WO2006087805A1 - 光通信装置および光通信制御方法 - Google Patents
光通信装置および光通信制御方法 Download PDFInfo
- Publication number
- WO2006087805A1 WO2006087805A1 PCT/JP2005/002614 JP2005002614W WO2006087805A1 WO 2006087805 A1 WO2006087805 A1 WO 2006087805A1 JP 2005002614 W JP2005002614 W JP 2005002614W WO 2006087805 A1 WO2006087805 A1 WO 2006087805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- signal
- optical communication
- unit
- osc
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0771—Fault location on the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0245—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0249—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0287—Protection in WDM systems
- H04J14/0289—Optical multiplex section protection
- H04J14/0291—Shared protection at the optical multiplex section (1:1, n:m)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0283—WDM ring architectures
Definitions
- the present invention relates to an optical communication apparatus and an optical communication control method having an APSD (Auto Power Shut Down) function for forcibly stopping output of a light emitting element for safety when an optical fiber is cut It is about.
- APSD Auto Power Shut Down
- LDs Laser Diodes
- CDRH Center for Devices and Radiologic Health
- IEC Internat ional in Europe region
- the Electrotechnical Commission International Electrotechnical Commission
- classification is performed for each optical output level, and safety measures are required for each class. For example, for light having a wavelength of force Sl060nm- 1400nm, 0. the output level of the lasers in operation 198mW (-7. LdBm) below, or if the light of wavelength 1400nm- 10 6 nm, during operation of the laser If the output level is 0.79 mW (-l. OdBm) or less, it is classified as the least dangerous CLASSI and is not considered dangerous. Similarly, the wavelength is 1400nm-10.
- CLASSIIIb is the second highest risk, and it is very dangerous if the laser radiation is directly exposed to the skin and eyes. It is considered to be. Therefore, if it is CLASSI, a “Certification / ldentification” label is attached to the product, and if it is CLASSIIIb, a “DANGER” label is attached to the product to alert the user.
- CLASSIIIb is designed to be equipped so that it is not directly visible to humans when attaching to or detaching from optical fibers.
- the APSD (Auto Power Shut Down) function is widely used as one of the safety measures in optical communication equipment that handles CLASS IIIb lasers.
- the APSD function is a function that forcibly stops the output of the LD if the optical fiber is accidentally cut, and is used in all optical transmission equipment.
- the configuration of a general optical communication device that handles multiplexed optical signals using WDM and how the APSD function operates will be described using the figure.
- FIG. 9 is a diagram showing a general optical communication network configuration.
- a network configuration including a plurality of optical communication devices (AF) on a ring-type optical fiber network 10 is the most common in optical communication.
- the optical fiber network 10 consists of two optical fibers with different transmission directions (direction a and direction b in the figure), and is used for communication using the OUPSR (Optical Unidirectional Path Switched Ring) t protection method. Indicates a connection.
- OUPSR Optical Unidirectional Path Switched Ring
- an uplink ll Work Path; working line
- downlink 12 Service Path
- the optical communication device D serving as the receiving end connects the uplink 11 and the branch port to branch the optical signal.
- the branch port of the optical communication device D is connected to the downlink 12 and branches as usual.
- OSPPR Optical Shared Path Protection Ring
- FIG. 10 is a diagram showing the connection and internal configuration of the optical communication apparatus.
- Optical communication equipment A Also, optical signals are divided into WDM signals for optical communication and network failure signals such as optical fiber disconnection.
- OSC power bra 13 13a-13d
- OSC Optical Supervisory Channel
- WDM signal amplification WDM amplifier 14 14 & -14 (1)
- OSC unit 15 OSC1, 2
- each element inside each optical communication device is provided with electrical wiring (not shown) And such One such transmission No. is performed.
- An optical communication device A-C is connected with an uplink 11 for transmitting an optical signal in the direction a and a downlink 12 for transmitting in the direction b.
- the optical signal input from the uplink 11 is demultiplexed into a WDM signal and an OSC signal by the OSC power bra 13a.
- the optical signal input from the downlink 12 is split into a WDM signal and an OSC signal by the OSC coupler 13c.
- the WDM signal demultiplexed by the OSC coupler 13a is amplified by passing through the WDM amplifier 14 (14a, 14b).
- the DCF unit 17 is provided as in the optical communication device B
- the signal is input to the WDM amplifier 14a.
- the OSC signal is input to the OSC unit 15 (OCSl) via the optical fiber L1 if it is the uplink 11, and is input to the OSC unit 15 (OSC2) via the optical fiber L4 if it is the downlink 12.
- the OSC unit 15 outputs a new OSC signal according to the input OSC signal.
- the amplified WDM signal and the OSC signal output from the OSC unit 15 are multiplexed by the OSC coupler 13b via the optical fiber L3 if the uplink is 11, and if the downlink is 12, the optical fiber L2 Are combined by the OSC coupler 13d and output to each line to transmit an optical signal.
- the operation of the A PSD function when the optical fiber is actually cut will be described.
- an optical signal is sent to the input port 21 of the uplink 11 of the optical communication device B. Is not entered. Therefore, the WDM amplifier 14a on the input side of the uplink 11 detects the WDM signal disconnection because the WDM signal is not input.
- the OSC unit 15 (OSC1) detects that OSC_LOS (OSC signal is broken) is also detected as the force that no OSC signal is input.
- the WDM amplifier 14a transmits the detected WDM signal disconnection information as an electrical signal to the OSC unit 15 (OSCl) (Sl).
- OSC unit 15 When OSC—LOS detection and WDM signal disconnection information are received simultaneously, OSC unit 15 (OSCl) transmits a control signal for stopping amplifier output as an electrical signal to WD M amplifier 14d. (S2). The OSC unit 15 assumes that WDM signal disconnection information is transmitted because the WDM signal is not used, or that an OSC LOS is detected due to a failure of the OSC unit in another optical communication device. Therefore, it is determined that the optical fiber is cut only when OSC—LOS detection and WDM signal disconnection information are received at the same time!
- the OSC unit 15 uses the APSD—CONT signal for causing the OSC unit 15 (OSC2) of the optical communication apparatus A to execute the APSD function via the downlink 12 as the OSC signal.
- Send S3.
- the WDM amplifier 14d of the optical communication device B that has received the control signal stops outputting.
- APSD—OSC unit 15 (OSC2) of optical communication device A that receives the CONT signal uses the control signal to stop the output of the optical signal from optical communication device A to uplink 11 as an electrical signal to WDM amplifier 14b.
- Send S4.
- Patent Document 1 Japanese Patent Laid-Open No. 2002-77056
- connection port 16 is opened, and the optical fiber between the OSC coupler 13a and the WDM amplifier 14a is cut off.
- Figure 11 shows that the connection port in the optical communication device has been opened.
- the APSD function stops the output of the WDM amplifier 14d of the optical communication device B and the WDM amplifier 14b of the optical communication device A, and safety is maintained. Just connect the new unit to the connection port 16 and connect it again. However, as shown in Fig. 11, when the connection between the OSC coupler 13a and the WDM amplifier 14a is released or the optical fiber is disconnected, the WDM amplifier 14a detects the WDM signal disconnection. Unit 15 (OSCl) does not detect OSC— LOS.
- the OSC unit 15 (OSC1) performs the APSD function if the reception of the WDM signal disconnection information transmitted from the WDM amplifier 14a and the detection of the OSC—LOS demultiplexed by the OSC coupler 13a are not performed simultaneously.
- the output of the WDM amplifier 14d of the optical communication device B and the WDM amplifier 14b of the optical communication device A is not stopped, and the high-output optical signal remains output to the connection port 16, and CLASSIIIb safety measures Therefore, it was difficult to ensure the safety of the workers who recovered the optical fiber cut.
- the present invention has been made in view of the above, and an optical communication device capable of blocking the output of an optical signal when a connection port through which the optical signal is transmitted is opened in the device, and An object of the present invention is to provide an optical communication control method.
- the present invention is provided in the path of the optical signal inside the apparatus in order to compensate dispersion of the optical signal transmitted on the optical communication network.
- the optical communication device and the optical communication control method of the present invention it is possible to detect the fiber connection state with respect to the connection port through which the optical signal in the device is transmitted, and when the connection port is opened, the connection port The light output from the light can be cut off, and the safety of the device can be maintained.
- FIG. 1 is a diagram showing an APSD function in a state in which an optical fiber for transmitting a WDM signal in an optical communication apparatus according to the present invention is opened.
- FIG. 2 is a diagram showing the configuration of the OSC unit.
- FIG. 3 is a diagram showing a functional configuration inside the OSC unit.
- FIG. 4 is a chart showing operating conditions of the OSC unit.
- FIG. 5 is a flowchart showing APSD function processing performed by the OSC unit when the optical fiber is opened in the optical communication device.
- FIG. 6 is a diagram showing the APSD function of the optical communication device when the DCF unit is normally installed.
- FIG. 7 is a flowchart showing processing of recovery operation in the OSC unit after APSD function operation.
- FIG. 8 is a flowchart showing a recovery operation process in the OSC unit after the APSD function operation by the VOA control.
- FIG. 9 is a diagram showing a general optical communication network configuration.
- FIG. 10 is a diagram showing a connection and an internal configuration of the optical communication apparatus.
- FIG. 11 is a diagram illustrating an example in which a connection port in the optical communication device has been opened.
- VOA variable attenuator
- FIG. 1 is a diagram showing an APSD function in a state where an optical fiber for transmitting a WDM signal inside an optical communication apparatus according to the present invention is opened.
- the optical communication devices 1 to 3 in the figure are provided on a ring-type optical fiber network 10 as shown in FIG.
- Each optical communication device 1-13 includes four OSC couplers 13 (13a-13d), four WD M amplifiers 14 (14 & -14 (1), four switch units (SW) 101,
- OSC1 two OSC units 100
- the WDM coupler 18 (18a, 18c) provided in front of the OSC coupler 13 (13a, 13c) on the input side and the VOA (Variable Optical Attenuator) ;
- Optical variable attenuator) 19 (19a, 19c) (a part of the optical communication devices 1, 3 is not shown).
- the optical communication device 2 is provided with a connection port 16 between the OSC coupler 13a and the WDM amplifier 14a to compensate for the optical signal dispersed by transmission.
- a removable unit such as F (Dispersion Compensation Fiber) unit 17 is connected.
- F Dispersion Compensation Fiber
- inside the optical communication device 1 1 3 PU unit is present.
- each functional unit including the CPU unit is electrically wired and can transmit / receive electrical signals to / from each other.
