem.
  • the multi-joint robot 1, the rotary table 21, and the sensor unit 22 are included.
  • the rotary table 21 there are one separation container and three implantation containers.
  • the rotary table 21 rotates.
  • a separation work container is arranged at the opposite position, and the implantation work container is arranged at the opposite position during the implantation work.
  • a sensor unit 22 is provided on the pedestal of the articulated robot 1, and an adjustment hand 24 is provided on the side.
  • a hand for controlling the opening / closing of the tweezers with a tension wire is connected to the tip of the articulated robot 1.
  • a combined configuration of an outer tube having both ends fixed and a tension wire penetrating the inside thereof is employed.
  • the drive rack slides when the servo motor is driven.
  • the tension wire is pulled, the tweezers are closed, and when loosened, the tweezers are opened.
  • the spring characteristics of tweezers are used.
  • the gripping claw comes into contact with the object, the wire is further pulled to cause deflection in the tweezers, resulting in optimal gripping force at the gripping part. To do.
  • the outer tube 77 is fixed to the opposite side of the spring 80, and the tension wire is pulled to swing the tip of the tweezers around the peristaltic shaft 86. It has a mechanism. This is a mechanism that allows the gripping claws to reach the corner seedling of the container even in configurations that cannot control the posture (for example, a three-axis translational robot).
  • a speed reduction mechanism using the principle of pulley is provided! /
  • the amount of movement is approximately 1Z4 of the servomotor stroke, and the driving force is also approximately 1Z4 (actually, it does not become 1Z4 due to increased friction).
  • an outer tube having a diameter of 2 mm, a wire diameter of 0.3 mm, and a length of 800 mm and a tension wire having a diameter of 0.7 mm were used.
  • the correlation between the operating force on the hand side and the pulling force on the motor side was as follows.
  • the pulling force of the motor side rack required to obtain a gripping operation force of 200 g was 80 g. From the results of this example, it was found that the reduction in mechanical efficiency can be prevented by reducing the force applied to the wire.
  • the tensile strength required for the hand gripping part is several hundred grams, but the force required to pull the tension wire on the rack side is 3 ⁇ 4 times. If the force tube is pulled with such a large force, the life of the outer tube or the tension wire will be reduced. Therefore, the inventor devised a mechanism to pull the wire with a small force by preparing a small speed reduction mechanism on the hand side. went. Note that the configuration using a pulley is merely an example, and a speed reduction mechanism using a multistage gear or the like may be provided on the node side. At this time, the force applied to the driving wire is preferably 300 g or less.
  • the adjusting hand 23 includes a cutting blade, a motor 32 that opens and closes the cutting blade, and a plate 33 to which they are attached.
  • the adjusting hand 23 is connected to the articulated robot by the plate 33, and performs cutting processing of the lower leaves of the seedling while moving in the XYZ axis directions based on the measurement information of the sensor unit 22. It is preferable to rotate the cutting blade around the Y-axis (referred to as the ⁇ -axis). This minimizes the movement of the heavy adjustment hand 23 itself in the XYZ-axis direction, thereby increasing the processing speed. it can.
  • the separate chuck 31 can be rotated while gripping the separated seedlings, thereby enabling a high-speed operation of cutting site recognition work.
  • Adjusting hand 23 moves up and down, moves forward and backward, and rotates. It can move, and cuts the cutting part such as the lower leaf sequentially.
  • a gripping hand 34 a configuration may be adopted in which a seedling that has been subjected to the cutting process of the lower leaf or the like is swingably gripped and transferred to the transplanting hand 25.
  • the seedling is gripped in a state perpendicular to the medium (see Fig. 17). .
  • By changing the seedlings it becomes possible to plant the seedlings at right angles to the culture medium, so that the production of clone seedling pots can be made with high quality.
  • the implantation hand 25 is composed of a plurality of tweezers (see FIG. 18).
  • FIG. 19 is a photograph showing a preferred mode of use of the implantation hand of this example. Multiple seedlings can be obtained by simultaneously holding the seedlings that have been adjusted by a machine or hand into a work plate having the same number of holes as the number of tweezers, with the transplanting hand 25 of this embodiment. It is possible to implant at the same time.
  • a configuration in which an optimum gripping force is calculated according to the type of force plant configured as “reverse tweezers” may be used.
  • the configuration using the reverse tweezers has an advantage that the upper limit of the gripping force can be easily set.
  • use normal tweezers if you do not need to specify the upper limit.
  • a seedling may be placed by a person on the supply device, and only the planting process may be performed by hand.
  • the sensor unit may be the above-described tilt optical system, but may be more general if relative distance measurement is unnecessary.
  • space recognition is performed according to the following procedure.
  • the image power of the image captured by a CCD camera placed under a transparent container is also binarized by a suitable threshold value for the callus of seedlings planted in a transparent agar medium, and image processing such as reduction and expansion is performed.
  • each seedling position is labeled according to a predetermined area. The order of labeling should be determined according to the movement path where the hands are less likely to interfere.
  • the callus portion When taking out the seedling, the callus portion may be gripped only by the stem portion. The removed seedlings may be placed on a temporary storage place for seedlings outside the container so that the next adjustment process can be performed easily. If the adjustment station is in the next process, change it to a hand for delivery. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Manipulator (AREA)

Abstract

【課題】 障害物が密集した場所やインビトロ等の狭い作業空間において、培養した無菌の植物を分割し、発根用容器に移し替える移植工程の自動化を可能にする苗の移植補助ステーションの提供。 【解決手段】 一対の把持爪と、把持爪とアクチュエータとを連結する一部または全部が弾性特性を有する材料からなる把持力伝達系とを備え、アクチュエータの駆動により把持力伝達系および/または把持爪に撓みを生じさせながら脆弱物を把持するロボットハンドを、XYZ方向に移動可能なマニピュレータに連結した苗の移植補助ステーション。

