WO2006087242A2 - Peptides inhibiteurs intracellulaires et animaux transgeniques les exprimant - Google Patents

Peptides inhibiteurs intracellulaires et animaux transgeniques les exprimant Download PDF

Info

Publication number
WO2006087242A2
WO2006087242A2 PCT/EP2006/002068 EP2006002068W WO2006087242A2 WO 2006087242 A2 WO2006087242 A2 WO 2006087242A2 EP 2006002068 W EP2006002068 W EP 2006002068W WO 2006087242 A2 WO2006087242 A2 WO 2006087242A2
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
sequence
erk
amino acid
cell
Prior art date
Application number
PCT/EP2006/002068
Other languages
English (en)
Other versions
WO2006087242A3 (fr
Inventor
Jocelyne Caboche
Peter Vanhoutte
Original Assignee
Universite Pierre Et Marie Curie
Centre National De La Recherche Scientifique-Cnrs-
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre Et Marie Curie, Centre National De La Recherche Scientifique-Cnrs- filed Critical Universite Pierre Et Marie Curie
Priority to JP2007555557A priority Critical patent/JP5612248B2/ja
Priority to US11/815,185 priority patent/US20090215680A1/en
Priority to CA2597020A priority patent/CA2597020C/fr
Publication of WO2006087242A2 publication Critical patent/WO2006087242A2/fr
Publication of WO2006087242A3 publication Critical patent/WO2006087242A3/fr
Priority to US15/049,825 priority patent/US10494410B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/095Fusion polypeptide containing a localisation/targetting motif containing a nuclear export signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction

Definitions

  • the present invention provides peptides for selective inhibition of the ERK-like MAP kinase pathway to a given substrate and in a given cell compartment.
  • MAP kinases Mitogen Activated Protein Kinases
  • ERK ERK, p38, JNK
  • cascading signaling pathways ERK, p38, JNK
  • PD98059 (2'-amino-3'-methoxyflavone, a polycyclic nitrogen-containing inhibitor)
  • UO 126 (1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene) are specific inhibitors of MEKs, the upstream kinases of ERKs.
  • ERKs ERK-like MAP kinase inhibitors against their nuclear or cytoplasmic substrates.
  • ERK-type MAP kinase or ERK refers to any MAP kinase ERK.
  • said MAP kinase of the ERK type can be a mammalian MAP kinase, in particular human, primate or murine MAP kinase. It may also be non-mammalian (lamprey, zebrafish, C. elegans, drosophila, xenopus).
  • "ERK inhibitor” or "ERK type MAP kinase inhibitor” refers to any compound which makes it possible to inhibit the kinase function of ERK on at least one given substrate.
  • 'peptide' or 'peptide chain' refers to any amino acid chain.
  • Said amino acid chain generally comprises from 2 to 100 residues, preferably from 5 to 75 residues, more preferably from 10 to 50 residues.
  • said chain contains 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ..., 50, ..., 100 amino acid residues.
  • the term 'amino acid' or 'amino acid residue' refers to any amino acid residue known to those skilled in the art (See for example: N. Sewald, H.-D. Jakubke, Peptides: Chemistry and Biology 2002, Wiley-VCH Verlag GmbH, Weinheim, IUPAC nomenclature http://www.chem.qmul.ac.uk/iupac/AmmoAcid/).
  • Said amino acid residue or its derivative may be any isomer thereof, in particular any chiral isomer, for example the L- or D- isoform, and mixtures thereof.
  • the isoform D- has the advantage of a better stability.
  • amino acid derivative is meant herein any amino acid derivative, in particular any derivative known to those skilled in the art. (See for example: N.
  • amino acid derivatives include naturally amino acid derivable residues bearing additional side chains, for example, alkyl side chains, and / or heteroatom substitutions.
  • amino acid sequence comprises at least two residues covalently linked by at least one peptide bond.
  • amino acid sequences will be given using the one-letter code.
  • Said peptide can be obtained by methods known to those skilled in the art, for example said peptide can be obtained by synthetic methods, such as solid support synthesis or synthesis in solution (synthetic peptides) / or techniques from molecular biology (recombinant peptide).
  • the present invention relates to a peptide comprising:
  • At least one "spacer" sequence At least one "spacer" sequence
  • an enzymatic cleavage sequence surrounded or not by spacer sequences.
  • amino acid sequence permitting the penetration of said peptide into a cell is meant according to the present invention any amino acid sequence facilitating and / or mediating the transport of said peptide from outside a cell to its interior. Such sequences are known to those skilled in the art. Said sequence permitting the penetration of said peptide into a cell may be chosen according to the cell type of said cell, in order to optimize the penetration efficiency.
  • said sequence permitting the penetration of said peptide into a cell has a length of 2 to 20 residues, in particular 6, 7, 8, 9, ..., 17, 18, 19 or 20 residues.
  • said sequence permitting the penetration of said peptide into a cell is chosen from: the sequence of the HIV-TAT penetrant peptide, Penetratine, a sequence of seven to eleven arginine, a sequence known as an X7 / 1 IR sequence ".
  • said sequence permitting the penetration of said peptide into a cell is chosen from sequences derived from the Vectocell® family (or Diatos peptide Vectors f DPVs) such as the penetration sequences described in De Coupade et al., Biochem. . J. (2005) 390, 407-418 and WO 01/64738.
  • X7 / 1 IR sequence any peptide sequence of 7 to 25, preferably 7 to 20 amino acids containing between seven and eleven arginine residues (7/1 IR), in which the arginine residues (R) can be placed. randomly within said sequence. Examples are given below, but the skilled person is able to decline the other possibilities.
  • said sequence permitting the penetration of said peptide into a cell is chosen from:
  • NLS Nuclear Localizing, Signal
  • _signal of nuclear localization is known to those skilled in the art. It is usually an amino acid sequence for addressing a given protein to the nucleus, via the phenomenon of nuclear import.
  • said NLS sequence is a sequence rich in basic amino acids (Arginine or Lysine).
  • said NLS sequence has a length of 2 to 20 residues, in particular 6, 7, 8, 9, ..., 17, 18, 19 or 20 residues.
  • said NLS sequence is chosen from:
  • NES Nuclear Export Signal
  • nuclear export signal nuclear export signal
  • said NES sequence has a length of 2 to 20 residues, in particular 6, 7, 8, 9, ..., 10, 11, 12, ..., 17, 18, 19 or 20 residues. According to one embodiment, said NES sequence is chosen from:
  • Said amino acid sequence corresponding to an anchoring sequence of a substrate of an ERK type MAP kinase can comprise any "docking domain" of an ERK substrate known to those skilled in the art.
  • the concept of "docking domain” is known to those skilled in the art. It is generally a portion of the substrate of a MAP kinase that specifically conditions the interaction and / or recruitment between said substrate and said MAP kinase. This is all or part of a docking site of said substrate for said MAP kinase.
  • the sequence of said "docking domain” is therefore specific and selective for a given interaction.
  • each of these anchoring sequences corresponds to a portion (amino acid sequences) of a substrate of MAP kinases ERKs, which portion specifically conditions the interaction and / or recruitment between said substrate and said MAP kinase ERK type.
  • said amino acid sequence corresponding to a substrate anchoring sequence of an ERK-type MAP kinase can comprise only part of a "docking domain" of a substrate of
  • amino acid sequence corresponding to a substrate anchoring sequence of an ERK-type MAP kinase contains only a portion of the "docking domain", it is possible to obtain an inhibition of several given substrates of ERK.
  • said amino acid sequence corresponding to an anchoring sequence of a substrate of an ERK-type MAP kinase has a length of 12-25 residues, preferably 13, 14 , 15, 16, 17,
  • said "docking domain” sequence is chosen from the “docking domain type FXFP" and "docking domain type D" sequences.
  • said "docking domain" sequence has a length of 12-25 residues, preferably 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 residues.
  • said sequence may be reduced so as to correspond to the minimum sequence of the FXFP type.
  • said "docking domain" sequence may have a length of 3-11 residues, for example 3, 4, 5, 6, 7, 8, 9, 10, 11 residues.
  • D-type docking domain sequence means here any sequence
  • “Docking domain” type D known to those skilled in the art. This includes in particular the hydrophobic amino acid sequences followed by a basic amino acid sequence; the hydrophobic amino acid sequences followed by a basic amino acid sequence and a leucine X leucine sequence
  • sequence “docking domain type FXFP” is meant here any “docking domain” sequences of FXFP type known to those skilled in the art. This includes in particular the sequences of the so-called “FXFP” domains and the corresponding flanking Nter and Cter sequences of said substrate). This also includes "docking domains" of type (F / Y) X (F / Y) P, ie of type:
  • YXYP where F is phenylalanine (Phe), X is any amino acid (Xaa), Y is tyrosine, and P is proline (Pro).
  • said "docking domain” sequence is chosen from:
  • the same substrate can sometimes have several "docking domains" for ERK. This is the case, for example, of EIk-I and MKP-I with respect to ERK.
  • one or other of the "docking domain” sequences may be used in a peptide according to the invention to block the ERK / substrate interaction.
  • the joint use of two peptides according to the invention one of the peptides containing a "docking domain” sequence, for example an FXFP sequence; • and the other peptide containing another sequence "docking domain", such a sequence D, will improve inhibition at subliminal concentrations.
  • said peptide has the following properties: once brought into contact with a cell, by virtue of said amino acid sequence permitting the penetration of said peptide into a cell, the peptide according to the invention enters said cell. Subsequently, depending on the nature of said intracellular targeting sequence, said peptide is located either in the nucleus (if NLS) or in the cytoplasm (if NES). Alternatively, in the absence of additional intracellular targeting sequence, given the rich content of basic amino acids of said permeate sequence, the latter also plays the role of NLS, so said peptide is located in the nucleus. Thus, according to the structure of said peptide according to the invention, it advantageously adopts a specific intracellular localization.
  • Said sequence "docking domain” then plays an inhibitory role: it advantageously allows to mimic the presence of said substrate vis-à-vis MAP kinase ERK 5 thus resulting in a selective and specific inhibition of the interaction between ERK and said substrate, and this, with a specific intracellular localization: depending on the case, the inhibition is specific to the nuclear interaction, or specific to the cytoplasmic interaction between ERK and said substrate.
  • the resulting inhibition is specific not only of the Substrate / ERK pair (due to the "docking domain"), but also specific in terms of intracellular localization (selective inhibition of the nuclear interaction, or selective inhibition of cytoplasmic interaction: specific differential inhibition).
  • Said cell is a eukaryotic cell, preferably an upper eukaryotic cell, for example a mammalian cell or a human cell. It may be a mitotic cell or a quiescent (post-mitotic) cell, for example a neuronal cell.
  • said optional "spacer” sequence makes it possible to ensure a certain conformational flexibility between said sequence permitting the penetration of said peptide into a cell, and said "docking domain” sequence.
  • said "spacer” sequence may comprise at least one, preferably several proline residues, for example 2, 3, or 4 proline residues.
  • said peptide may comprise an enzymatic cleavage site, for separating said penetrating amino acid sequence from said peptide in a cell, from the remainder of said peptide.
  • said peptide may thus comprise two consecutive cysteine residues, thus allowing intracellular cleavage by cytoplasmic glutathione (the disulphide bridges existing between these two residues are cut after penetration into the cell).
  • Any other enzyme cleavage site in particular an intracellular protease known to those skilled in the art can also be used.
  • said cleavage site can be a cleavage site by caspase-type cysteine proteases or by NSE (neuron-specific enolase).
  • the peptide according to the invention is coupled to at least one fluorophore, preferably in a covalent manner.
  • the said fluorophore may be any fluorophore known to those skilled in the art.
  • said fluorophore can be selected from Fam, Hex, Tet, Joe, Rox, Tamra, Max, Edans, Cy dyes such as Cy5, Cy2 or Cy3, Fluorescein, Coumarin, Eosin, Rhodamine, Bodipy, Alexa, Blue Cascade, Yakima Yellow, Lucifer Yellow and Texas Red AMCA (registered trademarks).
  • said peptide may be biotinylated and visualized, indirectly, with avidin labeled with the fluorophores described above. Said peptide may also be coupled to an enzymatic marker, for example of beta-galactosidase type.
  • said fluorophores, biotin or enzyme are located in the C-terminal or N-terminal region of the anchoring site of said peptide so as to be able to locate it in the whole animal in vivo, on a cell preparation, in vitro, as well as on a fixed cell preparation.
  • the present invention also relates to a nucleic acid encoding a peptide as described above.
  • a nucleic acid sequence (s) code (s) for such a peptide based on the genetic code, its degeneracy, and codon adaptation. according to the species.
  • the present invention further relates to an expression vector comprising a nucleic acid encoding a peptide as described above.
  • said expression vector is a eukaryotic expression vector.
  • Said expression vector will advantageously be adapted to a given cell type, according to the use for which the peptide according to the invention is intended.
  • the skilled person will design a tutor. "In particular, the man du- art will choose a constitutive promoter or a tissue-specific, allowing expression of said peptide from said vector.
  • said expression promoter may be selected from constitutive promoters, inducible promoters specific promoters, for example tissue-specific.
  • said expression vector contains a nestin-type promoter, in order to allow the early expression of said peptide during development.
  • said expression vector comprises at least one tissue-specific promoter, in order to allow expression of said peptide in targeted tissues.
  • the expression of said peptide may be restricted to certain regions of said tissue, for example, certain regions of the brain:
  • said expression vector contains a CaMKII type promoter, in order to obtain preferential expression in the hippocampus.
  • said expression vector contains a D1 dopaminergic receptor promoter, in order to obtain a specific striatal expression (seat of the addictive processes).
  • said expression vector contains a promoter
  • said expression vector also contains an inducible promoter, for example a promoter induced or repressed by tetracycline (TetOn system, TetOff).
  • an inducible promoter for example a promoter induced or repressed by tetracycline (TetOn system, TetOff).
  • Said expression vector may contain an origin of bacterial replication allowing its replication in bacterial host cells, typically E. coli.
  • said expression vector is designed so that it can be used to generate transgenic animals, for example transgenic murines, which will express said peptide at desired times in a given tissue, and within said tissue (for example in the brain), in a given region "
  • said expression vector is a viral vector.
  • Said viral vector can be chosen from the group of retroviral vectors, canine viral vector, and lentiviral vectors. Said viral vector then allows specific tissue expression: a retroviral vector makes it possible to preferentially target the dividing cells; a canine virus makes it possible to target neuronal-type post-mitotic cells; a lentiviral vector can integrate into the genome of the host cell without discrimination.
  • the viral vector can also be used in gene therapy.
  • the present invention also relates to a kit containing at least one peptide as described above and / or at least one vector or nucleic acid encoding peptides as described above.
  • said kit may contain controls (positive or negative) in the form of peptides or vectors, making it possible to conduct control experiments in parallel with experiments involving at least one peptide according to the present invention.
  • a negative control peptide may contain a 'scrambled' sequence of amino acids.
  • Said kit may also contain an explanatory note.
  • said kit may comprise at least two different peptides according to the invention. The peptides may be for inhibiting the interaction of an ERK-like MAP kinase with at least two distinct substrates, or a single substrate. Indeed, the same substrate can sometimes include several "docking domains" for the same MAP kinase.
  • one or other of the "docking domain" sequences may be used in a peptide according to the invention to block the ERK / substrate interaction.
  • the joint use of two peptides according to the invention, one of the peptides containing a "docking domain” sequence, for example an FXFP sequence; and the other peptide containing another "docking domain” sequence, for example a D sequence will improve the inhibition at subliminal concentrations.
  • the present invention also relates to the use of a peptide as described above as an inhibitor in vitro or in vivo ⁇ the activity of said ERK type MAP kinase towards a given substrate.
  • This type of use covers a very wide range of domains, depending on the nature of the substrate (s) of said ERK type MAP kinase, the cellular type considered, and the type of extracellular stimulation considered.
  • said peptide may be labeled, for example coupled to a marker (for example, fluorophore, biotin or beta-galactosidase), and may thus be tested in vivo in the whole animal after injection systemically or intrabulally.
  • a marker for example, fluorophore, biotin or beta-galactosidase
  • said peptide can be localized in the various tissues, including in the central nervous system (the presence of said sequence permitting penetration, allowing the passage of the blood-brain barrier) with the marker coupled to the peptide.
  • the peptide according to the invention is useful in the study of different types of phenomena, especially in neurobiology (study of development, neuronal plasticity, addictive processes) and oncology (regulation of the cell cycle).
  • the present invention relates to a non-human transgenic mammal, in particular rodent, capable of expressing at least one peptide according to the invention.
  • said non-human mammal can for example be obtained by transgenesis using a vector according to the invention.
  • the skilled person is familiar with transgenesis techniques and could obtain such a mammal using his general knowledge (see for example) http://www.inrp.fr/Acces/biotic/biomol/transgen/story.htm.
  • the peptides according to the present invention may have the following structure: C-terminal N-terminal
  • Penetration sequence comprises at least one amino acid sequence permitting the penetration of said peptide into a cell;
  • S comprises or corresponds to an optional "spacer” type sequence, for example two prolines, or a gamma aminobutyric acid, allowing a flexibility between the penetrating sequence and the anchoring peptide;
  • C comprises or corresponds to an enzymatic cleavage site, allowing the anchoring peptide and its sequence of localization of the penetrating sequence to be released inside the cell; this cleavage site may or may not comprise a spacer "S" placed in Cterm, Nterm, or on both sides of the cleavage site.
  • S spacer
  • Addressing includes an intracellular NES or NLS type addressing sequence
  • Docking domain comprises the FXFP or D anchor amino acid sequence of a given substrate of ERK.
  • the cleavage site makes it possible to separate the sequence allowing penetration, which is at one of the ends of the peptide, from the rest of the peptide.
  • Peptides P1 and P2 Inhibition of the Interaction Between EIk-I and ERK Peptide Pl (SEQ ID No: 39)
  • GRKKRRQRRR peptide penetrant of HIV-TAT
  • Pl enters the cells and locates in the cytoplasm.
  • P2 enters the cells and adopts a nuclear localization.
  • Peptide P3 Inhibition of the interaction between MKP-3 and ERK
  • P3 enters the cells and adopts a cytoplasmic localization.
  • anchoring peptide II has the same sequence as the P2 peptide (see Example 1), and is coupled to the FITC
  • HEK293 cells are placed in the presence of the F2 peptide at different concentrations (ImM solution stock in distilled water, then dilutions at 25,
  • the cell nuclei are labeled with dye
  • Figure 1 shows the results obtained for the concentration of 100 ⁇ M F2 peptide, as a function of time.
  • the labeled cell nuclei are shown on the left panels), the peptide F2 on the middle panels and the superposition of these two markings is shown on the right panels (panels marked fusion).
  • the peptide F2 according to the invention penetrates rapidly into the cells, and adopts a nuclear localization after only 30 minutes.
  • the peptide F2 In the absence of additional intracellular addressing sequence, given the rich content of basic amino acids of the HIV-TAT penetration sequence, the latter also plays the role of NLS, so the peptide F2 is advantageously located in the nucleus.
  • the F2 peptide rapidly penetrates the cells and then adopts an exclusively nuclear localization.
  • the Fl peptide according to the invention (“anchoring peptide”) is used here: II has the same sequence as the P1 peptide (see Example 1), and is coupled to the FITC
  • HEK293 cells are placed in the presence of the Fl peptide at different concentrations (ImM solution stored in distilled water, then dilutions at 25,
  • FIG. 2 shows the results obtained for the 100 ⁇ M concentration of Fl peptide as a function of time.
  • the labeled cell nuclei are shown on the left panels), the peptide F2 on the middle panels and the superimposing of these two markings is shown on the panels ⁇ ⁇ ⁇ drôit ⁇ (panels susésiusion).
  • the peptide according to the invention rapidly penetrates the cells and adopts a cytoplasmic localization.
  • P2 inhibits the activation of EIk-I by serum in mitotic cells
  • the P2 peptide according to the invention is used here (see Example 1).
  • HEK cells were treated as indicated in Example 2 ( Figure 1) with peptide P2 (40 minutes) followed by treatment with serum (10%) for 20 minutes or 5 minutes.
  • the serum activates the MAP kinase / ERK pathway.
  • the activation of ERK is characterized by western blot using an anti-P-ERK1 / 2 antibody, directed against the phosphorylated (active) form of ERK (anti-rabbit Phospho Thr202-Tyr204 ERK, CeIl signaling, dilution 1 / 5000 °) ( Figure 3, top panels).
  • EIk-I The activation of EIk-I is visualized by an anti-P-EIk-I antibody directed against the phosphorylated form of EIk-I (anti mouse Phospho Ser383 EIk-I, Santa Cruz, dilution 1/200 °) (FIG. bottom panel).
  • the proteins are revealed using secondary antibodies, anti-rabbit and anti-mouse, respectively coupled to horseradish peroxidase (Amersham, 1/5000 ° dilutions) and visualized by chemiluminescence (Amersham, ECL kit). Dose-response curves were performed to determine the lowest effective peptide concentration.
  • the induction of P-EIk-I by the serum is totally inhibited in the presence of the P2 peptide at 10 ⁇ M. This inhibition is absent at 1 ⁇ M P2 ( Figure 3, bottom panel).
  • the higher doses (50, 100 ⁇ M) of peptide P2 are also effective on the inhibition of EIk-I.
  • the induction of P-ERK by the serum is not modified by the peptide P2 at 10 ⁇ M.
  • the peptides P1 and P2 according to the invention are used here (see Example 1).
  • HEK cells are placed in the presence of peptide P2 (FIG. 4, middle panels) or P1 (FIG. 4, right panels), at a concentration of 10 ⁇ M for
  • the cells are then treated for 20 minutes with fetal calf serum (serum) to activate the MAP kinase / ERK pathway.
  • MAP kinase ERK The presence of the activated form of MAP kinase ERK is visualized by immunodetection using an anti-phospho ERK antibody (anti rabbit Phospho
  • EIk-I The presence of the activated form of EIk-I is visualized by immunocytochemistry using an anti-phospho-Ser383 EIk-I antibody (Phospho Ser383 EIk-I anti-mouse, Santa Cruz, dilution 1/200 °) and revealed by means of a Cy3-coupled anti-mouse secondary antibody (anti mouse Cy3, Jackson Immunoresearch, 1/600 °) (FIG. 4, by way of example a P-EIk-1 labeling is represented by a white star , on the panels of the fourth line, left and right). The cores corresponding are visualized by the same star on the panels of the third line noted Hoechst.
  • P2 inhibits the activation of EIk-I in neurons in response to an excitatory neurotransmitter, glutamate
  • E 14 in the mouse are cultured 7 days in vitro in a neurobasal medium and then treated or not with the P2 peptide (5 .mu.M) for one hour.
  • the culture medium is then renewed, the neurons are then incubated for 30 minutes in a medium without peptide.
  • An excitatory neurotransmitter, glutamate (100 .mu.M) is then added for 20 minutes in the incubation wells denoted Glu20.
  • the ERK activation is characterized by western blot (FIG. 5A) using the anti-phospho ERK antibody. as indicated in Example 4 (dilution: 1/5000 °).
  • the revelation of ⁇ -tubulin (monoclonal antibody, Sigma, dilution 1/5000 °) on the same membrane, allows to have a charge control (Figure 5A).
  • the P-ERK immunofluorescence (FIG. 5B) is carried out on neurons fixed with 2% paraformaldehyde, using the same antibody (dilution 1/500 °) revealed by a secondary antibody coupled to Cy3 (dilution 1 / 2000 °) ( Figure 5B).
  • the P2 peptide does not block the activation of ERK or its glutamate-induced nuclear translocation in neurons.
  • FIG. 5C Immunoprecipitations: neuronal extracts treated or not treated with the P2 peptide are immunoprecipitated with the aid of an anti-Elk-1 antibody (
  • EIk-I The activation of EIk-I is visualized by western blot using an anti-phospho-Ser383-EIk-I antibody as indicated in Example 4 by western-blot (dilution
  • MSK1 The activation of MSK1 is visualized by immunofluorescence using an anti phospho-Thr 581 MSK1 antibody (CeIl Signaling, dilution 1/750 °) and revealed with the aid of a secondary antibody coupled to Cy3 (FIG. 5E ).
  • Peptide P2 blocks glutamate-induced EIk-I activation without altering that of MSK1.
  • the peptide F2 (0.5 ⁇ l of an ImM solution) according to the invention (see Example 2) is injected intracerebrally into the striatum of mice, using a microcannula.After injection, the micro-cannula The mice are euthanized by lethal injection of pentobarbital and then perfused intracardiacly with paraformaldehyde (4%) and thin sections (30 ⁇ M) are made using a vibratome. F2 peptide is visualized using a FITC filter (left panel), the nuclei are stained with Hoechst (Middle Panel), and note the penetration of the F2 peptide into most cells ( Figure 6). )
  • FITC filter left panel
  • the P2 peptide (0.5 ⁇ l of an ImM solution) according to the invention (see Example 1) is injected intrastriatally as indicated in Example 7. In this case, only one hemisphere receives the P2 peptide, the other hemisphere receives a solution. saline. After one hour, cocaine (20 mg / kg) is administered intraperitoneally. Euthanasia, intracardiac perfusion and brain cutting are performed 10 minutes after cocaine administration, as indicated in Example 7. Activations of ERK and EIk-I induced in the striatum by cocaine are visualized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention concerne des peptides utiles comme inhibiteurs spécifiques des voies MAP kinases/ERK envers un substrat donné dans un compartiment subcellulaire donné.