- Each functional unit described above is composed of WDM coupler 18 (18a, 18c), VOA19 (19a, 19c), input-side OSC coupler 13 (13a, 13c), and WDM amplifier 14 (14a, 14c).
- the switch unit (SW) 101 that performs branching, insertion, and transmission can be removed, and each unit with the CPU unit is inserted into the chassis to form the optical communication device 1-3. .
- a common power supply (+ 3.3V) and ground (GND) are connected to these units.
- the WDM couplers 13a to 13d and the input / output ports of the OSC unit 100 (OS C1, 2) are connected using the optical fibers L1 and L4 as described above (see FIG. 10).
- the optical communication apparatus 1-13 is connected to an uplink 11 that transmits an optical signal in the a direction and a downlink 12 that transmits an optical signal in the b direction.
- the optical signal input from the uplink 11 is composed of a WDM signal that is an optical signal for communication and an OSC signal that is an optical signal for monitoring. Only the WDM signal is in a ratio of about 10: 1 by the WDM coupler 18a. Is demultiplexed. Of the demultiplexed WDM signals, the optical signal consisting of the WDM signal with the larger optical output and the OSC signal is input to the VOA 19a, and the optical signal with only the smaller WDM signal is the optical fiber. Input to OSC unit 100 (OSC1) via L11.
- OSC1 OSC1
- the input optical signal is input to the OSC power bra 13a on the input side with the same output.
- the OS C coupler 13a demultiplexes the input optical signal into a WDM signal and an OSC signal.
- WDM signals use 1528. 77—1563. 45 nm (C—band), 1573.71— 1607. 04 nm (L—band), and OSC signals use 1510 nm (C—band). Since 1625 nm (L-band) light is used, the WDM coupler 18a and the OSC coupler 13a can separate the WDM signal and the OSC signal by performing demultiplexing for each band.
- the WDM power plastic 18a further demultiplexes the WDM signal at a ratio of about 10: 1.
- the WDM signal demultiplexed by the OSC coupler 13a is the DCF unit 17 (not shown in Fig. 1). If the WDM signal dispersion compensation is performed via the DCF unit 17, it is input to the WDM amplifier 14a and amplified.
- the amplified WDM signal is branched (dropped) by a switch unit (SW) 101 that switches the optical path of the optical signal for each wavelength of the WDM signal, or the direction of the optical communication device 3.
- the amplified WDM signal is combined with the OSC signal by the OCS coupler 13b and transmitted to the uplink 11 in the direction of the optical communication device 3.
- part of the WDM signal input from the downlink 12 is also input to the OSC unit 100 (OSC2) via the optical fiber L12 by the WDM coupler 18c, and the remaining optical signal is transmitted to the VOA 19c.
- OSC2 OSC unit 100
- the signal is demultiplexed into a WDM signal and an OSC signal by the OSC coupler 13c, and the WDM signal is transmitted to the WDM amplifier 14c, the switch unit (SW) 101, and the WDM amplifier 14d, and is combined with the OSC signal by the OSC coupler 13d. Wave is transmitted to downlink 12.
- the optical communication device 1 1 3 includes the OSC unit 100 that is a functional unit that handles OSC signals for network monitoring. (OSC1, 2), and when an optical fiber is cut, a WDM amplifier 14 (14b, 14b, 14d) was stopped. This function is called APSD function.
- the APSD function in the prior art works as a condition that the WDM signal disconnection is detected in the WDM amplifier 14a and at the same time the OSC unit 100 (OSC1) also uses OSC_LOS. I had to detect (OSC signal disconnection).
- OSC1 OSC unit 100
- the connection port 16 was open, the APSD function worked even though the high-output WDM signal leaked from the connection port 16.
- the functional unit that has existed conventionally in the OSC unit 100 (OSC1, 2). It has a PD (photo diode) as a light receiving element.
- the OSC unit 100 (OSC1, 2) can detect the transmission status of WDM signals and OSC signals, and it can be combined with the detection of the transmission status of WDM signals in the WDM amplifiers 14a and 14c.
- the APSD function can be realized in response to various situations.
- FIG. 2 is a diagram showing the configuration of the OSC unit.
- the OSC unit 100 judges the state of the network based on the received OSC signal, outputs the OSC signal for control according to the judgment content, and indicates the current value according to the received light.
- the PD unit 201 that functions as an optical output monitoring element is also configured.
- the OSC processing unit 200 receives the OSC signal demultiplexed by the OSC coupler 13a via the optical fiber L1, and the PD unit 201 demultiplexes by the WDM coupler 18a.
- a WDM signal is input via the optical fiber L11.
- FIG. 3 is a diagram showing a functional configuration inside the OSC unit.
- the OSC unit 100 also works with the OSC processing unit 200 and the PD unit 201 (see FIG. 2).
- the OSC processing unit 200 includes an optical Z electrical converter (OZE) 300, an electrical Z optical converter (EZO) 301, an LDCC (Line Data Communication Channel) unit 302, a WCH (Wavelength Channel) _Proce ssor 303, and a Unit— INF304, main signal processing unit 305, interface conversion unit 306, CPU—IZF307, INF—REG. 308, and power (+ 3.3V) in the optical communication device, ground ( GND).
- the PD unit 201 includes a PD 309 and a detection unit 310, and is connected to the WCH-processor 303 of the OSC processing unit 200.
- the optical Z electrical converter (O / E) 300 converts an optical signal into an electrical signal.
- the electric Z light converter (EZO) 301 converts an electric signal into an optical signal.
- the LDCC unit 302 generates and sends an OSC signal.
- the WCH-Processor 303 receives WDM signal disconnection information detected by the WDM amplifier (14a), transmits an output stop signal to the WDM amplifier (14d), and the like.
- Unit— INF304 is connected to OSC unit (OSC2) 311, MUX unit (MUX) 312, switch unit (SW) 313, and DMUX unit (DMUX) 314, which are other functional units in the optical communication device It functions as an interface between OSC unit 100 (OSC1) and these other functional units.
- the OSC unit shown in Fig. 3 ( OSC2) 311 and switch unit (SW) 313 correspond to OSC unit 100 and switch unit (SW) 101 shown in FIG.
- the main signal processing unit 305 performs processing of the main signal, which is the payload portion of the OSC signal, and is connected to and controlled by the CPU unit (CPU) 315 by the interface conversion unit 306.
- the CPU—I / F 307 is connected to the INF—REG. 308 and functions as an interface with the CPU unit (CPU) 315.
- PD 309 of PD section 201 outputs an electrical signal corresponding to the input WDM signal and inputs it to detection section 310.
- the detection unit 310 detects the transmission state of the WDM signal by monitoring the electrical signal input from the PD 309. Information of the detected transmission state is input to WCH_Processor 303.
- the optical Z electrical transformation (O / E) 300, the input signal to the PD 309, and the output signal from the electrical Z optical converter (EZO) 301 are optical signals.
- the others are controlled by electrical signals.
- the 1S OSC unit 100 (OSC2) which explained the OSC unit 100 (OSC1), has basically the same internal configuration and is connected to the OSC unit 100 (OSC1) from the Unit— INF30 4
- the transmission source of the electrical signal received by the WCH-Processor 303 is the WDM amplifier 14c
- the transmission destination of the electrical signal to be transmitted is the WDM amplifier 14b.
- FIG. 4 is a chart showing operating conditions of the OSC unit.
- the optical communication devices 1 and 3 (see Fig. 1), which have the above-mentioned configuration capabilities, realize the APSD function according to the OSC unit 100 (OSC1, 2) and the three conditions shown in Figure 400.
- the three conditions are OSC—LOS detection 401, reception of WDM signal disconnection information 402 from the WD M amplifier 14 a, and detection of WDM signal disconnection information 403 in the PD unit 201.
- OSC 404 is set and VOA forced control 405 is set.
- the OSC—LOS detection 401 is input to the optical Z electrical transformation (OZE) 300 of the OSC signal power OSC processing unit 200 transmitted from the OSC power plug 13a.
- OZE optical Z electrical transformation
- detection is performed by inputting the signal to the LDCC unit 302.
- WDM signal disconnection information detected by WDM amplifier 14a Is sent as an electrical signal from the DMUX unit 314 to the Unit-INF 304 and input from the Unit-INF 304 to the WCH-Processor 303 to determine reception.
- Detection of WDM signal disconnection information 403 in the PD unit 201 is performed when the WDM signal transmitted from the WDM coupler 18a is input to the PD 309 of the PD unit 201 and an electrical signal corresponding to the WDM signal input in the detection unit 310 is obtained. Detection is performed (see FIGS. 1 and 3), and detection is performed when detection information is input from the detection unit 310 to the WCH—Processor 303.
- OSC processing 404 refers to the operation of the OSC unit 100 (OSC1, 2) when it detects the disconnection of one of the optical fibers connecting the optical communication devices 1 to 3, respectively. This is the operation to realize the APSD function.
- OSC1, 2 when it detects the disconnection of one of the optical fibers connecting the optical communication devices 1 to 3, respectively. This is the operation to realize the APSD function.
- OSC-LOS detection 401 ⁇ ( Detection), reception of W DM signal disconnection information from WDM amplifier 14a 402: ⁇ (reception), detection of WDM signal disconnection information in PD unit 201 403: If it is in the state of ⁇ (detection), optical communication device 1 1 3 It is determined that the disconnection of one of the optical fibers connecting between them has been detected.
- a control signal (electric signal) for stopping the output of the WDM amplifier 14d on the output side of the downlink 12 is transmitted.
- the APSD—CONT signal for executing the APSD function is transmitted from the downlink 12 to the OSC unit 100 (OSC2) of the adjacent optical communication apparatus 1.
- the OSC unit 100 (OSC2) that received the APSD—CONT signal sends a control signal (electrical signal) to stop the output to the WDM amplifier 14b on the output side, and the WDM amplifier 14b stops the output.
- the APSD function in the state of item 8 in Fig. 4 is terminated.
- Optical communication devices 1 to 3 Each of the optical fibers connected between the optical fiber communication devices 1 and 3 can transmit a high-power optical signal, so the safety of the restoration worker can be maintained.
- the conditions for realizing the A PSD function for opening the optical fiber inside the optical communication device (11-3), which is a feature of the present invention, are as follows.
- Item 3 indicates that the connection port 16 inside the optical communication device 2 has been opened as shown in FIG. 1, and Item 5 indicates that the optical communication device 2 has The connection port 16 detects the state in which the optical signal is released when the optical fiber L1 between the OSC coupler 13a and the OSC unit lOO (OSCl) is disconnected or disconnected while it is in the closed state. It will be done.
- OSCl OSC unit lOO
- FIG. 5 is a flowchart showing APSD function processing performed by the OSC unit when the optical fiber inside the optical communication apparatus is opened.