Description

苗の移植補助ステーション
技術分野
[0001] 本発明は、幼芽をインビトロで培養するに際し、幼芽の下葉等を機械的に調整する ことができる苗の移植補助ステーションに関し、特に無菌クローン苗の移植にお!、て 、培養した無菌の幼苗を分割し、下葉等を調整し、発根用容器に移し替えるといった 作業の自動化をクリーンベンチ内で可能にする苗の移植補助ステーションに関する 背景技術
[0002] 近年園芸作物ゃ榭木の苗の生産にお!ヽてこれまで行われてきた実生苗や挿し木 苗での生産以外にマイクロプロパゲーションで優秀個体の無菌化クローンを大量増 殖し、発根させて苗製品にする手法が広く普及してきている。
一般的な手法としては、成長組織点を無菌環境内で植物個体力 切出してインビト 口(無菌透明容器内)で培養環境を与え、多芽体に成長させ、さらに継体培養により 大量増殖させ、そして大量増殖させたそれぞれの幼芽を最適な大きさまでインビトロ で成長させた後に、再び無菌環境で幼芽を分離し、発根用の容器に移し替え、再び インビトロで培養し発根完了後に無菌クローン苗製品とするものがある。感染した苗 であっても、植物体成長の元になる成長点組織にはウィルスが侵入しな 、ことを利用 した手法である。
[0003] このように植物工場での生産工程としては、主に分離した苗をインビトロ培養容器 へ植え込む移植工程とインビト口での培養工程とがある。苗の培養工程につ!ヽては ほぼ自動化されている力 移植工程については依然手作業で行われており、大量に 優秀な作業者を繁忙期に確保する必要があることから機械化の要求が増大している
[0004] しかしながら、自動化に際しては、不定形な形状をしている植物の幼芽を分割移植 するために、茎のどの部分をどの位置で切るかと!/、つた高度で複雑な認識を行わね ばならない。また、幼芽は柔らかく脆弱であり、過剰な把持力を与えた場合、茎の導 管を破壊しその後の生育が順調に 、かな 、と 、う問題がある。このため幼芽の移植 を自動的に行うためには高度な形状認識と微少な把持力制御が不可欠であった。
[0005] 苗の分割移植装置としては、レーザー光を利用した認識装置により苗の形状を認 識し、認識結果に基づいて苗の所定の高さの位置に把持機構及び切断機構を導く 装置が提言されている (特許文献 1, 2)。
[0006] また、挿し木苗の移植システムとしては、オープントレイ上の苗に対してスリットレー ザ光と PSDセンサにより茎形状をスキャンし歪みセンサによるフィードバックによる把 持力制御、マニピュレータ一により挿し木苗の自動生産をするものが提言されている (非特許文献 1, 2)。
特許文献 1:特開平 3 - 228607号公報
特許文献 2:特開平 5— 3707号公報
非特干文献 1 : M.Takatsuji, Handbook of Plant Factory.Tokai University Press, pp. 123(159, 1997.東海大学出版会編:「植物工場ハンドブック」, 東海大学出版会 (199 7), ppl23-159
非特許文献 2 :高山眞策シーエムシー出版種苗生産システム (1992初版 2002普及 版 PP180)
発明の開示
発明が解決しょうとする課題
[0007] 苗の育成に伴うコストの大半は人件費であり、機械化することにより、苗の生産コスト を大幅に削減することができる。また、人手の作業では、ウィルス混入による品質低下 により苗の破棄の必要が生じてしまうため、このことも生産コストの増加につながって いた。
上述のとおり、苗の培養工程については、ほぼ自動化されているため、本発明では インビト口での培養容器への移植工程を自動化することを解決すべき課題とする。図 1は、クローン苗の育成工程の流れ図であるが、本発明はインビトロでの培養容器へ の移植工程である STEP13な 、し 15の工程を自動化することを課題とする。
[0008] そもそも、上記装置類は、苗の分離に主眼を置いた装置であり、苗の下葉等を切断 してインビトロでの培養に適するよう調整するといつた作業を行うことは難し力つた。 [0009] しかも、上記装置類では、茎を把持する力の微弱な調整を行うことは難しぐ移植に 際して茎を傷つけてしまうおそれがあった。
[0010] また、上記装置類では、植物のような把持部分の近傍に障害物 (葉)がある場合、 障害物を避けて対象物を把持することができな力つた。
さらには、オープントレイでの作業を前提としており、容器の中での苗が密集した作 業環境での作動はできな力つた。すなわち、無菌クローン苗の生産を行う場合、イン ビトロ培養容器での作業はできないため、無菌状態とするためには、クリーンルーム が必要であった。そのため、広い作業スペースと高価な設備が必要であり、多額のコ ストがかかるという問題があった。
[0011] そこで、本発明は、上記課題を鑑み、障害物が密集した場所やインビトロ等の狭い 作業空間において、培養した無菌の植物を分割し、発根用容器に移し替える移植ェ 程の自動化を可能にする苗の移植補助ステーションを提供することを目的とする。 課題を解決するための手段
[0012] 上記課題を解決するために、本発明は、センサ部と、ロボットハンド部を備えた苗の 移植補助ステーションを提供する。ロボットハンド部を回動可能とすることで、さらに高 速に調整処理を行うことができる。また、ロータリーテーブルを備えた構成では、高速 動作ができない多関節ロボットの移動を最小限とすることが可能となり、処理能力の 高い実用的な装置を提供することが可能となる。また、受渡用ハンドを設けることによ り、植込工程の高品質ィ匕を可能とできる。
さらには、一つのステーション内で分離 '調整'植込を行うことが可能な苗の移植補 助ステーションをも提供することを可能とした。