Description

Peptides inhibiteurs
La présente invention concerne des peptides permettant l'inhibition sélective de la voie des MAP kinases de type ERK envers un substrat donné et dans un compartiment cellulaire donné.
Les MAP kinases (Mitogen Activated Protein kinases) sont des protéines ubiquitaires impliquées dans des fonctions cellulaires variées. Ces protéines assurent la transduction de signaux intracellulaires : de la surface de la cellule, vers le noyau. Trois grandes familles de MAP kinases (ERK, p38, JNK) ont été identifiées, qui correspondent à des voies de signalisation en cascade. Ces voies de signalisation jouent des rôles importants dans les fonctions cellulaires : de l'apoptose à la prolifération, différenciation, voire même la plasticité neuronale Ces fonctions dépendent de façon étroite du type de MAP kinase, d'une part, et pour chaque type de MAP kinase, de sa localisation cellulaire.
Afin d'élucider les mécanismes moléculaires gouvernés par les voies de signalisation ERK ainsi que d'être en mesure d'interférer avec cette cascade de signalisation à un niveau donné, il est utile de disposer d'inhibiteurs spécifiques. Les composés actuellement disponibles : le PD98059 (2'-amino-3'- méthoxyflavone, un inhibiteur polycyclique azoté) et le UO 126 (1,4-Diamino- 2,3-dicyano-l,4-bis(2-aminophenylthio)butadiène) sont des inhibiteurs spécifiques des MEKs, les kinases en amont des ERKs. Toutefois, leur action se situe en amont des ERKs, ce qui résulte en une inhibition complète de leur activation, et par conséquent de tous les substrats en aval, sans discrimination entre ceux-ci et sans distinction de leur localisation cellulaire. Il serait donc utile de disposer d'inhibiteurs hautement sélectifs des ERKs agissant en aval, sur un ou plusieurs substrat(s) spécifique(s) soit cytoplasmique(s), soit nucléaire(s), et ce afin de minimiser, de préférence totalement éviter, tout effet connexe, voire pléiotrope. La présente invention fournit des peptides utiles comme inhibiteurs hautement sélectifs des MAP kinases de type ERK vis à vis de leurs substrats nucléaires ou cytoplasmiques.
Selon la présente invention, 'MAP kinase de type ERK' ou ERK désigne toute MAP kinase ERK. En particulier, ladite MAP kinase de type ERK peut être une MAP kinase mammifère, en particulier humaine, primate ou murine. Elle peut aussi être non mammifère (lamproie, zebrafish, C. Elegans, drosophile, xénope) Selon la présente invention, 'inhibiteur de ERKs' ou 'inhibiteur de MAP kinase de type ERK' désigne tout composé permettant d'inhiber la fonction kinase de ERK sur au moins un substrat donné.
Selon la présente invention, 'peptide' ou 'chaîne peptidique' désigne toute chaîne d'acides aminés. Ladite chaîne d'acides aminés comporte en général de 2 à 100 résidus, préférentiellement de 5 à 75 résidus, plus préférentiellement de 10 à 50 résidus. (Voir définition IUPAC, http://www.chem.qmul.ac.uk/iupac/AminoAcid/Al 113.html#AAl 1). De préférence, ladite chaîne contient 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ..., 50, ..., 100 résidus acides aminés.
Selon la présente invention, le terme 'acide aminé' ou 'résidu acide aminé' désigne tout résidu acide aminé connu de l'homme du métier (Voir par exemple : N. Sewald, H.-D. Jakubke, Peptides: Chemistry and Biology 2002, Wiley-VCH Verlag GmbH, Weinheim; nomenclature IUPAC http://www.chem.qmul.ac.uk/iupac/AmmoAcid/).
Ceci comprend les acides aminés naturels (incluant, par exemple, selon le code à trois lettres, AIa, bAla, Arg, Asn, Asp, Cys, GIn, Glu, GIy, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val), ainsi que des acides aminés rares et/ou synthétiques et leurs dérivés (incluant par exemple Aad, Abu, Acp, Ahe, Aib, Apm, Dbu, Des, Dpm, HyI, MeLys, MeVaI, Nva, HAO, NCap, Abu, Aib, MeXaa et similaires (Voir par exemple : J. S. Nowick, J. O. Brower, J. Am. Chem. Soc. 2003, 125, 876-877; R. Aurora, G. D. Rosé, Protein Science 1998, 7, 21-38; W. Maison, E. Arce, P. Renold, R. J. Kennedy, D. S. Kemp, J. Am. Chem. Soc. 2001, 123, 10245-10254; D. Obrecht, M. Altorfer, J. A. Robinson, Adv. Med. Chem. 1999, 4, 1-68; K. Millier, D. Obrecht, A. Knierzinger, C. Stankovic, C. Spiegler, W. Bannwarth, A. Trzeciak, G. Englert, A. M. Labhard,
P. Schônholzer in Perspectives in Médicinal Chemistry, (Eds.: B. Testa, E.
Kyburz, W. Fuhrer, R. Giger), Verlag HeIv. Chim. Acta, Basel, 1993, pp. 513-
533; F. Formaggio, A. Bettio, V. Moretto, M. Crisma, C. Toniolo, Q. B.
Broxterman, J. Peptide Sci. 2003, 9, 461-466).
Ledit résidu acide aminé ou son dérivé peut être tout isomère de celui-ci, en particulier tout isomère chiral, par exemple l'isoforme L- ou D-, et leurs mélanges. L'isoforme D- présente l'avantage d'une meilleure stabilité.
Par 'dérivé d'acide aminé', on désigne ici tout dérivé d'acide aminé, en particulier tout dérivé connu de l'homme du métier. (Voir par exemple : N.
Sewald, H.-D. Jakubke, Peptides: Chemistry and Biology 2002, Wiley-VCH
Verlag GmbH, Weinheim; nomenclature IUPAC http://www.chem.qmul.ac.uk/iupac/AminoAcid/).
Par exemple, les dérivés d'acides aminés incluent des résidus dérivables d'acides aminés naturels portant des chaînes latérales supplémentaires, par exemple des chaînes latérales alkyl, et/ou des substitutions d'hétéroatomes.
La notion de 'séquence d'acides aminés est connue de l'homme du métier. Une séquence d'acides aminés comprend au moins deux résidus liés de manière covalente par au moins une liaison peptidique.
Par la suite, les séquences d'acides aminés seront données en utilisant le code à une lettre.
Ledit peptide peut être obtenu par des procédés connus de l'homme du métier, par exemple ledit peptide peut être obtenu par des méthodes de synthèse, telle que la synthèse sur support solide ou la synthèse en solution (peptides de synthèse)/ ou dès techniques issues de la biologie - moléculaire (peptide recombinant).
La présente invention concerne un peptide comprenant:
- Au moins une séquence d'acides aminés permettant la pénétration dudit peptide dans une cellule ;
- Une séquence d'acides aminés d'adressage intracellulaire choisie parmi les NES ; - Optionnellement une séquence d'adressage intracellulaire choisie parmi les NLS ;
- Une séquence d'acides aminés correspondant à une séquence d'ancrage (« docking domain ») d'un substrat d'une MAP kinase de type ERK ;
- Optionnellement, au moins une séquence « espaceur » (spacer) ;
- Optionnellement une séquence de clivage enzymatique entourée ou non par des séquences espaceur.
Par 'séquence d'acides aminés permettant la pénétration dudit peptide dans une cellule', on désigne selon la présente invention toute séquence d'acides aminés facilitant et/ou médiant le transport dudit peptide de l'extérieur d'une cellule vers son intérieur. De telles séquences sont connues de l'homme du métier. Ladite séquence permettant la pénétration dudit peptide dans une cellule, peut être choisie selon le type cellulaire de ladite cellule, afin d'optimiser l'efficacité de pénétration.
Selon un mode de réalisation, ladite séquence permettant la pénétration dudit peptide dans une cellule a une longueur de 2 à 20 résidus, notamment 6, 7, 8, 9, ..., 17, 18, 19 ou 20 résidus.
Selon un mode de réalisation, ladite séquence permettant la pénétration dudit peptide dans une cellule est choisie parmi : la séquence du peptide pénétrant de HIV-TAT, la Pénétratine, une séquence de sept à onze arginine, une séquence dite « séquence X7/1 IR ».
Selon un mode de réalisation, ladite séquence permettant la pénétration dudit peptide dans une cellule est choisie parmi des séquences dérivées de la famille Vectocell® (Ou Diatos peptide Vectors f DPVs) telles que les séquences de pénétration décrites dans De Coupade et al., Biochem. J. (2005) 390, 407-418 et WO 01/64738.
Par « séquence X7/1 IR », on entend toute séquence peptidique de 7 à 25, préférentiellement 7 à 20 acides aminés contenant entre sept et onze résidus arginine (7/1 IR), dans laquelle les résidus arginine (R) peuvent être placés de façon aléatoire au sein de ladite séquence. Des exemples sont donnés plus bas, mais l'homme du métier est en mesure de décliner les autres possibilités. Selon un mode de réalisation, ladite séquence permettant la pénétration dudit peptide dans une cellule est choisie parmi :
Figure imgf000006_0001
(*) De Coupade et al., Biochem. J. (2005) 390, 407-418 et WO 01/64738.
La notion de NLS (« Nuclear Localizing, Signal », _signal de localisation nucléaire) est connue de l'homme du métier. Il s'agit généralement d'une séquence d'acides aminés permettant l'adressage d'une protéine donnée au noyau, via le phénomène d'import nucléaire.
Selon un mode de réalisation, ladite séquence NLS est une séquence riche en acides aminés basiques (Arginine ou Lysine).
Selon un mode de réalisation, ladite séquence NLS a une longueur de 2 à 20 résidus, notamment 6, 7, 8, 9, ..., 17, 18, 19 ou 20 résidus.
Selon un mode de réalisation, ladite séquence NLS est choisie parmi :
Figure imgf000007_0001
La notion de NES (« Nuclear Export Signal », signal d' export nucléaire) est connue de l'homme du métier. Ce sont généralement des séquences d'acides aminés médiant l'export nucléaire, résultant en une translocation d'une protéine donnée du noyau vers le cytoplasme.
Selon un mode de réalisation, ladite séquence NES a une longueur de 2 à 20 résidus, notamment 6, 7, 8, 9, ..., 10, 11, 12, ..., 17, 18, 19 ou 20 résidus. Selon un mode de réalisation, ladite séquence NES est choisie parmi :
Figure imgf000007_0002
Ladite séquence d'acides aminés correspondant à une séquence d'ancrage d'un substrat d'une MAP kinase de type ERK peut comprendre tout « docking domain » d'un substrat de ERK connu de l'homme du métier. La notion de « docking domain » est connue de l'homme du métier. Il s'agit généralement d'une portion du substrat d'une MAP kinase qui conditionne de manière spécifique l'interaction et/ou le recrutement entre ledit substrat et ladite MAP kinase. Il s'agit de tout ou une partie d'un site de liaison (« docking site ») dudit substrat pour ladite MAP kinase. La séquence dudit « docking domain » est donc spécifique et sélective pour une interaction donnée. Ainsi, avantageusement selon l'invention, chacune de ces séquences d'ancrage correspond à une portion (séquences d'acides aminés) d'un substrat des MAP kinases ERKs, portion qui conditionne de manière spécifique l'interaction et/ou le recrutement entre ledit substrat et ladite MAP kinase de type ERK.
Selon un mode de réalisation, ladite séquence d'acides aminés correspondant à une séquence d'ancrage d'un substrat d'une MAP kinase de type ERK peut comprendre seulement une partie d'un « docking domain » d'un substrat de
ERK. Ainsi, comme ladite séquence d'acides aminés correspondant à une séquence d'ancrage d'un substrat d'une MAP kinase de type ERK ne contient qu'une portion du « docking domain », il est possible d'obtenir une inhibition de plusieurs substrats donnés de ERK.
Selon un mode de réalisation de la présente invention, ladite séquence d'acides aminés correspondant à une séquence d'ancrage d'un substrat d'une MAP kinase de type ERK, a une longueur de 12-25 résidus, de préférence 13, 14, 15, 16, 17,
18, 19, 20 ,21, 22, 23 ou 24 résidus.
Selon un mode de réalisation, ladite séquence « docking domain» est choisie parmi les séquences « docking domain de type FXFP » et « docking domain de type D ».
Selon un mode de réalisation, ladite séquence « docking domain» a une longueur de 12-25 résidus, de préférence 13, 14, 15, 16, 17, 18, 19, 20 ,21, 22, 23 ou 24 résidus.
Optionnellement, selon un mode de réalisation ladite séquence pourra être réduite de façon à correspondre à la séquence minimale de type FXFP. Ainsi, selon un mode de réalisation, ladite séquence « docking domain» peut avoir une longueur de 3-11 résidus, par exemple 3, 4, 5, 6, 7, 8, 9, 10 ,11 résidus.
Par séquence « docking domain de type D », on entend ici toute séquence
« docking domain » de type D connue de l'homme du métier. Ceci inclut notamment les séquences d'acides aminés hydrophobes suivie d'une séquence d'amino acides basiques ; les séquences d'acides aminés hydrophobes suivi d'une séquence d'amino acides basiques et d'une séquence 'leucine X leucine'
(LXL) ; les séquences d'acides aminés basiques suivi de la séquence 'leucine X leucine' puis d'une séquence d'amino acides hydrophobes. Par séquence « docking domain de type FXFP », on entend ici toutes séquences « docking domain » de type FXFP connues de l'homme du métier. Ceci inclut notamment les séquences des domaines dits « FXFP » et les séquences Nter et Cter flanquantes correspondantes dudit substrat). Ceci inclut également des « docking domains » de type (F/Y)X(F/Y)P , i.e. de type :
- FXFP, ou
- FXYP, ou
- YXFP, ou
- YXYP, où F désigne phénylalanine (Phe), X désigne tout acide aminé (Xaa), Y désigne tyrosine, P désigne proline (Pro).
Selon un mode de réalisation, ladite séquence « docking domain » est choisie parmi :
SEQ ID Séquence « docking domain » Type du Substrat de
No : docking ERK domain
20 SPAKLSFQFPSGSAQVHI FXFP EIk-I
21 SPARLQGANTLFQFPSVLN FXFP Sap-1
22 SPARLQGPSTLFQFPTLLN FXFP Sap-2
23 MAVLDRGTSTTTVFNFPV FXFP MKP-I
24 PNPSPGQRDSRFSFPD FXFP KSR
25 SLTPTAAHSGSHLFGFPP FXFP GATA-2
26 KGRKPRDLELPLSPSLL D EIk-I