- the conditions shown in Fig. 4 must be classified.
- FIG. 5 shows the condition classification performed by the OSC unit 100 and the APSD function operation for each connection state derived by the condition classification.
- OSC1 OSC1 of the optical communication device 2.
- OSC1 OSC1 of the optical communication device 2.
- all the OSC units 100 in the optical communication devices 1 and 3 are actually performing the same operation at the same time, and the transmission status of the optical fiber to which each OSC unit 100 is connected is determined as described below.
- the APSD function is realized.
- the same parts as those already described are denoted by the same reference numerals and the description thereof is omitted.
- step S501 it is determined whether or not OSC-LOS is detected from the OSC signal transmitted from the OSC coupler 13a (step S501). If OSC—LOS is detected (step S501: Yes), it is next determined whether or not the WDM signal disconnection information from the WDM amplifier 14a has been received (step S502). If WDM signal disconnection information has been received (step S502: Yes), the PD unit 201 finally determines whether or not it has detected the WDM signal disconnection (step S503). If the WDM signal disconnection is detected (step S503: Yes), it is the state of item 8 shown in Fig. 4, and it is detected that the optical fiber in the uplink 11 between the optical communication device 1 and the optical communication device 2 is detected. to decide.
- step S504 an output stop signal is sent to the WDM amplifier (14d) (step S504), and the APSD—CONT signal is sent to OSC2 of the optical communication device 1 (step S505).
- the output of the optical fiber between the communication devices 2 is stopped, and the process ends.
- step S501: No If OSC-LOS is not detected in step S501 (step S501: No), it is then determined whether WDM signal disconnection information from WDM amplifier 14a has been received (step S507). At this time, if WDM signal disconnection information is not received (step S507: No), it is determined that the status is the status of item 1 or 4 shown in Fig. 4 and it is not necessary to use the APSD function. (Step S509) to finish the process.
- the normal operation here refers to the OSC signal transmission / reception and judgment operations that are always performed during optical communication.
- step S507: Yes If the WDM signal disconnection information is received in step S507 (step S507: Yes), it is further determined whether or not the PD unit 201 detects the WDM signal disconnection (step S507: Yes). Step S508). If a WDM signal disconnection is detected (step S508: Yes), it is judged as the state of item 6 shown in Fig. 4, and the normal operation without using the APSD function is performed (step S509), and the processing is completed.
- step S508 if the WDM signal disconnection is not detected (step S508: No), the state of item 3 shown in FIG. 4, that is, the connection port 16 in the optical communication device 2 is open. Judgment is made, the output of the WDM signal of the internal optical fiber is lowered, and in order to realize the APSD function, an attenuation increase signal is sent to the VOA 19a (step S510), and the process is terminated.
- step S502 if WDM signal disconnection information has not been received (step S50 2: No), it is determined that the status is the status of items 2 and 7 shown in Fig. 4, and it is not necessary to use the APSD function. Therefore, the normal operation is performed (step S506) to finish the process.
- the PD unit 201 detects the WDM signal disconnection! /, !, (step S503: No), the state of the item 5 shown in FIG.
- the optical fiber L1 between the OSC coupler 13a and the OSC unit 100 (OSC1) is judged to have been disconnected or disconnected, and the output of the WDM signal of the internal optical fiber is lowered to enable the APSD function.
- an attenuation increase signal is sent to VOA 19a (step S510), and the process is terminated.
- step S510 the VOA 19a that received the attenuation increase signal that also transmitted the OSC unit lOO (OSCl) force attenuates the optical signal to a non-hazardous output.
- the attenuation at this time is transmitted simultaneously with the optical signal.
- ASE (Amplified Spontaneous Emission) light is transmitted by WDM amplifier 14 (14a, 14c) after VOA19 (19a, 19c).
- WDM amplifier 14 (14a, 14c) after VOA19 (19a, 19c).
- VOA19 (19a, 19c) Must be set to the maximum that can be confirmed. This is because if it is attenuated to such an extent that it cannot be confirmed that the ASE light is received, it cannot be automatically restored even if the DCF unit 17 is reconnected.
- DCF unit 17 If ASE light is received by performing such an attenuation setting, DCF unit 17 is connected to connection port 16, and connection port 16 is still open if ASE light is not received. It can be judged that. This determination can be used as a trigger for starting the recovery operation after the A PSD function is activated.
- step S502 and step S507 the state is determined without determining whether the PD unit 201 has detected the WDM signal disconnection, but in either case, this is the case.
- the judgment step can be omitted.
- FIG. 6 is a diagram showing the APSD function of the optical communication device when the DCF unit is normally attached.
- the optical communication apparatus 1 to 3 shown in the figure is in a state where the repair is performed by the operator after the output of the optical signal at a specific location is stopped by the APSD function. Therefore, the DCF unit 17 is connected to the connection port 16 in the optical communication device 2, and the optical fibers of the uplink 11 and the downlink 12 between the optical communication devices 1 and 3 are also normally connected, and the external of the optical signal The risk of leaking into is eliminated.
- the OSC unit 100 determines the transmission status of the reconnected optical fiber. If the transmission is normal, the OSC unit 100 (OSC1, 2) normally outputs the optical signal whose amplification is stopped or attenuated. The communication state must be restored.
- the following describes the OSC unit recovery operation processing after APSD function operation using the figure. 7 and 8 shown below, focusing on the OSC unit 100 (OSC1) of the optical communication device 2 as in FIG. 5, will be described, but all OSC units 100 (OSC1, 2) are the same. By performing this process, network communication is restored.
- FIG. 7 is a flowchart showing the recovery operation processing in the OSC unit after the APSD function operation.
- the state of Item 8 in Fig. 4 fiber cut
- the WDM amplifier 14d of the optical communication device 2 and the WDM amplifier 14c of the optical communication device 1 are stopped again. Determine the transmission status and confirm safety before restarting communication (communication Processing until normal operation).
- step S701 it is determined whether or not OSC-LOS has been detected. If OSC—LOS is detected (step S701: Yes), it is next determined whether or not WDM signal disconnection information has been received (step S702). If the WDM signal disconnection information has been received (step S702: Yes), the PD unit 201 finally determines whether or not the WDM signal disconnection is detected (step S703).
- step S703 If the WDM signal disconnection is detected (step S703: Yes), it is still determined that the disconnection of the optical fiber in the uplink 11 between the optical communication device 1 and the optical communication device 2 has not been resolved, and the output is The operation change instruction is not sent to the WDM amplifier 14d of the stopped optical communication device 2 and the WDM amplifier 14c of the optical communication device 1 (step S704), and the WDM amplifier 14 (14c, 14d) does not stop the processing. finish.
- step S701 OSC—LOS has not been detected (step S701: No), and in determining whether WDM signal disconnection information has been received (step S705), the WDM signal disconnection information is received.
- Step S 705: Yes the PD unit 201 determines whether or not the WDM signal disconnection has been detected (step S706). If the PD unit 201 has not detected the WDM signal disconnection (step S 706: No) The optical fiber between the optical communication devices 1 and 3 is restored. The optical fiber between the connection ports 16 is opened inside the optical communication device 2 and needs to be restored by the operator. In order to realize the APSD function, an attenuation increase signal is sent to the VOA 19a (step S710), and the process is terminated.
- step S703 the PD unit 201 determines whether or not the WDM signal disconnection is detected (step S703). If the WDM signal disconnection is detected, the case (step S703: No) However, it is determined that the optical fiber has been opened or cut due to the disconnection of the optical fiber L1 between the OSC coupler 13a and the OSC unit lOO (OSCl) inside the optical communication device 2, and to VOA 19a. An attenuation increase signal is sent (step S710), and the process is terminated.
- step S702 determines that WDM signal disconnection information is not received in step S702 (step S702: No), and if WDM signal disconnection information is not received in step S705 (step S705). : No), and if the PD unit 201 detects a WDM signal disconnection in step S706 (step S706: Yes), it determines that the transmission state of the optical fiber is normal and resumes communication.
- Output stop release signal is sent to (step S70 7) Stop the APSD—CONT signal to OSC unit 100 (OSC2) (step S7
- step S709 the output stop of the WDM amplifier 14d of the optical communication device 2 and the WDM amplifier 14b of the optical communication device 1 is released, normal operation is performed (step S709), and the processing for the recovery operation is terminated.
- FIG. 8 is a flowchart showing processing of recovery operation in the OSC unit after APSD function operation by VOA control. What is described here is the state of items 3 and 5 in Fig. 4 (the optical fiber in the optical communication device 2 is opened), and the WDM signal is attenuated by the VOA 19a of the optical communication device 2 again. This is the process from judging the transmission status, confirming safety, and restarting communication (normal operation).
- step S801 it is determined whether or not OSC-LOS has been detected. If OSC—LOS is detected (step S801: Yes), it is next determined whether or not WDM signal disconnection information has been received (step S802). If WDM signal disconnection information has been received (step S802: Yes), the PD unit 201 finally determines whether or not the WDM signal disconnection is detected (step S803).
- step S803 When the PD unit 201 detects a WDM signal disconnection (step S803: Yes), it is newly determined that the uplink 11 between the optical communication device 1 and the optical communication device 2 is disconnected, and the optical communication device 1 Since the output of the uplink 11 and the downlink 12 between the optical communication device 2 and the optical communication device 2 is stopped, it is necessary to realize the APSD function. Therefore, sending the output stop signal to the WDM amplifier 14d (step S804) and sending the APSD_CONT signal to the OSC unit 100 (OSC2) of the optical communication device 1 (step S805) stops the WDM amplifier 14b of the optical communication device 1. Then, the APSD function is realized and the process is terminated. Therefore, the communication remains stopped.
- OSC2 OSC2
- step S801 OSC—LOS is not detected (step S801: No), it is determined whether WDM signal disconnection information is received (step S808), and WDM signal disconnection information is received. (Step S808: Yes), the PD unit 201 determines whether or not the WDM signal disconnection has been detected (Step S809), and detects the WDM signal disconnection. : No), it is determined that the optical fiber between the connection ports 16 has been opened inside the optical communication device 2, and the operation change signal is not sent to the VOA 19a to ensure safety (step S812), WDM The process ends with the signal still attenuated.
- step S803 PD section 201 has not detected a WDM signal disconnection.
- step S803: No the optical fiber is still opened or disconnected due to the disconnection of the optical fiber L1 between the OSC coupler 13a in the optical communication device 2 and the OSC unit 100 (OSC1).
- OSC1 OSC 1
- step S812 an operation change signal is not sent to the VOA 19a (step S812), and the process ends with the WDM signal being attenuated.