[0013] すなわち、本発明は以下の(1)ないし(11)の苗の移植補助ステーションを要旨と する。
(1)一対の把持爪と、把持爪とァクチユエ一タとを連結する一部または全部が弹性特 性を有する材料力 なる把持力伝達系とを備え、ァクチユエータの駆動により把持力 伝達系および Zまたは把持爪に橈みを生じさせながら脆弱物を把持するロボットハン ドを、 XYZ方向に移動可能なマニピュレータに連結した苗の移植補助ステーション。
(2)—対の把持爪を予め定められた位置において、予め定められた把持力で開閉し 、苗を把持した状態であらかじめ定められた経路でノ、ンドリングする(1)の苗の移植 補助ステーション。
(3)さらに、苗の形状を認識可能なセンサ部を備え、該センサ部により苗の形状を計 測し、その計測データに基づ 、て苗を把持する(1)または(2)の苗の移植補助ステ ーシヨン。
(4)前記一対の把持爪は、予め最適な把持力を与えるように設定された逆ピンセット である(1)な 、し (3)の!、ずれかの苗の移植補助ステーション。
(5)前記一対の把持爪を複数並行に配置することを特徴とする(1)な 、し (4)の 、ず れかの苗の移植補助ステーション。
(6)切断刃と、切断刃を開閉動するァクチユエ一タとを備えたロボットハンドを、 XYZ 方向に移動可能なマニピュレータに連結した苗の移植補助ステーション。
(7)さらに、苗の形状を認識可能なセンサ部を備え、該センサ部により苗の形状を計 測し、その計測データに基づいて苗の不要箇所を切断する(6)の苗の移植補助ステ ーシヨン。
(8)さらに、前記ロボットノ、ンドから苗を受け取る受渡用ハンドを有し、受渡用ハンドが 苗を揺動可能な状態で把持し、植込工程に苗を受け渡す (5)または (6)の苗の移植 補助ステーション。
(9)前記苗は、ロータリーテーブル上に載置された容器内の苗である(1)ないし(7) の!、ずれかの苗の移植補助ステーション。
(10)前記ロータリーテーブルは、大型ロータリーテーブルと、大型ロータリーテープ ル上に配された 1以上の小型ロータリーテーブルと力 構成され、大型ロータリーテ 一ブルにより容器の移動ができ、小型ロータリーテーブルにより容器の回転ができる( 9)の苗の移植補助ステーション。
(11)クリーンベンチ内で利用可能である( 1)ないし( 10)の 、ずれかの苗の移植補 助ステーション。
発明の効果
本発明によれば、従来手作業で行って 、たインビト口での培養に適した苗とするた めに必要な下葉等の切断作業を自動化することが可能となる。 [0015] また、従来と比べ大幅に装置構成を省スペース化することができる。すなわち、クリ ーンルームを設ける必要がなぐクリーンベンチ内での作業が可能となるため、設備 面でもクローン苗の生産コストを削減することができる。
図面の簡単な説明
[0016] [図 1]クローン苗の育成工程の流れ図である。
[図 2]本発明の苗の移植補助ステーションのシステム構成図である。
[図 3]ロータリーテーブルの説明図である。
[図 4]あおり光学系の説明図である。
[図 5]複合作業ハンドの説明図である。
[図 6]本発明の調整ステーションによる苗分離作業の流れ図である。
※^突入ポイントに苗有り」…微小角度として突入ポイントを探る程度の大きさ
※ 「苗無し」 · ··広角度として 3Dカメラの画角が変化する程度の大きさ
[図 7]苗分離作業における処理パターンの説明図である。
[苗の有無判断]
(1)撮像範囲内に分離可能な苗が無レ、。(処理区分コード = 3)
(2)撮像範囲内に分離可能な苗が有るが且つハンド突入位置に苗が有るを区別して判 断する必要がある。(処理区分コード =4)
(3)撮像範囲内に分離可能な苗が有るが且つハンド突入位置に苗が無い。(処理区分 コード = 2)
判断時における優先順位は、 [高] (1) > (2) > (3) [低]とする。
[図 8]苗分離作業および苗調整作業の説明図である。
[図 9]対象物と把持爪の位置変化モデルである。
[図 10]把持爪の一方における伝達経路での変形モデルである。
[図 11]駆動部近傍にトーシヨンパネを用いたハンド部の図面である。
[図 12]本発明の調整ステーションによる苗調整作業の流れ図である。
[図 13]実施例 1に係る移植補助ステーションの側面図である。
[図 14]実施例 1に係る移植補助ステーションの平面図である。
[図 15]把持部がピンセットであるハンド部の平面図である。
差替え用紙(規則 26) [図 16]実施例 2に係る移植補助の調整機構の説明図である。
[図 17]実施例 2に係る調整ステーションの受渡機構の説明図である。
[図 18]実施例 3に係る植え込みステーションの説明図である。
[図 19]実施例 3に係る植え込みステーションの使用例を示した写真である。 符号の説明
1 多関節ロボット
2 ロ ットコントローラ
3 センサコントローラ
6 統合コントローラ
26) 21 ロータリーテーブル
22 センサ部
23 調整用ハンド
24 分離用ハンド
25 植込用ハンド
27 受渡用ハンド
31 セパレートチャック
32 切断刃駆動用モータ
33 プレート
34 把持用ハンド
50 レンズ
51 CCD撮像素子
71 制御レバー
72 固定レバー
73 把持爪
74 脆弱物
75 卜ーシ 3ンノ ネ
77 アウターチューブ
78 ブラケット
79 ブロック
80 スプリング
81 ピンセット
82 プレート
83 リンク
84 シャフト
発明を実施するための最良の形態
本発明を実施するための最良の形態を図面に基づいて説明する。