27 RSKKPKGLGLAPTLVI D Sap-1
28 KAKKPKGLEISAPPLLVL D Sap-2
29 SSILAQRRVRKLPSTTL D Rsk-1
30 RRSTLAQRRGIKKITSTAL D Rsk-2
31 SSNLAQRRGMKRLTSTRL D Rsk-3
32 KSRLARRRALAQAGRSRD D Mnk-1
33 QSKLAQRRQRASLSSATPV D Mnk-2
34 KAPLAKRRKMKKTSTSTE D Msk-1
35 RFSTIVRRRAKGAKGAG D MKP-I
Figure imgf000010_0001
Un même substrat peut parfois comporter plusieurs « docking domains » pour ERK. C'est le cas par exemple de EIk-I et MKP-I vis-à-vis de ERK. Dans ce cas l'une ou l'autre des séquences « docking domain » pourra être utilisée dans un peptide selon l'invention pour bloquer l'interaction ERK/Substrat. Alternativement l'utilisation conjointe de deux peptides selon l'invention, l'un des peptides contenant une séquence « docking domain », par exemple une séquence FXFP ; et l'autre peptide contenant une autre séquence « docking domain », par exemple une séquence D, permettra d'améliorer Pinhibition à des concentrations subliminaires.
Avantageusement selon l'invention, ledit peptide possède les propriétés suivantes : une fois mis en contact avec une cellule, grâce à ladite séquence d'acides aminés permettant la pénétration dudit peptide dans une cellule, le peptide selon l'invention entre dans ladite cellule. Par la suite, selon la nature de ladite séquence d'adressage intracellulaire, ledit peptide se localise soit dans le noyau (si NLS) soit dans le cytoplasme (si NES). Alternativement, en l'absence de séquence d'adressage intracellulaire supplémentaire, compte tenu de la teneur riche en acides aminés basiques de ladite séquence permettant la pénétration, cette dernière joue également le rôle de NLS, de sorte ledit peptide est localisé dans le noyau. Ainsi, selon la structure dudit peptide selon l'invention, celui-ci adopte avantageusement une localisation intracellulaire spécifique. Ladite séquence « docking domain » joue alors un rôle inhibiteur : elle permet avantageusement de mimer la présence dudit substrat vis-à-vis de la MAP kinase de type ERK5 résultant ainsi en une inhibition sélective et spécifique de l'interaction entre ERK et ledit substrat, et ceci, avec une localisation intracellulaire spécifique : selon les cas, l'inhibition est spécifique de l'interaction nucléaire, ou spécifique de l'interaction cytoplasmique, entre ERK et ledit substrat. Ainsi, avantageusement selon l'invention, l'inhibition résultante est spécifique non seulement du couple Substrat/ERK (du fait du « docking domain »), mais encore spécifique sur le plan de la localisation intracellulaire (inhibition sélective de l'interaction nucléaire, ou inhibition sélective de l'interaction cytoplasmique : inhibition différentielle spécifique). Ladite cellule est une cellule eucaryote, de préférence une cellule d'eucaryote supérieur, par exemple une cellule de mammifère ou une cellule humaine. Ce peut être une cellule en mitose ou une cellule quiescente (post-mitotique), par exemple une cellule neuronale.
Avantageusement selon l'invention, ladite séquence « spacer » optionnelle permet d'assurer une certaine flexibilité conformationnelle entre ladite séquence permettant la pénétration dudit peptide dans une cellule, et ladite séquence « docking domain ». Par exemple, ladite séquence « spacer » peut comprendre au moins un, de préférence plusieurs résidus proline, par exemple 2, 3, ou 4 résidus proline.
Par ailleurs, selon un mode de réalisation, ledit peptide peut comprendre un site de clivage enzymatique, permettant de séparer ladite séquence d'acides aminés de pénétration dudit peptide dans une cellule, du reste dudit peptide. Avantageusement selon l'invention, ledit peptide peut ainsi comprendre deux résidus cystéine consécutifs, permettant ainsi un clivage intracellulaire par la glutathion cytoplasmique (les ponts disùlïurés existant entre ces deux résidus sont coupés après pénétration dans la cellule). Tout autre site de clivage enzymatique, notamment par une protéase intracellulaire connu de l'homme de métier peut également être utilisé. Selon un mode de réalisation de l'invention, ledit site de clivage peut être un site de clivage par des cystéines-protéases de type caspase ou par la NSE (énolase spécifique des neurones). Selon un mode de réalisation, le peptide selon l'invention est couplé à au moins un fluorophore, de préférence de manière covalente. Ledit fluorophore peut être tout fluorophore connu de l'homme du métier. En particulier, ledit fluorophore peut être choisi parmi Fam, Hex, Tet, Joe, Rox, Tamra, Max, Edans, colorants Cy tels que Cy5, Cy2 ou Cy3, Fluorescein, Coumarin, Eosine, Rhodamine, Bodipy, Alexa, Cascade Blue, Yakima Yellow, Lucifer Yellow and Texas Red AMCA (marques déposées). Alternativement, ledit peptide peut être biotynilé et visualisé, indirectement, avec de l'avidine marquée avec les fluorophores décrits ci-dessus. Ledit peptide pourra également être couplé à un marqueur enzymatique, par exemple de type beta-galactosidase. Avantageusement selon l'invention lesdits fluorophores, biotine ou enzyme (beta-galactosidase par exemple) sont localisés en région C-terminale ou N-terminale du site d'ancrage dudit peptide de façon à pouvoir le localiser chez l'animal entier in vivo, sur une préparation de cellules, in vitro, aussi bien que sur une préparation de cellules fixées.
La présente invention concerne également un acide nucléique codant un peptide tel que décrit précédemment. Pour un peptide donné, l'homme du métier saura identifier quelle(s) séquence(s) d'acide nucléique code(nt) pour un tel peptide, en se basant sur le code génétique, ses dégénérescences, et l'adaptation des codons selon les espèces.
La présente invention concerne en outre un vecteur d'expression comprenant un acide nucléique codant un peptide tel que décrit ci-dessus. Selon un mode de réalisation, ledit vecteur d'expression est un vecteur d'expression eucaryote.
Ledit vecteur d'expression sera avantageusement adapté à un type cellulaire donné, selon l'utilisation à laquelle on destine le peptide selon l'invention. Ainsi, l'homme du métier saura concevoir un tervècteur. "Notamment, l'homme du- métier saura choisir entre un promoteur constitutif ou tissu-spécifique, permettant l'expression dudit peptide à partir dudit vecteur. En outre, ledit promoteur d'expression peut être choisi parmi les promoteurs constitutifs, les promoteurs inductibles, les promoteurs spécifiques, par exemple tissus- spécifiques.
Selon un mode de réalisation, ledit vecteur d'expression contient un promoteur de type nestine, afin de permettre l'expression précoce dudit peptide au cours du développement. Selon un autre mode de réalisation, ledit vecteur d'expression comprend au moins un promoteur tissu-spécifique, afin de permettre l'expression dudit peptide dans des tissus ciblés.
De plus, pour un tissu donné, l'expression dudit peptide pourra être restreinte à certaines régions dudit tissu, par exemple, certaine régions du cerveau :
Selon un mode de réalisation, ledit vecteur d'expression contient un promoteur de type CaMKII, afin d'obtenir une expression préférentielle dans l'hippocampe
(siège de la mémoire spatiale).
Selon un mode de réalisation, ledit vecteur d'expression contient un promoteur des récepteurs dopaminergiques de type Dl, afin d'obtenir une expression striatum spécifique (siège des processus addictifs).
Selon un mode de réalisation, ledit vecteur d'expression contient un promoteur
Tyrosine Hydroxylase pour une expression dans la substance noire compacte
(siège des processus dégénératifs dans la maladie de parkinson).
Selon un mode de réalisation, ledit vecteur d'expression contient en outre un promoteur inductible, par exemple un promoteur induit ou réprimé par la tétracycline (système TetOn, TetOff).
Ledit vecteur d'expression peut contenir une origine de réplication bactérienne permettant sa réplication dans des cellules hôtes bactériennes, typiquement E. coli.
Selon un mode de réalisation, ledit vecteur d'expression est conçu de manière à pouvoir être utilisé pour générer des animaux transgéniques, par exemple des murins transgéniques, qui exprimeront ledit peptide à des moments voulus dans un tissu donné, et au sein dudit tissu (par exemple dans le cerveau), dans une région donnée"
Selon un mode de réalisation, ledit vecteur d'expression est un vecteur viral.
Ledit vecteur viral peut être choisi dans le groupe des vecteurs rétroviraux, vecteur viraux canins, vecteurs lentiviraux. Ledit vecteur viral permet alors une expression tissu spécifique : un vecteur rétroviral permet de cibler préférentiellement les cellules en division ; un virus canin permet de cibler des cellules post-mitotiques de type neuronal ; un vecteur lentiviral peut s'intégrer au génome de la cellule hôte sans discrimination. Ledit vecteur viral peut également être utilisé dans le cadre d'une thérapie génique. La présente invention concerne également un kit contenant au moins un peptide tel que décrit précédemment et/ou au moins un vecteur ou acide nucléique codant pour des peptides tels que décrits ci-dessus. En outre, ledit kit peut contenir des témoins (positifs ou négatifs) sous forme de peptides ou de vecteurs, permettant de conduire des expériences témoins en parallèle des expériences impliquant au moins un peptide selon la présente invention. Par exemple, un peptide témoin négatif peut contenir une séquence 'brouillée' d'acides aminés. Ledit kit peut par ailleurs contenir une notice d'explication. Selon un mode de réalisation, ledit kit peut comporter au moins deux peptides différents selon l'invention. Lesdits peptides peuvent être destinés à inhiber l'interaction d'une MAP kinase de type ERK avec au moins deux substrats distincts, ou un seul et unique substrat. En effet, un même substrat peut parfois comporter plusieurs « docking domains » pour une même MAP kinase. C'est le cas par exemple de EIk-I et MKP-I vis-à-vis de ERK. Dans ce cas l'une ou l'autre des séquences « docking domain » pourra être utilisée dans un peptide selon l'invention pour bloquer l'interaction ERK/Substrat. Alternativement l'utilisation conjointe de deux peptides selon l'invention, l'un des peptides contenant une séquence « docking domain », par exemple une séquence FXFP ; et l'autre peptide contenant une autre séquence « docking domain », par exemple une séquence D, permettra d'améliorer l'inhibition à des concentrations subliminaires.
La présente invention concerne également l'utilisation d'un peptide tel que décrit précédemment comme inhibiteur in vitro ou in vivo~de l'activité de ladite MAP kinase de type ERK envers un substrat donné. Ce type d'utilisation couvre des domaines très variés, selon la nature du (des) substrat(s) de ladite MAP kinase de type ERK, le type cellulaire considéré, et le type de stimulation extracellulaire considérée.
Avantageusement, ledit peptide pourra être marqué, par exemple couplé à un marqueur (par exemple, fluorophore, biotine ou beta-galactosidase), et pourra ainsi être testé in vivo chez l'animal entier après injection par voie systémique ou intra-tissulaire. Après injection systémique, ledit peptide pourra être localisé dans les différents tissus, y compris dans le système nerveux central (la présence de ladite séquence permettant la pénétration, permettant le passage de la barrière hémato-encéphalique) grâce au marqueur couplé au peptide.
Ainsi, le peptide selon l'invention est utile dans l'étude de différents types de phénomènes, notamment en neurobiologie (étude du développement, de la plasticité neuronale, des processus addictifs) et cancérologie (régulation du cycle cellulaire).
Figure imgf000015_0001
Figure imgf000016_0001
Enfin, la présente invention concerne un mammifère transgénique non-humain, en particulier rongeur, capable d'exprimer au moins un peptide selon l'invention. En particulier, ledit mammifère non-humain peut par exemple être obtenu par transgénèse à l'aide d'un vecteur selon l'invention. L'homme du métier est familier des techniques de transgénèse et saurait obtenir un tel mammifère en utilisant ses connaissances générales (voir par exemple) http://www.inrp.fr/Acces/biotic/biomol/transgen/accueil.htm.
Les peptides selon la présente invention peuvent avoir la structure suivante : N-terminal C-terminal
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000018_0001
ou
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000020_0001
où :
« séquence pénétration » comprend au moins une séquence d'acides aminés permettant la pénétration dudit peptide dans une cellule ; « S » comprend ou correspond à une séquence optionnelle de type « spacer », par exemple deux prolines, ou un acide gamma aminobutyrique, permettant une flexibilité entre la séquence pénétrante et le peptide d'ancrage ;
« C » comprend ou correspond à un site de clivage enzymatique, permettant de libérer à l'intériexir de la cellule le peptide d'ancrage et sa séquence de localisation de la séquence pénétrante ; ce site de clivage peut comprendre ou non un spacer « S », placé en Cterm, Nterm, ou de part et d'autre du site de clivage. En d'autres termes, C se réfère à C tout seul, encadré par deux S ou « flanqué » par S du côté Cter ou Nter.
« adressage » comprend une séquence d'adressage intracellulaire de type NES ou NLS;
« docking domain » comprend la séquence d'acides aminés d'ancrage de type FXFP ou D d'un substrat donné de ERK.
Avantageusement selon l'invention, le site de clivage permet de séparer la séquence permettant la pénétration, qui se trouve à une des extrémités du peptide, du reste du peptide. Ceci est particulièrement intéressant lorsque la séquence d'adressage est une NES : la localisation du peptide est alors encore restreinte au cytoplasme.
Les avantages des peptides selon l'invention seront mieux compris, à la lecture des exemples non limitatifs suivants.
EXEMPLES
Exemple 1
Peptides selon l'invention
Les peptides suivants sont synthétisés par la méthode de synthèse en phase solide: Peptides Pl5 P2 et P3.
Peptides Pl et P2 : Inhibition de l'interaction entre EIk-I et ERK Peptide Pl (SEQ ID No :39)
GRKKRRQRRRCCZZ WOFLLHLLLDS? AKLSFQFPSGSAQVHI dans lequel :
- Séquence permettant la pénétration : GRKKRRQRRR (peptide pénétrant de HIV-TAT) (SEQ ID No :1)
- Site de clivage enzymatique: CC
- Séquence d'adressage : TLWQFLLHLLLD (NES de Net) (SEQ ID No :18)
- Séquence « docking domain »: SPAKLSFQFPSGSAOVHI fSEO ID No :20)
Pl pénètre dans les cellules et s'y localise dans le cytoplasme.
Peptide P2 (SEQ ID No :40) GRKKRRORRRPPSP AKLSFQFPSGSAOVHI dans lequel :
- Séquence permettant la pénétration : GRKKRRQRRR (SEQ ID No : 1)
- Séquence « spacer »: PP
- Séquence « docking domain »: SPAKLSFQFPSGSAOVHI (SEO ID No :20)
P2 pénètre dans les cellules et adopte une localisation nucléaire. Peptide P3 ; Inhibition de l'interaction entre MKP-3 et ERK
Peptide P3 (SEQ ID No :41)
GRKKRRORRRCCrxrOFZZHZZZ/JPGIMLRRLQKGNLPVRAL (SEQ ID No Al) dans lequel :
- Séquence permettant la pénétration : GRKKRRQRRR (SEQ ID No : 1) Site de clivage enzymatique: CC
- Séquence d'adressage : TLWQFLLHLLLD (NES de Net) (SEQ ID No :18)
- Séquence « docking domain »: PGIMLRRLQKGNLPVRAL (SEO ID No :36)
P3 pénètre dans les cellules et adopte une localisation cytoplasmique.
Exemple 2
Exemple de pénétration cellulaire et de localisation nucléaire d'un peptide selon l'invention
On utilise ici le peptide F2 selon l'invention (« peptide d'ancrage »): II possède la même séquence que le peptide P2 (voir exemple 1), et est couplé à la FITC
(fluorophore) à son extrémité C-terminale.
Il a donc la structure suivante :
[peptide pénétrant de HIV-TAT] - [spacer de type PP] - [« docking domain » de type FXFP du couple ERK/Elk-1] - [FITC]
Des cellules de type HEK293 sont mises en présence du peptide F2 à différentes concentrations (ImM solution stock dans de l'eau distillée, puis dilutions à 25,
50 et 100 μM dans le milieu de culture DMEM), pendant 15, 30 ou 60 minutes, de façon continue. Les noyaux cellulaires sont marqués à l'aide -de colorant
Hoechst (panneaux de gauche), et le peptide F2 est visualisé grâce au marqueur
FITC (panneaux du milieu). La figure 1 montre les résultats obtenus pour la concentration 100 μM en peptide F2, en fonction du temps. Les noyaux cellulaires marqués sont montrés sur les panneaux de gauche), le peptide F2 sur les panneaux du milieu et la superposition de ces deux marquages est représentée sur les panneaux de droite (panneaux notés fusion).
Le peptide F2 selon l'invention pénètre rapidement dans les cellules, et adopte une localisation nucléaire au bout de 30 minutes seulement. En l'absence de séquence d'adressage intracellulaire supplémentaire, compte tenu de la teneur riche en acides aminés basiques de la séquence de pénétration de HIV-TAT, cette dernière joue également le rôle de NLS, de sorte le peptide F2 est avantageusement localisé dans le noyau.
Le peptide F2 pénètre rapidement les cellules, puis adopte une localisation exclusivement nucléaire.
Exemple 3
Exemple de pénétration cellulaire et de localisation cytoplasmique d'un peptide selon l'invention
On utilise ici le peptide Fl selon l'invention (« peptide d'ancrage »): II possède la même séquence que le peptide Pl (voir exemple 1), et est couplé à la FITC
(fluorophore) à son extrémité C-terminale.
Il a donc la structure suivante :
[peptide pénétrant de HIV-TAT] - [site de clivage C-C] - [« docking domain » de type FXFP du couple ERK/Elk-1] - [FITC].
Des cellules de type HEK293 sont mises en présence du peptide Fl à différentes concentrations (ImM solution stock dans de l'eau distillée, puis dilutions à 25,
50 et 100 μM dans le milieu de culture DMEM) pendant 15, 30 ou 60 minutes, de façon continue. Les noyaux cellulaires sont marqués à l'aide de colorant
Hoechst, et le peptide Fl est visualisé grâce au marqueur FITC. La figure 2 montre les résultats obtenus pour la concentration 100 μM en peptide Fl, en fonction du temps.
Les noyaux cellulaires marqués sont montrés sur les panneaux de gauche), le peptide F2 sur les panneaux du milieu et la superposition de ces deux marquages est représentée sur les panneaux dë~drôitë (panneaux notésiusion).
Le peptide selon l'invention pénètre rapidement les cellules et adopte une localisation cytoplasmique.
Exemple 4
Caractérisation biochimique des effets inhibiteurs d'un peptide selon l'invention : P2 inhibe l'activation de EIk-I par le sérum dans des cellules mitotiques
On utilise ici le peptide P2 selon l'invention (voir exemple 1). Des cellules HEK ont été traitées comme indiqué à l'exemple 2 (figure 1) par le peptide P2 (40 minutes) suivie d'un traitement par du sérum (10%) pendant 20 minutes ou 5 minutes. Le sérum active la voie MAP kinase/ERK. L'activation de ERK est caractérisée par western blot à l'aide d'un anticorps anti P-ERK1/2, dirigé contre la forme phosphorylée (active) de ERK (anti rabbit Phospho Thr202-Tyr204 ERK, CeIl signaling, dilution 1/5000°) (figure 3, panneaux du haut). L'activation de EIk-I est visualisée par un anticorps anti P- EIk-I dirigé contre la forme phosphorylée de EIk-I (anti mouse Phospho Ser383 EIk-I, Santa-Cruz, dilution 1/200°), (figure 3, panneau du bas). Les protéines sont révélées à l'aide d'anticorps secondaires, anti-rabbit et anti-mouse, respectivement couplés à la horseradish peroxidase (Amersham, dilutions 1/5000°) et visualisées par chimioluminescence (Amersham, kit ECL). Des courbes dose-réponses ont été réalisées afin de déterminer la plus faible concentration de peptide efficace.
Avantageusement selon l'invention, l'induction de P-EIk-I par le sérum est totalement inhibée en présence du peptide P2 à 10 μM. Cette inhibition est absente à lμM de P2 (figure 3, panneau du bas). Les doses plus élevées (50 ; lOOμM) de peptide P2 se montrent également efficaces sur l'inhibition de EIk-I. Avantageusement selon l'invention, l'induction de P-ERK par le sérum n'est pas modifiée par le peptide P2 à lOμM.
Exemple 5
Spécificité de l'inhibition par un peptide selon l'invention :
La phosphorylation de EIk-I est inhibée par P2, mais pas par Pl
On utilise ici les peptides Pl et P2 selon l'invention (voir exemple 1).
Des cellules HEK sont mises ërf présence du peptide P2 (figure 4, panneaux du milieu) ou Pl (figure 4, panneaux de droite), à la concentration 10 μM pendant
40 minutes. Des cellules non traitées (sans peptide) sont utilisées comme témoins (figure 4, panneaux de gauche).
Les cellules sont ensuite traitées pendant 20 minutes à l'aide de sérum de veau fétal (sérum) afin d'activer la voie MAP kinase/ERK.
La présence de la forme activée de la MAP kinase ERK est visualisée par immunodétection à l'aide d'un anticorps anti-phospho ERK (anti rabbit Phospho
Thr202-Tyr204 ERK5 CeIl signaling, dilution 1/500° Remarque : les dilutions sont effectivement 10 fois plus faibles pour cette expérience par rapport aux western blots) et révélés par un anticorps secondaire fluorescent couplé au Cy3 (anti rabbit Cy3, Sigma, 1/2000°) (figure 4, 3 panneaux de la deuxième ligne notés P-ERK). On observe bien l'induction de P-ERK (figure 4, à titre d'exemple un marquage P-ERK est représenté par une étoile blanche, le noyau de cette cellule est signalé par une même étoile sur le panneau du haut correspondant au marquage Hoechst) quelles que soient les conditions de traitement.
La présence de la forme activée de EIk-I est visualisée par immunocytochimie à l'aide d'un anticorps anti phospho-Ser383 de EIk-I (anti mouse Phospho Ser383 EIk-I, Santa-Cruz, dilution 1/200°) et révélé à l'aide d'un anticorps secondaire anti mouse couplé au Cy3 (anti mouse Cy3, Jackson Immunoresearch, 1/600°) (figure 4, à titre d'exemple un marquage P-EIk- 1 est représenté par une étoile blanche, sur les panneaux de la quatrième ligne gauche et droite). Les noyaux correspondant sont visualisés par la même étoile sur les panneaux de la troisième ligne notés Hoechst.
On observe l'induction de P-EIk- 1 dans les compartiments cytoplasmiques et nucléaires en réponse au sérum (figure 4, panneaux de la quatrième ligne gauche), ainsi qu'en présence de sérum et du peptide Pl (figure 4, panneaux de la quatrième ligne droite).
On observe aussi l'absence d'induction de P-EIk- 1 dans les cellules prétraitées avec le peptide P2 (figure 4, panneaux de la quatrième ligne au milieu).
Exemple 6
Caractérisation biochimique des effets inhibiteurs d'un peptide selon l'invention : P2 inhibe l'activation de EIk-I dans les neurones en réponse à un neurotransmetteur excitateur, le glutamate
Des cultures primaires de neurones striataux (prélevés au stade embryonnaire
E 14 chez la souris) sont cultivés 7 jours in vitro dans un milieu neurobasal puis traités ou non avec le peptide P2 (5μM) pendant une heure. Le milieu de culture est ensuite renouvelé, les neurones sont alors incubés pendant 30 minutes dans un milieu sans peptide. Un neurotransmetteur excitateur, le glutamate (lOOμM) est alors ajouté pendant 20 minutes dans les puits d'incubation notés Glu20\ L'activation de ERK est caractérisée par western blot (Figure 5A) à l'aide de l'anticorps anti-phospho ERK comme indiqué à l'exemple 4 (dilution : 1/5000°). La révélation de la β-tubuline (anticorps monoclonal, Sigma, dilution 1/5000°) sur la même membrane, permet d'avoir un témoin de charge (Figure 5A).
L'immunofluorescence P-ERK (Figure 5B) est réalisée sur des neurones fixés à l'aide de paraformaldéhyde 2%, à l'aide du même anticorps (dilution 1/500°) révélé par un anticorps secondaire couplé au Cy3 (dilution 1/2000°) (Figure 5B).
Le peptide P2 ne bloque pas l'activation de ERK ni sa translocation nucléaire induites par le glutamate dans les neurones.
Immunoprécipitations (Figure 5C): des extraits neuronaux traités ou non avec le peptide P2 sont immunoprécipités à l'aide d'un anticorps anti-Elk-1 (Santa-
Cruz, 5μl par immunoprécipitation). L'interaction ERK/Elk-1 est révélée à partir de ces extraits immunoprécipités par western blot à l'aide d'un anticorps anti-
ERK (Santa-Cruz, dilution 1/5000°) (Figure 5C). Le peptide P2 interfère totalement avec l'interaction ERK/Elk-1 dans les conditions basales et sous traitement glutamate.
L'activation de EIk-I est visualisée par western blot à l'aide d'un anticorps anti- phospho-Ser383 -EIk-I comme indiqué à l'exemple 4 par western-blot (dilution
1/200° ) (Figure 5D).
L'activation de MSKl est visualisée par immunofluorescence à l'aide d'un anticorps anti phospho-Thr 581 MSKl (CeIl Signaling, dilution 1/750°) et révélé à l'aide d'un anticorps secondaire couplé au Cy3 (Figure 5E).
Le peptide P2 bloque l'activation de EIk-I induite par le glutamate sans altérer celle de MSKl.
Exemple 7
Pénétrabilité du peptide F2 in vivo, dans le cerveau.
Le peptide F2 (0.5μl d'une solution ImM) selon l'invention (voir exemple_iχest. injecté par voie intra-cérébrale dans le striatum de souris, à l'aide d'une micro- cannule. Après injection, la micro-cannule reste à demeure pendant une heure. Les souris sont euthanasiées par injection létale de pentobarbital puis perfusées par voie intracardiaque à l'aide de paraformaldéhyde (4%). Des coupes fines (30μM) sont réalisées à l'aide d'un vibratome. Le peptide F2 est visualisé à l'aide d'un filtre FITC (panneau de gauche), les noyaux sont colorés à l'aide de Hoechst (Panneau du milieu). Noter la pénétrabilité du peptide F2 dans la majorité des cellules. (Figure 6) Exemple 8
Effet du peptide F2 in vivo, dans le cerveau
Le peptide P2 (0.5μl d'une solution ImM) selon l'invention (voir exemple 1) est injecté par voie intrastriatale comme indiqué Exemple 7. Dans ce cas, un seul hémisphère reçoit le peptide P2, l'autre hémisphère reçoit une solution saline. Après une heure, de la cocaïne (20mg/kg) est administrée par voie intrapéritonéale. L'euthanasie, la perfusion intracardiaque et la coupe des cerveaux sont réalisées, 10 minutes après l'administration de cocaïne, comme indiqués dans l'exemple 7. Les activations de ERK et de EIk-I induites dans le striatum par la cocaïne sont visualisées sur la même coupe par double immuno- histofluorescence, à l'aide de l'anticorps anti phospho-ERK mentionnés dans les exemples précédents (dilution 1/400°) et d'un anticorps anti phospho-Elk-1 monoclonal (Santa Cruz, 1/100°). L'activation de ERK est révélée par un anticorps anti-rabbit secondaire couplé au Cy3 (Amersham, 1/500°), celle de EIk-I par un anticorps anti mouse secondaire couplé au FITC (Sigma, 1/100°). Noter que l'activation de ERK et EIk-I a lieu dans les mêmes cellules en absence de peptide (Figure 7, panneau du haut, étoiles blanches) et que du côté ayant reçu le peptide P2, seule l'activation de ERK est détectable (Figure 7, panneau du bas).

Claims

Revendications
1. Peptide comprenant:
- Au moins une séquence d'acides aminés permettant la pénétration dudit peptide dans une cellule ;
- Optionnellement, une séquence d'acides aminés d'adressage intracellulaire choisie parmi les NES ;
- Optionnellement une séquence d'adressage intracellulaire choisie parmi les NLS ;
- Une séquence d'acides aminés correspondant à une séquence d'ancrage (« docking domain ») d'un substrat d'une MAP kinase de type ERK;
- Optionnellement, au moins une séquence « spacer » ;
- Optionnellement une séquence de clivage enzymatique entourée ou non par des séquences espaceurs.
2. Peptide selon la revendication 1, tel que ladite séquence d'ancrage est choisie parmi les domaines D ou FXFP des substrats des MAP kinases de type ERK.
3. Peptide selon l'une quelconque des revendications 1 et 2, tel que ladite séquence permettant la pénétration dudit peptide dans une cellule, est choisie parmi les séquences d'un peptide pénétrant de HIV-TAT, de la Pénétratine, et les séquences 7/1 IR ou X7/1 IR.
4. Peptide selon l'une quelconque des revendications 1 à 3, couplé à un fluorophore, de préférence de manière covalente ou à une enzyme telle que la bêta-galactosidase, ou biotmylé.
5. Acide nucléique codant un peptide selon l'une quelconque des revendications 1 à 3.
6. Vecteur d'expression comprenant un acide nucléique selon la revendication 5.
7. Kit contenant au moins un peptide selon l'une quelconque des revendications 1 à 4 et/ou au moins un vecteur d'expression selon la revendication 6.
8. Utilisation d'un peptide selon l'une quelconque des revendications 1 à 4 comme inhibiteur in vivo ou in vitro de l'activité de ladite MAP kinase de type ERK envers un substrat donné dans un compartiment cellulaire donné.
9. Mammifère transgénique non-humain, en particulier rongeur, capable d'exprimer au moins un peptide selon l'une quelconque des revendications 1 à 4, qui peut par exemple être obtenu par transgénèse à l'aide d'un vecteur selon la revendication 6.
PCT/EP2006/002068 2005-02-17 2006-02-16 Peptides inhibiteurs intracellulaires et animaux transgeniques les exprimant WO2006087242A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007555557A JP5612248B2 (ja) 2005-02-17 2006-02-16 インヒビターペプチド
US11/815,185 US20090215680A1 (en) 2005-02-17 2006-02-16 Inhibitor peptides
CA2597020A CA2597020C (fr) 2005-02-17 2006-02-16 Peptides utiles comme inhibiteurs specifiques des voies map kinases de type erk
US15/049,825 US10494410B2 (en) 2005-02-17 2016-02-22 Inhibitor Peptides of ERK-type MAP kinase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05290363A EP1693458A1 (fr) 2005-02-17 2005-02-17 Peptides inhibiteurs intracellulaires
EP05290363.0 2005-02-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/815,185 A-371-Of-International US20090215680A1 (en) 2005-02-17 2006-02-16 Inhibitor peptides
US15/049,825 Division US10494410B2 (en) 2005-02-17 2016-02-22 Inhibitor Peptides of ERK-type MAP kinase

Publications (2)

Publication Number Publication Date
WO2006087242A2 true WO2006087242A2 (fr) 2006-08-24
WO2006087242A3 WO2006087242A3 (fr) 2007-10-11

Family

ID=35697129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002068 WO2006087242A2 (fr) 2005-02-17 2006-02-16 Peptides inhibiteurs intracellulaires et animaux transgeniques les exprimant

Country Status (6)

Country Link
US (2) US20090215680A1 (fr)
EP (2) EP1693458A1 (fr)
JP (1) JP5612248B2 (fr)
CA (1) CA2597020C (fr)
DK (1) DK1988167T3 (fr)
WO (1) WO2006087242A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172209A1 (fr) 2008-10-03 2010-04-07 Universite Pierre Et Marie Curie Traitement des troubles de l'humeur et de l'angoisse
US10053502B2 (en) 2014-04-08 2018-08-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Selective inhibitors of c-Fos and their antiproliferative properties
WO2019102201A1 (fr) * 2017-11-24 2019-05-31 University College Cardiff Consultants Ltd Peptide neuroprotecteur
WO2022269093A1 (fr) * 2021-06-25 2022-12-29 Melkin Pharmaceuticals Nouveaux inhibiteurs de phosphorylation de elk-1 par erk1/2

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144481A2 (fr) * 2008-05-30 2009-12-03 Isis Innovation Limited Conjugués pour la délivrance de composés biologiquement actifs
EP2596026B1 (fr) 2010-07-23 2020-04-08 Trustees of Boston University Inhibiteurs anti-despr comme agents thérapeutiques pour l'inhibition de l'angiogenèse pathologique et de l'invasivité des cellules tumorales et pour l'imagerie moléculaire et l'administration ciblée
WO2012016963A1 (fr) 2010-08-02 2012-02-09 Fondazione Centro San Raffaele Del Monte Tabor Peptides pour le traitement de maladies cérébrales
US9139829B2 (en) * 2012-02-28 2015-09-22 Medical Diagnostic Laboratories, Llc SiRNA targeting ETS1 and ELK1 and method of using same in the inhibition of CIP2A gene in cancer treatment
US10054589B2 (en) * 2013-02-12 2018-08-21 National Jewish Health Methods to identify and treat subjects having corticosteroid-resistant asthma
CA2995716A1 (fr) 2015-08-24 2017-03-02 Trustees Of Boston University Traitement cible par anticorps monoclonal anti-despr et imagerie pour cancer et avc
CN111356475A (zh) 2017-09-18 2020-06-30 波士顿大学董事会 用于治疗NETosis和中性粒细胞激活的方法
WO2019241609A1 (fr) * 2018-06-15 2019-12-19 Trustees Of Boston University Compositions polypeptidiques et procédés de ciblage spécifique à un site d'agents thérapeutiques
US11584792B2 (en) 2020-10-15 2023-02-21 Trustees Of Boston University Antibody therapies and methods for treating coronavirus infection
FR3124510A1 (fr) 2021-06-25 2022-12-30 Melkin Pharmaceuticals Nouveaux inhibiteurs de phosphorylation de Fos par ERK1/2