- step S802 if the WDM signal disconnection information is received (step S802: No), it is determined that the open state of the optical fiber in the optical communication device 2 is disconnected. In order to resume communication, a zero attenuation signal is sent to the VOA 19a (step S806), and normal operation is performed (step S807), thereby terminating the process for the recovery operation. Similarly, in step S808! /, If WDM signal disconnection information is received! /, NA! /, (Step S808: No), or in step S809, PD section 201 detects WDM signal disconnection.
- step S809 Yes
- step S810 By performing the operation (step S811), the processing for the recovery operation is terminated.
- the optical communication devices 1 and 3 include the WDM couplers 18a and 18c and the VOAs 19a and 19c, and the OSC unit 100 (OSC1 and 2) detects the WDM signal.
- the OSC unit 100 detects the WDM signal.
- the optical communication device and the optical communication control method according to the present invention are useful for devices that handle high-output optical signals, and in particular, transmit optical signals multiplexed at high density. It is suitable for optical communication equipment that performs DWDM (Dense Wavelength Division Multiplexing).
- DWDM Dense Wavelength Division Multiplexing
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Optical Communication System (AREA)
Abstract
装置内部の光信号の経路中に設けられ分散補償ファイバ(17)が接続される接続ポート(16)と、接続ポート(16)の前段に設けられ光信号から監視用信号を分波するOSCカプラ(13a)と、OSCカプラ(13a)によって分波された監視用信号を検出するO/E部と、接続ポート(16)の前段に設けられ光信号の経路に対する光出力を遮断させる光可変減衰器(19a)と、OSCカプラ(13a)の前段に設けられ光信号を分岐するWDMカプラ(18a)と、WDMカプラ(18a)によって分岐された光信号を検出するPD部と、PD部によって検出された光信号の出力と、O/E部によって検出された監視用信号とに基づいて、接続ポート(16)に対する分散補償ファイバ(17)の接続状態を判断し、分散補償ファイバ(17)の接続が異常と判断された場合に光可変減衰器(19)により光信号の出力を遮断させるOSCユニット(100)と、を備える。
Description
明 細 書
光通信装置および光通信制御方法
技術分野
[0001] 本発明は、光ファイバが切断された場合に、安全のため発光素子の出力を強制的 に停止させる APSD (Auto Power Shut Down)機能を備えた光通信装置およ び光通信制御方法に関するものである。
背景技術
[0002] 従来、光伝送における発光素子には、 LD (Laser Diode;レーザダイオード)が用 いられているが、 LDを扱う機器には、レーザが人体へ触れた際の影響を考慮して、 各機器の LDの出力パワーの強度に応じた安全対策を施す義務が課せられている。 具体例を挙げると北米地域では米国の FDA (Food and Drug Administration ;食品医薬品局)の下部組織である CDRH (Center for Devices and Radiolo gical Health;医療機器放射線保健センター)、ヨーロッパ地域では IEC (Internat ional Electrotechnical Commission;国際電気標準会議)が、その安全対策の 基準を定めている。
[0003] 上述の CDRHでは、光出力レベルごとにクラス分けを行い、クラス別に安全対策を 義務付けている。例えば、波長力 Sl060nm— 1400nmの光の場合、運用中のレー ザの出力レベルが 0. 198mW(-7. ldBm)以下、もしくは波長が 1400nm— 106 n mの光の場合、運用中のレーザの出力レベルが 0. 79mW(-l. OdBm)以下であれ ば最も危険度の低い CLASSIと分類され、危険なものとは見なされない。同じく波長 が 1400nm— 10。 nmの光であってもレーザの出力レベルが 500mW ( + 27dBm) であると危険度が上から 2番目に高い CLASSIIIbに分類され、レーザの放射を直接 、皮膚や目にさらすと非常に危険であると見なされる。したがって、 CLASSIであれ ば製品に「Certification/ldentification」ラベルを、 CLASSIIIbであれば製品に 「DANGER」ラベルを貼り付け利用者に注意を喚起する。加えて、 CLASSIIIbであ れば光ファイバなどへの脱着時には直接人の目に入らないような装備をするように定 められている。
[0004] 近年の光通信分野では、波長の異なる光信号を多重化する WDM (Wavelength Division Multiplexing ;波長分割多重)技術により 1本の光ファイバに複数の光 信号を伝送する方法が一般的に行われている。したがって、 1波の光出力パワーレ ベルは、 + 2. 4dBm程度であっても、 40波を多重すると + 18. 4dBmという非常に 強い光出力となり CDRHでは CLASSIIIbに該当することから、光通信装置において も、出力するレーザへの安全対策は重要な課題となっている。
[0005] CLASSIIIbのレーザを扱う光通信装置における安全対策の一つとして広く用いら れているのが APSD (Auto Power Shut Down)機能である。 APSD機能は、誤 つて光ファイバが切断された場合に LDの出力を強制的に止める機能で、光伝送を 行う装置全般に利用されている。以下、図を用いて WDMによる多重化光信号を取り 扱う一般的な光通信装置の構成と APSD機能とがどのように動作しているかを述べ る。
[0006] 図 9は、一般的な光通信のネットワーク構成を示す図である。図示するように、リング 型の光ファイバ網 10上に複数の光通信装置 (A— F)を備えたネットワーク構成が光 通信では最も一般的である。光ファイバ網 10は、伝送方向の異なる(図中の方向 aお よび方向 b) 2回線の光ファイバからなり、 OUPSR (Optical Unidirectional Path Switched Ring) t 、われるプロテクション方法を用いて通信を行う場合の接続を 示している。例えば、図示のように光信号を光通信装置 Aから挿入し (Add)、光通信 装置 Dによって分岐する(Drop)場合は、送信端である光通信装置 Aの挿入ポートに 上り回線 l l (Work Path;現用回線)と、下り回線 12 (Protection Path;予備回 線)が接続され、同一の光信号を 2回線に伝送する。受信端となる光通信装置 Dは、 上り回線 11と分岐ポートを接続し光信号の分岐を行う。上り回線 11に故障が生じ光 信号の伝送が不可能になった場合は、光通信装置 Dの分岐ポートは下り回線 12と 接続し、通常時と同じように分岐を行う。このような OUPSRの他にも光ファイバ網 10 の構成を用いて、 OSPPR(Optical Shared Path Protection Ring)というプロ テクシヨンも行われる。
[0007] 図 10は、光通信装置の接続および内部構成を示す図である。光通信装置 A— ま 、光信号を光通信用の WDM信号と、光ファイバ切断等のネットワークの故障信号や
故障に対応するための制御信号を取り扱う OSC (Optical Supervisory Channel ;光監視チャネル)信号とに分波 ·合波する OSC力ブラ 13 (13a— 13d)と、 WDM信 号の増幅と、 WDM信号の入力の監視とを行う WDMアンプ 14 (14&ー14(1)と、 OS C信号の送受信を行う OSCユニット 15 (OSC1, 2)と力 なり(光通信装置 Aおよび 光通信装置 Cは、一部省略)、図 9に示す光通信装置 D— Fも同様の構成を有する。 また、以上述べたような基本的な構成にカ卩えて、光通信装置 Bのように OSC力ブラ 1 3aと、 WDMアンプ 14aとの間に接続ポート 16を設け、伝送により分散された光信号 の補償を行う DCF (Dispersion Compensation Fiber;分散補償ファイノく)ュ-ッ ト 17を接続することも多 ヽ。図示した光ファイバによる接続の他に各光通信装置の内 部の各素子は、図示しない電気配線が行われ、電気信号の伝送が行われるようにな つている。
[0008] 光通信装置 A— Cには光信号を方向 aに伝送する上り回線 11と方向 bに伝送する 下り回線 12とが接続されている。上り回線 11から入力された光信号は、 OSC力ブラ 1 3aにより WDM信号と OSC信号とに分波される。下り回線 12から入力された光信号 は OSCカプラ 13cにより、 WDM信号と OSC信号とに分波される。
[0009] OSCカプラ13aにょり分波されたWDM信号は、WDMァンプ14 (14a, 14b)を経 由することで増幅される。このとき光通信装置 Bのように DCFユニット 17が設けられて いる場合は、 DCFユニット 17により分散補償が行われたのち、 WDMアンプ 14aへ 入力される。 OSC信号は、上り回線 11であれば光ファイバ L1を介して OSCユニット 15 (OCSl)に入力され、下り回線 12であれば光ファイバ L4を介して OSCユニット 1 5 (OSC2)へ入力される。 OSCユニット 15は、入力された OSC信号に応じて新たな OSC信号を出力する。増幅された WDM信号と、 OSCユニット 15から出力された OS C信号は、上り回線 11であれば、光ファイバ L3を介して OSCカプラ 13bによって合 波され、下り回線 12であれば、光ファイバ L2を介して OSCカプラ 13dによって合波さ れ、各回線に出力することで光信号が伝送される。
[0010] つぎに、光通信装置 A— Cに着目して、実際に光ファイバの切断が生じた場合の A PSD機能の動作を説明する。例えば、図 10に示す上り回線 11上の位置 20で光ファ ィバの切断が生じた場合、光通信装置 Bの上り回線 11の入力ポート 21には、光信号
が入力されない。したがって、上り回線 11の入力側の WDMアンプ 14aは、 WDM信 号が入力されてこないことから WDM信号断絶が検出される。同様に OSCユニット 15 (OSC1)も OSC信号が入力されないこと力も OSC_LOS (OSC信号断絶)が検出 される。 WDMアンプ 14aは、検出した WDM信号断絶情報を電気信号として OSC ユニット 15 (OSCl)へ送信する(Sl)。