1.システム構成 図 2に示すとおり、本発明の苗の移植補助ステーションは、ロータリーテーブル 21と 、センサ部 22と、調整ハンド部を主たる構成要素とする。各構成要素はイーサネット( 登録商標)や RS-232Cケーブル等の汎用的な通信方式により、統合コントローラ 6と 接続され、連携的に制御される。
図 2の構成では、分離から植え込みまで一連の作業を行うことができるが、別途に 設けた分離ステーションおよび植込ステーションと連携してもよ 、し、その一部を手動 で行ってもよい。
以下では、苗の移植補助ステーションの各構成要素について説明する。
[0019] (1)ロータリーテーブル 21
ロータリーテーブル 21は、時計回り、反時計回りに回転自在の円形回転テーブル であり、大型ロータリーテーブルと、小型ロータリーテーブルと力 構成される。ロータ リーテーブル 21には、植え込み用容器と、分離用容器と、消毒容器と、切断ゴミシャ ーレとが載置され、各作業段階では大型ロータリーテーブルを回転して各容器類の 位置を調整する。ロータリーテーブル 21の上に設けられた小型ロータリーテーブル により、各容器が個別に回転自在であり、各作業段階において各容器を個別に回転 させることで、作業範囲を広げ、作業精度を向上することを可能としている(図 3参照)
[0020] (2)センサ部 22
センサ部 22は、一対のステレオカメラと、スリット投光器とから構成され、ステレオ撮 像が可能である。遠近歪みをなくするためには、撮像光学系にあおり光学系を用いる ことが好ましい。すなわち、図 4に示すように 2台のカメラを相互に平行にしたままで、 レンズ 50a, 50bの中心と CCD撮像素子 51a, 51bの中心をずらし、 CCD撮像素子 とレンズ中心を結んだ一対の撮像系の中心線の交点が計測対象物付近に有るような あおり光学系を用いることによって、 CCD撮像素子上に遠近ひずみのな ヽ結像画像 を得ることも可能になる。あおり光学系は通常の光学系よりも左右のカメラで共通に撮 像できる面積が広くなるため、ステレオ画像処理に有効な光学系である。これにより、 カメラ力 近 、位置にある対象物体であっても、正確な相対距離画像を得ることがで きる。 装置中央にはレーザーダイオード光源を斜めスリットパターンに発光するスリット投 光器が設置してある。斜めスリットパターンは全部で 4本あり、撮像範囲のどの位置に 計測対象物体が位置してもスリット光が当たるように考慮されて 、る。
なお、視覚センサ周辺部で照明光源からの光が容器に直接反射してカメラに入光 しな 、位置に該照明用光源、好ましくは LEDを配置するのが好まし 、。
[0021] (3)ロボットハンド部
ロボットハンド部は、調整用ハンド 23と、分離用ハンド 24と、植込用ハンド 25により 構成される。ロボットノヽンド部は、これら全てを備える必然性はなぐいくつかのハンド につ 、ては別構成とすることもできる。
多関節ロボット 1の先端に設けられた分離用ハンド 24により幼芽が分離されると、調 整用ハンド 23は分離用ハンド 24の対向位置に移動して不要な下葉等の切断処理を 行う。植込用ハンド 25は下葉等の調整が終わった幼芽を茎の導管を傷つけないよう に把持し、植え込みを行う。
[0022] 図 5の (a)は分離用ハンドの一例であり、(b)は植込用ハンドの一例である(以下では 、「分離用ハンド」と「植込用ハンド」の総称を「複合作業ノ、ンド」と言うことがある)。ど ちらのハンドも把持力制御機構である上段把持部 61, 63を備えており、上段把持部 はァクチユエ一タが直動することにより、上下して把持位置の調整を行うことができる 。また、ァクチユエータ 42が回動することにより、把持部 61, 63、切断部 62が開閉運 動を行う。統合コントローラはァクチユエータの制御を行い、各ハンドを制御する。 把持部 61, 63及び 64は弾性特性を有する材料 65と連結されており、これにより脆 弱な植物を損傷させな 、ための微少な把持力制御が可能となって 、る。
また、植込用ハンドの場合、上段把持部だけでなぐ下段把持部を上下させてもよ V、。特に脆弱である「把持爪から植物の茎の最下端までの距離」が長 、と植込時の 培地からの反力により座屈するおそれがあるが、下段把持部を上下させることにより 上記距離を短くして何回かに分けて植え込むことが可能となる。すなわち、上記距離 を短くしても規定量の植込量を確保出来るようにするため、上段及び下段の把持部 で植物を把持した状態で植え込みをした後、下段の把持爪を解放し、下段把持爪を 上に移動した後、再度下段把持爪で把持し、植え込みを行うという動作を繰り返し行 うことができるのである。これにより、植え込み作業における植物の損傷を防ぐことが できる。
[0023] 分離用ハンド、植込用ハンドのどちらも上下移動部の駆動、把持力の伝達、把持部 の構造は同じである。但し、分離用ハンドは切断部 64が把持部 63の下部に配置さ れ、当該切断部 62は力伝達経路の剛性を高め、カット時のモーメントに耐えられるよ うにしてある。
狭い空間で作業する場合には、把持爪に角度を付けることで、作業場所に把持爪 を侵入させることが容易となる。例えば、好ましい把持爪とロッドの角度としては 30° , 45° , 60° , 90° , 120° , 135° 力あげられる。
なお、把持爪及び Z又は切断刃は共に回転させてもよいし、一方を回転させない 場合には他方を鞘管接合型としてもよい。
把持爪は、植物の形状認識の際に植物の把持点位置力 ハンドの把持位置との距 離を計測するため、ハンド表面が反射が生じない素材で構成するのがよぐ好ましい 材料としてはセラミックスが挙げられる。
[0024] 2.苗の分離
図 3のように、シンビジゥムの苗が培養された容器における分離作業の例を説明す る。
但し、本発明は全てのクローン苗に適用可能なものであり、例えば他の好ましい苗と してはユーカリの苗が挙げられる。