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004686A1 (fr) * 1992-08-21 1994-03-03 Biogen, Inc. Polypeptides de transport derives de la proteine tat
WO1998052614A2 (fr) * 1997-05-21 1998-11-26 The Board Of Trustees Of The Leland Stanford Junior University Composition et procede permettant d'ameliorer les transports a travers des membranes biologiques
WO2000062067A1 (fr) * 1999-02-28 2000-10-19 Washington University Nouvelles molecules de transduction et leurs procedes d'utilisation
WO2002039947A2 (fr) * 2000-11-20 2002-05-23 Centre National De La Recherche Scientifique (Cnrs) Vecteurs de transport a travers un epithelium a jonctions serrees
WO2003012068A2 (fr) * 2001-08-01 2003-02-13 Cellomics, Inc. Nouvelles proteines de fusion et analyses de detection de liaisons moleculaires
WO2004068139A2 (fr) * 2003-01-10 2004-08-12 The Regents Of The University Of California Perfectionnement de l'efficacite catalytique et/ou de la specificite de substrats non naturels d'enzymes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589480A (en) 1994-08-17 1996-12-31 Elkhoury; George F. Topical application of opioid analgesic drugs such as morphine
JP3871713B2 (ja) * 1995-05-10 2007-01-24 協和醗酵工業株式会社 新規毒素複合体
AUPQ776100A0 (en) * 2000-05-26 2000-06-15 Australian National University, The Synthetic molecules and uses therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004686A1 (fr) * 1992-08-21 1994-03-03 Biogen, Inc. Polypeptides de transport derives de la proteine tat
WO1998052614A2 (fr) * 1997-05-21 1998-11-26 The Board Of Trustees Of The Leland Stanford Junior University Composition et procede permettant d'ameliorer les transports a travers des membranes biologiques
WO2000062067A1 (fr) * 1999-02-28 2000-10-19 Washington University Nouvelles molecules de transduction et leurs procedes d'utilisation
WO2002039947A2 (fr) * 2000-11-20 2002-05-23 Centre National De La Recherche Scientifique (Cnrs) Vecteurs de transport a travers un epithelium a jonctions serrees
WO2003012068A2 (fr) * 2001-08-01 2003-02-13 Cellomics, Inc. Nouvelles proteines de fusion et analyses de detection de liaisons moleculaires
WO2004068139A2 (fr) * 2003-01-10 2004-08-12 The Regents Of The University Of California Perfectionnement de l'efficacite catalytique et/ou de la specificite de substrats non naturels d'enzymes

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BARDWELL A J ET AL: "Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity" BIOCHEMICAL JOURNAL 15 MAR 2003 UNITED KINGDOM, vol. 370, no. 3, 15 mars 2003 (2003-03-15), pages 1077-1085, XP002366352 ISSN: 0264-6021 *
BONNY C ET AL: "Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death" DIABETES, NEW YORK, NY, US, vol. 50, no. 1, janvier 2001 (2001-01), pages 77-82, XP002172261 ISSN: 0012-1797 *
FISCHER P M ET AL: "STRUCTURE-ACTIVITY RELATIONSHIP OF TRUNCATED AND SUBSTITUTED ANALOGUES OF THE INTRACELLULAR DELIVERY VECTOR PENETRATIN" JOURNAL OF PEPTIDE RESEARCH, BLACKWELL PUBLISHING LTD., OXFORD, GB, vol. 55, no. 2, février 2000 (2000-02), pages 163-172, XP000899124 ISSN: 1397-002X *
HALL D J ET AL: "Transduction of a dominant-negative H-Ras into human eosinophils attenuates extracellular signal-regulated kinase activation and interleukin-5-mediated cell viability." BLOOD, vol. 98, no. 7, 1 octobre 2001 (2001-10-01), pages 2014-2021, XP002366349 ISSN: 0006-4971 *
MANN D A ET AL: "ENDOCYTOSIS AND TARGETING OF EXOGENOUS HIV-1 TAT PROTEIN" EMBO JOURNAL, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 10, no. 7, 1991, pages 1733-1739, XP001205687 ISSN: 0261-4189 *
MYOU SHIGEHARU ET AL: "Blockade of focal clustering and active conformation in beta 2-integrin-mediated adhesion of eosinophils to intercellular adhesion molecule-1 caused by transduction of HIV TAT-dominant negative Ras." JOURNAL OF IMMUNOLOGY, vol. 169, no. 5, 1 septembre 2002 (2002-09-01), pages 2670-2676, XP002366350 ISSN: 0022-1767 *
NORI A ET AL: "Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells" BIOCONJUGATE CHEMISTRY, ACS, WASHINGTON, DC, US, vol. 14, no. 1, 2003, pages 44-50, XP002347558 ISSN: 1043-1802 *
POUYSSEGUR J ET AL: "Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling" BIOCHEMICAL PHARMACOLOGY 01 SEP 2002 UNITED STATES, vol. 64, no. 5-6, 1 septembre 2002 (2002-09-01), pages 755-763, XP002366351 ISSN: 0006-2952 *
SCHWARZE S ET AL: "In vivo protein transduction: delivery of a biologically active protein into the mouse" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 285, no. 5433, 3 septembre 1999 (1999-09-03), pages 1569-1572, XP002140133 ISSN: 0036-8075 *
VINCENT THIZEAU ET LOUIS-MARIE HOUDEBINE: "Transgenèse animale Les techniques de transfert de gènes chez les animaux"[Online] 14 août 2001 (2001-08-14), XP002445797 Extrait de l'Internet: URL:http://www.inrp.fr/Acces/biotic/biomol /transgen/html/transan.htm> [extrait le 2007-08-07] cité dans la demande *
WATANABE NOBUO ET AL: "Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 28 MAR 2003, vol. 303, no. 1, 28 mars 2003 (2003-03-28), pages 287-293, XP002366348 ISSN: 0006-291X *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172209A1 (fr) 2008-10-03 2010-04-07 Universite Pierre Et Marie Curie Traitement des troubles de l'humeur et de l'angoisse
US8513195B2 (en) 2008-10-03 2013-08-20 Universite Pierre Et Marie Curie Treatment of mood and anxiety disorders
US10053502B2 (en) 2014-04-08 2018-08-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Selective inhibitors of c-Fos and their antiproliferative properties
WO2019102201A1 (fr) * 2017-11-24 2019-05-31 University College Cardiff Consultants Ltd Peptide neuroprotecteur
US11471502B2 (en) 2017-11-24 2022-10-18 University College Cardiff Consultants Ltd Neuroprotective peptide
AU2018372065B2 (en) * 2017-11-24 2023-08-17 University College Cardiff Consultants Ltd Neuroprotective peptide
WO2022269093A1 (fr) * 2021-06-25 2022-12-29 Melkin Pharmaceuticals Nouveaux inhibiteurs de phosphorylation de elk-1 par erk1/2
FR3124509A1 (fr) * 2021-06-25 2022-12-30 Melkin Pharmaceuticals Nouveaux inhibiteurs de phosphorylation de Elk-1 par ERK1/2

Also Published As

Publication number Publication date
CA2597020C (fr) 2016-08-23
EP1988167B1 (fr) 2020-04-01
WO2006087242A3 (fr) 2007-10-11
US20160244493A1 (en) 2016-08-25
EP1988167A2 (fr) 2008-11-05
DK1988167T3 (da) 2020-07-13
EP1988167A3 (fr) 2009-02-18
EP1693458A1 (fr) 2006-08-23
US20090215680A1 (en) 2009-08-27
JP5612248B2 (ja) 2014-10-22
US10494410B2 (en) 2019-12-03
JP2008529543A (ja) 2008-08-07
CA2597020A1 (fr) 2006-08-24

Similar Documents

Publication Publication Date Title
CA2597020C (fr) Peptides utiles comme inhibiteurs specifiques des voies map kinases de type erk
Li et al. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases
Wright et al. Brain renin-angiotensin—a new look at an old system
ES2696598T3 (es) Compuestos de balanol para su uso en el tratamiento de dolor
JP5736421B2 (ja) 生理学的過程の調節およびこれに有用な薬剤
US9932621B2 (en) Modulators for Sirt5 and assays for screening same
KR20090038478A (ko) 세포 성장 자극, 시냅스 리모델링 및 장기간 기억 강화 방법
CN112225819A (zh) 肽导向的蛋白敲低
JP2012504619A (ja) 肥満および糖尿病の有望な治療薬としてのグレリンo−アシルトランスフェラーゼ阻害剤の合成方法および使用方法
JP2024138492A (ja) パーキンソン病の処置の為のpde11又はpde2阻害剤の使用
US20090176714A1 (en) METHOD OF REDUCING THE EFFECTS OF ABeta AND COMPOSITIONS THEREFORE
US11505574B2 (en) Modulation of P53 for the treatment of cancer
US20050261179A1 (en) Vasoregulating compounds and methods of their use
US20140357572A1 (en) Neurotrophic peptides for the treatment of tauopathies
IL310026A (en) Inhibitors and methods of using them
AU2017214761A1 (en) Proteinaceous compounds and uses therefor
KR20220155367A (ko) MS 치료를 위한 카파 오피오이드 수용체(kappa opioid receptor) 리간드와 조합된 사이클로타이드(cyclotide)
Fores-Pons On the role of the balance of G protein-coupled receptor (GPCR) homo and heteroreceptor complexes and their integration of signals in neurons and astroglia. Relevance for brain disorders
CN117881687A (zh) 多肽抑制剂及其用途
JPWO2007105442A1 (ja) 摂食障害または摂水障害の治療薬
Schorova Investigating the molecular pathways driving the sumoylation/desumoylation balance in rat hippocampal synapses
WO2021028404A1 (fr) Peptides derives de la sortiline
Hejjaoui Elucidating the role of post-translational modifications of alpha-synuclein using semisynthesis: phosphorylation at Tyrosine 125 and monoubiquitination at Lysine 6
Cero Mechanisms of the pro-lipolytic and anti-obesity effects of the VGF-derived peptide TLQP-21
Dasiewicz Cardiovascular and myotropic actions of bradykinin and angiotensin II in the little skate, Leucoraja erinacea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2597020

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007555557

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06707444

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 6707444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815185

Country of ref document: US