[0011] OSCユニット 15 (OSCl)は、 OSC— LOSの検出と、 WDM信号断絶情報の受信 が同時に行われると、アンプ出力を停止させるための制御信号を電気信号として WD Mアンプ 14dに送信する(S2)。 OSCユニット 15は、 WDM信号が運用されていない ために WDM信号断絶情報が送信されてくる場合や、他の光通信装置内の OSCュ ニットの故障等により OSC— LOSが検出される場合も想定されるため、 OSC— LOS の検出と、 WDM信号断絶情報の受信が同時に発生している場合のみ光ファイバの 切断が生じて!/、ると判断するようになって!/、る。
[0012] これと同時に、 OSCユニット 15 (OSCl)は、下り回線 12を介して、光通信装置 Aの OSCユニット 15 (OSC2)へ、 APSD機能を実行させるための APSD— CONT信号 を OSC信号として送信する(S3)。制御信号を受信した光通信装置 Bの WDMアン プ 14dは、出力を停止する。 APSD— CONT信号を受信した光通信装置 Aの OSC ユニット 15 (OSC2)は、光通信装置 Aから上り回線 11への光信号の出力を停止させ るための制御信号を電気信号として WDMアンプ 14bへ送信する(S4)。このような A PSD機能により(例えば、下記特許文献 1参照。)、光通信装置 A, B間の上り回線 1 1および下り回線 12を伝送する光信号が停止し、復旧作業を行う作業者への安全性 が確保できる。
[0013] 特許文献 1 :特開 2002— 77056号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、光通信装置 Bに設けられた接続ポート 16に接続される DCFユニット 1 7が、交換時の取り付け忘れや、事故等により接続ポート 16から外れてしまった際に は、接続ポート 16が開放され、 OSCカプラ 13aと WDMアンプ 14aの間の光ファイバ は切断された状態となる。図 11は、光通信装置内の接続ポートの開放が生じてしま
つた例を示す図である。
[0015] 通常の光ファイバの切断状態であれば、 APSD機能により、光通信装置 Bの WDM アンプ 14dおよび光通信装置 Aの WDMアンプ 14bの出力が停止し、安全性が保た れた後、接続ポート 16に新たなユニットを接続する力、外れてしまったユニットを接続 しなおせばよい。しかしながら、図 11のように OSCカプラ 13aと WDMアンプ 14aとの 間の接続が開放されたり、光ファイバが切断してしまった場合、 WDMアンプ 14aで は、 WDM信号断絶が検出されるが、 OSCユニット 15 (OSCl)では、 OSC— LOS は検出されない。
[0016] OSCユニット 15 (OSC1)は、 WDMアンプ 14aから送信された WDM信号断絶情 報の受信と、 OSCカプラ 13aによって分波された OSC— LOSの検出が同時に行わ れなければ、 APSD機能を実行しないため、光通信装置 Bの WDMアンプ 14dおよ び光通信装置 Aの WDMアンプ 14bの出力が停止されず、高出力の光信号が接続 ポート 16に出力されたままとなり、 CLASSIIIbの安全対策の基準を満たすことができ ず、光ファイバ切断の復旧を行う作業者の安全を確保できな力つた。
[0017] 本発明は、上記に鑑みてなされたものであって、装置内において光信号が伝送さ れている接続ポートが開放された場合に光信号の出力を遮断できる光通信装置およ び光通信制御方法を提供することを目的とする。
課題を解決するための手段
[0018] 上述した課題を解決し、目的を達成するために、本発明は、光通信ネットワーク上 で伝送される光信号を分散補償するために、装置内部における前記光信号の経路 中に設けられ、分散補償ファイバが接続される接続ポートと、前記光信号の経路上の 前記接続ポートの前段に設けられ、前記光通信ネットワーク上で伝送される光信号か ら監視用信号を分波する分波手段と、前記分波手段によって分波された前記監視用 信号を検出する監視用信号検出手段と、前記光信号の経路上の前記分波手段の前 段に設けられ、光通信ネットワーク上で伝送される光信号を分岐する分岐手段と、前 記分岐手段によって分岐された光信号の出力を検出するパワー検出手段と、前記光 信号の経路上の前記接続ポートの前段に設けられ、前記光信号の経路に対する光 出力を遮断させる遮断手段と、前記パワー検出手段によって検出された前記光信号
の出力と、前記監視用信号検出手段によって検出された前記監視用信号とに基づ いて、前記接続ポートに対する前記分散補償ファイバの接続状態を判断し、前記分 散補償ファイバの接続が異常と判断された場合に、前記遮断手段により前記光信号 の出力を遮断させる制御手段と、を備えることを特徴とする。
発明の効果
[0019] 本発明にかかる光通信装置および光通信制御方法によれば、装置内の光信号が 伝送されている接続ポートに対するファイバの接続状態を検出することができ、接続 ポートの開放時には接続ポートからの光の出力を遮断することができ、装置の安全性 を維持できると 、う効果を奏する。
図面の簡単な説明
[0020] [図 1]図 1は、本発明に力かる光通信装置の内部の WDM信号が伝送する光ファイバ が開放された状態における APSD機能を示す図である。
[図 2]図 2は、 OSCユニットの構成を示す図である。
[図 3]図 3は、 OSCユニット内部の機能構成を示す図である。
[図 4]図 4は、 OSCユニットの動作条件を示す図表である。
[図 5]図 5は、光通信装置内部の光ファイバ開放時の OSCユニットで行われる APSD 機能の処理を示すフローチャートである。
[図 6]図 6は、 DCFユニットが正常に取り付けられた際の光通信装置の APSD機能を 示す図である。
[図 7]図 7は、 APSD機能動作後の OSCユニットにおける復旧動作の処理を示すフロ 一チャートである。
[図 8]図 8は、 VOA制御による APSD機能動作後の OSCユニットにおける復旧動作 の処理を示すフローチャートである。
[図 9]図 9は、一般的な光通信のネットワーク構成を示す図である。
[図 10]図 10は、光通信装置の接続および内部構成を示す図である。
[図 11]図 11は、光通信装置内の接続ポートの開放が生じてしまった例を示す図であ る。
符号の説明
[0021] 1, 2, 3 光通信装置
11 上り回線
12 下り回線
13a— 13d OSCカプラ
14a— 14d WDMアンプ
17 DCFユニット
18a, 18c WDMカプラ
19a, 19c 光可変減衰器 (VOA)
100 OSCユニット
101 スィッチユニット
発明を実施するための最良の形態
[0022] 以下に、本発明にかかる光通信装置および光通信制御方法の実施例を図面に基 づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない
実施例
[0023] 図 1は、本発明に力かる光通信装置の内部の WDM信号が伝送する光ファイバが 開放された状態における APSD機能を示す図である。図中の光通信装置 1一 3は、 図 9に示すようなリング型の光ファイバ網 10上に備えられている。
[0024] 各光通信装置 1一 3は、それぞれ 4つの OSCカプラ 13 (13a— 13d)と、 4つの WD Mアンプ 14 (14&ー14(1)と、 4つのスィッチユニット(SW) 101と、 2つの OSCユニット 100 (OSC1, 2)という従来構成に加え、入力側の OSCカプラ 13 (13a, 13c)の前 段に備えられた WDMカプラ 18 (18a, 18c)と、 VOA (Variable Optical Attenu ator;光可変減衰器) 19 (19a, 19c)とから構成される(光通信装置 1, 3は図示の一 部を省略してある)。
[0025] 以上のような基本的な構成に加え、光通信装置 2には、 OSCカプラ 13aと WDMァ ンプ 14aの間に接続ポート 16を設け、伝送により分散された光信号の補償を行う DC F (Dispersion Compensation Fiber;分散補償ファイノく)ユニット 17等、取り外し 可能なユニットが接続されている。また、光通信装置 1一 3の内部には、図示しない C
PUユニットが存在している。また、 CPUユニットを含めた各機能部は、電気的に配線 されており、互いに電気信号の伝送ができるようになって!/ヽる。
[0026] 上述した各機能部は、 WDMカプラ 18 (18a, 18c)、 VOA19 (19a, 19c)、入力 側の OSCカプラ 13 (13a, 13c)および WDMアンプ 14 (14a, 14c)力らなる DMUX (分波)ユニットと、出力側の OSCカプラ 13 (13b, 13d)および WDMアンプ 14 (14b , 14d)力らなる MUX (合波)ユニットと、 2つの OSCユニット 100 (OSC1, 2)と、分岐 、挿入および透過を行うスィッチユニット(SW) 101として取り外し可能な構成になつ ており、 CPUユニットをカ卩えた各ユニットを筐体に挿入することで光通信装置 1一 3を 構成している。これらのユニットには共通の電源( + 3. 3V)とグラウンド(GND)が接 続されている。また、装置内では、 WDMカプラ 13a— 13dと、 OSCユニット 100 (OS C1, 2)の入出力ポートは、前述同様に光ファイバ L1一 L4を用いて接続されている( 図 10参照)。
[0027] 運用時、光通信装置 1一 3には、 a方向に光信号を伝送する上り回線 11と b方向に 光信号を伝送する下り回線 12とが接続されている。上り回線 11から入力された光信 号は、通信用の光信号である WDM信号と、監視用の光信号である OSC信号とから なり、 WDMカプラ 18aによって、 WDM信号のみが 10 : 1程度の比率で分波される。 分波された WDM信号のうち、光の出力が大きい方の WDM信号と OSC信号とから なる光信号は、 VOA19aへ入力され、光の出力が少ない方の WDM信号のみの光 信号は、光ファイバ L11を介して OSCユニット 100 (OSC1)へ入力される。
[0028] VOA19aは、通常の運用が行われている際には減衰機能は停止状態であるため 、入力された光信号は、同じ出力のまま入力側の OSC力ブラ 13aへ入力される。 OS Cカプラ 13aでは、入力された光信号が WDM信号と、 OSC信号とに分波される。一 般的に WDM信号は、 1528. 77—1563. 45nm(C— band)、 1573. 71— 1607. 04nm (L— band)帯の光を用い、 OSC信号は、 1510nm (C— band)、 1625nm (L— band)の光が用いられていることから、 WDMカプラ 18aおよび OSCカプラ 13aでは 、帯域別に分波を行うことで WDM信号と OSC信号とを分けることができる。 WDM力 プラ 18aでは、さらに WDM信号を 10 : 1程度の比率で分波している。
[0029] OSCカプラ 13aによって分波された WDM信号は、 DCFユニット 17 (図 1では外れ
た状態で図示)が備えられている場合は DCFユニット 17を経由して、 WDM信号の 分散補償が行われた後、 WDMアンプ 14aへ入力され増幅される。増幅された WD M信号は、光信号の光路のスイッチングを行うスィッチユニット(SW) 101によって W DM信号の波長ごとに図示しない分岐部に対して分岐 (Drop)、あるいは光通信装 置 3の方向に透過(Through)される。スィッチユニット(SW) 101をそのまま透過した WDM信号や、図示しない挿入部からスィッチユニット(SW) 101を通じて光通信装 置 2に新たに挿入 (Add)された WDM信号は、出力側の WDMアンプ 14bに入力さ れ、増幅される。増幅された WDM信号は、 OCSカプラ 13bによって、 OSC信号と合 波され、光通信装置 3方向の上り回線 11に伝送される。
[0030] 同様に下り回線 12から入力された光信号も、 WDMカプラ 18cによって WDM信号 の一部が光ファイバ L12を介して OSCユニット 100 (OSC2)へ入力され、残りの光信 号は、 VOA19cを経由した後、 OSCカプラ 13cによって WDM信号と OSC信号とに 分波され、 WDM信号は、 WDMアンプ 14c、スィッチユニット(SW) 101、 WDMアン プ 14dを伝送し、 OSCカプラ 13dによって OSC信号と合波され、下り回線 12へ伝送 される。