図 6に示すように、シンビジゥムの培養された容器 (ビン)を投入すると、統合コント口 ーラ 6 (制御装置)が、センサ部 22に苗の有無の検出要求を出す (STEP40)。苗の有 無の検出結果は、図 7に示す 3つのパターンに分類され、統合コントローラ 6に返信さ れる(STEP41)。
[0025] パターン (1)の場合 (処理区分コード = 3)
撮像範囲内に苗が無い場合には、容器を回転することにより苗が撮像範囲内に入 る場合と、全ての苗が分離済みである場合の 2通りが考えられる。小型ロータリーテー ブルが 360度回転済みの場合には、制御装置は後者の場合であると判断し (STEP43 )、当該容器における処理を中止し、機械的仕組みにより容器を自動で交換するか、 作業者に容器の交換を促す信号を発信する(STEP46)。小型ロータリーテーブルが 3 60度回転していない場合には、苗が死角に存在する場合もあるため、容器を回転し て再度 STEP40からの処理を繰り返す。なお、容器は 360度回転させる必然性はなく 、処理能力を高めるために任意の角度を指定しても良い。
[0026] パターン (2)の場合 (処理区分コード =4)
突入ポイントに苗がある場合には、分離用ハンド 24が容器内に侵入する際に、苗と ぶっかってしまうおそれがある。そこで、小型ロータリーテーブルが 360度回転してい ない場合には、これを回転させることにより、分離用ハンド 24と苗の衝突を回避する( STEP44,45) 0 360度回転済みであるにも関わらず、突入ポイントに苗がある場合には 、それ以上回転をしても状況は改善されないと判断し (STEP44)、 STEP42a〜42eの 処理を行う。
なお、容器の回転角度は任意の角度に設定可能であり、パターン (1)の場合と (2)の 場合の回転角度を異なる角度することも可能である。
[0027] パターン (3)の場合 (処理区分コード = 2)
制御装置は分離用ハンド 24を分離対象となる苗の近傍まで移動させる (STEP42a) 。センサ部 22が計測した、シンビジゥムの把持位置とハンドの相対距離情報、シンビ ジゥムの茎の直径情報をセンサコントローラ 3に送信する(STEP42b)。センサコント口 ーラ 3は、送信情報に基づき、把持位置まで距離と、最適把持力を算出し、制御装置 に送信する(STEP42c)。制御装置は、ロボットコントローラ 2に苗分離処理要求を出 すと、分離用ハンド 24が把持位置まで移動され、最適把持ストロークで対象苗を把 持し、分離容器から取り出す (STEP42d)。
分離用ハンド 24は、鞘管またはピンセットと茎が概ね平行になる角度で侵入させる のが好ましぐ分離後は調整用ハンド 24の位置まで移送され調整作業が行われる。 この際、大型ロータリーテーブルが回転し、切断ゴミシャーレが下方に位置される(図 8参照)。
[0028] 3.植物の空間位置及び形状の計測
本発明では、光切断法と相対ステレオ法の組み合わせにより植物の形状や空間位 置の計測を行う。 光切断法とは、計測物体に平面状のレーザー光 (スリット光)を照射し、三角測量の 原理を利用して距離を計測する手法である。相対ステレオ法とは、基本的には複数 のカメラを使用したステレオ視を距離計測の手法とするが、ステレオ視以外の方法で 得られる画面内の基準点までの距離情報を利用し、ステレオ画像処理を行うことによ り、基準点力もの相対高さを計測する手法である。高速な画像処理が可能であり、力 メラ間隔や取り付け角度等の外部パラメータを必要としない利点がある。
[0029] 作業空間内に茎があるかの判定する際には、設定した範囲の太さの茎が、設定し た立体空間範囲の中にあるかをスリット光が茎上で反射して ヽる特徴を識別し、光切 断法により位置計測をすることで判定を行う。作業空間範囲の中に茎が検出されると 、その茎のどの位置が把持位置として適しているかを検出する。具体的には、茎の光 点位置から追跡して分岐点を判断し、その上部で葉が存在しな!ヽ部分を切り出し点 とする。
切り出し点が分力 た後に、複合作業ノヽンドを近傍まで移動させることで、相対ステ レオ方法により把持位置とハンドとの間の相対距離を算出することができる。これによ り、複合作業ノ、ンドの残移動量がわ力ることになる。
[0030] 4.最適把持力の算出
把持爪に段階的に把持力を与えた際の、対象物と把持爪の位置変化モデルを示 したものが図 9である。本発明の把持装置においては、ロッドの一部が弾性特性を有 する材料力 構成されているため、把持力を強めると共に、左右把持爪の位置も移 動する。左右の弾性特性を有する材料のねじれのバランスが取れ、且つ把持対象物 が損傷しないように、ロッドに回転角度を与えることで最適把持力を得ることができる。
[0031] 把持爪 73における力伝達経路での変形モデルは図 10のようになる。ここで設定し た把持力 Fを与える際の弾性特性を有する材料の弾性変形量 δとなり、式 1および 2 力も算出される。これに対応する最適ひねり角度 Θは式 3から算出することができ、こ の回転を把持爪が対象物に接触した状態力も制御レバー 71に与えることで脆弱物 7 4を把持するための最適把持力を得ることができる。
[数 1]
S =
3EI F:把持力、 δ:弾性変形量 (橈み量)、 Ε :縦弾性係数、1:弾性特性を有する材料長さ
、 I:断面 2次モーメント
[数 2]
ト Ti ' c
64
d:弾性特性を有する材料の直径
[数 3]
Θ = Sw—1 - L
Θ:最適ひねり角度、 L:ロッド軸中心線力 対象物把持位置までの最小距離
[0032] 例えば 35グラムを把持したい場合の追い込みストローク Θは、 1=35、 d=0.9、 L=6 で考えると、
δ = (0.035 - 353) / (3 - 19900 · ( π · 0.94/64) ) = 0.78mm
Θ =Sin— 1 ( δ /L) =7.47。 となる。
[0033] 設定レンジは ±5gなので上限、下限でのストロークは 40グラムであり、
δ = (0.04-353) / (3 · 19900· ( π - 0.94/64) ) = 0.89mm
Θ =Sin— 1 ( δ /L) =8.56。 となる。
[0034] 同様に、上限のストロークは 30グラムであり、
δ = (0.03 - 353) / (3 - 19900 · ( π · 0.94/64) ) = 0.67mm
Θ =Sin— 1 ( δ /L) =6.41° となる。
ステップモータの最小制御角度は 0.5° であり、減速機を付加することでさらに細か い位置決め要求に対応する制御を行うことが可能である。なお、上記計算式は一例 であり、ハンドの形状に応じてフック則による弾性計算式を用い、必要な把持力を与 えるための変形量を発生するモータの回転角度を計算するとよ 、。
[0035] また、ロッドに弾性特性を利用する材料を用いず、駆動部近傍にトーシヨンパネを 用いた弾性体を配置してもよ 、。図 11に示すようにトーシヨンパネ 90の一方をロッド 7 と接合し、他方を制御レバー 71と接合することでロッド 7に回転を生じさせることがで きる。把持爪が対象物に当接後さらに回転を加えることでトーシヨンパネに変形が生 じ、その結果把持部に最適な把持力が発生する。 [0036] 例えば、予め設定した把持力 Fを得るために、必要な把持爪が当接した点からのト ーシヨンパネのねじれ角度 φは、下記式で求めることができる。
[0037] M = F-a
M :トーシヨンパネに作用するモーメント、 a:中心力 把持爪までの長さ
[0038] φ = ML/EI = 64MDN/Ed4
L :トーシヨンパネの有効展開部長さ、 E :縦弾性係数、 D :コイル平均径、 N:巻き数、 d:線径、 I:断面 2次モーメント
[0039] 5.苗の不要箇所の切断作業
根っこ等の不要箇所を切断する作業は、図 12に示す手順で行われる。まず、セン サ部 22により、分離し苗の切断箇所を確定するために分離した苗の撮像を行う (STE P81)。撮像により得られたデータを画像処理し、切断対象となる箇所 (シンビジゥムの 場合は根っこの部分)を認識する (STEP83)。この際、撮像した角度によって、切断箇 所とも非切断箇所とも判断できない箇所もあるが、グレーポイントとして取り扱う。分離 苗の撮像は、予め指定した角度に達するまで複数回行う(STEP83)。指定角度に達 していない場合には、分離苗を回転し (STEP84)、異なる角度力も撮像を行う。一定 精度が得られ、且つ作業効率の良い撮像パターンとしては、 60〜90度の範囲を 3箇 所撮像することが、好ましい態様として例示される。指定した角度での撮像が終了す ると、全ての撮像データに基づき、切断箇所を算出し、重ね合わせ等行うことで切断 箇所を確定する(STEP85)。不要な根っこ等を切断し (STEP86)、多関節ロボット 1に より植え込みを行うか植え込みステーションへの受け渡しを行う(STEP87)。なお、ノヽ サミの揺動角度を茎の傾きに並行するようにすると葉を切断しやすい。
[0040] 以下では、本発明の詳細を実施例で説明するが、本発明は実施例に限定されるも のではない。
実施例 1
[0041] 図 13および 14に示すとおり、多関節ロボット 1と、ロータリーテーブル 21と、センサ 部 22とから構成される。
ロータリーテーブル 21上には分離作業用容器 1つと植込作業用容器 3つが設けら れている。多関節ロボット 1による分離作業時には、ロータリーテーブル 21が回転して その対向位置に分離作業用容器が配され、植え込み作業時には植込作業用容器が その対向位置に配される。多関節ロボット 1の台座部にはセンサ部 22が設けられ、側 方には調整用ハンド 24が設けられている。
[0042] 多関節ロボット 1の先端には、図 15に示すように、ピンセットの開閉をテンションワイ ャで制御するハンドが接続される。本実施例の構成では、把持部を回動させる必要 がないため、両端が固定されたアウターチューブとその内側を貫通するテンションヮ ィヤーの組み合わせ構成を採用して 、る。
[0043] サーボモータの駆動により駆動ラックがスライドし、テンションワイヤーを引っ張ると ピンセットが閉じ、弛めるとピンセットが開く。把持に関してはピンセットがもつバネ特 性を利用しており、把持爪が対象物に当接後さらにワイヤーを引っ張ることで、ピンセ ットにたわみが生じ、その結果把持部に最適な把持力が発生する。
また、スプリング 80でピンセット姿勢を直立方向に引きつけるために、スプリング 80 の反対側にアウターチューブ 77を固定し、テンションワイヤーを引くことで、摇動軸 8 6を中心にピンセットの先端を揺動させる機構を有する。姿勢制御できない構成 (例 えば、 3軸の並進運動ロボット)でも、容器のすみの苗まで把持爪が届くようにするた めの機構である。
[0044] また、本実施例では、滑車の原理を用いた減速機構を設けて!/、る。植物の様な脆 弱なものを把持する場合には、サーボモータのストロークの微調整が必要であるが、 滑車に相当する半円盤を 4つからなる減速機構により、ピンセットの開閉部のケープ ルチューブの移動量はサーボモータのストロークの約 1Z4となり、且つ、駆動力も約 1Z4 (実際には摩擦が増えるため 1Z4にはならない)となる。この減速機構を設ける ことにより、ワイヤのフリクションを増大させずにすみ、かつ低出力のコンパクトなモー タを採用して高機能なハンド部を構成することが可能となった。