[0031] 光通信装置 1一 3には以上述べたような WDM信号を伝送するための基本動作を 行う機能部に加え、ネットワークを監視するための OSC信号を扱う機能部である OS Cユニット 100 (OSC1, 2)が備えられており、光ファイバの切断が生じた際は、 OSC 信号の指示によって切断部分の上り回線 11、下り回線 12へ光信号を伝送するため の WDMアンプ 14 (14b, 14d)を停止させていた。このような機能を APSD機能とい
[0032] 図 1の位置 20において光ファイバが切断された場合、従来技術における APSD機 能が働く条件としては、 WDMアンプ 14aにおいて WDM信号断絶を検出し、同時に OSCユニット 100 (OSC1)においても OSC_LOS (OSC信号断絶)を検出しなけ ればならな力つた。しかし、図 1に示すように接続ポート 16が開放されている場合は、 接続ポート 16から高出力の WDM信号が漏れ出しているにもかかわらず、 APSD機 能が働かな力つた。
[0033] そこで、本実施例では、 OSCユニット 100 (OSC1, 2)に従来から存在する機能部
にカロえ、受光素子として PD (photo Diode)を備える。これ〖こより、 OSCユニット 100 (OSC1, 2)においても WDM信号および OSC信号の伝送状態を検出することがで き、 WDMアンプ 14a, 14cにおける WDM信号の伝送状態の検出とあわせることで、 より多様な事態に対応した APSD機能を実現することができる。
[0034] 図 2は、 OSCユニットの構成を示す図である。 OSCユニット 100は、受信した OSC 信号によりネットワークの状態を判断し、判断内容に応じた制御用の OSC信号を出 力する、 OSC処理部 200と、受信した光に応じた電流値を示すことで光出力の監視 素子としての機能を担う PD部 201と力も構成されている。 OSCユニット 100 (OSC1) の場合、 OSC処理部 200には、 OSCカプラ 13aによって分波された OSC信号が光 ファイバ L1を介して入力され、 PD部 201には、 WDMカプラ 18aによって分波された WDM信号が光フアイバ L 11を介して入力される。
[0035] 図 3は、 OSCユニット内部の機能構成を示す図である。 OSCユニット 100 (OSC1) は、 OSC処理部 200と、 PD部 201 (図 2参照)と力もなる。 OSC処理部 200は、光 Z 電気変換器(OZE) 300と、電気 Z光変換器 (EZO) 301と、 LDCC (Line Data Communication Channel)部 302と、 WCH (Wavelength Channel) _Proce ssor303と、 Unit— INF304と、主信号処理部 305と、インターフェース変換部 306 と、 CPU— IZF307と、 INF— REG. 308と力ら構成され、さらに光通信装置内の電 源( + 3. 3V)と、グラウンド(GND)に接続されている。また、 PD部 201は、 PD309と 、検出部 310とから構成され、 OSC処理部 200の WCH— Processor303と接続さ れている。
[0036] 光 Z電気変換器 (O/E) 300は、光信号を電気信号に変換する。電気 Z光変換 器 (EZO) 301は、電気信号を光信号に変換する。 LDCC部 302は、 OSC信号の 生成および送出を行う。 WCH— Processor303は、 WDMアンプ(14a)が検出した WDM信号切断情報の受信や、 WDMアンプ(14d)への出力停止信号の送信等を 行う。 Unit— INF304は、光通信装置内の他の機能ユニットである OSCユニット(O SC2) 311と、 MUXユニット(MUX) 312と、スィッチユニット(SW) 313と、 DMUX ユニット(DMUX) 314とに接続しており、 OSCユニット 100 (OSC1)と、これら他の 機能ユニットとのインターフェースとして機能する。なお、図 3に示した OSCユニット(
OSC2) 311と、スィッチユニット(SW) 313とは、図 1に示した OSCユニット 100と、ス イッチユニット(SW) 101とにそれぞれ対応している。
[0037] 主信号処理部 305は、 OSC信号のペイロード部分である主信号の処理を行 ヽ、ィ ンターフェース変換部 306によって CPUユニット(CPU) 315に接続され制御されて いる。 CPU— I/F307は、 INF— REG. 308と接続され、 CPUユニット(CPU) 315 とのインターフェースとして機能する。
[0038] また、 PD部 201の PD309は、入力された WDM信号に応じた電気信号を出力し、 検出部 310へ入力する。検出部 310は、 PD309から入力された電気信号を監視す ることで WDM信号の伝送状態を検出する。検出した伝送状態の情報は、 WCH_P rocessor303へ入力される。
[0039] 図示するように、光 Z電気変翻 (O/E) 300と、 PD309への入力信号と、電気 Z 光変換器 (EZO) 301からの出力信号は、光信号であるが、それ以外は電気信号に よって制御されている。またここでは、 OSCユニット 100 (OSC1)を取り上げ説明した 1S OSCユニット 100 (OSC2)も基本的に全く同じ内部構成であり、 Unit— INF30 4から OSCユニット 100 (OSC1)へ接続されている点と、 WCH— Processor303が 受信する電気信号の送信元が WDMアンプ 14cであり、送信する電気信号の送信先 が WDMアンプ 14bである点のみが異なる。
[0040] 図 4は、 OSCユニットの動作条件を示す図表である。以上説明した構成力もなる光 通信装置 1一 3 (図 1参照)は OSCユニット 100 (OSC1, 2)、図表 400に示す 3つの 条件別に APSD機能を実現する。 3つの条件とは、 OSC— LOSの検出 401と、 WD Mアンプ 14aからの WDM信号断絶情報の受信 402と、 PD部 201における WDM信 号断絶情報の検出 403とである。これらの条件ごとに OSCの処理 404の有無および VO Aの強制制御 405を行うように設定する。
[0041] 例えば、 OSCユニット lOO (OSCl)の場合、 OSC— LOSの検出 401は、 OSC力 プラ 13aから送信された OSC信号力 OSC処理部 200の光 Z電気変翻 (OZE) 300へ入力され、電気信号に変換された後、 LDCC部 302へ入力されることで検出 が行われる。 WDMアンプ 14aからの WDM信号断絶情報の受信 402は、 WDMァ ンプ 14a (DMUXユニット 314に含まれる)によって検出された WDM信号断絶情報
が DMUXユニット 314からUnit—INF304へ電気信号として送られ、 Unit— INF3 04から WCH— Processor303へ入力されることで受信を判断する。 PD部 201にお ける WDM信号断絶情報の検出 403は、 WDMカプラ 18aから送信された WDM信 号が PD部 201の PD309へ入力され、検出部 310において入力された WDM信号 に応じた電気信号を検出し(図 1, 3参照)、検出部 310から検出情報が WCH— Pro cessor303へ入力されることで検出が行われる。
[0042] OSCの処理 404とは、光通信装置 1一 3それぞれの間を接続する光ファイバいず れかの切断を検出した際の OSCユニット 100 (OSC1, 2)の動作を指し、従来技術 における APSD機能を実現させるための動作である。本実施例の PD部 201 (図 2参 照)のように、 WDM信号の伝送状態を検出する機能部を増やした場合、図表 400に おける項 8に示した OSC— LOSの検出 401:〇(検出)、 WDMアンプ 14aからの W DM信号断絶情報の受信 402 :〇(受信)、 PD部 201における WDM信号断絶情報 の検出 403:〇(検出)の状態であれば、光通信装置 1一 3それぞれの間を接続する 光ファイバいずれかの切断を検出したと判断する。
[0043] この場合、例えば、光通信装置 2の OSCユニット 100 (OSC1)であれば、下り回線 12の出力側の WDMアンプ 14dの出力停止のための制御信号 (電気信号)を送信 する。同時に、下り回線 12から隣接する光通信装置 1の OSCユニット 100 (OSC2) へ APSD機能を実行させるための APSD— CONT信号を送信する。 APSD— CO NT信号を受信した OSCユニット 100 (OSC2)は、出力側の WDMアンプ 14bへ出 力停止のための制御信号 (電気信号)を送信し、 WDMアンプ 14bは出力を停止す る。以上の動作により図 4における項 8の状態の APSD機能は終了する。光通信装 置 1一 3それぞれの間を接続する光ファイバいずれかの切断部分は、光高出力の光 信号が伝送されて ヽな 、ので復旧作業者の安全を保つことができる。
[0044] 本発明の特徴である、光通信装置(1一 3)の内部における光ファイバの開放への A PSD機能を実現させるための条件は、項 3に示した OSC— LOSの検出 401 : X (未 検出)、 WDMアンプ 14aからの WDM信号断絶情報の受信 402 :〇(受信)、 PD部 2 01における WDM信号断絶情報の検出 403 : X (未検出)の状態、もしくは、項 5に 示した OSC LOSの検出 401:〇(検出)、 WDMアンプ 14aからの WDM信号断絶
情報の受信 402:〇(受信)、 PD部 201における WDM信号断絶情報の検出 403: X (未検出)の状態である。
[0045] 項 3は、図 1に示したように、光通信装置 2の内部の接続ポート 16が開放された状 態を検出したことになり、項 5は、光通信装置 2の内部において、接続ポート 16は、閉 鎖された状態でありながら、 OSCカプラ 13aと、 OSCユニット lOO (OSCl)との間の 光ファイバ L1が外れたり、切断された場合に光信号が開放された状態を検出したこ とになる。
[0046] 図 5は、光通信装置内部の光ファイバ開放時の OSCユニットで行われる APSD機 能の処理を示すフローチャートである。光通信装置 1一 3の接続状態にあわせた AP SD機能を実現するためには図 4に示した各項への条件分けが必要となる。図 5に示 したのは、 OSCユニット 100によって行われる条件分け、および条件分けによって導 き出された接続状態ごとの APSD機能動作である。なお、以下においては、光通信 装置 2の OSCユニット 100 (OSC1)に着目して説明を行う。しかし、実際に光通信装 置 1一 3の全ての OSCユニット 100が同時に同様の動作を行っており、各 OSCュ- ット 100が接続された光ファイバの伝送状態を以下に述べるように判断し対応するこ とで APSD機能が実現される。なお、以降において、既に説明した部分と重複する箇 所は同一の符号を附して説明を省略する。
[0047] まず、 OSCカプラ 13aから伝送された OSC信号から OSC— LOSを検出したか否 かの判断を行う(ステップ S501)。 OSC— LOSを検出していれば (ステップ S501: Y es)、つぎに、 WDMアンプ 14aからの WDM信号断絶情報を受信したか否かの判断 を行う(ステップ S502)。 WDM信号断絶情報を受信していれば (ステップ S 502 : Ye s)、最後に PD部 201が WDM信号断絶を検出した力否かの判断を行う(ステップ S5 03)。 WDM信号断絶を検出していれば (ステップ S503 :Yes)、図 4に示した項 8の 状態であり光通信装置 1と光通信装置 2間の上り回線 11の光ファイバの切断を検出 したと判断する。 APSD機能を実現するため、 WDMアンプ(14d)へ出力停止信号 を送り(ステップ S 504)、光通信装置 1の OSC2へ APSD— CONT信号を送ることで (ステップ S505)、光通信装置 1と光通信装置 2の間の光ファイバの出力は停止し、 処理は終了する。
[0048] ステップ S501において、 OSC— LOSを検出しなければ (ステップ S501 :No)、つ ぎに、 WDMアンプ 14aからの WDM信号断絶情報を受信したか否かの判断を行う( ステップ S507)、このとき WDM信号断絶情報を受信していなければ (ステップ S507 : No) ,図 4に示した項 1もしくは項 4の状態であると判断し、 APSD機能を用いる必 要はないことから、通常動作を行うことで (ステップ S509)処理を終了させる。ここでい う通常動作とは、光通信時に常に行われている OSC信号の送受信および判断動作 のことである。