[0045] 本実施例では、直径 2mm、線径 0.3mm長さ 800mmのアウターチューブと直径 0.7mm のテンションワイヤを用いた。減速機構を設けない構成では、ハンド側での操作力と モーター側の引っ張り力の相関は以下のような結果となった。一方、本実施例の滑 車を用いた構成では、 200gの把持操作力を得るために必要なモータ側ラックの引つ 張り力は 80gであった。 本実施例の結果から、ワイヤーに力かる力を低くすることで機械効率の低下を防止 できることが分力つた。
[0046] [表 1]
Figure imgf000018_0001
[0047] このようにアウターチューブとテンションワイヤの組み合わせの場合、ハンド把持部 で必要な引っ張り強さは数百グラムであるが、ラック側でテンションワイヤを引つ張る のに必要な力はその 3〜4倍程度となる。このような大きな力で強引に引っ張ると、ァ ウタ一チューブやテンションワイヤの寿命が低下するため、発明者は小型減速機構を ハンド側に用意することで小さな力でワイヤを引っ張る機構を設ける工夫を行った。 なお、滑車を用いた構成は一例であり、多段式歯車等による減速機構としてもよぐ 減速機構をノヽンド側にもうけてもよい。この際、駆動するワイヤにかかる力が好ましく は 300g以下とするような構成とするものとする。
実施例 2
[0048] 多関節ロボットの作動は俊敏に行うことができないため、できるだけ多関節ロボット による作動を少なくした方が処理能力は高くなる。そこで、本実施例では、図 16に示 すように、センサ部 22と、調整用ハンド 23と、セパレートチャック 31とにより構成した。 調整ハンド 23は、切断刃とその切断刃を開閉動するモータ 32と、それらが取り付け られたプレート 33とから構成される。調整ハンド 23は、プレート 33により多関節ロボッ トに連結され、センサ部 22の計測情報に基づき、 XYZ軸方向に移動しながら苗の下 葉等の切断処理を行う。切断刃を Y軸を中心に回動( Θ軸と言う)することが好ましぐ これにより、重い調整ハンド 23そのものの XYZ軸方向移動を最小限とすることで、処 理速度を高めることができる。
また、調整ハンドの切断刃の上方または下方に把持用ハンド 34を設けることにより 、分離や植え込み作業も行うことができるようにしてもょ 、。
[0049] セパレートチャック 31は、分離した苗を把持したまま回動可能であり、切断箇所認 識作業の高速ィ匕を可能としている。調整用ハンド 23は、上下動、進退動、および回 動可能であり、下葉等の切断箇所を順次切断していく。把持用ハンド 34を設けた構 成の場合において、下葉等の切断処理が終わった苗を揺動自在に把持して、植込 用ハンド 25に受け渡す構成としてもよい。把持用ハンド 34により把持された苗を揺動 自在とし、植込用ハンド 25と直角に受け渡しを行うことにより、苗が培地に直角な状 態で把持されることとになる(図 17参照)。この苗の持ち替えを行うことで、苗を培地 に直角に植え込むことが可能となり、クローン苗鉢の生産を高品質ィ匕することができ る。
実施例 3
実施例 3は、植込用ハンド 25を複数のピンセットから構成したものである(図 18参照
) oいわゆる「逆ピンセット」を用いたものであり、外部力 力が加えられない状態にお いては、各ピンセットは最適把持力で閉じた状態であり、モータの駆動力が加えられ ると把持力が徐々に減少しピンセットが開く。本実施例の構成においては、作業対象 となる植物に適した植込用ハンドを事前に準備することで、細かな制御を行わなくて も最適な把持力を得ることを可能とした。
図 19は、本実施例の植込用ハンドの好ましい使用態様を示した写真である。ピン セットの数と同じ数の穴が設けられた作業板に機械または人手により調整済みの苗 を差し込んだものを、本実施例の植込用ハンド 25で同時に把持することで、複数本 の苗の植え込みを同時に行うことを可能として 、る。
なお、本実施例においては「逆ピンセット」による構成とした力 植物の種類に応じ て最適把持力を算出する構成としてもよぐその場合には通常のピンセットを複数用 いた構成となる。
逆ピンセットを用いた構成は、把持力の上限を簡便に設定できる利点がある。把持 力の制御を行うに際して、上限指定をする必要がなければ通常のピンセットを使用す ればよい。
複数の苗を同時に把持することで、一回当たりの処理本数を増やすことで作業効 率は倍増する。
なお、植込のみを行うハンドでは苗を供給装置に人が置き、植込工程のみをハンド で行うようにしてもよい。 センサ部は、上述のあおり光学系のものとしてもよいが、相対距離計測が不要な場 合にはより汎用的なものとしてもよい。例えば、植込位置に目標位置をもって格子状 に植えられた幼芽を容器カゝら分離する場合には以下の手順で空間認識を行う。 すなわち、透明な容器の下に設置した CCDカメラの撮像による画像力も透明な寒 天培地に植えられた苗のカルスを適当な閾値で 2値ィ匕し、縮小'膨張などの画像処 理をカ卩えることで画像上のノイズを除去し苗のカルス部のみを抽出し、それぞれの力 ルスの重心位置を認識し、 CCD画像上での各苗のピクセル位置を計算し、全ての苗 のカルス位置の XY座標を得る。それぞれの苗位置は、あらかじめ決められたエリアに 対応してラベリングされる。ラベリングする順番はハンドが干渉しにくい移動経路によ つて決定すればよぐラベリングの若!、順に苗を取り出すようにする。
苗を取り出す際には茎の部分だけでなぐカルスの部分を把持しても良い。取り出 した苗は、容器外の苗の仮置き場に載置し次の調整工程が容易に行えるようにして もよ 、し、調整ステーションが次工程にある場合には受け渡し用ハンドに持ち替えて ちょい。