[0049] ステップ S507にお 、て、 WDM信号断絶情報を受信して 、る場合は (ステップ S50 7 : Yes)、さらに、 PD部 201が WDM信号断絶を検出したか否かの判断を行う(ステ ップ S508)。 WDM信号断絶を検出していれば (ステップ S508 : Yes)、図 4に示した 項 6の状態と判断し、 APSD機能を用いる必要はなぐ通常動作を行うことで (ステツ プ S509)処理を終了させる。
[0050] ステップ S508において、 WDM信号断絶を検出していなければ (ステップ S508 :N o)、図 4に示した項 3の状態、つまり光通信装置 2内部の接続ポート 16が開放してい ると判断し、内部の光ファイバの WDM信号の出力を低下させ、 APSD機能を実現さ せるため、 VOA19aへ減衰量増加信号を送り(ステップ S510)、処理を終了させる。
[0051] ステップ S502へ戻り、 WDM信号断絶情報を受信していない場合は(ステップ S50 2 :No)、図 4に示した項 2および項 7の状態と判断し、 APSD機能を用いる必要はな いことから、通常動作を行うことで (ステップ S506)処理を終了させる。また、ステップ S 503にお!/、て、 PD部 201が WDM信号断絶を検出して!/、な!/、場合 (ステップ S 503 : No) ,図 4に示した項 5の状態、つまり OSCカプラ 13aと、 OSCユニット 100 (OSC1 )との間の光ファイバ L1が外れてしまったり、切断されていると判断し、内部の光ファ ィバの WDM信号の出力を低下させ、 APSD機能を実現させるため、 VOA19aへ減 衰量増加信号を送り(ステップ S510)、処理を終了させる。
[0052] ステップ S510で OSCユニット lOO (OSCl)力も送信された減衰量増加信号を受 信した VOA19aは、光信号を危険でない出力まで減衰させる力 このときの減衰量 は、光信号と同時に伝送される ASE ( Amplified Spontaneous Emission;白色 雑音信号)光が、 VOA19 (19a, 19c)の後段の WDMアンプ 14 (14a, 14c)によつ
て受信確認できる程度で最大限に設定しなければならない。なぜなら、 ASE光の受 信確認ができない程減衰させてしまうと、 DCFユニット 17を接続しなおしても自動的 に復旧できなくなってしまうからである。このような減衰量設定を行うことで ASE光を 受信していれば、接続ポート 16には DCFユニット 17が接続されており、 ASE光を受 信していなければ依然、接続ポート 16は開放状態であると判断できる。この判断を A PSD機能動作後の復旧動作の開始する契機とすることができる。
[0053] なお、ステップ S502およびステップ S507は、ともに PD部 201が WDM信号断絶を 検出した力否かの判断を行わずして、状態を判断しているが、これは、どちらの場合 であっても、 APSD機能を必要としない状態であることから、判断ステップを省略でき るためである。以上のような判断を行うことにより、従来技術において課題だった光通 信装置内の光ファイバの開放または切断にも対応した APSD機能を実現することが できる。
[0054] 図 6は、 DCFユニットが正常に取り付けられた際の光通信装置の APSD機能を示 す図である。図示する光通信装置 1一 3は、 APSD機能により、特定箇所の光信号の 出力が停止した後、作業者によって、修復が行われた状態である。したがって、光通 信装置 2内の接続ポート 16に DCFユニット 17が接続されており、光通信装置 1一 3 間の上り回線 11および下り回線 12の光ファイバも正常に接続され、光信号の外部へ の漏れ出す危険性が解消されている。 OSCユニット 100 (OSC1, 2)は、再度接続さ れた光ファイバの伝送状態の判断を行い、正常の伝送状態であれば、増幅を停止さ せた光信号、もしくは減衰させた光信号を通常の通信状態に戻さなければならない。 以下、図を用いて APSD機能動作後の OSCユニットの復旧動作の処理を説明する 。また、以下に示す図 7および図 8も、図 5と同様に光通信装置 2の OSCユニット 100 (OSC1)に着目して、説明を行うが、全ての OSCユニット 100 (OSC1, 2)が同様の 処理を行うことでネットワークの通信が復旧する。
[0055] 図 7は、 APSD機能動作後の OSCユニットにおける復旧動作の処理を示すフロー チャートである。ここで説明するのは、図 4における項 8の状態 (光ファイバの切断)と 判断され、光通信装置 2の WDMアンプ 14dと、光通信装置 1の WDMアンプ 14cが 出力停止の状態から、再度伝送状態を判断し、安全を確認してから通信を再開 (通
常動作)するまでの処理である。
[0056] まず、 OSC— LOSを検出したか否かの判断を行う(ステップ S701)。 OSC— LOS を検出していれば (ステップ S701 : Yes)、つぎに、 WDM信号断絶情報を受信した か否かの判断を行う(ステップ S 702)。 WDM信号断絶情報を受信していれば (ステ ップ S702 : Yes)、最後に PD部 201が WDM信号断絶を検出したカゝ否かの判断を行 う(ステップ S703)。 WDM信号断絶を検出していれば (ステップ S703 : Yes)、依然 、光通信装置 1と光通信装置 2との間の上り回線 11の光ファイバの切断は解消されて いないと判断し、出力を停止させた光通信装置 2の WDMアンプ 14dと、光通信装置 1の WDMアンプ 14cへの動作変更指示を送らず(ステップ S704)、 WDMアンプ 14 (14c, 14d)は、停止したまま、処理を終了する。
[0057] ステップ S701に戻り、 OSC— LOSを検出しておらず (ステップ S701 :No)、 WDM 信号断絶情報を受信したか否かの判断 (ステップ S705)において、 WDM信号断絶 情報を受信しており(ステップ S 705 : Yes)、 PD部 201が WDM信号断絶を検出した か否かの判断を行い(ステップ S706)、 PD部 201では WDM信号断絶を検出してい ない場合 (ステップ S 706 : No)は、光通信装置 1一 3それぞれの間の光ファイバの切 断は復旧した力 光通信装置 2の内部で接続ポート 16間の光ファイバの開放が生じ ており作業者による復旧を必要としている場合と判断し、 APSD機能を実現させるた め、 VOA19aへ減衰量増加信号を送り(ステップ S710)、処理を終了させる。
[0058] 同様に、ステップ S703において PD部 201が WDM信号断絶を検出したか否かの 判断を行 、 (ステップ S703)、 WDM信号断絶を検出して 、な 、場合 (ステップ S 70 3 :No)も、光通信装置 2の内部で OSCカプラ 13aと、 OSCユニット lOO (OSCl)との 間の光ファイバ L1が外れたことによる光ファイバの開放もしくは切断が生じていると判 断され、 VOA19aへ減衰量増加信号を送り(ステップ S710)、処理を終了させる。
[0059] 一方、ステップ S702にお 、て、 WDM信号断絶情報を受信して 、な 、場合 (ステツ プ S702 :No)と、ステップ S705において WDM信号断絶情報を受信していない場 合 (ステップ S705 :No)と、ステップ S706において PD部 201が WDM信号断絶を検 出した場合 (ステップ S706 : Yes)は、光ファイバの伝送状態は正常であると判断し、 通信を再開させるため、 WDMアンプ 14dへ出力停止解除信号を送り(ステップ S70
7)、 OSCユニット 100 (OSC2)への APSD— CONT信号を停止させる(ステップ S7
08)。以上の動作により、光通信装置 2の WDMアンプ 14dと、光通信装置 1の WD Mアンプ 14bの出力停止が解除され、通常動作を行い (ステップ S709)、復旧動作 のための処理を終了させる。
[0060] 図 8は、 VOA制御による APSD機能動作後の OSCユニットにおける復旧動作の処 理を示すフローチャートである。ここで説明するのは、図 4における項 3および項 5の 状態 (光通信装置 2内部の光ファイバの開放)と判断され、光通信装置 2の VOA19a によって WDM信号が減衰された状態から、再度伝送状態を判断し、安全を確認し て力も通信を再開(通常動作)するまでの処理である。
[0061] まず、 OSC— LOSを検出したか否かの判断を行う(ステップ S801)。 OSC— LOS を検出していれば (ステップ S801 : Yes)、つぎに、 WDM信号断絶情報を受信した か否かの判断を行う(ステップ S802)。 WDM信号断絶情報を受信していれば (ステ ップ S802 : Yes)、最後に PD部 201が WDM信号断絶を検出したカゝ否かの判断を行 う(ステップ S803)。 PD部 201が WDM信号断絶を検出した場合 (ステップ S803 :Y es)、新たに光通信装置 1と光通信装置 2の間の上り回線 11が切断された状態と判 断し、光通信装置 1と光通信装置 2の間の上り回線 11と、下り回線 12の出力を停止 させるため、 APSD機能の実現が必要となる。よって、 WDMアンプ 14dへ出力停止 信号を送り(ステップ S804)、光通信装置 1の OSCユニット 100 (OSC2)へ APSD_ CONT信号を送る(ステップ S805)ことで、光通信装置 1の WDMアンプ 14bが停止 し、 APSD機能が実現され、処理を終了する。よって、通信は停止したままとなる。
[0062] ステップ S801に戻り、 OSC— LOSを検出しておらず (ステップ S801 :No)、 WDM 信号断絶情報を受信したか否かの判断を行い (ステップ S808)、 WDM信号断絶情 報を受信しており(ステップ S808 : Yes)、 PD部 201が WDM信号断絶を検出したか 否かの判断を行 、 (ステップ S809)、 WDM信号断絶を検出して 、て 、な 、場合は( ステップ S809 :No)、光通信装置 2の内部で接続ポート 16間の光ファイバの開放が 生じている状態と判断し、安全性を確保するため、 VOA19aへ動作変更信号を送ら ず (ステップ S812)、 WDM信号を減衰させたままの状態で処理を終了する。
[0063] 同様に、ステップ S803において、 PD部 201が WDM信号断絶を検出していない
場合は(ステップ S803 :No)、依然、光通信装置 2内部の OSCカプラ 13aと、 OSCュ ニット 100 (OSC1)との間の光ファイバ L1が外れたことによる光ファイバの開放もしく は切断された状態と判断し、安全性を確保するため、 VOA19aへ動作変更信号を送 らず (ステップ S812)、 WDM信号を減衰させたままの状態で処理を終了する。
[0064] 一方、ステップ S802にお 、て WDM信号断絶情報を受信して 、な 、場合 (ステツ プ S802 :No)は、光通信装置 2内部の光ファイバの開放状態は脱していると判断し、 通信を再開させるため、 VOA19aへ減衰量ゼロ信号を送り(ステップ S806)、通常動 作を行う(ステップ S807)ことで復旧動作のための処理を終了させる。同様にステツ プ S808にお!/、て WDM信号断絶情報を受信して!/、な!/、場合 (ステップ S808: No)、 もしくはステップ S809にお 、て PD部 201が WDM信号断絶を検出した場合 (ステツ プ S809 :Yes)は、光通信装置 2内部の光ファイバの開放状態は脱していると判断し 、通信を再開させるため、 VOA19aへ減衰量ゼロ信号を送り(ステップ S810)、通常 動作を行う(ステップ S811)ことで復旧動作のための処理を終了させる。
[0065] 以上述べたように、本実施例では、光通信装置 1一 3内に WDMカプラ 18a, 18cお よび VOA19a, 19cを備え、 OSCユニット 100 (OSC1, 2)に WDM信号を検出する PD部 201を設けることで、 DCFユニット 17が接続ポート 16から外れ、接続ポート 16 が開放された状態においても APSD機能を実現することができる。
産業上の利用可能性