Claims

請求の範囲
[1] 一対の把持爪と、把持爪とァクチユエ一タとを連結する一部または全部が弾性特性 を有する材料力 なる把持力伝達系とを備え、ァクチユエータの駆動により把持力伝 達系および Zまたは把持爪に橈みを生じさせながら脆弱物を把持するロボットハンド を、 XYZ方向に移動可能なマニピュレータに連結した苗の移植補助ステーション。
[2] 一対の把持爪を予め定められた位置において、予め定められた把持力で開閉し、 苗を把持した状態であら力じめ定められた経路でノ、ンドリングする請求項 1の苗の移 植補助ステーション。
[3] さらに、苗の形状を認識可能なセンサ部を備え、
該センサ部により苗の形状を計測し、その計測データに基づいて苗を把持する請 求項 1または 2の苗の移植補助ステーション。
[4] 前記一対の把持爪は、予め最適な把持力を与えるように設定された逆ピンセットで ある請求項 1な 、し 3の!、ずれかの苗の移植補助ステーション。
[5] 前記一対の把持爪を複数並行に配置することを特徴とする請求項 1な!、し 4の 、ず れかの苗の移植補助ステーション。
[6] 切断刃と、切断刃を開閉動するァクチユエ一タとを備えたロボットハンドを、 XYZ方 向に移動可能なマニピュレータに連結した苗の移植補助ステーション。
[7] さらに、苗の形状を認識可能なセンサ部を備え、
該センサ部により苗の形状を計測し、その計測データに基づいて苗の不要箇所を 切断する請求項 6の苗の移植補助ステーション。
[8] さらに、前記ロボットノヽンドから苗を受け取る受渡用ハンドを有し、
受渡用ハンドが苗を揺動可能な状態で把持し、植込工程に苗を受け渡す請求項 5 または 6の苗の移植補助ステーション。
[9] 前記苗は、ロータリーテーブル上に載置された容器内の苗である請求項 1ないし 7 の!、ずれかの苗の移植補助ステーション。
[10] 前記ロータリーテーブルは、大型ロータリーテーブルと、大型ロータリーテーブル上 に配された 1以上の小型ロータリーテーブルとから構成され、
大型ロータリーテーブルにより容器の移動ができ、 小型ロータリーテーブルにより容器の回転ができる請求項 9の苗の移植補助ステー シヨン。
[11] クリーンベンチ内で利用可能である請求項 1ないし 10のいずれかの苗の移植補助 ステーション。
PCT/JP2006/301529 2005-02-15 2006-01-31 苗の移植補助ステーション WO2006087901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005038495A JP2006180863A (ja) 2004-08-04 2005-02-15 苗の移植補助ステーション
JP2005-038495 2005-02-15

Publications (1)

Publication Number Publication Date
WO2006087901A1 true WO2006087901A1 (ja) 2006-08-24

Family

ID=36916312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301529 WO2006087901A1 (ja) 2005-02-15 2006-01-31 苗の移植補助ステーション

Country Status (1)

Country Link
WO (1) WO2006087901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502850A (ja) * 2011-01-24 2014-02-06 アイジー・スペシャルズ・ビー.ブイ. 植物の挿し穂を並べる装置及び方法、並びに挿し穂を培地に植栽する挿し穂保持ユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156680A (ja) * 1986-12-18 1988-06-29 三菱電機株式会社 部品把持装置
JPH07276281A (ja) * 1994-04-13 1995-10-24 Sumitomo Metal Mining Co Ltd 脆弱物のハンドリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156680A (ja) * 1986-12-18 1988-06-29 三菱電機株式会社 部品把持装置
JPH07276281A (ja) * 1994-04-13 1995-10-24 Sumitomo Metal Mining Co Ltd 脆弱物のハンドリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MONTA M. ET AL, JOURNAL OF THE JAPANESE SOCIETY OF AGRICULTURAL MACHINERY, vol. 60, no. 4, 1998, pages 37 - 44, XP003004585 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502850A (ja) * 2011-01-24 2014-02-06 アイジー・スペシャルズ・ビー.ブイ. 植物の挿し穂を並べる装置及び方法、並びに挿し穂を培地に植栽する挿し穂保持ユニット
US9516819B2 (en) 2011-01-24 2016-12-13 Ig Specials B.V. Apparatus and method for placing plant cuttings and cutting holding unit for planting cuttings in a cultivation medium
US9907235B2 (en) 2011-01-24 2018-03-06 Ig Specials B.V. Apparatus and method for placing plant cuttings and cutting holding unit for planting cuttings in a cultivation medium

Similar Documents

Publication Publication Date Title
CN101015244B (zh) 一种垄作栽培草莓自动采摘装置
CN113301797A (zh) 蘑菇自主收获系统和方法
JP2011200196A (ja) 受粉ロボット
US5370713A (en) Automatic plant dividing system
TW202110320A (zh) 用於繁殖植物的裝置及方法
JP2020137417A (ja) 把持移送装置、この把持移送装置を備えた葉物野菜収穫装置
CN111758397A (zh) 一种基于视觉识别的花椒智能采摘装置
JP2006068893A (ja) 脆弱物の把持装置
SE526768C2 (sv) System och förfarande för embryotransport för tillverkade frön
JP2006180863A (ja) 苗の移植補助ステーション
US5382268A (en) Method and apparatus for use in micropropagation
WO2006087901A1 (ja) 苗の移植補助ステーション
WO2006087900A1 (ja) 苗の調整ステーション
CN217184250U (zh) 一种马铃薯组培苗全自动高通量组培快繁装置
CN114568306A (zh) 一种马铃薯组培苗全自动高通量组培快繁装置
JP2006042686A (ja) 植物の自動分離・植込システム
JP2006180862A6 (ja) 苗の調整ステーション
JP2006180862A (ja) 苗の調整ステーション
GB2233307A (en) Gripping and manipulating devices for plant tissue
Brown Robotics and image analysis applied to micropropagation
US20240237585A1 (en) Method for semi-autonomously processing plants
Liu et al. Rapid damage-free robotic harvesting of tomatoes
JP2020036575A (ja) 接木装置
AU638868B2 (en) Automatic plant dividing system
CN118102866A (zh) 用于加工植物的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712672

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712672

Country of ref document: EP