[0066] 以上のように、本発明にかかる光通信装置および光通信制御方法は、高出力の光 信号が扱われている機器に有用であり、特に、高密度に多重された光信号を伝送す る DWDM (Dense Wavelength Division Multiplexing ;高密度波長分割多重 方式)を行う光通信装置に適している。
Claims
[1] 光通信ネットワーク上で伝送される光信号を分散補償するために、装置内部におけ る前記光信号の経路中に設けられ、分散補償ファイバが接続される接続ポートと、 前記光信号の経路上の前記接続ポートの前段に設けられ、前記光通信ネットヮー ク上で伝送される光信号から監視用信号を分波する分波手段と、
前記分波手段によって分波された前記監視用信号を検出する監視用信号検出手 段と、
前記光信号の経路上の前記分波手段の前段に設けられ、光通信ネットワーク上で 伝送される光信号を分岐する分岐手段と、
前記分岐手段によって分岐された光信号の出力を検出するパワー検出手段と、 前記光信号の経路上の前記接続ポートの前段に設けられ、前記光信号の経路に 対する光出力を遮断させる遮断手段と、
前記パワー検出手段によって検出された前記光信号の出力と、前記監視用信号検 出手段によって検出された前記監視用信号とに基づいて、前記接続ポートに対する 前記分散補償ファイバの接続状態を判断し、前記分散補償ファイバの接続が異常と 判断された場合に、前記遮断手段により前記光信号の出力を遮断させる制御手段と を備えることを特徴とする光通信装置。
[2] 前記遮断手段は、前記光信号の減衰量を可変自在な光減衰器であり、前記制御 手段によって前記分散補償ファイバの接続が異常と判断された場合には、前記減衰 量を最大とすることを特徴とする請求項 1に記載の光通信装置。
[3] 前記接続ポートが配置された前記経路の後段に前記光信号を増幅する光増幅器 を有し、
前記光減衰器は、前記接続ポートに対して前記分散補償ファイバが正常に接続さ れた状態において前記光増幅器が白色雑音信号を検出可能な減衰量に設定され ており、
前記制御手段は、前記白色雑音信号の検出が検出されないときに前記接続ポート に前記分散補償ファイバが接続されて 、な 、状態であると判断することを特徴とする
請求項 2に記載の光通信装置。
[4] 前記制御手段は、前記パワー検出手段と、前記監視用信号検出手段と、前記光増 幅器による光信号の検出状態の変化に基づいて、前記遮断手段による前記光信号 の遮断を解除することを特徴とする請求項 3に記載の光通信装置。
[5] 前記制御手段は、前記光通信ネットワークに対して前記光信号の出力を停止させ る制御信号を送信することを特徴とする請求項 1に記載の光通信装置。
[6] 前記制御手段は、前記監視用信号の状態を監視し、前記光通信ネットワーク上の 光回線の切断を検出したとき前記光信号の出力を停止させる APSD (Auto Power Shut Down)制御手段を備えて 、ることを特徴とする請求項 1一 4の 、ずれか一 つに記載の光通信装置。
[7] 光通信ネットワーク上で伝送される光信号を分散補償するために、装置内部におけ る前記光信号の経路中に設けられた接続ポートに対する分散補償ファイバの接続状 態に基づいて前記光信号の出力を制御する光通信制御方法において、
前記光通信ネットワーク上で伝送される光信号から監視用信号を分波し検出する 監視用信号検出工程と、
前記光通信ネットワーク上で伝送される光信号の出力を検出するパワー検出工程 と、
前記パワー検出工程によって検出された前記光信号の出力と、前記監視用信号検 出工程によって検出された前記監視用信号とに基づいて、前記接続ポートに対する 前記分散補償ファイバの接続状態を判断し、前記分散補償ファイバの接続が異常と 判断された場合に、前記光信号の出力を遮断させる制御工程と、
を含むことを特徴とする光通信制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/002614 WO2006087805A1 (ja) | 2005-02-18 | 2005-02-18 | 光通信装置および光通信制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/002614 WO2006087805A1 (ja) | 2005-02-18 | 2005-02-18 | 光通信装置および光通信制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006087805A1 true WO2006087805A1 (ja) | 2006-08-24 |
Family
ID=36916221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/002614 WO2006087805A1 (ja) | 2005-02-18 | 2005-02-18 | 光通信装置および光通信制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006087805A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016197606A1 (zh) * | 2015-06-11 | 2016-12-15 | 中兴通讯股份有限公司 | 光模块状态信息的获取方法和装置 |
KR20190011763A (ko) * | 2016-06-02 | 2019-02-07 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 양자 통신 방법 및 관련 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174504A (ja) * | 1997-09-12 | 1999-07-02 | Lucent Technol Inc | 光ファイバ通信システム |
JPH11220456A (ja) * | 1998-02-02 | 1999-08-10 | Nippon Telegr & Teleph Corp <Ntt> | 波長多重伝送システム、監視信号送信装置、光線形中継器用監視装置および波長多重伝送監視装置 |
JP2002077056A (ja) * | 2000-08-29 | 2002-03-15 | Fujitsu Ltd | 光レベル制御方法 |
-
2005
- 2005-02-18 WO PCT/JP2005/002614 patent/WO2006087805A1/ja not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11174504A (ja) * | 1997-09-12 | 1999-07-02 | Lucent Technol Inc | 光ファイバ通信システム |
JPH11220456A (ja) * | 1998-02-02 | 1999-08-10 | Nippon Telegr & Teleph Corp <Ntt> | 波長多重伝送システム、監視信号送信装置、光線形中継器用監視装置および波長多重伝送監視装置 |
JP2002077056A (ja) * | 2000-08-29 | 2002-03-15 | Fujitsu Ltd | 光レベル制御方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016197606A1 (zh) * | 2015-06-11 | 2016-12-15 | 中兴通讯股份有限公司 | 光模块状态信息的获取方法和装置 |
KR20190011763A (ko) * | 2016-06-02 | 2019-02-07 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 양자 통신 방법 및 관련 장치 |
JP2019524015A (ja) * | 2016-06-02 | 2019-08-29 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 量子通信方法及び関連装置 |
US10778341B2 (en) | 2016-06-02 | 2020-09-15 | Huawei Technologies Co., Ltd. | Quantum communication method and related apparatus |
KR102193074B1 (ko) * | 2016-06-02 | 2020-12-18 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 양자 통신 방법 및 관련 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6504630B1 (en) | Automatic power shut-down arrangement for optical line systems | |
US6359708B1 (en) | Optical transmission line automatic power reduction system | |
JP4093937B2 (ja) | 光伝送システム | |
JP4908079B2 (ja) | 光伝送装置および光分岐挿入装置 | |
EP1211825A2 (en) | Configurable safety shutdown for an optical amplifier using non-volatile storage | |
JPH0637717A (ja) | 光中継器の監視制御方式 | |
JP5726334B2 (ja) | 波長多重光通信装置 | |
US7174108B2 (en) | Transmission device and repeater | |
EP2727271B1 (en) | Optical communication system, device and method for data processing in an optical network | |
JP6814253B2 (ja) | 光ファイバー給電システム及びデータ通信装置 | |
US20170142503A1 (en) | Optical transmitter-receiver and loop-back method | |
JPWO2009060522A1 (ja) | 光送受信モジュールおよびその管理制御方法,光送受信装置ならびに波長多重光送受信装置 | |
EP1839402B1 (en) | Method of controlling optical amplifier located along an optical link | |
WO2006087805A1 (ja) | 光通信装置および光通信制御方法 | |
US20080085126A1 (en) | Optical Signal Shutoff Mechanism and Associated System | |
US20200382270A1 (en) | Transmission device and transmission method | |
US20200169320A1 (en) | Optical transmission system, optical transmission device and network control device | |
US20030099432A1 (en) | Optical transmission apparatus and optical transmission module | |
US20230155675A1 (en) | Failure detection device, failure detection method, and failure-detection-program recording medium | |
WO2006087804A1 (ja) | 光通信装置および光通信制御方法 | |
JP4337603B2 (ja) | 光伝送システム | |
CN104301026A (zh) | 光放大器及其光纤线路保护方法 | |
JP4615155B2 (ja) | 光通信方法およびそのシステム | |
JP5180089B2 (ja) | 光伝送装置 | |
US8509615B2 (en) | Optical amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05719284 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5719284 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |