WO2006085449A1 - Coating film for optical compensation, and optical element - Google Patents

Coating film for optical compensation, and optical element Download PDF

Info

Publication number
WO2006085449A1
WO2006085449A1 PCT/JP2006/301496 JP2006301496W WO2006085449A1 WO 2006085449 A1 WO2006085449 A1 WO 2006085449A1 JP 2006301496 W JP2006301496 W JP 2006301496W WO 2006085449 A1 WO2006085449 A1 WO 2006085449A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
optical compensation
coating film
cellulose
group
Prior art date
Application number
PCT/JP2006/301496
Other languages
French (fr)
Japanese (ja)
Inventor
Michinori Tsukamoto
Yasuhiro Sekiguchi
Tomoki Hiiro
Sadao Fujii
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005036958A external-priority patent/JP2006221116A/en
Priority claimed from JP2005039873A external-priority patent/JP2006227222A/en
Priority claimed from JP2005141980A external-priority patent/JP2006317813A/en
Priority claimed from JP2006009344A external-priority patent/JP4772515B2/en
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2006085449A1 publication Critical patent/WO2006085449A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Definitions

  • the present invention relates to an optical compensation coating film for performing optical compensation of retardation by a liquid crystal cell or the like, an optical compensation coating film-forming coating solution suitable for forming the coating film, and the optical compensation
  • the present invention relates to a method for forming a coating film.
  • the present invention relates to a retardation adjusting agent, an optical compensation coating film containing the retardation adjusting agent, and a coating liquid for forming the optical compensation coating film.
  • the present invention relates to an optical element manufactured using them and a method for manufacturing the optical element.
  • the present invention relates to an optical compensation film (retardation film), a polarizing plate provided with the optical compensation film, and a liquid crystal display device.
  • a phase difference film for optical compensation is used in order to increase the viewing angle by compensating for the phase difference due to birefringence of a liquid crystal cell, a polarizing plate, and other liquid crystal display device constituent films.
  • a retardation film for example, a polymer such as polycarbonate, polyester, polystyrene, polyamide, polyimide, and polyethersulfone is subjected to a solution casting method, a uniaxial stretching method after a solution casting, and a drying after solution casting. And a biaxial stretching method, extrusion method, uniaxial stretching method of extruded product, biaxial stretching method of extruded product, calendar method, etc.
  • Such a retardation film is a film having a positive intrinsic birefringence value such as polycarbonate, polystyrene, etc. according to the applied liquid crystal cell, polarizing plate, other liquid crystal display device constituting film, etc.
  • a positive intrinsic birefringence value such as polycarbonate, polystyrene, etc.
  • One to several films with material strength having a negative intrinsic birefringence value such as the above are used separately. In order to use these films, first, a complicated film forming process is required for film formation, and it is also necessary to attach these films to liquid crystal display device components.
  • a retardation layer has been proposed by forming a thin film by coating (for example, see Patent Document 3).
  • those having optical properties of n> n ⁇ n in other words, (( n + n) / 2-nzxvxyz
  • Patent Document 1 JP-A-3-33719
  • Patent Document 2 Japanese Patent Laid-Open No. 11-248939
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-290023
  • Patent Document 4 JP-A-7-13022
  • An object of the present invention is to provide an optical compensation coating film at low cost without requiring a complicated film forming step. Furthermore, it provides an optical compensation coating film having the characteristics of [(n + n) / 2 ⁇ n] X d 0 at low cost, and has the characteristics without the need for film sticking or the like. It is to provide an optical element.
  • the present inventors have intensively studied and formed a cellulose N-substituted carbamate or any one of aromatic vinyl polymers.
  • the present inventors have found that the above-mentioned problems can be solved by an optical compensation coating film characterized by the above, and have reached the present invention.
  • the present invention relates to a coating film for optical compensation characterized by comprising a polymer of either cellulose N-substituted carbamate or aromatic bulle polymer.
  • the present invention relates to a coating film for optical compensation characterized by satisfying the relationship 1 ⁇ 0.
  • the cellulose N-substituted carbamate in the cellulose N-substituted carbamate, at least one of hydroxyl groups of cellulose is N-substituted carbamate, and at least one of hydrogen atoms bonded to a nitrogen atom of the cellulose strength carbamate is It is substituted with a group selected from the following general formulas (1) to (3), and the plurality of N-substituents are the same or different and are the following general formulas (1) to (3)
  • the present invention relates to a coating film for optical compensation, which is a compound.
  • R 4 and R 5 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or carbon.
  • R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • R 13 , R ′′, R 15 , R ln , R ′′, R 18 , R 19 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
  • the embodiment contains at least one selected from the group consisting of aromatic vinyl polymers such as poly (1-burnaphthalene), poly (2-burnaphthalene) and poly (4-birubiphthal). It is related with the coating film for optical compensation characterized by these.
  • Preferred embodiment is characterized in that it is formed containing a phase difference adjusting agent.
  • the present invention relates to a coating film for optical compensation.
  • the embodiment contains a phase difference adjusting agent for cellulose N-substituted carmate comprising at least one selected from force rubamic acid ester, N-substituted force rubamic acid ester, urea, and N-substituted urea force.
  • the present invention relates to an optical compensation coating film.
  • Preferred embodiments include ethyl carnomate, phenyl carnomate, N-phenyl carbamate, N phenyl carbamate, N- (4-tolyl) carbamate, N— (4-Tolyl) strength rubamate, urea, N, N, —diphenyl urea, N, N, —di-p-trilylurea, N—phenol—N '-(p-tolyl)
  • the present invention relates to a coating film for optical compensation, comprising a retardation adjusting agent for cellulose N-substituted carnomate, which has at least one force selected from the group of urea.
  • the present invention relates to a coating solution for forming an optical compensation coating film formed by containing the following (A) and (B).
  • the coating film for forming an optical compensation coating film is characterized by comprising (A) and (B), and further comprising (C) a retardation adjusting agent. Concerning the working fluid.
  • the present invention relates to a coating solution for forming a coating film for optical compensation, which is a phase difference adjusting agent for use in optical compensation.
  • Preferred embodiments include: (C) Retardation adjusting agent strength rubyl ethamine, force rubamate phenyl, N-phenol carbamic acid, N-phenol carbamic acid, N- ( 4-tolyl) -force rubamate, N— (4-tolyl) -force rubamate, urea, N, N, -diphenylurea, N, N, —di-p-tolylurea, N—phenol-N
  • the present invention relates to a coating solution for forming an optical compensation coating film, which is a retardation adjusting agent for cellulose N-substituted carbamate, comprising at least one selected from the group of, (p-tri) urea.
  • the present invention provides a rubamic acid ester, N-substituted rubamic acid ester, urea, N
  • the present invention relates to a retardation adjusting agent for cellulose N-substituted carbamate, characterized by comprising at least one selected from substituted urea.
  • Preferred embodiments include ethyl carnomate, phenyl carnomate, N-phenyl carbamate, N phenol carbamate, N- (4-tolyl) carbamate, N- Of (4-tolyl) force rubamate, urea, N, N, —diphenyl urea, N, N, —di-p-tolylurea, N—phenol—N ′-(ptolyl) urea
  • the present invention relates to a phase difference adjusting agent for cellulose N-substituted carnomate characterized by having at least one force selected from the group.
  • the present invention relates to a method for forming an optical compensation coating film, wherein the coating liquid is coated on a substrate to form a coated substrate, and then the coated substrate is dried.
  • the above-mentioned coated substrate is first dried at a temperature in the range of a lower limit of 0 ° C and an upper limit of 40 ° C, and then the coated substrate is further reduced to a lower limit of 80 ° C and an upper limit of 300
  • the present invention relates to a method for forming a coating film for optical compensation, characterized by secondary drying at ° C.
  • the present invention is characterized in that after the coating liquid is applied to a substrate to form a coated substrate, the coating film is annealed by exposure to the vapor of component (B) and further dried.
  • the present invention relates to a method for forming an optical compensation coating film.
  • the present invention relates to a method for manufacturing an optical element characterized by using the above-described forming method.
  • the present invention relates to an optical element manufactured using the above manufacturing method.
  • the present invention relates to an optical compensation film manufactured using the above-described forming method.
  • the present invention relates to a polarizing plate characterized in that the above optical compensation film is mounted as a polarizer protective film on at least one surface of a polarizer.
  • the present invention relates to a liquid crystal display device provided with the above optical compensation film.
  • the present invention relates to a liquid crystal display device provided with the above polarizing plate.
  • the optical compensation coating film of the present invention When the optical compensation coating film of the present invention is used, a complicated film forming process or film pasting is performed. In particular, an optical element having an optical compensation layer of [(n + 11) 72-11] (1 ⁇ 0 can be produced. Using the method of forming a film, the value represented by (n + n) / 2-n is negative, and a coating film for optical compensation having a larger absolute value can be formed. Since the device can be manufactured, it is extremely useful industrially.
  • the present invention is a coating film for optical compensation characterized by comprising a polymer of cellulose N-substituted carbamate or an aromatic vinyl polymer.
  • cellulose N-substituted carbamate of the present invention at least one hydroxyl group of cellulose is N-substituted carbamate, and at least one hydrogen atom bonded to a nitrogen atom of the cellulose carbamate is represented by the following general formula. It is a compound that is substituted with a group selected from (1) to (3), and a plurality of N-substituents are the same or different and have the following general formulas (1) to (3)
  • An optical compensation coating film characterized by
  • R 5 is the same or different and is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • R 13 , R ′′, R 15 , R ln , R ′′, R 18 and R 19 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
  • the cellulose N-substituted carbamate in the present invention (hereinafter sometimes referred to as component (A)) is, for example, cellulose obtained from various wood pulp, cotton linter, cotton lint, etc. It can be produced by a known method of reacting an isocyanate compound in the presence of a base catalyst such as triethylamine.
  • the base catalyst can also be used as a solvent.
  • amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide can be suitably used.
  • an inorganic salt such as lithium chloride can be added to improve the solubility of cellulose in a solvent.
  • isocyanate compounds include the following general formulas (4) to (4) The compound represented by (6) is mentioned.
  • R ° and R z R z R z are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • Alkyl halide group, aryl group having 6 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, and acyloxy group having 1 to 21 carbon atoms Represents a halogen atom or a nitro group.
  • R 25 , R 2 °, R 29 , R 3 °, 1 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms. Group, a C1-C21 acyloxy group, a halogen atom, and a nitro group.
  • R 32 , R 33 , R 34 , R 35 , R 37 and R 38 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or 1 to 21 carbon atoms. Represents an acyloxy group, a halogen atom or a nitro group.
  • R 2 °, R 21 , R 22 , R 23 , R 24 may be the same or different and each is a hydrogen atom or an alkyl having 1 to 16 carbon atoms.
  • alkoxy group having 1 to 16 carbon atoms halogenated alkyl group having 1 to 16 carbon atoms, aryl group having 6 to 16 carbon atoms, aryloxy group having 6 to 16 carbon atoms, aralkyl group having 7 to 16 carbon atoms, carbon
  • An isocyanate compound represented by the general formula (4) which is an aralkyloxy group having 7 to 16 carbon atoms, an acyloxy group having 1 to 17 carbon atoms, a halogen atom, or a nitro group, is reacted, and at least one hydroxyl group of the cellulose is N-substituted carbamate cellulose N-substituted carbamate is preferably used.
  • R 25 , R 26 , R 27 , R 28 , R 29 , R 3 °, R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are the same or different,
  • cellulose N-substituted carbamate in which isocyanate compounds represented by the general formulas (5) and (6) are reacted and at least one of hydroxyl groups of the cellulose is N-substituted carbamate.
  • R 2 °, R 21 , R 22 , R 23 , R 24 are the same or different and are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen having 1 to 12 carbon atoms.
  • Alkyl group aryl group having 6 to 12 carbon atoms, aryloxy group having 6 to 12 carbon atoms, aralkyl group having 7 to 12 carbon atoms, aralkyloxy group having 7 to 12 carbon atoms, acyloxy group having 1 to 13 carbon atoms, halogen It is more preferable to use a cellulose N-substituted carbamate in which an isocyanate compound represented by the general formula (4), which is an atom or a nitro group, is reacted and at least one hydroxyl group of the cellulose is N-substituted carbamate.
  • an isocyanate compound represented by the general formula (4) which is an atom or a nitro group
  • R 25 , R 26 , R 30 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are the same or different and are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or 1 to 12 carbon atoms.
  • isocyanate compounds represented by the general formulas (4) to (6) include phenyl isocyanate, o tolyl isocyanate, m-tolyl isocyanate, p tolyl isocyanate, 2 ethyl phenyl isocyanate, 3 Ethyl phenyl isocyanate, 4 Ethyl phenyl isocyanate, 2 Propyl phenol isocyanate, 3 Propyl phenyl isocyanate, 4 Propyl phenyl isocyanate, 2 Butyl phenyl isocyanate, 3 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate Dimethylphenol isocyanate, 2,5-Dimethylphenol isocyanate, 2,6 Dimethylphenol iso
  • Cellulose has three hydroxyl groups per glucose residue, which is a structural unit. Therefore, when these hydroxyl groups are substituted, the degree of substitution per glucose residue (hereinafter referred to as DS) is a maximum of 3.
  • the lower limit of DS is preferably 0.1, more preferably 0.5, more preferably 1, and the upper limit is preferably 3, more preferably 2.95, and even more preferably 2.9. .
  • DS is lower than 0.1, it tends to be difficult to dissolve in a solvent.
  • two or more cellulose N-substituted carbamates having different DSs may be used in combination, or may be used alone.
  • the lower limit of the number average molecular weight of component (A) is preferably 5000, more preferably 8000, more preferably ⁇ 10,000, and the upper limit is preferably ⁇ 500,000, more preferably ⁇ 300000, Preferably it is 200,000. If the number average molecular weight is less than 5,000, the coating film strength tends to decrease, and if the number average molecular weight is more than 500,000, it tends to be difficult to dissolve in a solvent (sometimes referred to as component (B)).
  • the number average molecular weight is determined by gel permeation chromatography. It is a value measured by the graphic (GPC) method.
  • cellulose N-substituted carnomates having different number average molecular weights
  • Any aromatic vinyl polymer of the present invention (hereinafter sometimes referred to as component (A)) may be used as long as it contains an aromatic bulule unit.
  • 2,4 dibutyl styrene poly (2,5 dibutyl styrene), poly (3,4 dibutinoles styrene), poly (3,5 dibutyl styrene) and other poly (alkyl styrene); poly (2-methoxystyrene), poly (3-methoxystyrene), poly (4-methoxystyrene), poly (2,4 dimethoxystyrene), poly (2,5 dimethoxystyrene), poly (3,4 dimethoxystyrene), poly (3,5 dimethoxystyrene) ), Poly (2 ethoxy styrene), poly (3 ethoxy styrene), poly (4 ethoxy styrene), poly (2, 4 ethoxy styrene), poly (2, 5 diethoxy styrene), poly (3,4-jet) Toxistyrene), poly (3,5-e
  • a copolymer of two or more of these; a copolymer of one or two or more of these with another polymer can also be used.
  • styrene mono ( ⁇ -methyl styrene) copolymer styrene mono (2-methyl styrene) copolymer, styrene mono (3-methyl styrene) copolymer, styrene mono (4-methyl styrene) copolymer, styrene Mono (2-methoxystyrene) copolymer, styrene mono (3-methoxystyrene) copolymer, styrene- (4-methoxystyrene) copolymer, styrene- (2 chlorostyrene) copolymer, styrene mono (3 Chlorostyrene) copolymer, styrene- (4-chlorost
  • the polymer can be produced by polymerizing a single monomer or two or more monomers in the presence of a radical polymerization initiator, a cation polymerization initiator, or a cationic polymerization initiator.
  • aromatic bur polymer poly (1 urnaphthalene), poly (2 It is preferable from the viewpoint of heat resistance and availability that it contains at least one selected from di (l-naphthalene) and poly (4-birubiphenol).
  • the lower limit of the weight average molecular weight of the aromatic vinyl polymer is preferably 10,000, more preferably 20000, still more preferably 30000, and the upper limit is preferably 1000000, more preferably ⁇ or 800,000, and even more preferably. Mas ⁇ until 600000. If the weight average molecular weight force is less than S 10000, the coating film strength tends to decrease, and if the weight average molecular weight is more than 1000000, it tends to be difficult to dissolve in the solvent.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC). In the present invention, two or more polymers having different weight average molecular weights may be used in combination, or may be used alone!
  • the coating liquid contains (i) a polymer selected from the above-mentioned cellulose, a substituted carnomate, and an aromatic vinyl polymer, and (ii) a solvent in which the component (ii) is soluble and soluble.
  • the solvent of component ( ⁇ ) is not particularly limited as long as component ( ⁇ ) is soluble.
  • Specific examples include benzene, toluene, ⁇ -xylene, m-xylene, p Hydrocarbon solvents such as xylene, ethylbenzene, isopropylbenzene, and jetylbenzene isomer mixtures; methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1 propanol, furfuryl Alcohol solvents such as alcohol and benzyl alcohol; ether solvents such as ethyl ether, isopropyl ether, 1,3 dioxolane, 1,4 dioxane, tetrahydropyran, tetrahydrofuran, 1,2-dimethoxyethane; acetone, 2 butanone, Ketone solvents such as 4-methyl-2-pentanone and cyclohexanone; Len,
  • the amount of the solvent is preferably a lower limit that the ratio of the component (A) to the total weight of the component (A) and the component (B) is 1% by weight as the lower limit and 70% by weight as the upper limit. More preferably, the lower limit is 3% by weight, and the upper limit is 50% by weight.
  • the proportion of component (A) is less than 1% by weight, the coating film thickness tends to be thin, and the required film thickness tends to be difficult to obtain.
  • it exceeds 70% by weight the viscosity of the coating liquid is high. Therefore, workability tends to be inferior.
  • the thickness retardation of the coating film for optical compensation is the force expressed by [(n + n) / 2-n] X d.
  • (n + n) Z2 There are a method of adjusting the value represented by n and a method of adjusting d (film thickness).
  • the method of adjusting the film thickness is simple, but as mentioned earlier, increasing the film thickness and increasing the thickness phase difference only increases the bulk of the liquid crystal display device components after the coating film is formed. There arises a problem that the material cost of the film increases.
  • the retardation adjusting agent of the present invention is particularly suitable for such a thickness retardation. It's no surprise that you can adjust it.
  • the retardation adjusting agent for cellulose N-substituted carbamate of the present invention is preferably composed of at least one selected from strength rubamate ester, N-substitution strength rubamate ester, urea, and N-substituted urea. ! /
  • the retardation adjusting agent for cellulose N-substituted carbamate of the present invention is cellulose N-
  • the thickness phase difference of the substituted carbamate can be adjusted in the negative direction.
  • the strong rubamic acid ester can be obtained by, for example, a known method of reacting ammonia with a chloroformate
  • the N-substituted rubamic acid ester can be obtained by, for example, forming a primary amine or a secondary amine with a chloroformate. It can be produced by a known method of reacting.
  • the urea can be obtained, for example, by an industrial production method in which ammonia and carbon dioxide are reacted under high temperature and high pressure.
  • the N-substituted urea is obtained by reacting, for example, an isocyanate compound with a primary amine or a secondary amine. It can be produced by a known method.
  • the strength rubamic acid ester of the present invention contains a strength rubamoyloxy group (NH—CO—O—).
  • Any compound having 1 to 8 powerful rubamoyloxy groups that can be used is preferred.
  • a compound containing 1 is more preferred.
  • a compound represented by the following general formula (7) is preferred.
  • R 39 represents an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms. ;).
  • R 39 is an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or an alkyl group having 7 to 16 carbon atoms.
  • R 39 is more preferably an aralkyl group.
  • R 39 is an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. Particularly preferred is a group.
  • the N-substituted rubamic acid ester of the present invention contains an N-substituted rubamoyloxy group (R-NH-CO-O-, R is an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group). Any of them can be used. N—Substitution power A compound containing 1 to 8 rubamoyloxy groups is preferred. A compound containing 1 is more preferred. Viewpoint of availability of raw materials Compounds represented by the following general formula (8) are preferred. Yes.
  • R 4Q and R 41 are the same or different and each represents an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 7 carbon atoms. Represents ⁇ 20 aralkyl groups).
  • R 4Q and R 41 are the same or different and each represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 4Q and R 41 are more preferably an aralkyl group having 7 to 16 carbon atoms, the same or different, and an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, Particularly preferred are aryl groups having 6 to 12 carbon atoms and aralkyl groups having 7 to 12 carbon atoms.
  • N-substituted urea of the present invention can be used as long as it contains a ureylene group (one NH—CO—NH—).
  • a compound represented by the following general formula (9) is also preferable from the viewpoint of availability of raw materials.
  • R 42 and R 43 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, Represents a 7-20 aralkyl group having carbon atoms).
  • R 42 and R 43 are the same or different and each represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 42 and R 43 are more preferably an aralkyl group having 7 to 16 carbon atoms, the same or different, and an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, Carbon number 6-12 Particularly preferably an aryl group, an aralkyl group having 7 to 12 carbon atoms.
  • carnomate ester examples include, for example, methyl carnomate, ethyl rubamate, cyclopentyl rubamate, cyclohexyl rubamate, trichloromethyl rubamate, ferro-carbamate fe- , Naphthyl chloride, naphthyl chloride, benzyl carbamate, ethylene glycol dicarbamate, propylene glycol dicarbamate, hydroquinone dicarbamate, pyrocatechol dicarbamate, pyrogallol tricarbamate and the like.
  • N-substituted rubamic acid ester examples include, for example, methyl N-methylcarbamate, ethyl N-methylcarbamate, cyclopentyl N-methylcarbamate, cyclohexyl N-methylcarbamate, and trichloro N-methylcarbamate.
  • ⁇ -substituted urea examples include ⁇ , N'-dimethylurea, ⁇ , N'-diethylurea, ⁇ , ⁇ , -dichloromethylurea, ⁇ , ⁇ , -diphenolurea. , ⁇ , ⁇ , -dibenzylurea, ⁇ ethyl- ⁇ , monomethylurea, ⁇ -methyl- ⁇ , one-phenolurea, ⁇ -benzyl ⁇ , -phenolurea, ⁇ , ⁇ , —di- ⁇ -tolyl Urea, ⁇ ferrule ⁇ ,-( ⁇ -tolyl) urea, and the like.
  • These retardation agents for cellulose ⁇ -substituted carbamates may be used alone or in combination of two or more.
  • the retardation adjusting agent for cellulose ⁇ substituted carnomates is carnomate ethyl, carnomate phenol, ⁇ -carcarnomate ethyl, ⁇ -phenol.
  • the total weight of the polymer as component (i) and the phase difference adjusting agent as component (C) is 100% by weight. %, It is preferable to use the lower limit of 0.1% by weight and the upper limit of 70% by weight. The lower limit of 0.2% by weight and the upper limit of 65% by weight are preferred. More preferably, the lower limit is 0.3% by weight, and the upper limit is 60% by weight.
  • the ratio of the phase difference adjusting agent is less than 0.1% by weight, the effect of adjusting the thickness phase difference tends to be small, and when it is larger than 70% by weight, it tends to bleed from the coating film for optical compensation. is there.
  • the resin that can be added for the purpose of modifying the properties of the coating film of the present invention.
  • the resin that can be added include polycarbonate resin, talyl resin, polyester resin, polystyrene resin, polyolefin resin, polyamide resin, polyimide resin, polyvinyl alcohol resin, polybuta resin.
  • examples include settal resin, polyether sulfone resin, polyarylate resin, epoxy resin, silicone resin, phenol resin, urethane resin, and the like. ⁇ can be added.
  • Additives include antioxidants (eg, Malawi phenols such as IRGANOX 1010, IRGANOX 1135, IRGANOX 1330, etc.
  • processing stabilizers eg, HP-136, IRGANOX manufactured by Ciba 'Specialty' Chemicals
  • processing stabilizers eg, HP-136, IRGANOX manufactured by Ciba 'Specialty' Chemicals
  • E201 IRGAFOS 168, etc.
  • light stabilizers for example, hindered amines such as Sanol LS-765, Sanol LS-770 from Sankyo Lifetech
  • UV absorbers for example, TINUVIN P, TINUVIN made by Chinoku 'Specialty' Chemicals) 213, benzotriazoles such as TINUVIN 326)
  • adhesion improvers eg, silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane
  • silanol condensation catalysts eg, rivers
  • aluminum tris ethyl acetate acetate
  • aluminum chelate M etc.
  • Luminium chelates for example, esters such as di-2-ethylhexyl phthalate and diisobutyl adipate
  • surfactants for example, fluorine compounds such as Fluorad FC-430 and Fluorad FC-4430 manufactured by Sumitomo 3EM
  • antistatic agents for example, IRG ASTAT P18, IRGASTAT P22, etc. manufactured by Ciba Specialty Chemicals
  • the coating liquid of the present invention can be obtained, for example, by mixing the above-mentioned components at a temperature not lower than the melting point of the solvent and not higher than the boiling point, or after being mixed or stirred.
  • the substrate it is preferable to be transparent in view of the power with which various types of substrates can be used, particularly the application power.
  • specific compounds used for the substrate include polycarbonate polymers produced by polycondensation of bisphenol A and salty carbon; polymethyl acrylate, polymethyl methacrylate, etc. Poly Acrylic acid ester; Condensation of dibasic acids such as adipic acid, phthalic acid, isophthalic acid, terephthalic acid and the like, and ring opening of latatones with ethylene glycol, diethylene glycol, propylene glycol, tetramethylene glycol, neopentyl darlicol, etc.
  • Polyester polymers obtained by polymerization styrene polymers such as polystyrene and poly (-methylstyrene); copolymers of acrylic acid esters and styrene; hydrogenated products of polyethylene, polynorbornene and polyisoprene, Polyolefin-based polymers such as hydrogenated polybutadienes; Cellulose-based resins such as triacetyl cellulose; Polyamides such as nylon 6 and nylon 66; Polyimides; Polyamide imides; Polybulal alcohol; Butyl chloride; Polyethersulfone; Examples thereof include xylose resin; silicone resin; compounds described in International Publication No. 01Z37007 pamphlet.
  • these polymers can be used as a solution casting method, a uniaxial stretching method of a dried product after solution casting, a biaxial stretching method of a dried product after solution casting, an extrusion method, a uniaxial stretching method of extrusion, and a biaxial stretching method of an extruded product.
  • These substrates can also be used as substrates for forming an optical compensation coating film.
  • the coating film for optical compensation can be suitably prepared on a substrate by applying the coating liquid of the present invention on one or both sides of the substrate to form a coated substrate, and then drying the coated substrate.
  • the coating methods include gravure roll coating method, Mayer bar coating method, doctor blade coating method, linole roll coating method, dip coating method, air knife coating method, calendar coating method, squeeze coating method, kiss coating method, bar coating method. Slot die coating method, spin coating method and the like.
  • drying method for example, a method of leaving the coated substrate in air or an inert gas such as nitrogen (air drying), a method of heating and drying in a hot air oven, an infrared heating furnace, or the like, a vacuum dryer, or the like Can be carried out by a method of drying under reduced pressure, etc., or a combination thereof.
  • air drying air drying
  • a method of heating and drying in a hot air oven, an infrared heating furnace, or the like, a vacuum dryer, or the like can be carried out by a method of drying under reduced pressure, etc., or a combination thereof.
  • the drying temperature condition constant temperature, multi-step temperature increase! /, Or deviation can be used.
  • the lower limit is 30 ° C
  • the upper limit is 300 ° C.
  • the lower limit is 0 ° C and the upper limit is 280 ° C.
  • the preferred lower limit is 10 ° C and the upper limit is 260 ° C.
  • the drying temperature is lower than -30 ° C
  • the drying time tends to be longer.
  • the drying temperature is higher than 300 ° C, the coating film or the substrate tends to be thermally deteriorated.
  • primary drying and secondary drying are particularly preferable from the economical viewpoint that it is preferable to increase the temperature in multiple stages in order to effectively dry.
  • the lower limit is 5 ° C
  • the lower limit is 0 ° C
  • the upper limit is 40 ° C
  • the upper limit is 35 ° C.
  • the lower limit is 10 ° C
  • the upper limit is 30 ° C. preferable.
  • Primary drying is (n + n)
  • the lower limit of 80 ° C and the upper limit of 300 ° C are preferable lower limit of 90 ° C, and the upper limit of 280 ° C is more preferable lower limit of 100 ° C and upper limit of 260 ° C. preferable.
  • Secondary drying is necessary to establish the coating film internal structure necessary to increase the absolute value of the value represented by (n + n) / 2-n.
  • the secondary drying temperature is lower than 80 ° C, the internal structure of the coating film tends to be insufficiently established, and when it is higher than 300 ° C, the coating film and the substrate tend to be thermally deteriorated.
  • the absolute value of (n + n) Z2 ⁇ n is sufficiently large, the established internal structure of the coating film is observed with a transmission electron microscope (TEM) or the like. can do.
  • TEM transmission electron microscope
  • the present invention provides a coating for optical compensation by applying a coating solution to a substrate to form a coated substrate, then exposing the coating film to the vapor of component (B), and further drying. This is the method of forming a film.
  • Annealing is preferably performed for improving the leveling property of the coating film, stress relaxation, and the like, and is effective, for example, for reducing in-plane retardation and reducing in-plane retardation fluctuation.
  • the annealing is preferably performed in the vapor of the component (B) by standing still horizontally with the coating film of the coated substrate facing upward.
  • the temperature during annealing can be set in various ways.
  • Lower limit 30 ° C, upper limit (boiling point of component (B)) is preferred Lower limit 15 ° C, upper limit (component (B) boiling point (° C) -5 ° C] is more preferred lower limit 0 ° C, and upper limit [(B) component boiling point (° C) -10 ° C] is more preferred. If the temperature during annealing is lower than 30 ° C, the annealing time tends to be longer, and if the temperature during annealing is higher than the boiling point (° C) of component (B), the coating film tends to flow out from the substrate. Tend to be. Various pressures can be set during annealing, and atmospheric pressure, increased pressure, or reduced pressure can be used, but atmospheric pressure is preferable in terms of workability.
  • the optical element here is composed of a substrate and an optical compensation coating film coated on the substrate. Also included is an element used for optical use after the substrate force is once peeled off from the coating film for optical compensation.
  • the optical element is coated with the coating liquid of the present invention on one or both surfaces of the substrate using the coating method described in the method for forming a coating film for optical compensation, and then dried or optically compensated. After coating using the coating method described in the method for forming a coating film for coating, it can be suitably produced by annealing and drying.
  • Drying can be suitably performed by using the drying method and the drying temperature described in the method for forming the optical compensation coating film.
  • the coating film for optical compensation of the present invention has a maximum refractive index n in the plane, n is the minimum refractive index, n is the refractive index in the thickness direction, and d is the film thickness.
  • n is the minimum refractive index
  • n is the refractive index in the thickness direction
  • d is the film thickness.
  • the above-mentioned properties are obtained by a coating film for optical compensation formed by containing any one of cellulose N-substituted carbamates satisfying the relationship of X d and 0 or an aromatic bur polymer.
  • the thickness of the optical compensation coating film is d (nm)
  • the in-plane retardation is expressed by (nn) X d
  • the thickness retardation is [(n + n) / 2 ⁇ n] X d.
  • the expressed in-plane phase difference is preferably lower limit Onm and upper limit 200 nm force, preferably lower limit Onm and upper limit 300 nm, more preferably lower limit Onm and upper limit lOOnm, when measured with 590 nm light.
  • the thickness retardation is 590 nm, and the lower limit—1000 ⁇ m, the upper limit—lnm is the lower limit of 800 nm, and the upper limit—lOnm is the lower limit—60 Onm, an upper limit of 20 nm is more preferable. If the thickness retardation is smaller than lOOOnm, it tends to be difficult to compensate for the retardation due to birefringence of liquid crystal cells.
  • a coating film for optical compensation satisfying the relationship of [(n + n) / 2-n] Xd ⁇ 100 used in another application can be obtained by containing a cellulose derivative.
  • Cellulose derivatives can be produced, for example, by chemically modifying cellulose obtained from various wood pulps, cotton linters, cotton lint and the like as raw materials.
  • carboxylic acid ester derivatives such as cellulose formate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose trifluoroacetate; cellulose sulfate, cellulose nitrate, cellulose phosphate, etc.
  • ether derivatives are preferred from the standpoint of physical properties such as low hydrolyzability and low hygroscopicity. More preferably, it is an ether derivative in which at least one hydroxyl group of cellulose is substituted with an alkoxy group having 1 to 20 carbon atoms, and more preferably, at least one of hydroxyl groups of cellulose is substituted with an alkoxy group having 1 to 10 carbon atoms. It is an ether derivative.
  • Preferable examples of the preferred! / ⁇ ⁇ cellulose derivatives are methylcellulose, ethyl cellulose, propinoresenorelose, butinoresenorelose, pentinoresenorelose, hexinoresenorelose, heptinoresenorelose, tasty cutinore Senorelose, Cyclopentino Resenellose, Succeed Hexino Resenorelose, Methinore Ethino Resenorelose, Methinorepropino Resenorelose, Methinore Butino Resenorelose, Methino Resentino Resenorelose, Methino Resenorelose , Methinoles, petitenoresenorelose, methinoreoctinoresenorelose, methinorecyclopentinoresenolesose, methinorecyclohexenoresenorelose, ethinorepropinoresenorelose, ethinorebutinores
  • the above ether-based derivative of cellulose can be produced, for example, by converting it to alkaline cellulose with sodium hydroxide or the like, and then adding and heating and stirring an alkyl halide such as chlorinated alkyl. At this time, when two or more alkyl halides are used, an ether derivative substituted with two or more alkoxy groups can be obtained.
  • Cellulose has three hydroxyl groups per glucose residue as its structural unit, and the degree of substitution per glucose residue (hereinafter sometimes referred to as DS) is 3 at maximum.
  • the lower limit is preferably 0.1, more preferably 0.5, even more preferably 1, and the upper limit is preferably 3, more preferably 2.95, and even more preferably 2.9. If the degree of substitution is lower than 0.1, it tends to be difficult to dissolve in a solvent.
  • two or more cellulose derivatives having different degrees of substitution may be used in combination, or may be used alone!
  • the lower limit of the number average molecular weight of the cellulose derivative is preferably 5000, more preferably 8000, still more preferably 10000, and the upper limit is preferably 300000, more preferably 250000, and even more preferably 200000. If the number average molecular weight is less than 5,000, the coating film strength tends to decrease, and if the number average molecular weight is more than 300,000, it tends to be difficult to dissolve in a solvent.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC). In the present invention, two or more cellulose derivatives having different number average molecular weights may be used in combination, or may be used alone.
  • cellulose derivatives exemplified as the cellulose derivative may be used alone, or two or more kinds may be used in combination.
  • the optical compensation film (retardation film) of the present invention will be described.
  • the optical compensation film a film formed from those exemplified as the substrate for the optical element is used, and the optical compensation layer is formed by using the method for forming the optical compensation coating film. It can be suitably manufactured.
  • a protective film is attached to both surfaces of a polarizer using an adhesive such as a polyester-based adhesive, a polyacrylic adhesive, an epoxy-based adhesive, a cyanacrylic adhesive, or a polyurethane-based adhesive.
  • an adhesive such as a polyester-based adhesive, a polyacrylic adhesive, an epoxy-based adhesive, a cyanacrylic adhesive, or a polyurethane-based adhesive.
  • polarizers include iodine and Z or Z Is a polarizer produced by adsorbing and orienting a dichroic dye, a polybulualcohol-based film is dehydrated to form a polyene, and a polarizer and polysalt hybrid film produced by orienting are dehydrochlorinated.
  • Examples include those prepared by forming and orienting polyene.
  • Examples of the hydrophilic polymer film used for the polarizer include a polybulal alcohol film, a partially formalized polybulal alcohol film, and a saponified film of an ethylene acetate butyl copolymer.
  • Examples of the protective film include those exemplified as the substrate for the optical element, those formed into a film, and the optical compensation film (retardation film) of the present invention.
  • the substrates for the optical element When the film is pasted on both sides of the polarizer, the optical compensation coating film of the present invention is formed on at least one side of the polarizing plate using the method for forming an optical compensation coating film after preparing the polarizing plate.
  • the optical compensation film (retardation film) of the present invention can be used as a protective film, it can be used on both sides of a polarizer, or the optical compensation film (retardation film) of the present invention is used on one side and the opposite. It is also possible to use a film made of the optical element substrate on the surface. Also, after producing a polarizing plate using the optical compensation film (retardation film) of the present invention on one side and a film formed on the opposite side of the substrate for the optical element, a new polarizing plate is prepared on one side or both sides.
  • the optical compensation coating film of the present invention can also be provided.
  • liquid crystal display device of the present invention As a liquid crystal display device, for example,
  • Light source Z light guide plate Z light diffusing film Z lens film Z brightness enhancement film Z polarizing plate Z liquid crystal cell display device configured in the order of Z polarizing plate, the incident light side of the liquid crystal cell and the Z or outgoing light side
  • the liquid crystal of the present invention is mounted by mounting the optical compensation film (retardation film) of the present invention on the polarizing plate of the incident light side and the Z or outgoing light side of the Z or liquid crystal cell. It can be a display device.
  • the liquid crystal cell method include a VA (Vertical Alignment) method, an IPS (In-Plane Switching) method, and an OCB (Optically Compensated Birefringence) method.
  • the thickness phase difference was determined by [(n + n) / 2-n] Xd.
  • the phase difference was measured with the slow axis as the tilt center axis, if the phase difference increased as the tilt angle increased!]
  • the following method was also used to determine the sign of the phase difference. Overlay the polycarbonate ⁇ 4 plate on the manufactured optical element, and attach it to the automatic birefringence meter KOBRA-WR so that the orientation angle force of the ⁇ 4 plate is 0 ⁇ 1 degree. 2
  • the phase difference was measured with 590nm light at 5 ° C.
  • phase difference of the optical element alone is also rising in the positive direction as the tilt angle is increased, and when it is lower than the phase difference of ⁇ ⁇ 4 plate alone.
  • the phase difference of the single optical element decreases in the negative direction as the tilt angle increases, and adds a positive or negative sign to the phase difference of the single optical element measured earlier to calculate the three-dimensional refractive index. did. From the obtained results, the in-plane phase difference was determined by ( ⁇ n) Xd. Also, the thickness phase difference is expressed as [(n + n) / 2-n
  • the degree of substitution DS of synthetic product (2) was 3 as a result of proton NMR analysis. DS is obtained by comparing the chemical shift area (3.4 to 5.5 ppm) of protons derived from the cellulose skeleton with the chemical shift area (6.7 to 7.8 ppm) of protons in the phenolic group. Were determined.
  • Synthetic product (1) 4.85 g of butyl acetate was added to 0.85 g and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: lnm) using a bar coater, and then 120 ° An optical element was fabricated by drying in air for 1 minute at C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1.
  • Synthetic product (1) 4.85 g of ethyl acetate sorb acetate was added to 0.85 g and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, It was placed in a glass container filled with solvacetate vapor, sealed, and then annealed at 25 ° C for 24 hours. Thereafter, the coated substrate was taken out and dried in air at 120 ° C for 1 minute to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1.
  • Synthetic product (3) Black mouth form 9. Og was added to Og and dissolved at 25 ° C. Next, this coating solution was applied to a 150 / zm-thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: lnm) using a bar coater. The optical device was fabricated by drying in air for 1 minute at ° C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained above were measured, and the results are shown in Table 1.
  • the optical element produced in Experimental Example 3 was placed in a glass container filled with Kuroguchi-form vapor, sealed, and then annealed at 30 ° C for 7.5 hours. Then remove the optical element and Dry in air for 1 minute.
  • the coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate.
  • physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1.
  • an in-plane birefringence (n ⁇ n) smaller than that in Experimental Example 3 was obtained. In other words, the in-plane retardation can be reduced by annealing.
  • Synthetic product (2) 0.5 g of butyl acetate 4. Og and ethylene glycol monomethyl etherate 0.5 g were added and dissolved at 23 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: 1 nm) using a bar coater. It was. Thereafter, this coated substrate was dried in air at 23 ° C. for 25 minutes to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Then obtained by above The physical properties of the optical element were measured. The results are shown in Table 2.
  • Example 5 The same procedure as in Example 5 was performed, except that the coated substrate was dried in air at 23 ° C for 44 hours and further dried in air at 100 ° C for 1 minute to produce an optical element. It was. The physical properties of the obtained optical element were measured. The results are shown in Table 2. An optical element in which the absolute value of (n + n) / 2 ⁇ n is larger than that in Experimental Example 5, which was simply dried in air at 23 ° C. for 44 hours, was obtained.
  • a polyvinyl alcohol film was impregnated with iodine and stretched to produce a polarizer.
  • An 80 m thick cellulose acetate film was bonded to one side of this polarizer using a polyacrylic adhesive.
  • the optical compensation film produced in Experimental Example 13 was bonded to the opposite surface of the polarizer using a polyacrylic adhesive so that the coating film surface was on the outside, and a polarizing plate having an optical compensation layer was produced. .
  • a liquid crystal display device equipped with an IPS liquid crystal cell was prepared, and a display device was produced in which the optical compensation film produced in Experimental Example 13 was superimposed on the outgoing light side of the liquid crystal cell. As a result of observing the display screen, a good image was obtained in which the color display did not change when looking at the front force or the oblique direction force.
  • Styrene Maleic anhydride copolymer (Dylark D332 from Nova Chemical) 30. Og was added with 70.0 g of chloroform and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and this coating was applied. The substrate was placed in a glass container filled with black mouth form vapor at atmospheric pressure, sealed, and then annealed at 25 ° C for 48 hours. Then, the coated substrate was taken out and air-dried at 25 ° C for 6 hours to produce an optical element.
  • the coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 3. Here, an optical element of [(n + n) Z2-n] Xd ⁇ 0 was obtained.
  • Ethylcellulose (ETHOCEL STD-100, manufactured by Dow Chemical, number average molecular weight: 634 00, DS: 2.5) 20. Og Dissolved under C. Next, apply this coating solution to a 150 m thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: Inm) using a bar coater, then 25 The optical element was fabricated by air drying in air for 6 hours at ° C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 4. Here, [(n + n) / 2-n] X d ⁇ l
  • Example 22 150 m thick glass substrate by reducing the applied pressure of the bar coater using the coating solution prepared in Example 22 (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: Inm)
  • the coated substrate was placed in a glass container filled with black mouth form vapor at atmospheric pressure, sealed, and then annealed at 25 ° C. for 72 hours. Thereafter, the coated substrate was taken out and air-dried in air at 25 ° C for 6 hours to produce an optical element.
  • the coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 4.
  • the in-plane retardation also increased at the same time as the thickness retardation increased.
  • the in-plane retardation is Onm, that is, the same thickness retardation as in Experimental Example 23, that is, [(n + n) / 2-n] X d ⁇
  • Ethylcellulose (ETHOCEL STD-100, manufactured by Dow Chemical, number average molecular weight: 634 00, DS: 2.5) 20. Dissolved under C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater. The optical element was fabricated by air-drying in air for 6 hours at ° C. The coating thickness after drying (d (nm)) was obtained by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained above were measured, and the results are shown in Table 4. Here, [(n + n) / 2-n] X d
  • an optical element was produced.
  • the in-plane retardation force S0 nm and the thickness retardation were 37 nm, and [(n + n) / 2 ⁇ n
  • an optical element was produced.
  • the in-plane retardation was 1 nm and the thickness retardation was 70 nm, and [(n + n) / 2-n
  • the obtained polymer was dissolved by adding 300 ml of acetone, and then dropped into 3 L of pure water to cause precipitation. After filtration and washing with water and vacuum drying at 60 ° C for 4 hours, the polymer was put into a Soxhlet extractor. After performing Soxhlet extraction with methanol 20 times and vacuum drying at 25 ° C for 4 hours, 6.8 g of cellulose N- (p-tolyl) carbamate (4) was obtained (hereinafter referred to as synthetic product (4) may be called.) 0 DS of synthetic (4) is the result of proton NMR analysis, it was 3.
  • the DS is obtained by comparing the chemical shift area (3.4 to 5.5 ppm) of protons derived from the cellulose skeleton with the chemical shift area (6.6 to 7.7 ppm) of protons in the p-tolyl group. Were determined.
  • the coating film for optical compensation of the present invention, the coating liquid for forming the coating film for optical compensation, the optical element produced using them, and the optical compensation film (retardation film) are VA system, It can be used to expand the viewing angle of liquid crystal display devices using liquid crystal cells such as IPS and OCB.
  • the IPS method is particularly preferable in order to sufficiently exhibit the performance of the optical properties of the coating film for optical compensation in the present invention.
  • the optical compensation coating film, the coating film forming coating liquid, the optical element and the optical compensation film (retardation film) produced using the coating film, video, camera, mobile phone, laptop computer It can be suitably used for liquid crystal display device production parts such as televisions, monitors, and instrument panels of automobiles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Mathematical Physics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

This invention provides a coating film for optical compensation at low cost without providing a troublesome film forming step, and an optical element having the same properties as attained by the provision of film application step despite the fact that any troublesome work of film application and the like is not required. There is also provided a method for the formation of a coating film for optical compensation. In the coating film, the value obtained by (nx + ny)/2 - nz is negative, and the absolute value is larger. In the equation, nx represents the maximum in-plane refractive index, ny represents the minimum in-plane refractive index, nz represents the refractive index in thickness-wise direction, and d represents the film thickness. An optical element may be produced by using the method for the formation of a coating film. The coating film for optical compensation is characterized by comprising any polymer of cellulose N-substituted carbamate or an aromatic vinyl polymer.

Description

明 細 書  Specification
光学補償用塗工膜及び光学素子  Optical compensation coating film and optical element
技術分野  Technical field
[0001] 本発明は、液晶セル等による位相差の光学補償を行うための光学補償用塗工膜、 該塗工膜形成に好適な光学補償用塗工膜形成用塗工液、該光学補償用塗工膜の 形成方法に関するものである。さらには位相差調整剤、および位相差調整剤を含有 する光学補償用塗工膜、その光学補償用塗工膜形成用塗工液に関するものである 。さらにはそれらを用いて製造した光学素子並びに光学素子の製造方法に関するも のである。さらには光学補償フィルム (位相差フィルム)、並びに光学補償フィルムを 備えた偏光板及び液晶表示装置に関するものである。  [0001] The present invention relates to an optical compensation coating film for performing optical compensation of retardation by a liquid crystal cell or the like, an optical compensation coating film-forming coating solution suitable for forming the coating film, and the optical compensation The present invention relates to a method for forming a coating film. Furthermore, the present invention relates to a retardation adjusting agent, an optical compensation coating film containing the retardation adjusting agent, and a coating liquid for forming the optical compensation coating film. Furthermore, the present invention relates to an optical element manufactured using them and a method for manufacturing the optical element. Furthermore, the present invention relates to an optical compensation film (retardation film), a polarizing plate provided with the optical compensation film, and a liquid crystal display device.
背景技術  Background art
[0002] 液晶表示装置には液晶セル、偏光板、その他液晶表示装置構成フィルム等の複 屈折による位相差を補償して視野角の拡大を図るため、光学補償用の位相差フィル ムが使用されている。このような位相差フィルムとして、例えば、ポリカーボネート、ポリ エステル、ポリスチレン、ポリアミド、ポリイミド、ポリエーテルスルホン等のポリマーを溶 液流延法、溶液流延後乾燥品の一軸延伸法、溶液流延後乾燥品の二軸延伸法、押 出法、押出品の一軸延伸法、押出品の二軸延伸法、カレンダ一法等によりフィルム 化したものが挙げられる(例えば、特許文献 1、特許文献 2参照。 ) 0このような位相差 フィルムは、適用される液晶セルや偏光板、その他液晶表示装置構成フィルム等に 合わせて、ポリカーボネートのような正の固有複屈折値を有する材料力もなるフィル ムゃ、ポリスチレンのような負の固有複屈折値を有する材料力もなるフィルムが 1枚か ら数枚、各々使い分けられ使用されている。これらのフィルムを用いるためには、まず 、フィルム形成のために煩雑なフィルム化工程が必要であり、また、これらのフィルム を液晶表示装置構成部品に貼り付ける等の手間も要する。 In a liquid crystal display device, a phase difference film for optical compensation is used in order to increase the viewing angle by compensating for the phase difference due to birefringence of a liquid crystal cell, a polarizing plate, and other liquid crystal display device constituent films. ing. As such a retardation film, for example, a polymer such as polycarbonate, polyester, polystyrene, polyamide, polyimide, and polyethersulfone is subjected to a solution casting method, a uniaxial stretching method after a solution casting, and a drying after solution casting. And a biaxial stretching method, extrusion method, uniaxial stretching method of extruded product, biaxial stretching method of extruded product, calendar method, etc. (see, for example, Patent Document 1 and Patent Document 2). ) 0 Such a retardation film is a film having a positive intrinsic birefringence value such as polycarbonate, polystyrene, etc. according to the applied liquid crystal cell, polarizing plate, other liquid crystal display device constituting film, etc. One to several films with material strength having a negative intrinsic birefringence value such as the above are used separately. In order to use these films, first, a complicated film forming process is required for film formation, and it is also necessary to attach these films to liquid crystal display device components.
[0003] これらの問題を解消するために、 n <n =nの光学特性を有するポリイミドのペース z X y  [0003] In order to solve these problems, the pace z X y of polyimide having optical characteristics of n <n = n
ト塗布による薄膜形成により位相差層の形成が提案されている (例えば、特許文献 3 参照。;)。一方、 n >n≥nの光学特性をもつもの、換言すれば、〔(n +n ) /2-n z x v x y z 〕 X dとして表される厚み位相差の値が負になるものについては、 n >n =nの光学 特性を有する化合物の塗布が提案されている。これは、光異性化しうる官能基を有 する高分子化合物の溶液を塗布、乾燥後、光を照射して高分子の配向を制御するも の又は、液晶ポリマーの溶液あるいは液晶ポリマーの溶融物を塗布、乾燥後、ポリマ 一のガラス転移温度で熱処理して液晶を配向させ、冷却することにより配向を固定ィ匕 するものである(例えば、特許文献 4参照。 )0し力しながら、ポリイミドのペースト塗布 による位相差層形成に比べ、光異性ィ匕しうる官能基を有する高分子化合物を用いる 場合は光照射をしなければならないという煩雑さがあり、液晶ポリマーを用いる場合 は一般に液晶が高価であり、コスト高になるという欠点がある。 The formation of a retardation layer has been proposed by forming a thin film by coating (for example, see Patent Document 3). On the other hand, those having optical properties of n> n≥n, in other words, (( n + n) / 2-nzxvxyz For those in which the thickness retardation value represented as X d is negative, coating of compounds having optical properties of n> n = n has been proposed. This can be achieved by applying a solution of a polymer compound having a functional group capable of photoisomerization, drying, and then irradiating light to control the orientation of the polymer, or a liquid crystal polymer solution or a liquid crystal polymer melt. coating, dried, and heat treated at the glass transition temperature of the polymer one to orient the liquid crystal, it is intended to fix I spoon alignment by cooling (for example, see Patent Document 4.) with 0 tooth force, polyimide Compared to the formation of a retardation layer by applying a paste, the use of a polymer compound having a functional group capable of photoisomerization has the complication of having to irradiate light, and the use of a liquid crystal polymer is generally expensive. There is a disadvantage that the cost is high.
[0004] ところで、液晶セルや偏光板、その他液晶表示装置構成フィルム等の複屈折による 大きな厚み方向の位相差を補償するためには、その厚み方向の位相差の符号と逆 であり、〔(n +n ) /2-n〕 X dで表される厚み位相差の絶対値が大きな光学補償 用材料を用いることが有効である。そして、そのためには、(n +n ) /2-nで表され る値の絶対値が大きくなる材料を、大きくなる形成方法で形成することが特に有効で ある。なぜなら、(n +n ) /2-nで表される値の絶対値が十分でなく膜厚を大きく する必要がある場合には、塗工膜形成後の液晶表示装置構成部品が嵩張るだけで なぐ塗工膜の材料コストが増大する等の問題が生じる力 である。 [0004] By the way, in order to compensate for a large thickness direction retardation due to birefringence of a liquid crystal cell, a polarizing plate, and other liquid crystal display device constituent films, the sign of the thickness direction retardation is opposite, n + n) / 2-n] It is effective to use an optical compensation material having a large absolute value of the thickness retardation represented by Xd. For this purpose, it is particularly effective to form a material with a large absolute value of the value represented by (n + n) / 2-n by a large forming method. This is because if the absolute value of the value represented by (n + n) / 2−n is not sufficient and the film thickness needs to be increased, the liquid crystal display component parts after the coating film is formed only become bulky. This is a force that causes problems such as an increase in the material cost of the coating film.
特許文献 1 :特開平 3— 33719号公報  Patent Document 1: JP-A-3-33719
特許文献 2:特開平 11― 248939号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-248939
特許文献 3:特開 2001— 290023号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2001-290023
特許文献 4:特開平 7— 13022号公報  Patent Document 4: JP-A-7-13022
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の目的は、煩雑なフィルム化工程を必要とせずに光学補償用塗工膜を安価 に提供することである。さらには、〔(n +n ) /2-n〕 X dく 0の特性をもつ光学補償 用塗工膜を安価に提供し、フィルム貼り付け等の手間を必要とせずにその特性を有 する光学素子を提供することである。 [0005] An object of the present invention is to provide an optical compensation coating film at low cost without requiring a complicated film forming step. Furthermore, it provides an optical compensation coating film having the characteristics of [(n + n) / 2−n] X d 0 at low cost, and has the characteristics without the need for film sticking or the like. It is to provide an optical element.
[0006] さらに、セルロース N—置換カーバメート、または芳香族ビュル系重合体のいずれ かの重合体を含有し、 (n +n ) /2-nで表される値が負であり、その絶対値がより 大きな光学補償用塗工膜の形成方法を提供し、その形成方法を用いて製造した光 学素子を提供することである。 [0006] Furthermore, either cellulose N-substituted carbamate or aromatic bulle polymer And a method of forming an optical compensation coating film having a larger absolute value, the value represented by (n + n) / 2-n being negative. It is to provide an optical element manufactured using the same.
課題を解決するための手段  Means for solving the problem
[0007] このような課題を解決するために本発明者らは鋭意研究の結果、セルロース N— 置換カーバメート、または芳香族ビニル系重合体の ヽずれかの重合体を含有して形 成されることを特徴とする光学補償用塗工膜により上記課題を解決できることを見出 し、本発明に至った。 [0007] In order to solve such problems, the present inventors have intensively studied and formed a cellulose N-substituted carbamate or any one of aromatic vinyl polymers. The present inventors have found that the above-mentioned problems can be solved by an optical compensation coating film characterized by the above, and have reached the present invention.
[0008] すなわち本発明は、セルロース N—置換カーバメート、または芳香族ビュル系重 合体のいずれかの重合体を含有して形成されることを特徴とする光学補償用塗工膜 に関する。  [0008] That is, the present invention relates to a coating film for optical compensation characterized by comprising a polymer of either cellulose N-substituted carbamate or aromatic bulle polymer.
[0009] 好ましい実施態様としては、面内の屈折率のうち最大のものを n、最小のものを nと し、厚み方向の屈折率を n、膜厚を dとした時に、〔(n +n ) /2-n〕 (1< 0の関係 を満たすことを特徴とする光学補償用塗工膜に関する。  [0009] In a preferred embodiment, when the maximum refractive index in the plane is n, the minimum refractive index is n, the refractive index in the thickness direction is n, and the film thickness is d, [(n + n) / 2-n] (1 <0) The present invention relates to a coating film for optical compensation characterized by satisfying the relationship 1 <0.
[0010] 好ましい実施態様としては、前記セルロース N—置換カーバメートが、セルロース の水酸基の少なくとも一つが N—置換カーバメート化されており、かつ、セルロース力 ーバメートの窒素原子に結合した水素原子の少なくとも一つが下記一般式(1)〜(3 )から選ばれる基で置換されており、かつ、複数の N—置換基は同一又は異なって、 下記一般式(1)〜(3)力 選ばれる基である化合物であることを特徴とする光学補償 用塗工膜に関する。  In a preferred embodiment, in the cellulose N-substituted carbamate, at least one of hydroxyl groups of cellulose is N-substituted carbamate, and at least one of hydrogen atoms bonded to a nitrogen atom of the cellulose strength carbamate is It is substituted with a group selected from the following general formulas (1) to (3), and the plurality of N-substituents are the same or different and are the following general formulas (1) to (3) The present invention relates to a coating film for optical compensation, which is a compound.
[0011] [化 1]  [0011] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
Figure imgf000004_0002
R4、 R5は、同一又は異なって、水素原子、炭素数 1〜20のアルキ ル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル基、炭素 数 6〜20のァリール基、炭素数 6〜20のァリールォキシ基、炭素数 7〜20のァラル キル基、炭素数 7〜20のァラルキルォキシ基、炭素数 1〜21のァシルォキシ基、ハ ロゲン原子、ニトロ基を表す。 )
Figure imgf000004_0002
R 4 and R 5 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or carbon. C 6-20 aralkyl group, C 6-20 aralkyl group, C 7-20 aralkyl group, C 7-20 aralkyl group, C 1-21 syloxy group, halogen atom, nitro Represents a group. )
[0013] [化 2] [0013] [Chemical 2]
Figure imgf000005_0001
Figure imgf000005_0001
[0014] (式中 R6、 R7、 R8、 R9、 R1Q、 RU、 R12は、同一又は異なって、水素原子、炭素数 1〜20 のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル 基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) (Wherein R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. An alkoxy group, a halogenated alkyl group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
[0015] [化 3]  [0015] [Chemical 3]
Figure imgf000005_0002
Figure imgf000005_0002
[0016] (式中 R13、 R"、 R15、 Rln、 R"、 R18、 R19は、同一又は異なって、水素原子、炭素数 1〜 20のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキ ル基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) o (In the formula, R 13 , R ″, R 15 , R ln , R ″, R 18 , R 19 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
[0017] 好ま 、実施態様としては、芳香族ビニル系重合体力 ポリ(1—ビュルナフタレン) 、ポリ(2—ビュルナフタレン)、ポリ(4—ビ-ルビフエ-ル)から選ばれる少なくとも一 つを含有してなることを特徴とする光学補償用塗工膜に関する。  [0017] Preferably, the embodiment contains at least one selected from the group consisting of aromatic vinyl polymers such as poly (1-burnaphthalene), poly (2-burnaphthalene) and poly (4-birubiphthal). It is related with the coating film for optical compensation characterized by these.
[0018] 好ま ヽ実施態様としては、位相差調整剤を含有して形成されることを特徴とする 光学補償用塗工膜に関する。 [0018] Preferred embodiment is characterized in that it is formed containing a phase difference adjusting agent. The present invention relates to a coating film for optical compensation.
[0019] 好まし 、実施態様としては、力ルバミン酸エステル、 N—置換力ルバミン酸エステル 、尿素、 N 置換尿素力 選ばれる少なくとも一つからなるセルロース N 置換カー ノメート用位相差調整剤を含有することを特徴とする光学補償用塗工膜に関する。  [0019] Preferably, the embodiment contains a phase difference adjusting agent for cellulose N-substituted carmate comprising at least one selected from force rubamic acid ester, N-substituted force rubamic acid ester, urea, and N-substituted urea force. The present invention relates to an optical compensation coating film.
[0020] 好ましい実施態様としては、カルノ ミン酸ェチル、カルノ ミン酸フエ-ル、 N—フエ -ルカルバミン酸ェチル、 N フエ-ルカルバミン酸フエ-ル、 N— (4—トリル)カル バミン酸ェチル、 N— (4—トリル)力ルバミン酸フエ-ル、尿素、 N, N,—ジフエ-ル 尿素、 N, N,—ジ— p トリル尿素、 N—フエ-ル— N' - (p トリル)尿素の群から選 ばれる少なくとも 1つ力もなるセルロース N 置換カーノメート用位相差調整剤を含 有することを特徴とする光学補償用塗工膜に関する。  [0020] Preferred embodiments include ethyl carnomate, phenyl carnomate, N-phenyl carbamate, N phenyl carbamate, N- (4-tolyl) carbamate, N— (4-Tolyl) strength rubamate, urea, N, N, —diphenyl urea, N, N, —di-p-trilylurea, N—phenol—N '-(p-tolyl) The present invention relates to a coating film for optical compensation, comprising a retardation adjusting agent for cellulose N-substituted carnomate, which has at least one force selected from the group of urea.
[0021] さらに本発明は、下記 (A)、(B)を含有して形成される光学補償用塗工膜形成用 塗工液に関する。  Furthermore, the present invention relates to a coating solution for forming an optical compensation coating film formed by containing the following (A) and (B).
[0022] (A)セルロース N 置換カーバメート、または芳香族ビュル系重合体のいずれか の重合体、  [0022] (A) a polymer of any one of cellulose N-substituted carbamate and aromatic bur polymer;
(B) (A)成分が溶解可溶な溶媒。  (B) A solvent in which component (A) is soluble and soluble.
[0023] 好ましい実施態様としては、(A)、(B)を含有し、さらに、 (C)位相差調整剤を含有 して形成されることを特徴とする光学補償用塗工膜形成用塗工液に関する。  As a preferred embodiment, the coating film for forming an optical compensation coating film is characterized by comprising (A) and (B), and further comprising (C) a retardation adjusting agent. Concerning the working fluid.
[0024] 好ましい実施態様としては、(C)位相差調整剤力 力ルバミン酸エステル、 N 置 換カルバミン酸エステル、尿素、 N—置換尿素から選ばれる少なくとも一つカゝらなるセ ルロース N 置換カーバメート用位相差調整剤であることを特徴とする光学補償用 塗工膜形成用塗工液に関する。  [0024] As a preferred embodiment, (C) phase difference adjusting agent strength rubamic acid ester, N-substituted carbamic acid ester, urea, cellulose-substituted N-substituted carbamate consisting of at least one selected from N-substituted urea. The present invention relates to a coating solution for forming a coating film for optical compensation, which is a phase difference adjusting agent for use in optical compensation.
[0025] 好ましい実施態様としては、(C)位相差調整剤力 力ルバミン酸ェチル、力ルバミン 酸フエ-ル、 N—フエ-ルカルバミン酸ェチル、 N—フエ-ルカルバミン酸フエ-ル、 N—(4 トリル)力ルバミン酸ェチル、 N—(4 トリル)力ルバミン酸フエ-ル、尿素、 N, N,—ジフエ-ル尿素、 N, N,—ジ— p トリル尿素、 N—フエ-ルー N, - (p ト リル)尿素の群から選ばれる少なくとも 1つからなるセルロース N 置換カーバメート 用位相差調整剤であることを特徴とする光学補償用塗工膜形成用塗工液に関する。  [0025] Preferred embodiments include: (C) Retardation adjusting agent strength rubyl ethamine, force rubamate phenyl, N-phenol carbamic acid, N-phenol carbamic acid, N- ( 4-tolyl) -force rubamate, N— (4-tolyl) -force rubamate, urea, N, N, -diphenylurea, N, N, —di-p-tolylurea, N—phenol-N The present invention relates to a coating solution for forming an optical compensation coating film, which is a retardation adjusting agent for cellulose N-substituted carbamate, comprising at least one selected from the group of, (p-tri) urea.
[0026] さらに本発明は、力ルバミン酸エステル、 N 置換力ルバミン酸エステル、尿素、 N 置換尿素から選ばれる少なくとも一つからなることを特徴とするセルロース N—置 換カーバメート用位相差調整剤に関する。 [0026] Further, the present invention provides a rubamic acid ester, N-substituted rubamic acid ester, urea, N The present invention relates to a retardation adjusting agent for cellulose N-substituted carbamate, characterized by comprising at least one selected from substituted urea.
[0027] 好ましい実施態様としては、カルノミン酸ェチル、カルノミン酸フエ-ル、 N—フエ -ルカルバミン酸ェチル、 N フエ-ルカルバミン酸フエ-ル、 N— (4—トリル)カル バミン酸ェチル、 N— (4—トリル)力ルバミン酸フエ-ル、尿素、 N, N,—ジフエ-ル 尿素、 N, N,—ジ— p トリル尿素、 N—フエ-ル— N' - (p トリル)尿素の群から選 ばれる少なくとも 1つ力もなることを特徴とするセルロース N 置換カーノメート用位 相差調整剤に関する。 [0027] Preferred embodiments include ethyl carnomate, phenyl carnomate, N-phenyl carbamate, N phenol carbamate, N- (4-tolyl) carbamate, N- Of (4-tolyl) force rubamate, urea, N, N, —diphenyl urea, N, N, —di-p-tolylurea, N—phenol—N ′-(ptolyl) urea The present invention relates to a phase difference adjusting agent for cellulose N-substituted carnomate characterized by having at least one force selected from the group.
[0028] さらに本発明は、上記の塗工液を基板に塗工し塗工基板とした後、該塗工基板を 乾燥することを特徴とする光学補償用塗工膜の形成方法に関する。  [0028] Further, the present invention relates to a method for forming an optical compensation coating film, wherein the coating liquid is coated on a substrate to form a coated substrate, and then the coated substrate is dried.
[0029] 好ましい実施態様としては、上記の塗工基板を下限 0°C、上限 40°Cの範囲の温度 で 1次乾燥した後、更に、上記の塗工基板を下限 80°C、上限 300°Cで 2次乾燥する ことを特徴とする光学補償用塗工膜の形成方法に関する。 [0029] As a preferred embodiment, the above-mentioned coated substrate is first dried at a temperature in the range of a lower limit of 0 ° C and an upper limit of 40 ° C, and then the coated substrate is further reduced to a lower limit of 80 ° C and an upper limit of 300 The present invention relates to a method for forming a coating film for optical compensation, characterized by secondary drying at ° C.
[0030] さらに本発明は、上記の塗工液を基板に塗工し塗工基板とした後、(B)成分の蒸 気にさらして塗工膜をアニーリングし、更に乾燥することを特徴とする光学補償用塗 工膜の形成方法に関する。 [0030] Further, the present invention is characterized in that after the coating liquid is applied to a substrate to form a coated substrate, the coating film is annealed by exposure to the vapor of component (B) and further dried. The present invention relates to a method for forming an optical compensation coating film.
[0031] さらに本発明は、上記の形成方法を用いたことを特徴とする光学素子の製造方法 に関する。 Furthermore, the present invention relates to a method for manufacturing an optical element characterized by using the above-described forming method.
[0032] さらに本発明は、上記の製造方法を用いて製造したことを特徴とする光学素子に関 する。  Furthermore, the present invention relates to an optical element manufactured using the above manufacturing method.
[0033] さらに本発明は、上記の形成方法を用いて製造したことを特徴とする光学補償フィ ルムに関する。  [0033] Further, the present invention relates to an optical compensation film manufactured using the above-described forming method.
[0034] さらに本発明は、偏光子の少なくとも片面に上記の光学補償フィルムを偏光子保護 フィルムとして装着したことを特徴とする偏光板に関する。  Furthermore, the present invention relates to a polarizing plate characterized in that the above optical compensation film is mounted as a polarizer protective film on at least one surface of a polarizer.
[0035] さらに本発明は、上記の光学補償フィルムを備えた液晶表示装置に関する。 Furthermore, the present invention relates to a liquid crystal display device provided with the above optical compensation film.
[0036] さらに本発明は、上記の偏光板を備えた液晶表示装置に関する。 Furthermore, the present invention relates to a liquid crystal display device provided with the above polarizing plate.
発明の効果  The invention's effect
[0037] 本発明の光学補償用塗工膜を用いると、煩雑なフィルム化工程やフィルム貼り付け 等の手間を必要とせずに光学素子が製造でき、特に〔(n + 11 )72—11〕 (1< 0の 光学補償層を有する光学素子が製造できる。さらに、本発明の光学補償用塗工膜の 形成方法を用いると、 (n +n ) /2-nで表される値が負であり、その絶対値がより 大きな光学補償用塗工膜が形成でき、より薄膜化された光学素子が製造できること から、工業的に極めて有用である。 [0037] When the optical compensation coating film of the present invention is used, a complicated film forming process or film pasting is performed. In particular, an optical element having an optical compensation layer of [(n + 11) 72-11] (1 <0 can be produced. Using the method of forming a film, the value represented by (n + n) / 2-n is negative, and a coating film for optical compensation having a larger absolute value can be formed. Since the device can be manufactured, it is extremely useful industrially.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明を詳細に説明する。本発明は、セルロース N—置換カーバメート、ま たは芳香族ビニル系重合体のいずれかの重合体を含有して形成されることを特徴と する光学補償用塗工膜である。  [0038] Hereinafter, the present invention will be described in detail. The present invention is a coating film for optical compensation characterized by comprising a polymer of cellulose N-substituted carbamate or an aromatic vinyl polymer.
[0039] 本発明の前記セルロース N—置換カーバメートは、セルロースの水酸基の少なく とも一つが N—置換カーバメート化されており、かつ、セルロースカーバメートの窒素 原子に結合した水素原子の少なくとも一つが下記一般式(1)〜(3)から選ばれる基 で置換されており、かつ、複数の N—置換基は同一又は異なって、下記一般式(1) 〜(3)力も選ばれる基である化合物であることを特徴とする光学補償用塗工膜である  [0039] In the cellulose N-substituted carbamate of the present invention, at least one hydroxyl group of cellulose is N-substituted carbamate, and at least one hydrogen atom bonded to a nitrogen atom of the cellulose carbamate is represented by the following general formula. It is a compound that is substituted with a group selected from (1) to (3), and a plurality of N-substituents are the same or different and have the following general formulas (1) to (3) An optical compensation coating film characterized by
[0040] [化 4] [0040] [Chemical 4]
Figure imgf000008_0001
Figure imgf000008_0001
[0041]
Figure imgf000008_0002
R5は、同一又は異なって、水素原子、炭素数 1〜20のアルキ ル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル基、炭素 数 6〜20のァリール基、炭素数 6〜20のァリールォキシ基、炭素数 7〜20のァラル キル基、炭素数 7〜20のァラルキルォキシ基、炭素数 1〜21のァシルォキシ基、ハ ロゲン原子、ニトロ基を表す。 )
[0041]
Figure imgf000008_0002
R 5 is the same or different and is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Represents an aryloxy group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group. )
[0042] [化 5]
Figure imgf000009_0001
[0042] [Chemical 5]
Figure imgf000009_0001
[0043] (式中 R6、 R7、 R8、 R9、 R1Q、 RU、 R12は、同一又は異なって、水素原子、炭素数 1〜20 のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル 基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) (Wherein R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. An alkoxy group, a halogenated alkyl group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
[0044] [化 6]  [0044] [Chemical 6]
Figure imgf000009_0002
Figure imgf000009_0002
[0045] (式中 R13、 R"、 R15、 Rln、 R"、 R18、 R19は、同一又は異なって、水素原子、炭素数 1〜 20のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキ ル基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) o (In the formula, R 13 , R ″, R 15 , R ln , R ″, R 18 and R 19 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group.
[0046] 本発明における、セルロース N—置換カーバメートは(以下 (A)成分と言うことが ある)、例えば、各種木材パルプ、綿リンター、綿リント等カゝら得られるセルロースを原 料とし、ピリジン、トリェチルァミン等の塩基触媒存在下でイソシァネート系化合物を 反応させる既知の方法により製造することができる。尚、前記塩基触媒は溶媒として も使用することができる。その他の溶媒としては、 N, N—ジメチルホルムアミド、 N, N —ジメチルァセトアミド等のアミド系溶媒を好適に用いることができる。更に、セルロー スの溶媒に対する溶解性を向上させるために塩化リチウム等の無機塩を添加するこ ともできる。また、このようなイソシァネート系化合物の例としては、下記一般式 (4)〜 (6)で表される化合物が挙げられる。 [0046] The cellulose N-substituted carbamate in the present invention (hereinafter sometimes referred to as component (A)) is, for example, cellulose obtained from various wood pulp, cotton linter, cotton lint, etc. It can be produced by a known method of reacting an isocyanate compound in the presence of a base catalyst such as triethylamine. The base catalyst can also be used as a solvent. As other solvents, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide can be suitably used. Furthermore, an inorganic salt such as lithium chloride can be added to improve the solubility of cellulose in a solvent. Examples of such isocyanate compounds include the following general formulas (4) to (4) The compound represented by (6) is mentioned.
[0047] [化 7] [0047] [Chemical 7]
Figure imgf000010_0001
Figure imgf000010_0001
[0048] (式中 R °、 Rz Rz Rz は、同一又は異なって、水素原子、炭素数 1〜20のァ ルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル基、 炭素数 6〜20のァリール基、炭素数 6〜20のァリールォキシ基、炭素数 7〜20のァ ラルキル基、炭素数 7〜20のァラルキルォキシ基、炭素数 1〜21のァシルォキシ基、 ハロゲン原子、ニトロ基を表す。 ) [0048] (In the formula, R ° and R z R z R z are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms. Alkyl halide group, aryl group having 6 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, and acyloxy group having 1 to 21 carbon atoms Represents a halogen atom or a nitro group.
[0049] [化 8]  [0049] [Chemical 8]
Figure imgf000010_0002
Figure imgf000010_0002
[0050] (式中 R25
Figure imgf000010_0003
R2°、 R29、 R3°、 1は、同一又は異なって、水素原子、炭素数 1〜 20のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキ ル基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 )
[0050] (wherein R 25 ,
Figure imgf000010_0003
R 2 °, R 29 , R 3 °, 1 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms. Group, a C1-C21 acyloxy group, a halogen atom, and a nitro group. )
[0051] [化 9] [0051] [Chemical 9]
Figure imgf000011_0001
Figure imgf000011_0001
[0052] (式中 R32、 R33、 R34、 R35
Figure imgf000011_0002
R37、 R38は、同一又は異なって、水素原子、炭素数 1〜 20のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキ ル基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 )
[0052] (wherein R 32 , R 33 , R 34 , R 35 ,
Figure imgf000011_0002
R 37 and R 38 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or 1 to 21 carbon atoms. Represents an acyloxy group, a halogen atom or a nitro group. )
これらのイソシァネート系化合物は、単独で使用してもよぐ 2種以上を併用してもよ い。  These isocyanate compounds may be used alone or in combination of two or more.
[0053] 本発明では、上記イソシァネート系化合物の入手性の観点から、 R2°、 R21、 R22、 R23 、 R24が、同一又は異なって、水素原子、炭素数 1〜16のアルキル基、炭素数 1〜16 のアルコキシ基、炭素数 1〜16のハロゲン化アルキル基、炭素数 6〜16のァリール 基、炭素数 6〜16のァリールォキシ基、炭素数 7〜16のァラルキル基、炭素数 7〜1 6のァラルキルォキシ基、炭素数 1〜17のァシルォキシ基、ハロゲン原子、ニトロ基で ある、一般式 (4)で表されるイソシァネート系化合物を反応させ、前記セルロースの 水酸基の少なくとも一つが N—置換カーバメートィヒされたセルロース N—置換カー バメートを用いることが好ましい。又は R25、 R26、 R27、 R28、 R29、 R3°、 R31、 R32、 R33、 R34 、 R35、 R36、 R37、 R38が、同一又は異なって、水素原子、炭素数 1〜16のアルキル基、 炭素数 1〜16のアルコキシ基、炭素数 1〜16のハロゲン化アルキル基、炭素数 1〜1 7のァシルォキシ基、ハロゲン原子、ニトロ基である、一般式(5)、 (6)で表されるイソ シァネート系化合物を反応させ、前記セルロースの水酸基の少なくとも一つが N—置 換カーバメートィ匕されたセルロース N—置換カーバメートを用いることが好ましい。 R 2°、 R21、 R22、 R23、 R24が、同一又は異なって、水素原子、炭素数 1〜12のアルキル基 、炭素数 1〜12のアルコキシ基、炭素数 1〜12のハロゲン化アルキル基、炭素数 6 〜12のァリール基、炭素数 6〜12のァリールォキシ基、炭素数 7〜12のァラルキル 基、炭素数 7〜 12のァラルキルォキシ基、炭素数 1〜13のァシルォキシ基、ハロゲン 原子、ニトロ基である、一般式 (4)で表されるイソシァネート系化合物を反応させ、前 記セルロースの水酸基の少なくとも一つが N 置換カーバメート化されたセルロース N—置換カーバメートを用いることがより好ましい。又は R25、 R26
Figure imgf000012_0001
R30 、 R31、 R32、 R33、 R34、 R35、 R36、 R37、 R38が、同一又は異なって、水素原子、炭素数 1 〜12のアルキル基、炭素数 1〜12のアルコキシ基、炭素数 1〜12のハロゲン化アル キル基、炭素数 1〜13のァシルォキシ基、ハロゲン原子、ニトロ基である、一般式(5) 、(6)で表されるイソシァネート系化合物を反応させ、前記セルロースの水酸基の少 なくとも一つが N 置換カーバメートィ匕されたセルロース N 置換カーバメートを用 いることがより好ましい。
In the present invention, from the viewpoint of availability of the above isocyanate compound, R 2 °, R 21 , R 22 , R 23 , R 24 may be the same or different and each is a hydrogen atom or an alkyl having 1 to 16 carbon atoms. Group, alkoxy group having 1 to 16 carbon atoms, halogenated alkyl group having 1 to 16 carbon atoms, aryl group having 6 to 16 carbon atoms, aryloxy group having 6 to 16 carbon atoms, aralkyl group having 7 to 16 carbon atoms, carbon An isocyanate compound represented by the general formula (4), which is an aralkyloxy group having 7 to 16 carbon atoms, an acyloxy group having 1 to 17 carbon atoms, a halogen atom, or a nitro group, is reacted, and at least one hydroxyl group of the cellulose is N-substituted carbamate cellulose N-substituted carbamate is preferably used. Or R 25 , R 26 , R 27 , R 28 , R 29 , R 3 °, R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are the same or different, A hydrogen atom, an alkyl group having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, an acyloxy group having 1 to 17 carbon atoms, a halogen atom, and a nitro group. It is preferable to use cellulose N-substituted carbamate in which isocyanate compounds represented by the general formulas (5) and (6) are reacted and at least one of hydroxyl groups of the cellulose is N-substituted carbamate. R 2 °, R 21 , R 22 , R 23 , R 24 are the same or different and are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen having 1 to 12 carbon atoms. Alkyl group, aryl group having 6 to 12 carbon atoms, aryloxy group having 6 to 12 carbon atoms, aralkyl group having 7 to 12 carbon atoms, aralkyloxy group having 7 to 12 carbon atoms, acyloxy group having 1 to 13 carbon atoms, halogen It is more preferable to use a cellulose N-substituted carbamate in which an isocyanate compound represented by the general formula (4), which is an atom or a nitro group, is reacted and at least one hydroxyl group of the cellulose is N-substituted carbamate. Or R 25 , R 26 ,
Figure imgf000012_0001
R 30 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are the same or different and are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or 1 to 12 carbon atoms. An isocyanate compound represented by the general formulas (5) and (6), which is an alkoxy group of 1 to 12, a halogenated alkyl group of 1 to 12 carbon atoms, an acyloxy group of 1 to 13 carbon atoms, a halogen atom, or a nitro group. It is more preferable to use cellulose N-substituted carbamate which is reacted and at least one of the hydroxyl groups of cellulose is N-substituted carbamate.
一般式 (4)〜(6)で表されるイソシァネート系化合物を具体的に例示すると、フエ二 ルイソシァネート、 o トリルイソシァネート、 m—トリルイソシァネート、 p トリルイソシ ァネート、 2 ェチルフエ-ルイソシァネート、 3 ェチルフエ-ルイソシァネート、 4 ェチルフエ-ルイソシァネート、 2 プロピルフエ-ルイソシァネート、 3 プロピルフエ 二ルイソシァネート、 4 プロピルフエ二ルイソシァネート、 2 ブチルフエ二ルイソシ ァネート、 3 ブチルフエ-ルイソシァネート、 4 ブチルフエ-ルイソシァネート、 2, 3 ジメチルフエ-ルイソシァネート、 2, 4 ジメチルフエ-ルイソシァネート、 2, 5— ジメチルフエ-ルイソシァネート、 2, 6 ジメチルフエ-ルイソシァネート、 3, 4 ジメ チルフエ-ルイソシァネート、 3, 5 ジメチルフエ-ルイソシァネート、 2, 3 ジェチ ルフエ-ルイソシァネート、 2, 4ージェチルフエ-ルイソシァネート、 2, 5 ジェチル フエ二ルイソシァネート、 2, 6 ジェチルフエ二ルイソシァネート、 3, 4ージェチルフ 工-ルイソシァネート、 3, 5 ジェチルフエ-ルイソシァネート、 2, 4, 6 トリメチルフ ェ-ノレイソシァネート、 2—メトキシフエ-ノレイソシァネート、 3—メトキシフエ-ノレイソシ ァネート、 4ーメトキシフエ二ルイソシァネート、 2 エトキシフエ二ルイソシァネート、 3 エトキシフエ二ルイソシァネート、 4 エトキシフエ二ルイソシァネート、 2 (フルォ ロメチル)フエ-ルイソシァネート、 3—(フルォロメチル)フエ-ルイソシァネート、 4一 ( フルォロメチル)フエ-ルイソシァネート、 2- (クロロメチル)フエ-ルイソシァネート、 3 - (クロロメチル)フエ-ルイソシァネート、 4— (クロロメチル)フエ-ルイソシァネート、 2- (ブロモメチル)フエ-ルイソシァネート、 3— (ブロモメチル)フエ-ルイソシァネー ト、 4 (ブロモメチル)フエ-ルイソシァネート、 2- (ョードメチル)フエ-ルイソシァネ ート、 3—(ョードメチル)フエ-ルイソシァネート、 4 (ョードメチル)フエ-ルイソシァ ネート、 2- (ジフルォロメチル)フエ-ルイソシァネート、 3—(ジフルォロメチル)フエ 二ルイソシァネート、 4— (ジフルォロメチル)フエ-ルイソシァネート、 2- (ジクロロメ チル)フエ-ルイソシァネート、 3— (ジクロロメチル)フエ-ルイソシァネート、 4— (ジク 口ロメチル)フエ-ルイソシァネート、 2 (ジブロモメチル)フエ-ルイソシァネート、 3 (ジブロモメチル)フエ-ルイソシァネート、 4 (ジブロモメチル)フエ-ルイソシァネ ート、 2- (ジョ一ドメチル)フエ-ルイソシァネート、 3—(ジョ一ドメチル)フエ-ルイソ シァネート、 4 (ジョ一ドメチル)フエ-ルイソシァネート、 2- (トリフルォロメチル)フ ェ-ルイソシァネート、 3— (トリフルォロメチル)フエ-ルイソシァネート、 4— (トリフル ォロメチル)フエ-ルイソシァネート、 2— (トリクロロメチル)フエ-ルイソシァネート、 3 - (トリクロロメチル)フエ-ルイソシァネート、 4— (トリクロロメチル)フエ-ルイソシァネ ート、 2- (トリブロモメチル)フエ-ルイソシァネート、 3—(トリブロモメチル)フエ-ルイ ソシァネート、 4 (トリブロモメチル)フエ二ルイソシァネート、 2- (トリヨ一ドメチル)フ ェ-ルイソシァネート、 3—(トリヨ一ドメチル)フエ-ルイソシァネート、 4 (トリヨ一ドメ チル)フエ-ルイソシァネート、 2 ビフエ-リルイソシァネート、 3 ビフエ-リルイソシ ァネート、 4ービフエ二リルイソシァネート、 2 フエノキシフエ二ルイソシァネート、 3— フエノキシフエ-ノレイソシァネート、 4 フエノキシフエ-ノレイソシァネート、 2'—ベンジ ルフエ-ルイソシァネート、 3,一ベンジルフエ-ルイソシァネート、 4,一ベンジルフエ -ノレイソシァネート、 2 べンジルォキシフエ-ルイソシァネート、 3 べンジルォキシ フエ-ノレイソシァネート、 4 ベンジルォキシフエ-ノレイソシァネート、 2 ァセトキシフ ェ-ルイソシァネート、 3—ァセトキシフエ-ルイソシァネート、 4ーァセトキシフエ-ル イソシァネート、 2 フルオロフェ-ルイソシァネート、 3 フルオロフェ-ルイソシァネ ート、 4 フルオロフェ-ルイソシァネート、 2 クロ口フエ-ルイソシァネート、 3 クロ 口フエニノレイソシァネート、 4 クロ口フエニノレイソシァネート、 2 ブロモフエ二ノレイソ シァネート、 3 ブロモフエニノレイソシァネート、 4 ブロモフエニノレイソシァネート、 2 ョードフエ二ルイソシァネート、 3—ョードフエ二ルイソシァネート、 4 ョードフエ二 ルイソシァネート、 2, 4 ジフルオロフェ-ルイソシァネート、 2, 5 ジフルオロフェ- ルイソシァネート、 2, 6 ジフルオロフェ-ルイソシァネート、 3, 4 ジフルオロフェニ ルイソシァネート、 3, 5 ジフルオロフェ-ルイソシァネート、 2, 4 ジクロロフェニル イソシァネート、 2, 5 ジクロ口フエニノレイソシァネート、 2, 6 ジクロ口フエニノレイソシ ァネート、 3, 4ージクロ口フエ-ルイソシァネート、 3, 5—ジクロ口フエ二ノレイソシァネ ート、 2, 4 ジブロモフエニノレイソシァネート、 2, 5 ジブロモフエニノレイソシァネート 、 2, 6 ジブロモフエニノレイソシァネート、 3, 4 ジブロモフエニノレイソシァネート、 3 , 5 ジブロモフエ二ルイソシァネート、 2, 4ージョードフエ二ルイソシァネート、 2, 5 ージョードフエ二ルイソシァネート、 2, 6 ジョードフエ二ルイソシァネート、 3, 4ージ ョードフエ二ルイソシァネート、 3, 5 ジョードフエ二ルイソシァネート、 2, 3, 4 トリフ ルォロフエ-ルイソシァネート、 2, 3, 4 トリクロ口フエ-ルイソシァネート、 2, 3, 4— トリブロモフエ-ルイソシァネート、 2, 3, 4 トリョードフエ-ルイソシァネート、 2 フ ルォロ 5 メチルフエ-ルイソシァネート、 2 -フルォロ 6—メチルフエ-ルイソシ ァネート、 3 フルオロー 2—メチルフエ-ルイソシァネート、 3 フルオロー 4—メチル フエ-ルイソシァネート、 4 フルオロー 2—メチルフエ-ルイソシァネート、 4 フルォ 口 3 メチルフエ-ルイソシァネート、 5 -フルォロ 2 メチルフエ-ルイソシァネ ート、 2 クロ口一 5—メチルフエ-ルイソシァネート、 2 クロ口一 6—メチルフエ-ルイ ソシァネート、 3 クロ口一 2—メチルフエ-ルイソシァネート、 3 クロ口一 4—メチルフ ェ-ルイソシァネート、 4 クロ口一 2—メチルフエ-ルイソシァネート、 4 クロ口一 3— メチルフエ-ルイソシァネート、 5 クロ口一 2—メチルフエ-ルイソシァネート、 2 ブ 口モー 5—メチルフエ-ルイソシァネート、 2 ブロモ 6—メチルフエ-ルイソシァネ ート、 3 ブロモー 2 メチルフエ-ルイソシァネート、 3 ブロモー 4 メチルフエ-ル イソシァネート、 4ーブロモー 2 メチルフエ二ルイソシァネート、 4ーブロモー 3—メチ ルフエ-ルイソシァネート、 5 ブロモ 2—メチルフエ-ルイソシァネート、 2 ョード —5—メチルフエ-ルイソシァネート、 2 ョード 6—メチルフエ-ルイソシァネート、 3 ョード 2—メチルフエ-ルイソシァネート、 3 ョード 4—メチルフエ-ルイソシ ァネート、 4 ョード 2—メチルフエ-ルイソシァネート、 4 ョード 3—メチルフエ 二ルイソシァネート、 5 ョードー 2 メチルフエ二ルイソシァネート、 2 二トロフエ二 ルイソシァネート、 3—二トロフエ二ルイソシァネート、 4一二トロフエ二ルイソシァネート 、 1 ナフチノレイソシァネート、 2—ナフチノレイソシァネート、 1ーメチノレー 2—ナフチ ルイソシァネート、 2—メチルー 1 ナフチルイソシァネート、 1ーメトキシー2—ナフチ ルイソシァネート、 2—メトキシ一 1—ナフチルイソシァネート、 1— (トリフルォロメチル )一 2—ナフチルイソシァネート、 2- (トリフルォロメチル) 1 ナフチルイソシァネ ート、 1 (トリクロロメチル) 2—ナフチルイソシァネート、 2- (トリクロロメチル) 1 ナフチルイソシァネート、 1 (トリブロモメチル) 2—ナフチルイソシァネート、 2- (トリブロモメチル) 1 ナフチルイソシァネート、 1 (トリヨ一ドメチル) 2—ナフチ ルイソシァネート、 2- (トリヨ一ドメチル) 1 ナフチルイソシァネート、 1ーァセトキ シー 2—ナフチノレイソシァネート、 2—ァセトキシー 1 ナフチノレイソシァネート、 1ーフ ルオロー 2—ナフチルイソシァネート、 2—フルオロー 1 ナフチルイソシァネート、 1 クロロー 2—ナフチノレイソシァネート、 2—クロロー 1 ナフチノレイソシァネート、 1 ブロモー 2—ナフチノレイソシァネート、 2—ブロモー 1 ナフチノレイソシァネート、 1 ョードー 2—ナフチルイソシァネート、 2—ョードー 1 ナフチルイソシァネート、 1一二 トロー 2—ナフチノレイソシァネート、 2— -トロー 1 ナフチノレイソシァネート等が挙げ られる。これら及び前記イソシァネート系化合物を反応して得られるセルロース N— 置換カーバメートは、単独で使用してもよぐ 2種以上を併用してもよい。 Specific examples of the isocyanate compounds represented by the general formulas (4) to (6) include phenyl isocyanate, o tolyl isocyanate, m-tolyl isocyanate, p tolyl isocyanate, 2 ethyl phenyl isocyanate, 3 Ethyl phenyl isocyanate, 4 Ethyl phenyl isocyanate, 2 Propyl phenol isocyanate, 3 Propyl phenyl isocyanate, 4 Propyl phenyl isocyanate, 2 Butyl phenyl isocyanate, 3 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate, 4 Butyl phenyl isocyanate Dimethylphenol isocyanate, 2,5-Dimethylphenol isocyanate, 2,6 Dimethylphenol isocyanate, 3,4 Dimethylphenol isocyanate, 3,5 Dimethylphenol isocyanate, 2, 3 Jetyl phenyl isocyanate, 2, 4-Jetyl phenyl isocyanate, 2, 5 Jetyl phenyl isocyanate, 2, 6 Jetyl phenyl isocyanate, 3, 4-Jetyl phenol engineering, 3, 5 Jetyl phenol isocyanate, 2, 4, 6 Trimethyl Phenolate isocyanate, 2-methoxyphenolate isocyanate, 3-methoxyphenolate isocyanate, 4-methoxyphenylisocyanate, 2 ethoxyphenylisocyanate, 3 ethoxyphenylisocyanate, 4 ethoxyphenylisocyanate, 2 (fluoromethyl) phenol Ruisocyanate, 3- (Fluoromethyl) phenyl isocyanate, 4 (Fluoromethyl) phenol isocyanate, 2- (Chloromethyl) phenol isocyanate, 3- (Chloromethyl) phenol isocyanate 4- (chloromethyl) phenyl isocyanate, 2- (bromomethyl) phenyl isocyanate, 3- (bromomethyl) phenyl isocyanate 4- (bromomethyl) phenol isocyanate, 2- (iodomethyl) phenol isocyanate, 3— (odomethyl) phenol isocyanate, 4 (odomethyl) phenol isocyanate, 2- (difluoromethyl) phenol isocyanate, 3— (Difluoromethyl) phenylisocyanate, 4- (Difluoromethyl) phenylisocyanate, 2- (Dichloromethyl) phenylisocyanate, 3- (Dichloromethyl) phenylisocyanate, 4— (Dichloromethyl) phenylisocyanate, 2 (Dibromo Methyl) phenol isocyanate, 3 (dibromomethyl) phenol isocyanate, 4 (dibromomethyl) phenol isocyanate, 2- (jodomethyl) phenol isocyanate, 3— (jointmethyl) phenol isocyanate, 4 (Jodome L) Phenyl isocyanate, 2- (trifluoromethyl) phenyl isocyanate, 3— (trifluoromethyl) phenyl isocyanate, 4— (trifluoromethyl) phenyl isocyanate, 2— (trichloromethyl) phenyl isocyanate , 3- (trichloromethyl) phenol isocyanate, 4- (trichloromethyl) phenol isocyanate, 2- (tribromomethyl) phenol isocyanate, 3- (tribromomethyl) phenol isocyanate, 4 (tribromo) Methyl) phenyl isocyanate, 2- (triiodomethyl) phenyl isocyanate, 3- (triiodomethyl) phenol isocyanate, 4 (triiodomethyl) phenyl isocyanate, 2 biphenyl-isocyanate, 3 biphenyl -Lyl isocyanate, 4-biphenylyl isocyanate 2 Phenyloxyisocyanate, 3—Phenoxyphene-isocyanate, 4 Phenoxyphenol-isocyanate, 2′-Benzylphenolisocyanate, 3,1-Benzylphenolisocyanate, 4,1-Benzylphenol-isoleocyanate, 2-Benzyloxyphene -Ruisocyanate, 3-benzyloxyphenol-isocyanate, 4 benzyloxyphenol-isoleocyanate, 2-acetoxyphenyl isocyanate, 3-acetoxyphenyl isocyanate, 4-acetoxyphenyl isocyanate, 2 fluorophenol isocyanate, 2 fluorophenol isocyanate Ruisocyanate, 4 Fluorophenol isocyanate, 2 Chlorophenyl isocyanate, 3 Chlorophenolate isocyanate, 4 Chlorophenolate isocyanate, 2 Bromophenolate Isocyanate, 3 Bromophenylenoisocyanate, 4 Bromophenylenoisocyanate, 2 Phodophenylisocyanate, 3—Phodophenylisocyanate, 4 Phodophenylisocyanate, 2, 4 Difluorophenol isocyanate, 2, 5 Difluorophene Ruisocyanate, 2,6 Difluorophenyl isocyanate, 3,4 Difluorophenyl isocyanate, 3,5 Difluorophenyl isocyanate, 2,4 Dichlorophenyl isocyanate, 2,5 Dichlorodiphenyl isocyanate, 2, 6 Dichlorodiphenyl isocyanate 3,4-dichroic phenylisocyanate, 3,5-diclonal phenylisocyanate, 2,4 dibromophenenoisocyanate, 2,5 dibromopheninoisocyanate, 2,6 dibromophenolisocyanate 3,4 dibromophenylisocyanate, 3,5 dibromophenylisocyanate, 2,4-jodophenylisocyanate, 2,5-jodephenylisocyanate, 2,6 jodophenylisocyanate, 3,4-jodophenylisocyanate, 3, 5 Jo Douphenyl isocyanate, 2, 3, 4 Trifluorophenol isocyanate, 2, 3, 4 Trichlorophenol isocyanate, 2, 3, 4— Tribromophenol isocyanate, 2, 3, 4 Triophenol isocyanate, 2 Fluoro 5 methyl phenol Ruisocyanate, 2-Fluoro 6-methyl phenol isocyanate, 3 Fluoro 2-Methyl phenol isocyanate, 3 Fluoro 4-Methyl phenol isocyanate, 4 Fluoro 2-methyl phenol isocyanate, 4 Fluoro 3 Methyl phenol isocyanate, 5-Fluoro 2 methyl -Luocyanate, 2 Black Mouth 5—Methylphenol isocyanate, 2 Black Mouth 6—Methylphenolic isocyanate, 3 Black Mouth 2—Methylphenol isocyanate, 3 Black Mouth 4—Methylphenol isocyanate, 4 Black Mouth one 2—Methylphenol isocyanate 3—Methylphenol isocyanate 3—Methylphenol 2—Methylphenol isocyanate 2—Methylphenol isocyanate 5—Bromo 6—Methylphenol isocyanate 3 Bromo 2—Methylphenol -Luisocyanate, 3 bromo-4 methylphenol isocyanate, 4-bromo-2 methylphenylisocyanate, 4-bromo-3-methylphenylisocyanate, 5 bromo-2-methylphenolisocyanate, 2 jorde —5-methylphenolisocyanate, 2 pheode 6-methyl Ruisocyanate, 3 iodine 2-methyl phenol isocyanate, 3 iodine 4-methyl phenol isocyanate, 4 iodine 2-methyl phenyl isocyanate, 4 iodine 3-methyl phenol isocyanate, 5 iodine 2 Chirufue two Ruisoshianeto, 2 two Torofue two Ruisoshianeto, 3 two Torofue two Ruisoshianeto, 4 twelve Torofue two Ruisoshianeto 1-naphthynoleisocyanate, 2-naphthinoreisocyanate, 1-methylenole 2-naphthylisocyanate, 2-methyl-1 naphthylisocyanate, 1-methoxy-2-naphthylisocyanate, 2-methoxy-1-naphthylisocyanate, 1- (Trifluoromethyl) -1-2-naphthyl isocyanate, 2- (trifluoromethyl) 1-naphthyl isocyanate, 1 (trichloromethyl) 2-naphthyl isocyanate, 2- (trichloromethyl) 1 Naphthyl isocyanate, 1 (Tribromomethyl) 2-Naphthyl isocyanate, 2- (Tribromomethyl) 1 Naphthyl isocyanate, 1 (Triiodomethyl) 2-Naphthyl isocyanate, 2- (Triiodomethyl) 1 Naphthyl isocyanate, 1-acetoxy 2-Naphthyno isocyanate, 2-acet Xy 1 Naphthinoreisocyanate, 1-Fluoro 2-Naphtyl isocyanate, 2-Fluoro-1 Naphthyl isocyanate, 1 Chloro 2-Naphthinoreisocyanate, 2-Chloro 1 Naphthinoreisocyanate, 1 Bromo 2-Naphthinoisocyanate, 2-Bromo-1 Naphthinoisocyanate, 1 ododo 2-Naphthylisocyanate, 2- odoid-1 naphthylisocyanate, 1 12 tallow 2-Naphthinoreisocyanate, 2— -Trow 1 Naphthinoreisocyanate. Cellulose N-substituted carbamates obtained by reacting these and the isocyanate compounds may be used alone or in combination of two or more.
[0055] また、セルロースはその構成単位であるグルコース残基当たり 3個の水酸基を有し ている。従って、これらの水酸基を置換する場合に、グルコース残基当たりの置換度( 以下、 DSと称する)は最大 3になる。本発明においては、 DSの下限は好ましくは 0. 1、より好ましくは 0. 5、さらに好ましくは 1であり、上限は好ましくは 3、より好ましくは 2 . 95、さらに好ましくは 2. 9である。 DSが 0. 1より低いと溶媒に溶け難くなる傾向があ る。本発明では、 DSが異なるセルロース N 置換カーバメートの 2種以上を併用し てもよく、単独で使用してもよい。  [0055] Cellulose has three hydroxyl groups per glucose residue, which is a structural unit. Therefore, when these hydroxyl groups are substituted, the degree of substitution per glucose residue (hereinafter referred to as DS) is a maximum of 3. In the present invention, the lower limit of DS is preferably 0.1, more preferably 0.5, more preferably 1, and the upper limit is preferably 3, more preferably 2.95, and even more preferably 2.9. . When DS is lower than 0.1, it tends to be difficult to dissolve in a solvent. In the present invention, two or more cellulose N-substituted carbamates having different DSs may be used in combination, or may be used alone.
[0056] さらに、(A)成分の数平均分子量の下限は好ましくは 5000、より好ましくは 8000、 さらに好まし <は 10000であり、上限は好まし <は 500000、より好まし <は 300000、 さらに好ましくは 200000である。数平均分子量が 5000より小さいと塗工膜強度が低 下する傾向があり、数平均分子量が 500000より大きいと溶媒 (以下 (B)成分と言うこ とがある)に溶け難くなる傾向がある。なお、当該数平均分子量は、ゲル浸透クロマト グラフィー (GPC)法により測定した値である。本発明では、数平均分子量が異なるセ ルロース N 置換カーノメートの 2種以上を併用してもよぐ単独で使用してもよい。 本発明の芳香族ビニル系重合体 (以下 (A)成分と言うことがある)としては、芳香族 ビュル単位を含むものであればいずれも使用することができる。たとえば、ポリスチレ ン;ポリ( α—メチノレスチレン);ポリ(2—メチルスチレン)、ポリ(3—メチルスチレン)、 ポリ(4ーメチルスチレン)、ポリ(2, 4 ジメチルスチレン)、ポリ(2, 5 ジメチルスチ レン)、ポリ(3, 4 ジメチルスチレン)、ポリ(3, 5 ジメチルスチレン)、ポリ(2 ェチ ノレスチレン)、ポリ(3 ェチルスチレン)、ポリ(4ーェチノレスチレン)、ポリ(2, 4 ジェ チノレスチレン)、ポリ(2, 5 ジェチルスチレン)、ポリ(3, 4 ジェチルスチレン)、ポリ (3, 5 ジェチルスチレン)、ポリ(2 プロピルスチレン)、ポリ(3 プロピノレスチレン) 、ポリ(4 プロピノレスチレン)、ポリ(2, 4 ジプロピルスチレン)、ポリ(2, 5 ジプロピ ルスチレン)、ポリ(3, 4—ジプロピルスチレン)、ポリ(3, 5—ジプロピルスチレン)、ポ リ(2 ブチノレスチレン)、ポリ(3 ブチルスチレン)、ポリ(4ーブチノレスチレン)、ポリ([0056] Further, the lower limit of the number average molecular weight of component (A) is preferably 5000, more preferably 8000, more preferably <10,000, and the upper limit is preferably <500,000, more preferably <300000, Preferably it is 200,000. If the number average molecular weight is less than 5,000, the coating film strength tends to decrease, and if the number average molecular weight is more than 500,000, it tends to be difficult to dissolve in a solvent (sometimes referred to as component (B)). The number average molecular weight is determined by gel permeation chromatography. It is a value measured by the graphic (GPC) method. In the present invention, two or more types of cellulose N-substituted carnomates having different number average molecular weights may be used in combination, or may be used alone. Any aromatic vinyl polymer of the present invention (hereinafter sometimes referred to as component (A)) may be used as long as it contains an aromatic bulule unit. For example, polystyrene; poly (α-methylenostyrene); poly (2-methylstyrene), poly (3-methylstyrene), poly (4-methylstyrene), poly (2, 4 dimethylstyrene), poly (2, 5 Dimethyl styrene), poly (3,4 dimethyl styrene), poly (3,5 dimethyl styrene), poly (2 ethyn styrene), poly (3 eth styrene), poly (4 ethyn styrene), poly (2, 4 Methinostyrene), poly (2,5 dimethyl styrene), poly (3,4 methyl styrene), poly (3,5 dimethyl styrene), poly (2 propyl styrene), poly (3 propino styrene), Poly (4 propinole styrene), poly (2, 4 dipropyl styrene), poly (2, 5 dipropyl styrene), poly (3,4-dipropyl styrene), poly (3, 5-dipropyl styrene) , Po Li (2 Buchi Honoré styrene), poly (3-butyl styrene), poly (4-butyl Honoré styrene), poly (
2, 4 ジブチルスチレン)、ポリ(2, 5 ジブチルスチレン)、ポリ(3, 4 ジブチノレス チレン)、ポリ(3, 5 ジブチルスチレン)等のポリ(アルキルスチレン);ポリ(2—メトキ シスチレン)、ポリ(3—メトキシスチレン)、ポリ(4ーメトキシスチレン)、ポリ(2, 4 ジメ トキシスチレン)、ポリ(2, 5 ジメトキシスチレン)、ポリ(3, 4 ジメトキシスチレン)、 ポリ(3, 5 ジメトキシスチレン)、ポリ(2 ェトキシスチレン)、ポリ(3 ェトキシスチレ ン)、ポリ(4 エトキシスチレン)、ポリ(2, 4 ジェトキシスチレン)、ポリ(2, 5 ジエト キシスチレン)、ポリ(3, 4—ジェトキシスチレン)、ポリ(3, 5—ジェトキシスチレン)、ポ リ(2 プロポキシスチレン)、ポリ(3 プロポキシスチレン)、ポリ(4 プロポキシスチ レン)、ポリ(2, 4 ジプロポキシスチレン)、ポリ(2, 5 ジプロポキシスチレン)、ポリ(2,4 dibutyl styrene), poly (2,5 dibutyl styrene), poly (3,4 dibutinoles styrene), poly (3,5 dibutyl styrene) and other poly (alkyl styrene); poly (2-methoxystyrene), poly (3-methoxystyrene), poly (4-methoxystyrene), poly (2,4 dimethoxystyrene), poly (2,5 dimethoxystyrene), poly (3,4 dimethoxystyrene), poly (3,5 dimethoxystyrene) ), Poly (2 ethoxy styrene), poly (3 ethoxy styrene), poly (4 ethoxy styrene), poly (2, 4 ethoxy styrene), poly (2, 5 diethoxy styrene), poly (3,4-jet) Toxistyrene), poly (3,5-ethoxystyrene), poly (2 propoxystyrene), poly (3 propoxystyrene), poly (4 propoxystyrene), poly (2, 4 Propoxy styrene), poly (2, 5-di-propoxy styrene), poly (
3, 4ージプロポキシスチレン)、ポリ(3, 5 ジプロポキシスチレン)、ポリ(2 ブトキシ スチレン)、ポリ(3 ブトキシスチレン)、ポリ(4ーブトキシスチレン)、ポリ(2, 4 ジブ トキシスチレン)、ポリ(2, 5 ジブトキシスチレン)、ポリ(3, 4 ジブトキシスチレン)、 ポリ(3, 5 ジブトキシスチレン)等のポリ(アルコキシスチレン);ポリ(2 クロロスチレ ン)、ポリ(3 クロロスチレン)、ポリ(4 クロロスチレン)、ポリ(2, 4 ジクロロスチレン )、ポリ(2, 5 ジクロロスチレン)、ポリ(2, 6 ジクロロスチレン)、ポリ(3, 4 ジクロロ スチレン)、ポリ(2 ブロモスチレン)、ポリ(3 ブロモスチレン)、ポリ(4ーブロモスチ レン)、ポリ(2, 4 ジブ口モスチレン)、ポリ(2, 5 ジブ口モスチレン)、ポリ(2, 6— ジブ口モスチレン)、ポリ(3, 4 ジブ口モスチレン)、ポリ(2 ョードスチレン)、ポリ(3 ーョードスチレン)、ポリ(4ーョードスチレン)、ポリ(2, 4 ジョードスチレン)、ポリ(2 , 5 ジョードスチレン)、ポリ(2, 6 ジョードスチレン)、ポリ(3, 4 ジョードスチレン )、ポリ(2 フルォロスチレン)、ポリ(3 フルォロスチレン)、ポリ(4 フルォロスチレ ン)、ポリ(2, 4 ジフルォロスチレン)、ポリ(2, 5 ジフルォロスチレン)、ポリ(2, 6 ージフルォロスチレン)、ポリ(3, 4—ジフルォロスチレン)等のポリ(ノヽロゲン化スチレ ン);ポリ(2—メトキシカルボ-ルスチレン)、ポリ(4ーメトキシカルボ-ルスチレン)、ポ リ(2 エトキシカルボ-ルスチレン)、ポリ(4 エトキシカルボ-ルスチレン)、ポリ(2 プロポキシカルボ-ルスチレン)、ポリ(4 プロポキシカルボ-ルスチレン)、ポリ(2 ブトキシカルボ-ルスチレン)、ポリ(4 ブトキシカルボ-ルスチレン)等のポリ(ビ -ル安息香酸エステル);ポリ(o ヒドロキシスチレン)、ポリ(m—ヒドロキシスチレン) 、ポリ(p ヒドロキシスチレン)等のポリ(ヒドロキシスチレン);ポリ(1ービニノレナフタレ ン)、ポリ(2 ビュルナフタレン)等のビュルナフタレン系重合体;ポリ(4 ビュルビフ ヱ-ル)、ポリ(3—(4ービフヱ-ル)スチレン)、ポリ(4一(4ービフヱ-ル)スチレン)等 のポリ(ァリールスチレン);ポリアセナフチレン等が挙げられる。また、これらの 2種以 上の共重合体;これらの 1種又は 2種以上と他のポリマーとの共重合体も用いることが できる。例えば、スチレン一( α—メチルスチレン)共重合体、スチレン一(2—メチル スチレン)共重合体、スチレン一(3—メチルスチレン)共重合体、スチレン一(4ーメチ ルスチレン)共重合体、スチレン一(2—メトキシスチレン)共重合体、スチレン一(3— メトキシスチレン)共重合体、スチレン—(4—メトキシスチレン)共重合体、スチレン— (2 クロロスチレン)共重合体、スチレン一(3 クロロスチレン)共重合体、スチレン - (4—クロロスチレン)共重合体、スチレン一(2—メトキシカルボ-ルスチレン)共重 合体、スチレン一(4—メトキシカルボ-ルスチレン)共重合体、スチレン一(ο ヒドロ キシスチレン)共重合体、スチレン一(m—ヒドロキシスチレン)共重合体、スチレン一( p ヒドロキシスチレン)共重合体、スチレン一(1 ビュルナフタレン)共重合体、スチ レン一(2 ビュルナフタレン)共重合体、スチレン一(4ービ-ルビフエ-ル)共重合 体、スチレン アクリル酸メチル共重合体、スチレンーメタクリル酸メチル共重合体、 スチレン イソプレン共重合体、スチレン ブタジエン共重合体、スチレン一アタリ口 二トリル共重合体、スチレン 無水マレイン酸共重合体、スチレン 酢酸ビュル共重 合体等のスチレン系 2元共重合体; ( aーメチルスチレン)一(2—メチルスチレン)共 重合体、( ( ーメチルスチレン)一(3—メチルスチレン)共重合体、 ( aーメチルスチレ ン)一(4—メチルスチレン)共重合体、 ( a—メチルスチレン) - (2—メトキシスチレン )共重合体、 ( a—メチルスチレン) - (3—メトキシスチレン)共重合体、 ( a—メチル スチレン) - (4—メトキシスチレン)共重合体、( α—メチルスチレン) - (2 クロロス チレン)共重合体、 ( a—メチルスチレン) - (3—クロロスチレン)共重合体、 ( a—メ チノレスチレン) - (4 クロロスチレン)共重合体、 ( a—メチノレスチレン) - (2—メトキ シカルボ-ルスチレン)共重合体、 ( a—メチルスチレン) - (4—メトキシカルボ-ル スチレン)共重合体、 ( aーメチルスチレン)一(o ヒドロキシスチレン)共重合体、 ( a —メチルスチレン) - (m—ヒドロキシスチレン)共重合体、 ( a—メチルスチレン) - (p —ヒドロキシスチレン)共重合体、 ( a—メチルスチレン) - (1—ビュルナフタレン)共 重合体、( (X—メチルスチレン) - (2—ビュルナフタレン)共重合体、 ( a—メチルス チレン)一(4—ビ-ルビフエ-ル)共重合体、 ( a—メチルスチレン)一アクリル酸メチ ル共重合体、 ( aーメチルスチレン)ーメタクリル酸メチル共重合体、( exーメチルスチ レン)一イソプレン共重合体、 ( a—メチルスチレン)一ブタジエン共重合体、( α—メ チルスチレン)一アクリロニトリル共重合体、( α—メチルスチレン)一無水マレイン酸 共重合体、 ( ーメチルスチレン) 酢酸ビニル共重合体等の atーメチルスチレン系 2元共重合体;スチレン アクリル酸メチル メタクリル酸メチル共重合体、スチレン - ( a—メチルスチレン)一アクリロニトリル共重合体、スチレン一( α—メチルスチレン )ーメタクリル酸メチル共重合体等の 3元共重合体等が挙げられる。これらの重合体 は、単独で使用してもよぐ 2種以上を併用してもよい。 3,4-dipropoxystyrene), poly (3,5 dipropoxystyrene), poly (2 butoxystyrene), poly (3 butoxystyrene), poly (4-butoxystyrene), poly (2,4 dibutoxystyrene) , Poly (2,5 dibutoxystyrene), poly (3,4 dibutoxystyrene), poly (3,5 dibutoxystyrene) and other poly (alkoxystyrene); poly (2 chlorostyrene), poly (3 chlorostyrene) ), Poly (4 chlorostyrene), poly (2, 4 dichlorostyrene), poly (2, 5 dichlorostyrene), poly (2, 6 dichlorostyrene), poly (3,4 dichloro) Styrene), poly (2 bromostyrene), poly (3 bromostyrene), poly (4-bromostyrene), poly (2,4 dib-mouthed styrene), poly (2,5 dib-headed styrene), poly (2, 6— Jib mouth styrene), poly (3,4 dip styrene), poly (2 styrene), poly (3 styrene), poly (4 styrene), poly (2,4 styrene), poly (2,5 styrene) , Poly (2,6 jodostyrene), poly (3,4 jodostyrene), poly (2 fluorostyrene), poly (3 fluorostyrene), poly (4 fluorostyrene), poly (2,4 difluorostyrene), poly (2,5-difluorostyrene), poly (2,6-difluorostyrene), poly (3,4-difluorostyrene) and other poly (norogenated styrene); poly (2-methoxy (Carbon Styrene), Poly (4-Methoxy Carbon Styrene), Poly (2 Ethoxy Carbon Styrene), Poly (4 Ethoxy Carbon Styrene), Poly (2 Propoxy Carbon Styrene), Poly (4 Propoxy Carbon Styrene), Poly (bi-benzoic acid ester) such as poly (2-butoxycarbostyrene), poly (4-butoxycarbostyrene); poly (o-hydroxystyrene), poly (m-hydroxystyrene), poly (p-hydroxystyrene) Poly (hydroxystyrene) such as poly (1-vininolenaphthalene), poly (2 bulennaphthalene) and other urnaphthalene-based polymers; poly (4 bulbifene), poly (3- (4-biphen-) ) Styrene), poly (4 (4-bi) -styrene) and other poly (aryl styrene); polyacenaphthylene, etc. It is below. In addition, a copolymer of two or more of these; a copolymer of one or two or more of these with another polymer can also be used. For example, styrene mono (α-methyl styrene) copolymer, styrene mono (2-methyl styrene) copolymer, styrene mono (3-methyl styrene) copolymer, styrene mono (4-methyl styrene) copolymer, styrene Mono (2-methoxystyrene) copolymer, styrene mono (3-methoxystyrene) copolymer, styrene- (4-methoxystyrene) copolymer, styrene- (2 chlorostyrene) copolymer, styrene mono (3 Chlorostyrene) copolymer, styrene- (4-chlorostyrene) copolymer, styrene mono (2-methoxycarbostyrene) copolymer, styrene mono (4-methoxycarbostyrene) copolymer, styrene mono ( ο Hydroxystyrene) copolymer, styrene mono (m-hydroxystyrene) copolymer, styrene mono (p hydroxystyrene) copolymer, styrene mono 1 Bulle naphthalene) copolymer, styrene Ren one (2 Bulle naphthalene) copolymer, styrene i (4-bi - Rubifue - Le) copolymer Styrene Methyl Acrylate Copolymer, Styrene-Methyl Methacrylate Copolymer, Styrene Isoprene Copolymer, Styrene Butadiene Copolymer, Styrene One Attorney Nitryl Copolymer, Styrene Maleic Anhydride Copolymer, Styrene Styrene binary copolymers such as butyl acetate copolymer; (a-methylstyrene) -one (2-methylstyrene) copolymer, ((-methylstyrene) -one (3-methylstyrene) copolymer, (a-methylstyrene) Mono (4-methylstyrene) copolymer, (a-methylstyrene)-(2-methoxystyrene) copolymer, (a-methylstyrene)-(3-methoxystyrene) copolymer, (a-methylstyrene) )-(4-methoxystyrene) copolymer, (α-methylstyrene)-(2 chlorostyrene) copolymer, (a-methylstyrene)-(3-chloro Tylene) copolymer, (a-methylenostyrene)-(4 chlorostyrene) copolymer, (a-methylenostyrene)-(2-methoxycarbonyl styrene) copolymer, (a-methylstyrene)- (4-Methoxycarbon styrene) copolymer, (a-methylstyrene) mono (o-hydroxystyrene) copolymer, (a-methylstyrene)-(m-hydroxystyrene) copolymer, (a-methylstyrene) -(p -hydroxystyrene) copolymer, (a-methylstyrene)-(1-Burnaphthalene) copolymer, ((X-Methylstyrene)-(2-Burnaphthalene) copolymer, (a-Methyls Tylene) One (4-Birbiphenyl) Copolymer, (a-Methylstyrene) Methyl Acrylate Copolymer, (a-Methylstyrene) -Methyl Methacrylate Copolymer, (Ex-Methylstyrene) One Isopre Copolymer, (a-methylstyrene) monobutadiene copolymer, (α-methylstyrene) monoacrylonitrile copolymer, (α-methylstyrene) monomaleic anhydride copolymer, (-methylstyrene) vinyl acetate copolymer Such as at-methylstyrene binary copolymer; styrene methyl acrylate, methyl methacrylate copolymer, styrene- (a-methylstyrene) -acrylonitrile copolymer, styrene- (α-methylstyrene) -methyl methacrylate copolymer And the like, and the like. These polymers may be used alone or in combination of two or more.
[0058] 上記重合体は、単独のモノマー又は 2種以上のモノマーをラジカル重合開始剤、ァ ユオン重合開始剤又はカチオン重合開始剤の存在下で重合することにより製造でき る。 [0058] The polymer can be produced by polymerizing a single monomer or two or more monomers in the presence of a radical polymerization initiator, a cation polymerization initiator, or a cationic polymerization initiator.
[0059] 尚、芳香族ビュル系重合体としては、特にポリ(1 ビュルナフタレン)、ポリ(2 ビ 二ルナフタレン)、ポリ(4—ビ-ルビフエ-ル)から選ばれる少なくとも一つを含有する かその一つであることが耐熱性と、入手の容易さの点で好ましい。 [0059] As the aromatic bur polymer, poly (1 urnaphthalene), poly (2 It is preferable from the viewpoint of heat resistance and availability that it contains at least one selected from di (l-naphthalene) and poly (4-birubiphenol).
[0060] また、芳香族ビニル系重合体の重量平均分子量の下限は好ましくは 10000、より 好ましくは 20000、さらに好ましくは 30000であり、上限は好ましくは 1000000、より 好まし <ίま 800000、さらに好まし <ίま 600000である。重量平均分子量力 S 10000より 小さいと塗工膜強度が低下する傾向があり、重量平均分子量が 1000000より大きい と溶媒に溶け難くなる傾向がある。なお、当該重量平均分子量は、ゲル浸透クロマト グラフィー (GPC)法により測定した値である。本発明では、重量平均分子量が異なる 重合体の 2種以上を併用してもよく、単独で使用してもよ!、。 [0060] Further, the lower limit of the weight average molecular weight of the aromatic vinyl polymer is preferably 10,000, more preferably 20000, still more preferably 30000, and the upper limit is preferably 1000000, more preferably <ί or 800,000, and even more preferably. Mas <ί until 600000. If the weight average molecular weight force is less than S 10000, the coating film strength tends to decrease, and if the weight average molecular weight is more than 1000000, it tends to be difficult to dissolve in the solvent. The weight average molecular weight is a value measured by gel permeation chromatography (GPC). In the present invention, two or more polymers having different weight average molecular weights may be used in combination, or may be used alone!
[0061] 以下、光学補償用塗工膜形成用塗工液 (以下、単に塗工液と言うことがある)につ いて説明する。塗工液は、(Α)前記セルロース Ν 置換カーノメート、または芳香 族ビニル系重合体のいずれかの重合体、 (Β) (Α)成分が溶解可溶な溶媒、を含有し てなる。 [0061] Hereinafter, a coating solution for forming an optical compensation coating film (hereinafter sometimes simply referred to as a coating solution) will be described. The coating liquid contains (i) a polymer selected from the above-mentioned cellulose, a substituted carnomate, and an aromatic vinyl polymer, and (ii) a solvent in which the component (ii) is soluble and soluble.
[0062] (Β)成分の溶媒としては、(Α)成分が可溶であれば特に限定されるものではないが 、具体的な例としては、ベンゼン、トルエン、 ο キシレン、 m—キシレン、 p キシレン 、ェチルベンゼン、イソプロピルベンゼン、ジェチルベンゼンの異性体混合物等の炭 化水素系溶媒;メタノール、エタノール、 1 プロパノール、 2—プロパノール、 1ーブ タノール、 2—ブタノール、 2—メチルー 1 プロパノール、フルフリルアルコール、ベ ンジルアルコール等のアルコール系溶媒;ェチルエーテル、イソプロピルエーテル、 1, 3 ジォキソラン、 1, 4 ジォキサン、テトラヒドロピラン、テトラヒドロフラン、 1, 2— ジメトキシェタン等のエーテル系溶媒;アセトン、 2 ブタノン、 4ーメチルー 2 ペンタ ノン、シクロへキサノン等のケトン系溶媒;塩化メチレン、クロ口ホルム、四塩化炭素、 1 , 2—ジクロ口エタン、 1, 1, 1 トリクロ口エタン、 1, 1, 2—トリクロ口エタン、 1, 1, 1, 2—テトラクロ口エタン、 1, 1, 2, 2—テトラクロロェタン、ペンタクロロェタン、へキサク ロロェタン、 1 クロ口プロノ ン、 2—クロ口プロノ ン、 1, 1ージクロ口プロノ ン、 1, 2— ジクロロフ。ロノ ン、 1, 3 ジクロロフ。ロノ ン、 2, 2 ジクロロフ。ロノ ン、 1, 2, 3 トリク ロロプロノ ン、クロ口ベンゼン、 1, 2 ジクロ口ベンゼン、 1, 3 ジクロ口ベンゼン、 1, 4 ジクロロベンゼン、 1, 2, 3 トリクロ口ベンゼン、 1, 2, 4 トリクロ口ベンゼン、 1, 3, 5—トリクロ口ベンゼン等のハロゲン系溶媒;酢酸メチル、酢酸ェチル、酢酸プロピ ル、酢酸イソプロピル、酢酸ブチル、エチレングリコールモノメチルエーテルァセテ一 ト、ェチルセ口ソルブアセテート等のエステル系溶媒; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 1—メチル—2—ピロリジノン等のアミド系溶媒;ピロリジ ン、ピぺリジン、ピロール等のアミン系溶媒等が挙げられる。これらの溶媒は、単独で 使用してもよぐ 2種以上を併用してもよい。 [0062] The solvent of component (Β) is not particularly limited as long as component (Α) is soluble. Specific examples include benzene, toluene, ο-xylene, m-xylene, p Hydrocarbon solvents such as xylene, ethylbenzene, isopropylbenzene, and jetylbenzene isomer mixtures; methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1 propanol, furfuryl Alcohol solvents such as alcohol and benzyl alcohol; ether solvents such as ethyl ether, isopropyl ether, 1,3 dioxolane, 1,4 dioxane, tetrahydropyran, tetrahydrofuran, 1,2-dimethoxyethane; acetone, 2 butanone, Ketone solvents such as 4-methyl-2-pentanone and cyclohexanone; Len, black mouth form, carbon tetrachloride, 1, 2-dichloro mouth ethane, 1, 1, 1 trichrome mouth ethane, 1, 1, 2—triclo mouth ethane, 1, 1, 1, 2—tetrachloro mouth ethane, 1 , 1, 2, 2-tetrachloroethane, pentachloroethane, hexachloroethane, 1-clopronone, 2-clopronone, 1,1-dichloropronone, 1,2-dichloromethane. Ronon, 1,3 dichlorof. Ronon, 2, 2 dichlorof. Ronone, 1, 2, 3 Trichloropronone, Black benzene, 1, 2 Dichloro benzene, 1, 3 Dichloro benzene, 1, 4 Dichlorobenzene, 1, 2, 3 Trichloro benzene, 1, 2, 4 Trichome benzene, 1, Halogen-based solvents such as 3,5-trichlorodiethylbenzene; ester-based solvents such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethyl acetate sorb acetate; N, Amide solvents such as N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidinone; amine solvents such as pyrrolidine, piperidine, and pyrrole. These solvents may be used alone or in combination of two or more.
[0063] 本発明では、溶媒量は、 (A)成分と (B)成分の総重量に対する (A)成分の割合が 下限 1重量%、上限 70重量%の範囲で用いるのが好ましぐ下限 2重量%、上限 60 重量%の範囲で用いるのがより好ましぐ下限 3重量%、上限 50重量%の範囲で用 いるのがさらに好ましい。(A)成分の割合が 1重量%より小さい場合は塗工膜厚が薄 くなり、必要な膜厚が得られ難くなる傾向があり、 70重量%より大きい場合は塗工液 の粘度が高くなり、作業性が劣る傾向がある。  [0063] In the present invention, the amount of the solvent is preferably a lower limit that the ratio of the component (A) to the total weight of the component (A) and the component (B) is 1% by weight as the lower limit and 70% by weight as the upper limit. More preferably, the lower limit is 3% by weight, and the upper limit is 50% by weight. When the proportion of component (A) is less than 1% by weight, the coating film thickness tends to be thin, and the required film thickness tends to be difficult to obtain. When it exceeds 70% by weight, the viscosity of the coating liquid is high. Therefore, workability tends to be inferior.
[0064] 次に、本発明における、位相差調整剤について説明する。光学補償用塗工膜の厚 み位相差は、〔(n +n ) /2-n〕 X dで表される力 必要な厚み位相差に調整する ためには、(n +n )Z2— nで表される値を調整する方法と、 d (膜厚)を調整する方 法がある。膜厚調整による方法は簡便であるが、先に述べたように、膜厚を大きくして 厚み位相差を上げると、塗工膜形成後の液晶表示装置構成部品が嵩張るだけでな ぐ塗工膜の材料コストが増大する等の問題が生じる。逆に、膜厚を小さくして厚み位 相差を下げる必要がある時には、均一な厚みをもつ薄膜形成のための塗工方法の 限界、薄膜の強度等の点で制約を受ける場合がある。そのため、位相差調整剤の添 カロにより、(n +n )Z2—nで表される値を調整して目的とする厚み位相差を得ること が有効である。本発明の位相差調整剤は、特に〔(n +n ) /2-n〕 (1< 0の特性 をもつ光学補償用塗工膜を得るために、このような観点カゝら厚み位相差を調整するこ とがでさるちのである。  [0064] Next, the phase difference adjusting agent in the present invention will be described. The thickness retardation of the coating film for optical compensation is the force expressed by [(n + n) / 2-n] X d. In order to adjust to the required thickness retardation, (n + n) Z2— There are a method of adjusting the value represented by n and a method of adjusting d (film thickness). The method of adjusting the film thickness is simple, but as mentioned earlier, increasing the film thickness and increasing the thickness phase difference only increases the bulk of the liquid crystal display device components after the coating film is formed. There arises a problem that the material cost of the film increases. Conversely, when it is necessary to reduce the thickness phase difference by reducing the film thickness, there are cases where there are restrictions on the limitations of the coating method for forming a thin film having a uniform thickness, the strength of the thin film, and the like. Therefore, it is effective to adjust the value represented by (n + n) Z2−n by adding a phase difference adjusting agent to obtain a target thickness phase difference. In order to obtain an optical compensation coating film having the characteristics of ((n + n) / 2-n] (1 <0), the retardation adjusting agent of the present invention is particularly suitable for such a thickness retardation. It's no surprise that you can adjust it.
[0065] 本発明のセルロース N—置換カーバメート用位相差調整剤は、力ルバミン酸エス テル、 N—置換力ルバミン酸エステル、尿素、 N—置換尿素から選ばれる少なくとも 一つからなることが好まし!/、。  [0065] The retardation adjusting agent for cellulose N-substituted carbamate of the present invention is preferably composed of at least one selected from strength rubamate ester, N-substitution strength rubamate ester, urea, and N-substituted urea. ! /
[0066] 本発明のセルロース N—置換カーバメート用位相差調整剤は、セルロース N— 置換カーバメートの厚み位相差を負の方向に調整することができるものである。前記 力ルバミン酸エステルは、例えば、アンモニアにクロロギ酸エステルを反応させる既知 の方法により得ることができ、前記 N—置換力ルバミン酸エステルは、例えば、 1級ァ ミン又は 2級ァミンにクロロギ酸エステルを反応させる既知の方法により製造すること ができる。また、前記尿素は、例えば、アンモニアと二酸化炭素を高温高圧下で反応 させる工業的製法により得ることができ、 N—置換尿素は、例えば、 1級ァミン又は 2 級ァミンにイソシァネート系化合物を反応させる既知の方法により製造することができ る。 [0066] The retardation adjusting agent for cellulose N-substituted carbamate of the present invention is cellulose N- The thickness phase difference of the substituted carbamate can be adjusted in the negative direction. The strong rubamic acid ester can be obtained by, for example, a known method of reacting ammonia with a chloroformate, and the N-substituted rubamic acid ester can be obtained by, for example, forming a primary amine or a secondary amine with a chloroformate. It can be produced by a known method of reacting. The urea can be obtained, for example, by an industrial production method in which ammonia and carbon dioxide are reacted under high temperature and high pressure. The N-substituted urea is obtained by reacting, for example, an isocyanate compound with a primary amine or a secondary amine. It can be produced by a known method.
[0067] 本発明の力ルバミン酸エステルは、力ルバモイルォキシ基(NH—CO— O—)を含  [0067] The strength rubamic acid ester of the present invention contains a strength rubamoyloxy group (NH—CO—O—).
2  2
有するものであればいずれも使用することができる力 力ルバモイルォキシ基を 1〜8 個含有する化合物であることが好ましぐ 1個含有する化合物がさらに好ましい。原料 の入手性の観点から下記一般式 (7)で表される化合物が好ま 、。  Any compound having 1 to 8 powerful rubamoyloxy groups that can be used is preferred. A compound containing 1 is more preferred. From the viewpoint of availability of raw materials, a compound represented by the following general formula (7) is preferred.
[0068] [化 10] [0068] [Chemical 10]
NH2-C-0-R39 (7) NH 2 -C-0-R 39 (7)
0  0
[0069] (式中 R39は、炭素数 1〜20のアルキル基、炭素数 1〜20のハロゲン化アルキル基、 炭素数 6〜20のァリール基、炭素数 7〜20のァラルキル基を表す。;)。 (In the formula, R 39 represents an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms. ;).
[0070] 一般式(7)において、 R39が、炭素数 1〜16のアルキル基、炭素数 1〜16のハロゲ ン化アルキル基、炭素数 6〜16のァリール基、炭素数 7〜16のァラルキル基であるこ とがさらに好ましぐ R39が、炭素数 1〜12のアルキル基、炭素数 1〜12のハロゲンィ匕 アルキル基、炭素数 6〜 12のァリール基、炭素数 7〜 12のァラルキル基であることが 特に好ましい。 [0070] In the general formula (7), R 39 is an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or an alkyl group having 7 to 16 carbon atoms. R 39 is more preferably an aralkyl group. R 39 is an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. Particularly preferred is a group.
[0071] 本発明の N—置換力ルバミン酸エステルは、 N—置換力ルバモイルォキシ基 (R— NH-CO-O- , Rはアルキル基、ハロゲン化アルキル基、ァリール基、ァラルキル 基)を含有するものであればいずれも使用することができる力 N—置換力ルバモイ ルォキシ基を 1〜8個含有する化合物であることが好ましぐ 1個含有する化合物がさ らに好まし 、。原料の入手性の観点力 下記一般式 (8)で表される化合物が好まし い。 [0071] The N-substituted rubamic acid ester of the present invention contains an N-substituted rubamoyloxy group (R-NH-CO-O-, R is an alkyl group, a halogenated alkyl group, an aryl group, an aralkyl group). Any of them can be used. N—Substitution power A compound containing 1 to 8 rubamoyloxy groups is preferred. A compound containing 1 is more preferred. Viewpoint of availability of raw materials Compounds represented by the following general formula (8) are preferred. Yes.
[0072] [化 11]  [0072] [Chemical 11]
R40-NH-C-O-R41 (8) R 40 -NH-COR 41 (8)
O  O
[0073] (式中 R4Q、 R41は、同一又は異なって、炭素数 1〜20のアルキル基、炭素数 1〜20の ハロゲン化アルキル基、炭素数 6〜20のァリール基、炭素数 7〜20ァラルキル基を 表す。)。 [In the formula, R 4Q and R 41 are the same or different and each represents an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 7 carbon atoms. Represents ~ 20 aralkyl groups).
[0074] 一般式 (8)において、 R4Q、 R41が、同一又は異なって、炭素数 1〜16のアルキル基 、炭素数 1〜16のハロゲン化アルキル基、炭素数 6〜16のァリール基、炭素数 7〜1 6のァラルキル基であることがさらに好ましぐ R4Q、 R41が、同一又は異なって、炭素数 1〜12のアルキル基、炭素数 1〜12のハロゲン化アルキル基、炭素数 6〜12のァリ ール基、炭素数 7〜 12のァラルキル基であることが特に好まし 、。 [0074] In the general formula (8), R 4Q and R 41 are the same or different and each represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 4Q and R 41 are more preferably an aralkyl group having 7 to 16 carbon atoms, the same or different, and an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, Particularly preferred are aryl groups having 6 to 12 carbon atoms and aralkyl groups having 7 to 12 carbon atoms.
[0075] 本発明の N—置換尿素は、ゥレイレン基(一NH— CO— NH— )を含有するもので あれば!/、ずれも使用することができる。原料の入手性の観点力も下記一般式 (9)で 表される化合物が好ましい。  [0075] The N-substituted urea of the present invention can be used as long as it contains a ureylene group (one NH—CO—NH—). A compound represented by the following general formula (9) is also preferable from the viewpoint of availability of raw materials.
[0076] [化 12]  [0076] [Chemical 12]
R42-NH-C-NH— 43R 42 -NH-C-NH— 43
II )  II)
o  o
[0077] (式中 R42、 R43は、同一又は異なって、水素原子、炭素数 1〜20のアルキル基、炭素 数 1〜20のハロゲン化アルキル基、炭素数 6〜20のァリール基、炭素数 7〜20ァラ ルキル基を表す。 )。 [In the formula, R 42 and R 43 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, Represents a 7-20 aralkyl group having carbon atoms).
[0078] 一般式(9)において、 R42、 R43が、同一又は異なって、炭素数 1〜16のアルキル基 、炭素数 1〜16のハロゲン化アルキル基、炭素数 6〜16のァリール基、炭素数 7〜1 6のァラルキル基であることがさらに好ましぐ R42、 R43が、同一又は異なって、炭素数 1〜12のアルキル基、炭素数 1〜12のハロゲン化アルキル基、炭素数 6〜12のァリ ール基、炭素数 7〜 12のァラルキル基であることが特に好まし 、。 In General Formula (9), R 42 and R 43 are the same or different and each represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 42 and R 43 are more preferably an aralkyl group having 7 to 16 carbon atoms, the same or different, and an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, Carbon number 6-12 Particularly preferably an aryl group, an aralkyl group having 7 to 12 carbon atoms.
[0079] 上記カルノ ミン酸エステルの具体例としては、例えば、カルノ ミン酸メチル、力ルバ ミン酸ェチル、力ルバミン酸シクロペンチル、力ルバミン酸シクロへキシル、力ルバミン 酸トリクロロメチル、力ルバミン酸フエ-ル、力ルバミン酸 1 ナフチル、力ルバミン酸 2 ナフチル、力ルバミン酸ベンジル、エチレングリコールジカーバメート、プロピレング リコールジカーバメート、ヒドロキノンジカーバメート、ピロカテコールジカーバメート、 ピロガロールトリカーバメート等が挙げられる。 [0079] Specific examples of the above carnomate ester include, for example, methyl carnomate, ethyl rubamate, cyclopentyl rubamate, cyclohexyl rubamate, trichloromethyl rubamate, ferro-carbamate fe- , Naphthyl chloride, naphthyl chloride, benzyl carbamate, ethylene glycol dicarbamate, propylene glycol dicarbamate, hydroquinone dicarbamate, pyrocatechol dicarbamate, pyrogallol tricarbamate and the like.
[0080] 上記 N 置換力ルバミン酸エステルの具体例としては、例えば、 N—メチルカルバミ ン酸メチル、 N—メチルカルバミン酸ェチル、 N—メチルカルバミン酸シクロペンチル 、 N—メチルカルバミン酸シクロへキシル、 N—メチルカルバミン酸トリクロロメチル、 N ーメチルカルバミン酸フエニル、 N—メチルカルバミン酸 1 ナフチル、 N—メチルカ ルバミン酸 2—ナフチル、 N—メチルカルバミン酸ベンジル、エチレングリコールビス( N—メチルカーバメート)、プロピレングリコールビス(N—メチルカーバメート)、ヒドロ キノンビス(N—メチノレカーバメート)、ピロ力テコーノレビス(N—メチノレカーバメート)、 ピロガロールトリス(N—メチルカーバメート)、 N—フエ-ルカルバミン酸メチル、 N— フエ-ルカルバミン酸ェチル、 N—フエ-ルカルバミン酸シクロペンチル、 N—フエ- ルカルバミン酸シクロへキシル、 N—フエ-ルカルバミン酸トリクロロメチル、 N—フエ -ルカルバミン酸フエ-ル、 N フエ-ルカルバミン酸 1—ナフチル、 N フエ-ルカ ルバミン酸 2—ナフチル、 N フエ-ルカルバミン酸ベンジル、エチレングリコールビ ス(N フエ-ルカーバメート)、プロピレングリコールビス(N フエ-ルカーバメート) ゝヒドロキノンビス(N フエ-ノレカーバメート)、ピロ力テコーノレビス(N フエ-ノレカー バメート)、ピロガロールトリス(N フエ-ルカーバメート)、 N, N,一ビス(メトキシカル ボ -ル)エチレンジァミン、 N, N,一ビス(エトキシカルボ-ル)エチレンジァミン、 N, N,一ビス(フエノキシカルボ-ル)エチレンジァミン、 N, N,一ビス(ベンジルォキシカ ルポ-ル)エチレンジァミン、 N, N,—ビス(メトキシカルボ-ル)— 1, 2—フエ-レン ジァミン、 N, N,一ビス(エトキシカノレボニノレ) 1, 2—フエ二レンジァミン、 N, N,一 ビス(フエノキシカノレボニノレ) 1 , 2—フエ二レンジァミン、 N, N,一ビス(ペンジノレオ キシカルボ-ル)— 1 , 2—フエ-レンジァミン、 N, N,—ビス(メトキシカルボ-ル)— 1 , 3 フエ-レンジァミン、 N, N,一ビス(エトキシカルボ-ル)一 1, 3 フエ-レンジァ ミン、 N, N,一ビス(フエノキシカノレボニノレ) 1, 3 フエ二レンジァミン、 N, N,ービ ス(ベンジルォキシカルボ-ル)一 1, 3 フエ-レンジァミン、 N, Ν'—ビス(メトキシ カルボ-ル)— 1, 4 フエ-レンジァミン、 Ν, Ν,—ビス(エトキシカルボ-ル)— 1, 4 —フエ-レンジァミン、 Ν, Ν,一ビス(フエノキシカルボ-ル)一 1, 4 フエ-レンジァ ミン、 Ν, Ν,一ビス(ペンジノレオキシカノレボニノレ)一 1, 4 フエ-レンジァミン、 Ν— (4 トリル)カルノ ミン酸ェチル、 Ν— (4—トリル)カルノ ミン酸フエ-ル等が挙げられる [0080] Specific examples of the N-substituted rubamic acid ester include, for example, methyl N-methylcarbamate, ethyl N-methylcarbamate, cyclopentyl N-methylcarbamate, cyclohexyl N-methylcarbamate, and trichloro N-methylcarbamate. Methyl, phenyl N-methylcarbamate, 1-naphthyl N-methylcarbamate, 2-naphthyl N-methylcarbamate, benzyl N-methylcarbamate, ethylene glycol bis (N-methylcarbamate), propylene glycol bis (N-methylcarbamate), Hydroquinone bis (N-methinorecarbamate), pyro-teconolebis (N-methinorecarbamate), pyrogallol tris (N-methylcarbamate), methyl N-phenol carbamate, ethyl N-phenol carbamate, N-phenylcarbamate cyclopentyl, N-phenylcarbamate cyclohexyl, N-phenylcarbamate trichloromethyl, N-phenolcarbamate phenol, N-phenylcarbamate 1-naphthyl, N-phenol 2-Naphthyl rubamate, benzyl N phenolcarbamate, ethylene glycol bis (N phenol carbamate), propylene glycol bis (N phenol carbamate) ゝ hydroquinone bis (N phenol carbamate), pyrotechnic les bis ( N phenol-carbamate), pyrogallol tris (N-phenol carbamate), N, N, bis (methoxycarbol) ethylenediamine, N, N, bis (ethoxycarbole) ethylenediamine, N, N, I Bis (phenoxycarbol) ethylenediamine, N, N, monobis (benzyloxyca) (Polyol) ethylenediamine, N, N, —bis (methoxycarbol) — 1, 2—phenolene diamine, N, N, monobis (ethoxycanoleboninole) 1, 2—phenylenediamine, N, N, 1 bis (phenoxycanoleboninole) 1,2-Fenylene diamine, N, N, 1 bis (penzinoreoxycarbole) —1,2,2-phenolic diamine, N, N, —bis (methoxycarbo-) Le) — 1 , 3 Phenylenediamine, N, N, One bis (ethoxycarbon) 1, 1, 3 Phenylenediamine, N, N, One bis (Phenoxycanoleboninole) 1, 3 Phenylenediamine, N, N , -Bis (benzyloxycarbol) 1,3 phenylenediamine, N, Ν'-bis (methoxycarbol) -1,4 phenylenediamine, Ν, Ν, bis (ethoxycarbo-) 1), 1, 4—Phenoldiamine, Ν, Ν, and bis (phenoxycarbol) -1, 4, Phenoldiamine, Ν, Ν, and bis (Penzinoreoxycanoleboninole), 1, 4, Hue -Rangeamine, Ν— (4 tolyl) carnomate ethyl, Ν— (4-tolyl) carnomate phenol, etc.
[0081] 上記 Ν 置換尿素の具体例としては、例えば、 Ν, N'—ジメチル尿素、 Ν, N'—ジ ェチル尿素、 Ν, Ν,—ジクロロメチル尿素、 Ν, Ν,—ジフエ-ル尿素、 Ν, Ν,—ジべ ンジル尿素、 Ν ェチルー Ν,一メチル尿素、 Ν—メチルー Ν,一フエ-ル尿素、 Ν— ベンジル Ν,—フエ-ル尿素、 Ν, Ν,—ジ— ρ トリル尿素、 Ν フエ-ル Ν, - ( Ρ—トリル)尿素等が挙げられる。これらのセルロース Ν—置換カーバメート用位相 差調整剤は、単独で使用してもよぐ 2種以上を併用してもよい。 [0081] Specific examples of Ν-substituted urea include 、, N'-dimethylurea, Ν, N'-diethylurea, Ν, Ν, -dichloromethylurea, Ν, Ν, -diphenolurea. , Ν, Ν, -dibenzylurea, Νethyl-Ν, monomethylurea, Ν-methyl-Ν, one-phenolurea, Ν-benzyl Ν, -phenolurea, Ν, Ν, —di-ρ-tolyl Urea, Ν ferrule Ν,-(Ρ-tolyl) urea, and the like. These retardation agents for cellulose Ν-substituted carbamates may be used alone or in combination of two or more.
[0082] これらの中でも、入手性、効果の点から、セルロース Ν 置換カーノメート用位相 差調整剤は、カルノ ミン酸ェチル、カルノ ミン酸フエ-ル、 Ν フヱ-ルカルノ ミン酸 ェチル、 Ν—フエ-ルカルバミン酸フエ-ル、 Ν— (4—トリル)力ルバミン酸ェチル、 Ν 一(4 トリル)力ルバミン酸フエ-ル、尿素、 Ν, Ν,ージフエ-ル尿素、 Ν, Ν,ージー Ρ トリル尿素、 Ν フエ-ル Ν, - (ρ トリル)尿素の群力 選ばれる少なくとも 1つ であることが特に好ましい。  [0082] Among these, from the viewpoint of availability and effects, the retardation adjusting agent for cellulose Ν substituted carnomates is carnomate ethyl, carnomate phenol, Ν-carcarnomate ethyl, Ν-phenol. -Lucarbamate phenol, Ν— (4-Tolyl) strength ethyl rubamate, Ν mono (4-tolyl) strength rubamate phenol, urea, Ν, Ν, diphenylurea, Ν, Ν, ジ ー Ρ Tolyl It is particularly preferable that at least one selected from the group strength of urea, Νphenol Ν, and-(ρtolyl) urea.
[0083] 本発明では、光学補償用塗工膜形成用塗工液にお!ヽて、 (Α)成分である重合体と 、(C)成分である位相差調整剤の総重量を 100重量%とした場合に、位相差調整剤 の割合が下限 0. 1重量%、上限 70重量%の範囲で用いるのが好ましぐ下限 0. 2 重量%、上限 65重量%の範囲で用いるのがより好ましぐ下限 0. 3重量%、上限 60 重量%の範囲で用いるのがさらに好ましい。位相差調整剤の割合が 0. 1重量%より 小さい場合は厚み位相差の調整効果力 、さくなる傾向があり、 70重量%より大きい 場合は光学補償用塗工膜からブリードしやすくなる傾向がある。  In the present invention, in the coating solution for forming an optical compensation coating film, the total weight of the polymer as component (i) and the phase difference adjusting agent as component (C) is 100% by weight. %, It is preferable to use the lower limit of 0.1% by weight and the upper limit of 70% by weight. The lower limit of 0.2% by weight and the upper limit of 65% by weight are preferred. More preferably, the lower limit is 0.3% by weight, and the upper limit is 60% by weight. When the ratio of the phase difference adjusting agent is less than 0.1% by weight, the effect of adjusting the thickness phase difference tends to be small, and when it is larger than 70% by weight, it tends to bleed from the coating film for optical compensation. is there.
[0084] 次に、本発明の塗工膜の特性を改質する目的で添加することが可能な榭脂につい て説明する。当該添加することが可能な榭脂としては、ポリカーボネート榭脂、アタリ ル榭脂、ポリエステル榭脂、ポリスチレン榭脂、ポリオレフイン榭脂、ポリアミド榭脂、ポ リイミド榭脂、ポリビニルアルコール榭脂、ポリビュルァセタール榭脂、ポリエーテルス ルホン樹脂、ポリアリレート榭脂、エポキシ榭脂、シリコーン榭脂、フエノール榭脂、ゥ レタン樹脂等が例示されるが、これらは本発明の目的及び効果を損なわない範囲に ぉ 、て添加することができる。 [0084] Next, a description will be given of the resin that can be added for the purpose of modifying the properties of the coating film of the present invention. I will explain. Examples of the resin that can be added include polycarbonate resin, talyl resin, polyester resin, polystyrene resin, polyolefin resin, polyamide resin, polyimide resin, polyvinyl alcohol resin, polybuta resin. Examples include settal resin, polyether sulfone resin, polyarylate resin, epoxy resin, silicone resin, phenol resin, urethane resin, and the like.て can be added.
[0085] 次に、本発明の塗工膜、塗工液の特性を改質する目的で加えることが可能な添カロ 剤について説明する。添加剤としては、酸化防止剤(例えば、チバ 'スペシャルティ' ケミカルズ製 IRGANOX 1010, IRGANOX 1135, IRGANOX 1330等のヒン ダードフエノール類)、加工安定剤(例えば、チバ'スペシャルティ'ケミカルズ製 HP— 136、 IRGANOX E201、 IRGAFOS 168等)、光安定剤(例えば、三共ライフテ ック製サノール LS— 765、サノール LS— 770等のヒンダードアミン類)、紫外線吸収 剤(例えば、チノく'スペシャルティ'ケミカルズ製 TINUVIN P, TINUVIN 213、 T INUVIN 326等のベンゾトリアゾール類)、接着性改良剤(例えば、 3—グリシドキシ プロピルトリメトキシシラン、 3—グリシドキシプロピルトリエトキシシラン等のシランカツ プリング剤)、シラノール縮合触媒 (例えば、川研ファインケミカル製アルミニウムトリス (ェチルァセトアセテート)、アルミキレート M等のアルミニウムキレート類)、可塑剤( 例えば、ジ 2—ェチルへキシルフタレート、ジイソブチルアジペート等のエステル類)、 界面活性剤(例えば、住友スリーェム製 Fluorad FC— 430、 Fluorad FC— 4430 等のフッ素系化合物)、帯電防止剤(例えば、チバ 'スペシャルティ ·ケミカルズ製 IRG ASTAT P18, IRGASTAT P22等)等が挙げられ、これらは本発明の目的及び 効果を損なわな 、範囲にぉ 、て添加することができる。  [0085] Next, an additive agent that can be added for the purpose of modifying the properties of the coating film and coating solution of the present invention will be described. Additives include antioxidants (eg, Hindu phenols such as IRGANOX 1010, IRGANOX 1135, IRGANOX 1330, etc. manufactured by Ciba 'Specialty' Chemicals), processing stabilizers (eg, HP-136, IRGANOX manufactured by Ciba 'Specialty' Chemicals) E201, IRGAFOS 168, etc.), light stabilizers (for example, hindered amines such as Sanol LS-765, Sanol LS-770 from Sankyo Lifetech), UV absorbers (for example, TINUVIN P, TINUVIN made by Chinoku 'Specialty' Chemicals) 213, benzotriazoles such as TINUVIN 326), adhesion improvers (eg, silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane), silanol condensation catalysts (eg, rivers) Such as aluminum tris (ethyl acetate acetate), aluminum chelate M, etc. Luminium chelates), plasticizers (for example, esters such as di-2-ethylhexyl phthalate and diisobutyl adipate), surfactants (for example, fluorine compounds such as Fluorad FC-430 and Fluorad FC-4430 manufactured by Sumitomo 3EM) And antistatic agents (for example, IRG ASTAT P18, IRGASTAT P22, etc. manufactured by Ciba Specialty Chemicals) and the like, and these can be added within a range without impairing the object and effect of the present invention.
[0086] 本発明の塗工液は、例えば上記各成分を溶媒の融点以上、沸点以下の温度で、 混合後静置又は攪拌混合等することにより得られる。  [0086] The coating liquid of the present invention can be obtained, for example, by mixing the above-mentioned components at a temperature not lower than the melting point of the solvent and not higher than the boiling point, or after being mixed or stirred.
[0087] 次に、光学素子用の基板について説明する。基板としては、各種のものが使用可 能である力 特に用途力 考えると透明であることが好ましい。基板に使用される具 体的な化合物の例としては、ビスフエノール Aと塩ィ匕カルボ-ルより重縮合して製造さ れたポリカーボネート系重合体;ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリ アクリル酸エステル;アジピン酸、フタル酸、イソフタル酸、テレフタル酸等の 2塩基酸 とエチレングリコール、ジエチレングリコール、プロピレングリコール、テトラメチレングリ コール、ネオペンチルダリコール等のダリコールとの縮合又はラタトン類の開環重合 で得られるポリエステル系重合体;ポリスチレン、ポリ( —メチルスチレン)等のスチ レン系重合体;アクリル酸エステルとスチレンとの共重合体;ポリエチレン、ポリノルボ ノレネン、ポリイソプレンの水素添カ卩物、ポリブタジエンの水素添カ卩物等のポリオレフィ ン系重合体;トリァセチルセルロース等のセルロース系榭脂;ナイロン 6、ナイロン 66 等のポリアミド;ポリイミド;ポリアミドイミド;ポリビュルアルコール;塩化ビュル;ポリエー テルスルホン;エポキシ榭脂;シリコーン榭脂;国際公開第 01Z37007号パンフレット に記載される化合物等が挙げられる。基板としては、これらのポリマーを溶液流延法 、溶液流延後乾燥品の一軸延伸法、溶液流延後乾燥品の二軸延伸法、押出法、押 出品の一軸延伸法、押出品の二軸延伸法、カレンダ一法等によりフィルム化したもの 、これらのフィルムを保護フィルムとして偏光子に貼り付けた偏光板、ガラス板、カラー フィルター、液晶セル等が挙げられる。これらの基板は、光学補償用塗工膜形成時 の基板としても用いることができる。 Next, the optical element substrate will be described. As the substrate, it is preferable to be transparent in view of the power with which various types of substrates can be used, particularly the application power. Examples of specific compounds used for the substrate include polycarbonate polymers produced by polycondensation of bisphenol A and salty carbon; polymethyl acrylate, polymethyl methacrylate, etc. Poly Acrylic acid ester; Condensation of dibasic acids such as adipic acid, phthalic acid, isophthalic acid, terephthalic acid and the like, and ring opening of latatones with ethylene glycol, diethylene glycol, propylene glycol, tetramethylene glycol, neopentyl darlicol, etc. Polyester polymers obtained by polymerization; styrene polymers such as polystyrene and poly (-methylstyrene); copolymers of acrylic acid esters and styrene; hydrogenated products of polyethylene, polynorbornene and polyisoprene, Polyolefin-based polymers such as hydrogenated polybutadienes; Cellulose-based resins such as triacetyl cellulose; Polyamides such as nylon 6 and nylon 66; Polyimides; Polyamide imides; Polybulal alcohol; Butyl chloride; Polyethersulfone; Examples thereof include xylose resin; silicone resin; compounds described in International Publication No. 01Z37007 pamphlet. As a substrate, these polymers can be used as a solution casting method, a uniaxial stretching method of a dried product after solution casting, a biaxial stretching method of a dried product after solution casting, an extrusion method, a uniaxial stretching method of extrusion, and a biaxial stretching method of an extruded product. Examples of the film formed by an axial stretching method, a calendar method, and the like, and a polarizing plate, a glass plate, a color filter, a liquid crystal cell, and the like, which are attached to a polarizer as a protective film. These substrates can also be used as substrates for forming an optical compensation coating film.
[0088] 次に、本発明の光学補償用塗工膜の形成方法について説明する。光学補償用塗 工膜は、前記基板の片面又は両面に本発明の塗工液を塗工して塗工基板とした後 、この塗工基板を乾燥することにより基板上に好適に作製できる。塗工方法としては、 グラビヤロールコート法、マイヤーバーコート法、ドクターブレードコート法、リノくースロ ールコート法、ディップコート法、エアーナイフコート法、カレンダーコート法、スキー ズコート法、キスコート法、バーコート法、スロットダイコート法、スピンコート法等が挙 げられる。 Next, a method for forming the optical compensation coating film of the present invention will be described. The coating film for optical compensation can be suitably prepared on a substrate by applying the coating liquid of the present invention on one or both sides of the substrate to form a coated substrate, and then drying the coated substrate. The coating methods include gravure roll coating method, Mayer bar coating method, doctor blade coating method, linole roll coating method, dip coating method, air knife coating method, calendar coating method, squeeze coating method, kiss coating method, bar coating method. Slot die coating method, spin coating method and the like.
[0089] 乾燥方法としては、前記塗工基板を、例えば空気中又は窒素等の不活性ガス中に 放置 (風乾)する方法、熱風オーブン、赤外線加熱炉等で加熱乾燥する方法、真空 乾燥機等で減圧乾燥する方法等により、あるいはこれらを組み合わせて行うことがで きる。  [0089] As the drying method, for example, a method of leaving the coated substrate in air or an inert gas such as nitrogen (air drying), a method of heating and drying in a hot air oven, an infrared heating furnace, or the like, a vacuum dryer, or the like Can be carried out by a method of drying under reduced pressure, etc., or a combination thereof.
[0090] 乾燥温度条件としては、定温、多段階昇温の!/、ずれも用いることができる。定温の 場合、下限— 30°C、上限 300°Cの温度範囲が好ましぐ下限 0°C、上限 280°Cがより 好ましぐ下限 10°C、上限 260°Cがさらに好ましい。乾燥温度が— 30°Cより低いと乾 燥時間が長くなる傾向があり、 300°Cより高いと塗工膜や基板の熱劣化が生じ易くな る傾向がある。このような定温乾燥を用いることができるが、効果的に乾燥させるため には多段階に温度を上げることが好ましぐ経済的観点から 1次乾燥、 2次乾燥の 2 段乾燥が特に好ましい。 [0090] As the drying temperature condition, constant temperature, multi-step temperature increase! /, Or deviation can be used. For constant temperature, the lower limit is 30 ° C, the upper limit is 300 ° C. The lower limit is 0 ° C and the upper limit is 280 ° C. The preferred lower limit is 10 ° C and the upper limit is 260 ° C. When the drying temperature is lower than -30 ° C, the drying time tends to be longer. When the drying temperature is higher than 300 ° C, the coating film or the substrate tends to be thermally deteriorated. Although such constant temperature drying can be used, primary drying and secondary drying are particularly preferable from the economical viewpoint that it is preferable to increase the temperature in multiple stages in order to effectively dry.
[0091] 1次乾燥においては、下限 0°C、上限 40°Cの温度範囲が好ましぐ下限 5°C、上限 35°Cがより好ましぐ下限 10°C、上限 30°Cがさらに好ましい。 1次乾燥は、(n +n )[0091] In primary drying, the lower limit is 5 ° C, the lower limit is 0 ° C, the upper limit is 40 ° C, and the upper limit is 35 ° C. The lower limit is 10 ° C, and the upper limit is 30 ° C. preferable. Primary drying is (n + n)
Z2— nで表される値の絶対値をより大きくするために必要な塗工膜内部構造の基 礎形成に必要である。 1次乾燥温度が o°cより低いと塗工膜内部構造の基礎形成に 必要な乾燥時間が長くなる傾向があり、 40°Cより高いと、 (n +n ) /2-nで表され る値の絶対値をより大きくするために必要な塗工膜内部構造の基礎形成がされ難く なる傾向がある。 Z2— Necessary for forming the foundation of the internal structure of the coating film necessary to increase the absolute value of n. When the primary drying temperature is lower than o ° c, the drying time required for the basic formation of the inner structure of the coating film tends to be longer, and when it is higher than 40 ° C, it is expressed by (n + n) / 2-n There is a tendency that it is difficult to form the foundation of the internal structure of the coating film necessary to increase the absolute value of the value to be increased.
[0092] 2次乾燥においては、下限 80°C、上限 300°Cの温度範囲が好ましぐ下限 90°C、 上限 280°Cがより好ましぐ下限 100°C、上限 260°Cがさらに好ましい。 2次乾燥は、( n +n ) /2-nで表される値の絶対値をより大きくするために必要な塗工膜内部構 造の確立に必要である。 2次乾燥温度が 80°Cより低いと塗工膜内部構造の確立が 不十分になる傾向があり、 300°Cより高いと塗工膜や基板の熱劣化が生じ易くなる傾 向がある。尚、(n +n )Z2— nで表される値の絶対値が十分に大きい時、確立され た塗工膜内部構造は透過型電子顕微鏡 (TEM)等で塗工膜断面カゝら観察すること ができる。  [0092] In secondary drying, the lower limit of 80 ° C and the upper limit of 300 ° C are preferable lower limit of 90 ° C, and the upper limit of 280 ° C is more preferable lower limit of 100 ° C and upper limit of 260 ° C. preferable. Secondary drying is necessary to establish the coating film internal structure necessary to increase the absolute value of the value represented by (n + n) / 2-n. When the secondary drying temperature is lower than 80 ° C, the internal structure of the coating film tends to be insufficiently established, and when it is higher than 300 ° C, the coating film and the substrate tend to be thermally deteriorated. When the absolute value of (n + n) Z2−n is sufficiently large, the established internal structure of the coating film is observed with a transmission electron microscope (TEM) or the like. can do.
[0093] さらに本発明は、塗工液を基板に塗工し塗工基板とした後、(B)成分の蒸気にさら して塗工膜をアニーリングし、更に乾燥することにより光学補償用塗工膜の形成方法 とすることちでさる。  [0093] Further, the present invention provides a coating for optical compensation by applying a coating solution to a substrate to form a coated substrate, then exposing the coating film to the vapor of component (B), and further drying. This is the method of forming a film.
[0094] アニーリングは塗工膜のレべリング性向上、応力緩和等のために行うことが好ましく 、例えば面内位相差の低減、面内位相差の振れの低減等に有効である。本発明で は、アニーリングは、(B)成分の蒸気中に塗工基板の塗工膜を上にして水平に静置 して行うことが好ましい。アニーリング時の温度は種々設定できる力 下限 30°C、 上限〔(B)成分の沸点 (で)〕の範囲が好ましぐ下限 15°C、上限〔(B)成分の沸点 (°C)—5°C〕がより好ましぐ下限 0°C、上限〔(B)成分の沸点 (°C)—10°C〕がさらに 好ましい。アニーリング時の温度が 30°Cより低いとアニーリング時間が長くなる傾 向があり、アニーリング時の温度が (B)成分の沸点 (°C)より高いと塗工膜の基板から の流れ出しが生じ易くなる傾向がある。アニーリング時の圧力は種々設定でき、大気 圧、加圧下、又は減圧下で行うことができるが、作業性の点で大気圧が好ましい。 [0094] Annealing is preferably performed for improving the leveling property of the coating film, stress relaxation, and the like, and is effective, for example, for reducing in-plane retardation and reducing in-plane retardation fluctuation. In the present invention, the annealing is preferably performed in the vapor of the component (B) by standing still horizontally with the coating film of the coated substrate facing upward. The temperature during annealing can be set in various ways. Lower limit 30 ° C, upper limit (boiling point of component (B)) is preferred Lower limit 15 ° C, upper limit (component (B) boiling point (° C) -5 ° C] is more preferred lower limit 0 ° C, and upper limit [(B) component boiling point (° C) -10 ° C] is more preferred. If the temperature during annealing is lower than 30 ° C, the annealing time tends to be longer, and if the temperature during annealing is higher than the boiling point (° C) of component (B), the coating film tends to flow out from the substrate. Tend to be. Various pressures can be set during annealing, and atmospheric pressure, increased pressure, or reduced pressure can be used, but atmospheric pressure is preferable in terms of workability.
[0095] 次に、本発明の光学素子の製造方法について説明する。ここでいう光学素子は、 基板と該基板上に塗工された光学補償用塗工膜からなる。また該光学補償用塗工 膜を該基板力 一旦引き剥がした後、光学用に使用する素子も含む。  Next, a method for manufacturing the optical element of the present invention will be described. The optical element here is composed of a substrate and an optical compensation coating film coated on the substrate. Also included is an element used for optical use after the substrate force is once peeled off from the coating film for optical compensation.
[0096] 光学素子は、前記基板の片面又は両面に本発明の塗工液を前記光学補償用塗 工膜の形成方法で説明した塗工方法を用いて塗工後、乾燥、又は同光学補償用塗 工膜の形成方法で説明した塗工方法を用いて塗工後、アニーリング、乾燥すること により好適に製造できる。  [0096] The optical element is coated with the coating liquid of the present invention on one or both surfaces of the substrate using the coating method described in the method for forming a coating film for optical compensation, and then dried or optically compensated. After coating using the coating method described in the method for forming a coating film for coating, it can be suitably produced by annealing and drying.
[0097] 乾燥は、同光学補償用塗工膜の形成方法で説明した乾燥方法、乾燥温度を用い ることにより好適に行うことができる。  Drying can be suitably performed by using the drying method and the drying temperature described in the method for forming the optical compensation coating film.
[0098] 本発明の光学補償用塗工膜は、面内の屈折率のうち最大のものを n、最小のもの を nとし、厚み方向の屈折率を n、膜厚を dとした時に、〔(n +n ) /2-n〕 X d< 0 の特性をもつことが好ましい。特に、前記セルロース N—置換カーバメート、または 芳香族ビニル系重合体の ヽずれかの重合体を (B)成分として例示した溶媒等に溶 解した溶液を用い、溶液キャスト法で製膜した未延伸膜において〔(n +n ) /2-n〕 [0098] The coating film for optical compensation of the present invention has a maximum refractive index n in the plane, n is the minimum refractive index, n is the refractive index in the thickness direction, and d is the film thickness. [(N + n) / 2-n] It is preferable to have the characteristic of Xd <0. In particular, an unstretched film formed by a solution casting method using a solution in which any one of the above cellulose N-substituted carbamates or aromatic vinyl polymers is dissolved in a solvent exemplified as the component (B). In the membrane [(n + n) / 2-n]
X dく 0の関係を満たすセルロース N—置換カーバメート、または芳香族ビュル系 重合体のいずれかの重合体を含有して形成した光学補償用塗工膜により前記特性 が得られることが好ましい。光学補償用塗工膜の厚みを d(nm)とすると、面内位相差 は、 (n n ) X dで表され、厚み位相差は、〔(n +n ) /2-n〕 X dで表される力 面 内位相差は 590nm光による測定において、下限 Onm、上限 300nmが好ましぐ下 限 Onm、上限 200nm力より好ましく、下限 Onm、上限 lOOnmがさらに好ましい。面 内位相差が 300nmより大きいと液晶セル等の複屈折による位相差の補償が困難に なる傾向がある。また、厚み位相差は 590nm光による測定において、下限— 1000η m、上限— lnmが好ましぐ下限 800nm、上限— lOnmがより好ましぐ下限— 60 Onm、上限 20nmがさらに好ましい。厚み位相差が lOOOnmより小さいと液晶セ ル等の複屈折による位相差の補償が困難になる傾向がある。 It is preferable that the above-mentioned properties are obtained by a coating film for optical compensation formed by containing any one of cellulose N-substituted carbamates satisfying the relationship of X d and 0 or an aromatic bur polymer. When the thickness of the optical compensation coating film is d (nm), the in-plane retardation is expressed by (nn) X d, and the thickness retardation is [(n + n) / 2−n] X d. The expressed in-plane phase difference is preferably lower limit Onm and upper limit 200 nm force, preferably lower limit Onm and upper limit 300 nm, more preferably lower limit Onm and upper limit lOOnm, when measured with 590 nm light. If the in-plane retardation is larger than 300 nm, it tends to be difficult to compensate for the retardation due to birefringence in a liquid crystal cell or the like. Also, the thickness retardation is 590 nm, and the lower limit—1000 ηm, the upper limit—lnm is the lower limit of 800 nm, and the upper limit—lOnm is the lower limit—60 Onm, an upper limit of 20 nm is more preferable. If the thickness retardation is smaller than lOOOnm, it tends to be difficult to compensate for the retardation due to birefringence of liquid crystal cells.
[0099] 一方、別用途で使用される〔(n +n ) /2-n〕 X d≥ 100の関係を満たす光学補 償用塗工膜は、セルロース誘導体を含有することにより得ることができる。セルロース 誘導体は、例えば、各種木材パルプ、綿リンター、綿リント等力 得られるセルロース を原料とし、化学修飾することにより製造することができる。例えば、ギ酸セルロース、 二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酢酸プロピオン酸 セルロース、酪酸セルロース、酢酸酪酸セルロース、トリフルォロ酢酸セルロース等の カルボン酸エステル系誘導体;硫酸セルロース、硝酸セルロース、リン酸セルロース 等の無機酸エステル系誘導体;メチルセルロース、ェチルセルロース、プロピルセル ロース、ブチノレセノレロース、ヒドロキシェチノレセノレロース、ヒドロキシプロピノレセノレロー ス、シァノエチルセルロース、カルボキシメチルセルロース等のエーテル系誘導体等 が挙げられる。  [0099] On the other hand, a coating film for optical compensation satisfying the relationship of [(n + n) / 2-n] Xd≥100 used in another application can be obtained by containing a cellulose derivative. . Cellulose derivatives can be produced, for example, by chemically modifying cellulose obtained from various wood pulps, cotton linters, cotton lint and the like as raw materials. For example, carboxylic acid ester derivatives such as cellulose formate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose trifluoroacetate; cellulose sulfate, cellulose nitrate, cellulose phosphate, etc. Inorganic acid ester derivatives of the following: ether derivatives such as methylcellulose, ethylcellulose, propylcellulose, butinoresenorelose, hydroxyethinoresenorelose, hydroxypropinoresenorelose, cyanoethylcellulose, carboxymethylcellulose, etc. It is done.
[0100] これらのうち、低加水分解性、低吸湿性等、物性面の安定性から、エーテル系誘導 体が好ましい。より好ましくはセルロースの水酸基の少なくとも一つが炭素数 1〜20 のアルコキシ基で置換されたエーテル系誘導体であり、さらに好ましくはセルロース の水酸基の少なくとも一つが炭素数 1〜10のアルコキシ基で置換されたエーテル系 誘導体である。  [0100] Of these, ether derivatives are preferred from the standpoint of physical properties such as low hydrolyzability and low hygroscopicity. More preferably, it is an ether derivative in which at least one hydroxyl group of cellulose is substituted with an alkoxy group having 1 to 20 carbon atoms, and more preferably, at least one of hydroxyl groups of cellulose is substituted with an alkoxy group having 1 to 10 carbon atoms. It is an ether derivative.
[0101] 好まし!/ヽセルロース誘導体を具体的に例示すると、メチルセルロース、ェチルセル ロース、プロピノレセノレロース、ブチノレセノレロース、ペンチノレセノレロース、へキシノレセノレ ロース、ヘプチノレセノレロース、才クチノレセノレロース、シクロペンチノレセノレロース、シク 口へキシノレセノレロース、メチノレエチノレセノレロース、メチノレプロピノレセノレロース、メチノレ ブチノレセノレロース、メチノレペンチノレセノレロース、メチノレへキシノレセノレロース、メチノレへ プチノレセノレロース、メチノレオクチノレセノレロース、メチノレシクロペンチノレセノレロース、メ チノレシクロへキシノレセノレロース、ェチノレプロピノレセノレロース、ェチノレブチノレセノレロー ス、ェチノレペンチノレセノレロース、ェチノレへキシノレセノレロース、ェチノレへプチノレセノレ口 ース、ェチノレ才クチノレセノレロース、ェチノレシクロペンチノレセノレロース、ェチノレシクロへ キシルセルロース等が挙げられる。これらのセルロース誘導体は、単独で使用しても よぐ 2種以上を併用してもよい。 [0101] Preferable examples of the preferred! / 誘導 体 cellulose derivatives are methylcellulose, ethyl cellulose, propinoresenorelose, butinoresenorelose, pentinoresenorelose, hexinoresenorelose, heptinoresenorelose, tasty cutinore Senorelose, Cyclopentino Resenellose, Succeed Hexino Resenorelose, Methinore Ethino Resenorelose, Methinorepropino Resenorelose, Methinore Butino Resenorelose, Methino Resentino Resenorelose, Methino Resenorelose , Methinoles, petitenoresenorelose, methinoreoctinoresenorelose, methinorecyclopentinoresenolesose, methinorecyclohexenoresenorelose, ethinorepropinoresenorelose, ethinorebutinoresenorerose, ethinorepenti Norecenorelose, ethenorehexenoresenorellose, ethenoreheptinoresenorose, ethinore-skilled cutinorecenorelose, ethenorecyclopentenoresenellose, ethinorecyclohexylcellulose and the like. These cellulose derivatives can be used alone 2 or more types may be used in combination.
[0102] 上記セルロースのエーテル系誘導体は、例えば、水酸ィ匕ナトリウム等によりアルカリ セルロースとした後、塩素化アルキル等のアルキルノヽライドをカ卩えて加熱攪拌するこ とにより製造できる。この時、 2種以上のアルキルノヽライドを用いると、 2種以上のアル コキシ基で置換されたエーテル系誘導体が得られる。 [0102] The above ether-based derivative of cellulose can be produced, for example, by converting it to alkaline cellulose with sodium hydroxide or the like, and then adding and heating and stirring an alkyl halide such as chlorinated alkyl. At this time, when two or more alkyl halides are used, an ether derivative substituted with two or more alkoxy groups can be obtained.
[0103] また、セルロースはその構成単位であるグルコース残基当たり 3個の水酸基を有し ており、グルコース残基当たりの置換度(以下、 DSと称する場合あり)は最大 3になる 力 置換度の下限は好ましくは 0. 1、より好ましくは 0. 5、さらに好ましくは 1であり、上 限は好ましくは 3、より好ましくは 2. 95、さらに好ましくは 2. 9である。置換度が 0. 1よ り低いと溶媒に溶け難くなる傾向がある。本発明では、置換度が異なるセルロース誘 導体の 2種以上を併用してもよく、単独で使用してもよ!、。  [0103] Cellulose has three hydroxyl groups per glucose residue as its structural unit, and the degree of substitution per glucose residue (hereinafter sometimes referred to as DS) is 3 at maximum. The lower limit is preferably 0.1, more preferably 0.5, even more preferably 1, and the upper limit is preferably 3, more preferably 2.95, and even more preferably 2.9. If the degree of substitution is lower than 0.1, it tends to be difficult to dissolve in a solvent. In the present invention, two or more cellulose derivatives having different degrees of substitution may be used in combination, or may be used alone!
[0104] さらに、セルロース誘導体の数平均分子量の下限は好ましくは 5000、より好ましく は 8000、さらに好ましくは 10000であり、上限は好ましくは 300000、より好ましくは 2 50000、さらに好ましくは 200000である。数平均分子量が 5000より小さいと塗工膜 強度が低下する傾向があり、数平均分子量が 300000より大きいと溶媒に溶け難くな る傾向がある。なお、当該数平均分子量は、ゲル浸透クロマトグラフィー(GPC)法に より測定した値である。本発明では、数平均分子量が異なるセルロース誘導体の 2種 以上を併用してもよぐ単独で使用してもよい。  [0104] Further, the lower limit of the number average molecular weight of the cellulose derivative is preferably 5000, more preferably 8000, still more preferably 10000, and the upper limit is preferably 300000, more preferably 250000, and even more preferably 200000. If the number average molecular weight is less than 5,000, the coating film strength tends to decrease, and if the number average molecular weight is more than 300,000, it tends to be difficult to dissolve in a solvent. The number average molecular weight is a value measured by gel permeation chromatography (GPC). In the present invention, two or more cellulose derivatives having different number average molecular weights may be used in combination, or may be used alone.
[0105] また、セルロース誘導体として例示した各種セルロース誘導体を単独で使用しても よぐ 2種以上を併用してもよい。  [0105] Further, various cellulose derivatives exemplified as the cellulose derivative may be used alone, or two or more kinds may be used in combination.
[0106] 次に、本発明の光学補償フィルム (位相差フィルム)につ ヽて説明する。光学補償 フィルム (位相差フィルム)は、前記光学素子用の基板として例示したもののなかでフ イルム化したものを使用し、前記光学補償用塗工膜の形成方法を用いて光学補償層 を形成することにより好適に作製できる。  [0106] Next, the optical compensation film (retardation film) of the present invention will be described. As the optical compensation film (retardation film), a film formed from those exemplified as the substrate for the optical element is used, and the optical compensation layer is formed by using the method for forming the optical compensation coating film. It can be suitably manufactured.
[0107] 次に、本発明の偏光板について説明する。偏光板としては、例えば、偏光子の両 面にポリエステル系接着剤、ポリアクリル系接着剤、エポキシ系接着剤、シァノアクリ ル系接着剤、ポリウレタン系接着剤等の接着剤を用いて保護フィルムを貼り合わせた もの等が挙げられる。偏光子の例としては、親水性高分子フィルムにヨウ素及び Z又 は二色性染料を吸着配向して作製した偏光子、ポリビュルアルコール系フィルムを 脱水処理してポリェンを形成させ、配向して作製した偏光子、ポリ塩ィヒビュルフィルム を脱塩酸処理してポリェンを形成させ、配向して作製したものが挙げられる。偏光子 に使用される親水性高分子フィルムとしては、ポリビュルアルコール系フィルム、部分 ホルマール化ポリビュルアルコール系フィルム、エチレン 酢酸ビュル共重合体のケ ン化物フィルム等が挙げられる。保護フィルムとしては、前記光学素子用の基板とし て例示したもののなかでフィルム化したもの、本発明の光学補償フィルム (位相差フィ ルム)等が挙げられるが、前記光学素子用の基板のなかでフィルム化したものを偏光 子の両面に貼り合わせた場合は偏光板作製後、前記光学補償用塗工膜の形成方 法を用いて偏光板の少なくとも片面に本発明の光学補償用塗工膜を設けることにより 、本発明の偏光板とすることができる。本発明の光学補償フィルム (位相差フィルム) を保護フィルムとして使用する場合は、偏光子の両面に用いることもできるし、片面に 本発明の光学補償フィルム (位相差フィルム)を使用し、反対の面に前記光学素子用 の基板のなかでフィルム化したものを用いることもできる。また、片面に本発明の光学 補償フィルム (位相差フィルム)を使用し、反対の面に前記光学素子用の基板のなか でフィルム化したものを用いた偏光板を作製後、片面又は両面に新たに本発明の光 学補償用塗工膜を設けることもできる。 [0107] Next, the polarizing plate of the present invention will be described. As a polarizing plate, for example, a protective film is attached to both surfaces of a polarizer using an adhesive such as a polyester-based adhesive, a polyacrylic adhesive, an epoxy-based adhesive, a cyanacrylic adhesive, or a polyurethane-based adhesive. A combination of these can be listed. Examples of polarizers include iodine and Z or Z Is a polarizer produced by adsorbing and orienting a dichroic dye, a polybulualcohol-based film is dehydrated to form a polyene, and a polarizer and polysalt hybrid film produced by orienting are dehydrochlorinated. Examples include those prepared by forming and orienting polyene. Examples of the hydrophilic polymer film used for the polarizer include a polybulal alcohol film, a partially formalized polybulal alcohol film, and a saponified film of an ethylene acetate butyl copolymer. Examples of the protective film include those exemplified as the substrate for the optical element, those formed into a film, and the optical compensation film (retardation film) of the present invention. Among the substrates for the optical element, When the film is pasted on both sides of the polarizer, the optical compensation coating film of the present invention is formed on at least one side of the polarizing plate using the method for forming an optical compensation coating film after preparing the polarizing plate. By providing, it can be set as the polarizing plate of this invention. When the optical compensation film (retardation film) of the present invention is used as a protective film, it can be used on both sides of a polarizer, or the optical compensation film (retardation film) of the present invention is used on one side and the opposite. It is also possible to use a film made of the optical element substrate on the surface. Also, after producing a polarizing plate using the optical compensation film (retardation film) of the present invention on one side and a film formed on the opposite side of the substrate for the optical element, a new polarizing plate is prepared on one side or both sides. The optical compensation coating film of the present invention can also be provided.
[0108] 次に、本発明の液晶表示装置について説明する。液晶表示装置としては、例えば [0108] Next, the liquid crystal display device of the present invention will be described. As a liquid crystal display device, for example,
、光源 Z導光板 Z光拡散フィルム Zレンズフィルム Z輝度向上フィルム Z偏光板 Z 液晶セル Z偏光板の順に構成された表示装置等が挙げられるが、液晶セルの入射 光側及び Z又は出射光側に本発明の光学補償フィルム (位相差フィルム)を装着す ること及び Z又は液晶セルの入射光側及び Z又は出射光側の偏光板に本発明の偏 光板を装着することにより本発明の液晶表示装置とすることができる。液晶セルの方 式としては、 VA (Vertical Alignment)方式、 IPS (In— Plane Switching)方式 、 OCB (Optically Compensated Birefringence)方式等挙げられる。 , Light source Z light guide plate Z light diffusing film Z lens film Z brightness enhancement film Z polarizing plate Z liquid crystal cell display device configured in the order of Z polarizing plate, the incident light side of the liquid crystal cell and the Z or outgoing light side The liquid crystal of the present invention is mounted by mounting the optical compensation film (retardation film) of the present invention on the polarizing plate of the incident light side and the Z or outgoing light side of the Z or liquid crystal cell. It can be a display device. Examples of the liquid crystal cell method include a VA (Vertical Alignment) method, an IPS (In-Plane Switching) method, and an OCB (Optically Compensated Birefringence) method.
実施例  Example
[0109] 以下に、本発明をより詳細に説明するために実施例を示すが、本発明はこれら実 施例によって限定されるものではない。 [0110] 3次元屈折率 (n , n , n )の算出 [0109] Examples are given below to describe the present invention in more detail, but the present invention is not limited to these examples. [0110] Calculation of three-dimensional refractive index (n, n, n)
王子計測機器製自動複屈折計 KOBRA— WRを用いて、 25°C下で 590nm光によ る測定を行い、 3次元屈折率を算出した。得られた結果から、面内位相差を (n -n ) Using an automatic birefringence meter, KOBRA-WR, manufactured by Oji Scientific Instruments, measurement was performed at 590 nm under 25 ° C, and the three-dimensional refractive index was calculated. From the obtained results, the in-plane retardation is calculated as (n -n)
X dにより求めた。また、厚み位相差を〔(n +n ) /2-n〕 X dにより求めた。但し、遅 相軸を傾斜中心軸として位相差の測定を行った際、傾斜角の増加とともに位相差が 増力!]した場合は位相差の符号判定を行うために次の方法を併用した。作製した光学 素子上にポリカーボネート製 λ Ζ4板を重ね合わせ、 λ Ζ4板の配向角力 0± 1度に なるように自動複屈折計 KOBRA—WRに装着した後、遅相軸を傾斜中心軸とし、 2 5°C下で 590nm光による位相差測定を行った。測定結果が、 λ Ζ4板単体の位相差 より上昇した場合は傾斜角の増加とともに光学素子単体の位相差も正の方向に上昇 しているとみなし、 λ Ζ4板単体の位相差より低下した場合は傾斜角の増加とともに 光学素子単体の位相差も負の方向に低下しているとみなして、先に測定した光学素 子単体の位相差に正負の符号を付与し、 3次元屈折率を算出した。得られた結果か ら、面内位相差を (η— n ) X dにより求めた。また、厚み位相差を〔(n +n ) /2-nObtained by Xd. Further, the thickness phase difference was determined by [(n + n) / 2-n] Xd. However, when the phase difference was measured with the slow axis as the tilt center axis, if the phase difference increased as the tilt angle increased!], The following method was also used to determine the sign of the phase difference. Overlay the polycarbonate λ 4 plate on the manufactured optical element, and attach it to the automatic birefringence meter KOBRA-WR so that the orientation angle force of the λ 4 plate is 0 ± 1 degree. 2 The phase difference was measured with 590nm light at 5 ° C. When the measurement result is higher than the phase difference of λ Ζ4 plate alone, it is considered that the phase difference of the optical element alone is also rising in the positive direction as the tilt angle is increased, and when it is lower than the phase difference of λ Ζ4 plate alone Considers that the phase difference of the single optical element decreases in the negative direction as the tilt angle increases, and adds a positive or negative sign to the phase difference of the single optical element measured earlier to calculate the three-dimensional refractive index. did. From the obtained results, the in-plane phase difference was determined by (η−n) Xd. Also, the thickness phase difference is expressed as [(n + n) / 2-n
〕 X dにより求めた。 It was determined by Xd.
[0111] (合成例 1)セルロース N—フエニルカーバメート(1)の合成 [0111] (Synthesis Example 1) Synthesis of cellulose N-phenylcarbamate (1)
冷却管、窒素導入管、攪拌機、温度計を備えた 500mlの 4つ口フラスコに、 60°Cで 7時間真空乾燥したセルロース (旭化成ケミカルズ製アビセル TG— F20) 1. Ogを入 れ、ピリジン 100mlをカ卩えて懸濁液とした後、さらにフエ-ルイソシァネート(東京化成 工業製) 7. 7gを加えた。窒素を導入し、攪拌しながら 110°Cに昇温した後、 7時間反 応させた。その後、 25°Cまで放冷した後、反応液をエタノール 400ml中に滴下して 沈殿を生成させた。濾別後、得られたポリマーにアセトン 25mlを加えて溶解した後、 純水 400ml中に滴下して沈殿を生じさせた。濾別後、得られたポリマーを再度、ァセ トン 30mlに溶解し、純水 400ml中に滴下して沈殿を生成させた。濾別後水洗し、 60 °Cで 4時間真空乾燥することによって、 2. 5gのセルロース N—フエ-ルカ一バメー ト(1)を得た (以下、合成品(1)と呼ぶことがある。 ) o合成品(1)の DSはプロトン NM R分析の結果、 3であった。なお、 DSは、セルロース骨格由来のプロトンの化学シフト (3. 4〜5. 5ppm)面積とフエ-ル基のプロトンの化学シフト(6. 7〜7. 8ppm)面積 を比較することによって決定した。 Cellulose (Avicel TG-F20 from Asahi Kasei Chemicals) vacuum dried for 7 hours at 60 ° C in a 500 ml 4-neck flask equipped with a condenser, nitrogen inlet, stirrer, and thermometer. Was added to form a suspension, and then 7.7 g of phenol isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Nitrogen was introduced, and the temperature was raised to 110 ° C. with stirring, followed by reaction for 7 hours. Then, after cooling to 25 ° C, the reaction solution was dropped into 400 ml of ethanol to form a precipitate. After separation by filtration, the resulting polymer was dissolved by adding 25 ml of acetone, and then dropped into 400 ml of pure water to cause precipitation. After separation by filtration, the obtained polymer was again dissolved in 30 ml of acetone and dropped into 400 ml of pure water to form a precipitate. After separation by filtration and washing with water and vacuum drying at 60 ° C for 4 hours, 2.5 g of cellulose N-ferrugerbamate (1) was obtained (hereinafter sometimes referred to as synthetic product (1)). O) DS of synthetic product (1) was 3 as a result of proton NMR analysis. DS is the chemical shift area (3.4 to 5.5 ppm) of protons derived from the cellulose skeleton and the chemical shift area (6.7 to 7.8 ppm) of protons in the phenolic group. Was determined by comparing.
[0112] (合成例 2)セルロース N—フエニルカーバメート(2)の合成  [0112] (Synthesis Example 2) Synthesis of cellulose N-phenylcarbamate (2)
冷却管、窒素導入管、攪拌機、温度計を備えた 500mlの 4つ口フラスコに、 60°Cで 7時間真空乾燥したセルロース (旭化成ケミカルズ製アビセル TG— F20) 1. Ogを入 れ、ピリジン 100mlをカ卩えて懸濁液とした後、さらにフエ-ルイソシァネート(東京化成 工業製) 7. 7gを加えた。窒素を導入し、攪拌しながら 110°Cに昇温した後、 7時間反 応させた。その後、 25°Cまで放冷した後、反応液をエタノール 400ml中に滴下して 沈殿を生成させた。濾別後、得られたポリマーにアセトン 30mlを加えて溶解した後、 純水 400ml中に滴下して沈殿を生じさせた。濾別後水洗し、 60°Cで 4時間真空乾燥 することによって、 2. 2gのセルロース N—フエ-ルカーバメート(2)を得た(以下、 合成品(2)と呼ぶことがある。 ) 0合成品(2)の置換度 DSはプロトン NMR分析の結果 、 3であった。なお、 DSは、セルロース骨格由来のプロトンの化学シフト(3. 4〜5. 5 ppm)面積とフエ-ル基のプロトンの化学シフト(6. 7〜7. 8ppm)面積を比較するこ とによって決定した。 Cellulose (Avicel TG-F20 from Asahi Kasei Chemicals) vacuum dried for 7 hours at 60 ° C in a 500 ml 4-neck flask equipped with a condenser, nitrogen inlet, stirrer, and thermometer. Was added to form a suspension, and then 7.7 g of phenol isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Nitrogen was introduced, and the temperature was raised to 110 ° C. with stirring, followed by reaction for 7 hours. Then, after cooling to 25 ° C, the reaction solution was dropped into 400 ml of ethanol to form a precipitate. After separation by filtration, the resulting polymer was dissolved by adding 30 ml of acetone, and then dropped into 400 ml of pure water to cause precipitation. After filtration, washing with water and vacuum drying at 60 ° C for 4 hours, 2.2 g of cellulose N-phenol carbamate (2) was obtained (hereinafter sometimes referred to as synthetic product (2)). The degree of substitution DS of synthetic product (2) was 3 as a result of proton NMR analysis. DS is obtained by comparing the chemical shift area (3.4 to 5.5 ppm) of protons derived from the cellulose skeleton with the chemical shift area (6.7 to 7.8 ppm) of protons in the phenolic group. Were determined.
[0113] (合成例 3)セルロース N— [2—(トリフルォロメチル)フエニル]カーバメート(3)の 合成  [0113] (Synthesis Example 3) Synthesis of Cellulose N— [2- (Trifluoromethyl) phenyl] carbamate (3)
冷却管、窒素導入管、攪拌機、温度計を備えた 500mlの 4つ口フラスコに、 60°Cで 7時間真空乾燥したセルロース (旭化成ケミカルズ製アビセル TG— F20) 1. Ogを入 れ、ピリジン 100mlをカ卩えて懸濁液とした後、さらに 2—(トリフルォロメチル)フエ-ル イソシァネート (東京化成工業製) 8. 7gを加えた。窒素を導入し、攪拌しながら 110 °Cに昇温した後、 7時間反応させた。その後、 25°Cまで放冷した後、エタノール 200 mlを加え、反応液を純水 1. 5L中に滴下して沈殿を生成させた。濾別後、得られた ポリマーにアセトン 100mlをカ卩えて溶解した後、純水 2L中に滴下して沈殿を生じさ せた。濾別後水洗し、 60°Cで 4時間真空乾燥した後、ポリマーをソックスレー抽出器 に入れた。メタノールによるソックスレー抽出を 20回行った後、 25°Cで 4時間真空乾 燥することによって、 3. 4gのセルロース N— [2— (トリフルォロメチル)フエ-ル]力 ーバメート(3)を得た(以下、合成品(3)と呼ぶことがある。 ) 0合成品(3)の DSはプロ トン NMR分析の結果、 3であった。なお、 DSは、セルロース骨格由来のプロトンの化 学シフト(3. 5〜5. 5ppm)面積と 2—(トリフルォロメチル)フエ-ル基のプロトンの化 学シフト(6. 9〜7. 9ppm)面積を比較することによって決定した。 Cellulose (Avicel TG-F20 from Asahi Kasei Chemicals) vacuum dried for 7 hours at 60 ° C in a 500 ml 4-neck flask equipped with a condenser, nitrogen inlet, stirrer, and thermometer. Then, 8.7 g of 2- (trifluoromethyl) phenol isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Nitrogen was introduced, and the temperature was raised to 110 ° C. with stirring, followed by reaction for 7 hours. Thereafter, after cooling to 25 ° C., 200 ml of ethanol was added, and the reaction solution was dropped into 1.5 L of pure water to form a precipitate. After separation by filtration, 100 ml of acetone was added to the obtained polymer and dissolved, and then dropped into 2 L of pure water to cause precipitation. After filtration, washing with water and vacuum drying at 60 ° C for 4 hours, the polymer was put into a Soxhlet extractor. After 20 Soxhlet extractions with methanol and vacuum drying at 25 ° C for 4 hours, 3.4 g of cellulose N— [2- (trifluoromethyl) phenol] force permeate (3) Obtained (hereinafter sometimes referred to as synthetic product (3).) 0 DS of synthetic product (3) was 3 as a result of proton NMR analysis. DS is the conversion of protons derived from the cellulose skeleton. The chemical shift (3.5-5.5 ppm) area was compared with the proton chemical shift (6.9-7.9 ppm) area of the 2- (trifluoromethyl) phenol group.
[0114] (実験例 1)  [0114] (Experiment 1)
合成品(1) 0. 85gに酢酸ブチル 4. 15gを加え、 25°C下で溶解した。次に、この塗 工液をバーコ一ターを用いて 150 m厚のガラス基板(平均屈折率: 1. 52,面内位 相差: Onm,厚み位相差: lnm)に塗工した後、 120°Cで 1分間、空気中で乾燥して 光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定 し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られた光学 素子の物性測定を行い、結果を表 1に示した。  Synthetic product (1) 4.85 g of butyl acetate was added to 0.85 g and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: lnm) using a bar coater, and then 120 ° An optical element was fabricated by drying in air for 1 minute at C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1.
[0115] (実験例 2)  [0115] (Experiment 2)
合成品(1) 0. 85gにェチルセ口ソルブアセテート 4. 15gをカ卩え、 25°C下で溶解し た。次に、この塗工液をバーコ一ターを用いて 150 m厚のガラス基板 (平均屈折率 : 1. 52,面内位相差: Onm,厚み位相差: lnm)に塗工した後、ェチルセ口ソルブァ セテートの蒸気が充満したガラス容器に入れ、密閉後、 25°Cで 24時間アニーリング した。その後、塗工基板を取り出し、 120°Cで 1分間、空気中で乾燥して光学素子を 作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基 板の厚みを差し引くことにより求めた。次に、上記によって得られた光学素子の物性 測定を行い、結果を表 1に示した。  Synthetic product (1) 4.85 g of ethyl acetate sorb acetate was added to 0.85 g and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, It was placed in a glass container filled with solvacetate vapor, sealed, and then annealed at 25 ° C for 24 hours. Thereafter, the coated substrate was taken out and dried in air at 120 ° C for 1 minute to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1.
[0116] (実験例 3)  [0116] (Experiment 3)
合成品(3) 1. Ogにクロ口ホルム 9. Ogを加え、 25°C下で溶解した。次に、この塗工 液をバーコ一ターを用いて 150 /z m厚のガラス基板(平均屈折率: 1. 52,面内位相 差: Onm,厚み位相差: lnm)に塗工した後、 100°Cで 1分間、空気中で乾燥して光 学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し 、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られた光学素 子の物性測定を行い、結果を表 1に示した。  Synthetic product (3) 1. Black mouth form 9. Og was added to Og and dissolved at 25 ° C. Next, this coating solution was applied to a 150 / zm-thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: lnm) using a bar coater. The optical device was fabricated by drying in air for 1 minute at ° C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained above were measured, and the results are shown in Table 1.
[0117] (実験例 4)  [0117] (Experiment 4)
実験例 3で作製した光学素子をクロ口ホルムの蒸気が充満したガラス容器に入れ、 密閉後、 30°Cで 7. 5時間アニーリングした。その後、光学素子を取り出し、 100°Cで 1分間、空気中で乾燥した。乾燥後の塗工膜厚 (d(nm) )は、光学素子全体の厚み を測定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られ た光学素子の物性測定を行い、結果を表 1に示した。ここでは、実験例 3よりも面内の 複屈折 (n—n )の小さいものが得られた。すなわち、アニーリングにより、面内位相 差の低減が可能であった。 The optical element produced in Experimental Example 3 was placed in a glass container filled with Kuroguchi-form vapor, sealed, and then annealed at 30 ° C for 7.5 hours. Then remove the optical element and Dry in air for 1 minute. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 1. Here, an in-plane birefringence (n−n) smaller than that in Experimental Example 3 was obtained. In other words, the in-plane retardation can be reduced by annealing.
[0118] (実験例 5)  [0118] (Experiment 5)
合成品(2) 0. 52gに 1, 2—ジメトキシェタン 3. 48gを加え、 23°C下で溶解した。次 に、この塗工液をバーコ一ターを用いて 150 m厚のガラス基板 (平均屈折率: 1. 5 2,面内位相差: Onm,厚み位相差: lnm)に塗工し塗工基板とした。その後、この塗 ェ基板を 23°Cで 44時間、空気中で乾燥して光学素子を作製した。乾燥後の塗工膜 厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基板の厚みを差し引くことによ り求めた。次に、上記によって得られた光学素子の物性測定を行った。その結果を表 2に示す。  Synthetic product (2) To 0.52 g, 3.48 g of 1,2-dimethoxyethane was added and dissolved at 23 ° C. Next, this coating solution is applied onto a 150 m thick glass substrate (average refractive index: 1.5, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater. It was. Thereafter, the coated substrate was dried in air at 23 ° C. for 44 hours to produce an optical element. The coating film thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured. The results are shown in Table 2.
[0119] (実験例 6)  [0119] (Experimental example 6)
合成品(2) 0. 5gにエチレングリコールモノメチルエーテルアセテート 4. 5gを加え、 23°C下で溶解した。次に、この塗工液をバーコ一ターを用いて 150 m厚のガラス 基板 (平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: lnm)に塗工し塗工基 板とした。その後、この塗工基板を 100°Cで 1分間、空気中で乾燥して光学素子を作 製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基板 の厚みを差し引くことにより求めた。次に、上記によって得られた光学素子の物性測 定を行った。その結果を表 2に示す。  4.5 g of ethylene glycol monomethyl ether acetate was added to 0.5 g of the synthetic product (2) and dissolved at 23 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and coated substrate It was. The coated substrate was then dried in air at 100 ° C for 1 minute to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured. The results are shown in Table 2.
[0120] (実験例 7)  [0120] (Experimental example 7)
合成品(2) 0. 5gに酢酸ブチル 4. Og及びエチレングリコールモノメチルエーテルァ セテート 0. 5gをカ卩え、 23°C下で溶解した。次に、この塗工液をバーコ一ターを用い て 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: 1 nm)に塗工し塗工基板とした。その後、この塗工基板を 23°Cで 25分間、空気中で乾 燥して光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚み を測定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られ た光学素子の物性測定を行った。その結果を表 2に示す。 Synthetic product (2) 0.5 g of butyl acetate 4. Og and ethylene glycol monomethyl etherate 0.5 g were added and dissolved at 23 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: 1 nm) using a bar coater. It was. Thereafter, this coated substrate was dried in air at 23 ° C. for 25 minutes to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Then obtained by above The physical properties of the optical element were measured. The results are shown in Table 2.
[0121] (実験例 8)  [0121] (Experiment 8)
塗工基板を 30°Cで 25分間、空気中で乾燥して光学素子を作製したこと以外は実 験例 7と同様の操作を行った。得られた光学素子の物性測定を行った。その結果を 表 2に示す。  The same procedure as in Experimental Example 7 was performed, except that the coated substrate was dried in air at 30 ° C. for 25 minutes to produce an optical element. The physical properties of the obtained optical element were measured. The results are shown in Table 2.
[0122] (実験例 9)  [0122] (Experiment 9)
塗工基板を 23°Cで 44時間、空気中で乾燥し、更に、 100°Cで 1分間、空気中で乾 燥して光学素子を作製したこと以外は実験例 5と同様の操作を行った。得られた光学 素子の物性測定を行った。その結果を表 2に示す。 23°Cで 44時間、空気中で乾燥 しただけの実験例 5よりも (n +n ) /2-nで表される値の絶対値が大きな光学素子 が得られている。  The same procedure as in Example 5 was performed, except that the coated substrate was dried in air at 23 ° C for 44 hours and further dried in air at 100 ° C for 1 minute to produce an optical element. It was. The physical properties of the obtained optical element were measured. The results are shown in Table 2. An optical element in which the absolute value of (n + n) / 2−n is larger than that in Experimental Example 5, which was simply dried in air at 23 ° C. for 44 hours, was obtained.
[0123] (実験例 10) [0123] (Experiment 10)
塗工基板を 23°Cで 19時間、空気中で乾燥し、更に、 100°Cで 1分間、空気中で乾 燥して光学素子を作製したこと以外は実験例 6と同様の操作を行った。得られた光学 素子の物性測定を行った。その結果を表 2に示す。 100°Cで 1分間、空気中で乾燥 しただけの実験例 6よりも (n +n ) /2-nで表される値の絶対値が大きな光学素子 が得られている。  The same procedure as in Experimental Example 6 was performed, except that the coated substrate was dried in air at 23 ° C for 19 hours and further dried in air at 100 ° C for 1 minute to produce an optical element. It was. The physical properties of the obtained optical element were measured. The results are shown in Table 2. An optical element having a larger absolute value represented by (n + n) / 2−n than that obtained in Experimental Example 6 which was simply dried in air at 100 ° C. for 1 minute was obtained.
[0124] (実験例 11) [0124] (Experiment 11)
塗工基板を 23°Cで 25分間、空気中で乾燥し、更に、 250°Cで 1分間、空気中で乾 燥して光学素子を作製したこと以外は実験例 7と同様の操作を行った。得られた光学 素子の物性測定を行った。その結果を表 2に示す。 23°Cで 25分間、空気中で乾燥 しただけの実験例 7よりも (n +n ) /2-nで表される値の絶対値が大きな光学素子 が得られている。  Except that the coated substrate was dried in air at 23 ° C for 25 minutes and further dried in air at 250 ° C for 1 minute, the same procedure as in Experimental Example 7 was performed. It was. The physical properties of the obtained optical element were measured. The results are shown in Table 2. An optical element with a larger absolute value of (n + n) / 2-n than in Experiment 7 was obtained, which was only dried in air at 23 ° C for 25 minutes.
[0125] (実験例 12) [0125] (Experiment 12)
塗工基板を 30°Cで 25分間、空気中で乾燥し、更に、 250°Cで 1分間、空気中で乾 燥して光学素子を作製したこと以外は実験例 8と同様の操作を行った。得られた光学 素子の物性測定を行った。その結果を表 2に示す。 30°Cで 25分間、空気中で乾燥 しただけの実験例 8よりも (n +n ) /2-nで表される値の絶対値が大きな光学素子 が得られている。 The same procedure as in Experimental Example 8 was performed, except that the coated substrate was dried in air at 30 ° C for 25 minutes and further dried in air at 250 ° C for 1 minute to produce an optical element. It was. The physical properties of the obtained optical element were measured. The results are shown in Table 2. Optical element with a larger absolute value of (n + n) / 2-n than Experimental Example 8 which was dried in air for 25 minutes at 30 ° C Is obtained.
[0126] [表 1] [0126] [Table 1]
Figure imgf000037_0001
Figure imgf000037_0001
[0127] [表 2] [0127] [Table 2]
Figure imgf000038_0001
Figure imgf000038_0001
(実験例 13) (Experimental example 13)
ガラス基板の代わりに 40 μ m厚のセルロースアセテートフィルム(面内位相差: On m,厚み位相差: 8nm)を用い、その上に lOOOOnmの塗工膜を形成して光学補償フ イルムを作製したこと以外は実験例 10と同様の操作を行った。得られた光学補償フィ ルムの物性測定を行った結果、面内位相差は Onm、厚み位相差は 40nmであつ た。 40 μm thick cellulose acetate film instead of glass substrate (in-plane retardation: On m, thickness retardation: 8 nm), and an optical compensation film was prepared by forming a coating film of lOOOOnm thereon, and the same operation as in Experimental Example 10 was performed. As a result of measuring the physical properties of the obtained optical compensation film, the in-plane retardation was Onm and the thickness retardation was 40 nm.
[0129] (実験例 14)  [0129] (Experiment 14)
ポリビニルアルコール系フィルムにヨウ素を含浸させ、延伸することにより偏光子を 作製した。この偏光子の片面にポリアクリル系接着剤を用いて 80 m厚のセルロー スアセテートフィルムを貼り合わせた。さらに、偏光子の反対の面に実験例 13で作製 した光学補償フィルムを塗工膜面が外側になるようにポリアクリル系接着剤を用いて 貼り合わせ、光学補償層を有する偏光板を作製した。  A polyvinyl alcohol film was impregnated with iodine and stretched to produce a polarizer. An 80 m thick cellulose acetate film was bonded to one side of this polarizer using a polyacrylic adhesive. Furthermore, the optical compensation film produced in Experimental Example 13 was bonded to the opposite surface of the polarizer using a polyacrylic adhesive so that the coating film surface was on the outside, and a polarizing plate having an optical compensation layer was produced. .
[0130] (実験例 15) [0130] (Experiment 15)
IPS方式の液晶セルを装着した液晶表示装置を用意し、実験例 13で作製した光学 補償フィルムを液晶セルの出射光側に重ね合わせた表示装置を作製した。表示画 面を観察した結果、正面力 見ても斜め方向力 見ても色表示が変わることなぐ良 好な画像が得られた。  A liquid crystal display device equipped with an IPS liquid crystal cell was prepared, and a display device was produced in which the optical compensation film produced in Experimental Example 13 was superimposed on the outgoing light side of the liquid crystal cell. As a result of observing the display screen, a good image was obtained in which the color display did not change when looking at the front force or the oblique direction force.
[0131] (実験例 16) [0131] (Experiment 16)
IPS方式の液晶セルを装着した液晶表示装置を用意し、出射光側の偏光板をはず して代わりに実験例 14で作製した偏光板を塗工膜面が液晶セルの出射光側になる ように液晶セルに貼り合わせた表示装置を作製した。表示画面を観察した結果、正 面から見ても斜め方向力 見ても色表示が変わることなぐ良好な画像が得られた。  Prepare a liquid crystal display equipped with an IPS liquid crystal cell, remove the polarizing plate on the outgoing light side, and replace the polarizing plate prepared in Experimental Example 14 with the coating film surface facing the outgoing light side of the liquid crystal cell. A display device bonded to a liquid crystal cell was prepared. As a result of observing the display screen, a good image was obtained in which the color display did not change whether viewed from the front or obliquely.
[0132] (実験例 17) [0132] (Experimental example 17)
実験例 13で作製した光学補償フィルムを使用しな 、こと以外は実験例 15と同様の 操作を行った。その結果、斜め方向から見た際、液晶表示装置構成部材の複屈折に より正面力も見た時と色表示が異なっていた。  The same operation as in Experimental Example 15 was performed, except that the optical compensation film prepared in Experimental Example 13 was not used. As a result, when viewed from an oblique direction, the color display was different from that when the front force was also seen due to the birefringence of the liquid crystal display device constituent members.
[0133] (実験例 18) [0133] (Experiment 18)
実験例 14で作製した偏光板を使用せず、出射光側の偏光板をそのまま用いたこと 以外は実験例 16と同様の操作を行った。その結果、斜め方向から見た際、液晶表示 装置構成部材の複屈折により正面力 見た時と色表示が異なっていた。 [0134] (実験例 19) The same operation as in Experimental Example 16 was performed, except that the polarizing plate prepared in Experimental Example 14 was not used and the polarizing plate on the outgoing light side was used as it was. As a result, when viewed from an oblique direction, the color display was different from that when viewing the front force due to the birefringence of the liquid crystal display device constituent members. [Experiment 19]
ポリ(2 ビ-ルナフタレン)(アルドリッチ製、重量平均分子量: 175000) 12. Ogに 塩化メチレン 88. Ogを加え、 25°C下で溶解した。次に、この塗工液をバーコ一ターを 用いて 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相 差: lnm)に塗工した後、 25°Cで 6時間、空気中で風乾して光学素子を作製した。乾 燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基板の厚みを 差し引くことにより求めた。次に、上記によって得られた光学素子の物性測定を行い、 結果を表 3に示した。ここでは、 [ (n +n ) /2-n ] X d< 0の光学素子が得られた。  Poly (2 binaphthalene) (manufactured by Aldrich, weight average molecular weight: 175000) 12. Methylene chloride (88. Og) was added to Og and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and then 25 ° The optical element was fabricated by air drying in air for 6 hours at C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 3. Here, an optical element of [(n + n) / 2-n] Xd <0 was obtained.
[0135] (実験例 20)  [0135] (Experiment 20)
ポリ(4ービニルビフエ-ル)(アルドリッチ製、重量平均分子量: 115000) 5. Ogに 塩化メチレン 95. 0gを加え、 25°C下で溶解した。次に、この塗工液をバーコ一ターを 用いて 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相 差: lnm)に塗工した後、 25°Cで 6時間、空気中で風乾して光学素子を作製した。乾 燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基板の厚みを 差し引くことにより求めた。次に、上記によって得られた光学素子の物性測定を行い、 結果を表 3に示した。ここでは、 [ (n +n ) /2-n ] X d< 0の光学素子が得られた。  Poly (4-vinyl biphenyl) (Aldrich, weight average molecular weight: 115000) 5. 95.0 g of methylene chloride was added to Og and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and then 25 ° The optical element was fabricated by air drying in air for 6 hours at C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 3. Here, an optical element of [(n + n) / 2-n] Xd <0 was obtained.
[0136] (実験例 21)  [0136] (Experimental example 21)
スチレン 無水マレイン酸共重合体(ノヴァケミカル製ダイラーク D332) 30. Ogにク ロロホルム 70. 0gを加え、 25°C下で溶解した。次に、この塗工液をバーコ一ターを用 いて 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相差 : lnm)に塗工した後、この塗布基板を大気圧でクロ口ホルム蒸気が充満したガラス 容器に入れ、密閉後、 25°Cで 48時間アニーリングした。その後、塗布基板を取り出 し、 25°Cで 6時間、空気中で風乾して光学素子を作製した。乾燥後の塗工膜厚 (d(n m) )は、光学素子全体の厚みを測定し、ガラス基板の厚みを差し引くことにより求め た。次に、上記によって得られた光学素子の物性測定を行い、結果を表 3に示した。 ここでは、〔(n +n ) Z2—n〕 X d< 0の光学素子が得られた。  Styrene Maleic anhydride copolymer (Dylark D332 from Nova Chemical) 30. Og was added with 70.0 g of chloroform and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and this coating was applied. The substrate was placed in a glass container filled with black mouth form vapor at atmospheric pressure, sealed, and then annealed at 25 ° C for 48 hours. Then, the coated substrate was taken out and air-dried at 25 ° C for 6 hours to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 3. Here, an optical element of [(n + n) Z2-n] Xd <0 was obtained.
[0137] [表 3] 塗工膜厚: d ny れ z 面内位相差: 厚み位相差: [0137] [Table 3] Coating thickness: dn y z In-plane retardation: Thickness retardation:
( m) (n x— n v X d 〔 (nx十 ny) Z2— n J X d (m) (n x — n v X d 〔(n x 10 n y ) Z2― n JX d
(n m) (n m)  (n m) (n m)
実験例 1 9 9800 1. 6779 1. 67 78 1. 6843 1 - 63 Experimental example 1 9 9800 1. 6779 1. 67 78 1. 6843 1-63
実験例 20 4700 1. 6472 1. 64 72 1. 6555 0 - 39 Experimental example 20 4700 1. 6472 1. 64 72 1. 6555 0-39
実験例 2 1 46500 1. 5690 1. 56 90 1. 5720 0 - 140 Experimental example 2 1 46 500 1. 5690 1. 56 90 1. 5720 0-140
[0138] (実験例 22) [0138] (Experimental example 22)
ェチルセルロース(ダウケミカル製 ETHOCEL STD- 100,数平均分子量: 634 00, DS : 2. 5) 20. Og【こク ホノレム 80. 0gをカ卩免、 25。C下で溶解した。次【こ、この 塗工液をバーコ一ターを用いて 150 m厚のガラス基板(平均屈折率: 1. 52,面内 位相差: Onm,厚み位相差: Inm)に塗工した後、 25°Cで 6時間、空気中で風乾して 光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定 し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られた光学 素子の物性測定を行い、結果を表 4に示した。ここでは、〔(n +n ) /2-n ] X d≥l Ethylcellulose (ETHOCEL STD-100, manufactured by Dow Chemical, number average molecular weight: 634 00, DS: 2.5) 20. Og Dissolved under C. Next, apply this coating solution to a 150 m thick glass substrate (average refractive index: 1.52, in-plane phase difference: Onm, thickness phase difference: Inm) using a bar coater, then 25 The optical element was fabricated by air drying in air for 6 hours at ° C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 4. Here, [(n + n) / 2-n] X d≥l
00 (尚、 n =nであった)の光学素子が得られた。 An optical element of 00 (where n = n) was obtained.
[0139] (実験例 23)  [0139] (Experimental example 23)
実験例 22で作製した塗工液を用い、バーコ一ターの印加圧を低減して 150 m厚 のガラス基板 (平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: Inm)に塗工し た後、 25°Cで 6時間、空気中で風乾して光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測定し、ガラス基板の厚みを差し引くことにより求 めた。次に、上記によって得られた光学素子の物性測定をて行い、結果を表 4に示し た。ここでは、 [ (n +n ) /2-n ] X d≥100 (尚、 n >nであった)の光学素子が得 られた。  150 m thick glass substrate by reducing the applied pressure of the bar coater using the coating solution prepared in Example 22 (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: Inm) After coating, an optical element was produced by air drying in air at 25 ° C for 6 hours. The coating thickness after drying (d (nm)) was obtained by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained as described above were measured, and the results are shown in Table 4. Here, an optical element of [(n + n) / 2−n] Xd≥100 (where n> n) was obtained.
[0140] (実験例 24)  [0140] (Experimental example 24)
実験例 22で作製した塗工液を用い、バーコ一ターの印加圧を低減して 150 m厚 のガラス基板 (平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: Inm)に塗工し た後、この塗布基板を大気圧でクロ口ホルム蒸気が充満したガラス容器に入れ、密閉 後、 25°Cで 72時間アニーリングした。その後、塗布基板を取り出し、 25°Cで 6時間、 空気中で風乾して光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子 全体の厚みを測定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によ つて得られた光学素子の物性測定を行い、結果を表 4に示した。実験例 23では厚み 位相差が上がると同時に面内位相差も上昇したが、ここでは、実験例 23と同程度の 厚み位相差をもち、面内位相差が Onmである、すなわち、〔(n +n ) /2-n〕 X d≥ 150 m thick glass substrate by reducing the applied pressure of the bar coater using the coating solution prepared in Example 22 (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: Inm) After coating, the coated substrate was placed in a glass container filled with black mouth form vapor at atmospheric pressure, sealed, and then annealed at 25 ° C. for 72 hours. Thereafter, the coated substrate was taken out and air-dried in air at 25 ° C for 6 hours to produce an optical element. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 4. In Experimental Example 23, the in-plane retardation also increased at the same time as the thickness retardation increased. However, here, the in-plane retardation is Onm, that is, the same thickness retardation as in Experimental Example 23, that is, [(n + n) / 2-n] X d≥
100 (尚、 n =nであった)の光学素子が得られ、アニーリングの有無により、特性の 異なる光学補償層の作製が可能であった。 100 optical elements (where n = n) were obtained, and the characteristics of the optical elements were determined by the presence or absence of annealing. It was possible to produce different optical compensation layers.
[0141] (実験例 25)  [0141] (Experiment 25)
ェチルセルロース(ダウケミカル製 ETHOCEL STD- 100,数平均分子量: 634 00, DS : 2. 5) 20. Ogに塩ィ匕メチレン 80. 0gをカロ免、 25。C下で溶解した。次に、こ の塗工液をバーコ一ターを用いて 150 m厚のガラス基板(平均屈折率: 1. 52,面 内位相差: Onm,厚み位相差: lnm)に塗工した後、 25°Cで 6時間、空気中で風乾し て光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の厚みを測 定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得られた光 学素子の物性測定を行い、結果を表 4に示した。ここでは、 [ (n +n ) /2-n ] X d Ethylcellulose (ETHOCEL STD-100, manufactured by Dow Chemical, number average molecular weight: 634 00, DS: 2.5) 20. Dissolved under C. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater. The optical element was fabricated by air-drying in air for 6 hours at ° C. The coating thickness after drying (d (nm)) was obtained by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, the physical properties of the optical element obtained above were measured, and the results are shown in Table 4. Here, [(n + n) / 2-n] X d
≥ 100 (尚、 n >nであった)の光学素子が得られた。 An optical element of ≥100 (where n> n) was obtained.
[0142] (実験例 26)  [0142] (Experiment 26)
市販の膜厚 40 μ mのトリアセチルセルロースフィルム(=三酢酸セルロースフィルム )を 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: lnm)に貼り付けることにより、光学素子を作製した。得られた光学素子の物性測定 を行った結果、面内位相差力 S0nm、厚み位相差が 37nmであり、〔(n +n ) /2-n A commercially available 40 μm-thick triacetyl cellulose film (= cellulose triacetate film) is attached to a 150 m-thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) By attaching, an optical element was produced. As a result of measuring the physical properties of the obtained optical element, the in-plane retardation force S0 nm and the thickness retardation were 37 nm, and [(n + n) / 2−n
〕 X d≥ 100の関係を満たすものではな力つた (厚み位相差の低 、ものであった)。 ] It did not satisfy the relationship of X d≥100 (thickness phase difference was low).
[0143] (実験例 27) [0143] (Experiment 27)
市販の膜厚 80 μ mのトリアセチルセルロースフィルム(=三酢酸セルロースフィルム )を 150 m厚のガラス基板(平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: lnm)に貼り付けることにより、光学素子を作製した。得られた光学素子の物性測定 を行った結果、面内位相差が lnm、厚み位相差が 70nmであり、〔(n +n ) /2-n A commercially available 80 μm thick triacetyl cellulose film (= cellulose triacetate film) is pasted on a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) By attaching, an optical element was produced. As a result of measuring the physical properties of the obtained optical element, the in-plane retardation was 1 nm and the thickness retardation was 70 nm, and [(n + n) / 2-n
〕 X d≥ 100の関係を満たすものではな力つた (厚み位相差の低 、ものであった)。 ] It did not satisfy the relationship of X d≥100 (thickness phase difference was low).
[0144] 尚、実験例 26、 27では、煩雑なフィルム化工程 (フィルム化したものを購入すること で代用した)やフィルム貼り付け等の手間が必要であった。 [0144] In Experimental Examples 26 and 27, troublesome film forming steps (replaced by purchasing the film) and film sticking were required.
[0145] [表 4] 塗工膜厚: d ny 面内位相差: 厚み位相差: [0145] [Table 4] Coating thickness: dn y In- plane retardation: Thickness retardation:
(nm (n x - n y) X d 〔 (nx + ny) /2-n J X d (nm (n x -n y ) X d ((n x + n y ) / 2-n JX d
(nm) (nm)  (nm) (nm)
実験例 22 1 3000 1. 4727 1. 4727 1. 4646 0 105 Experimental example 22 1 3000 1. 4727 1. 4727 1. 4646 0 105
実験例 23 43000 1. 4727 1. 4724 1. 4649 1 3 329 Experimental example 23 43000 1. 4727 1. 4724 1. 4649 1 3 329
実験例 24 4 1300 1. 4723 1. 4723 1. 4654 0 285 Experimental example 24 4 1300 1. 4723 1. 4723 1. 4654 0 285
実験例 25 1 8400 1. 4732 1. 4731 1. 4637 2 174 Experimental example 25 1 8400 1. 4732 1. 4731 1. 4637 2 174
[0146] (合成例4)セルロース N—(p—トリル)カーバメート(4)の合成 [Synthesis Example 4 ] Synthesis of cellulose N- (p-tolyl) carbamate ( 4 )
冷却管、窒素導入管、攪拌機、温度計を備えた 500mlの 4つ口フラスコに、 60°Cで 7時間真空乾燥したセルロース (旭化成ケミカルズ製アビセル TG— F20) 3. Ogを入 れ、ピリジン 300mlをカ卩えて懸濁液とした後、さらに p—トリルイソシァネート(東京化 成工業製) 22. 2gを加えた。窒素を導入し、攪拌しながら 110°Cに昇温した後、 7時 間反応させた。その後、 25°Cまで放冷した後、反応液をビーカーに移し、エタノール 600mlをカ卩え、反応液を純水 4. 5L中に滴下して沈殿を生成させた。濾別後、得ら れたポリマーにアセトン 300mlを加えて溶解した後、純水 3L中に滴下して沈殿を生 じさせた。濾別後水洗し、 60°Cで 4時間真空乾燥した後、ポリマーをソックスレー抽出 器に入れた。メタノールによるソックスレー抽出を 20回行った後、 25°Cで 4時間真空 乾燥することによって、 6. 8gのセルロース N—(p—トリル)カーバメート(4)を得た( 以下、合成品(4)と呼ぶことがある。 ) 0合成品(4)の DSはプロトン NMR分析の結果 、 3であった。なお、 DSは、セルロース骨格由来のプロトンの化学シフト(3. 4〜5. 5 ppm)面積と p—トリル基のプロトンの化学シフト(6. 6〜7. 7ppm)面積を比較するこ とによって決定した。 Cellulose (Avicel TG-F20 from Asahi Kasei Chemicals) vacuum dried for 7 hours at 60 ° C in a 500 ml four-necked flask equipped with a condenser, nitrogen inlet, stirrer, and thermometer. Then, 22.2 g of p-tolyl isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Nitrogen was introduced, the temperature was raised to 110 ° C with stirring, and the reaction was carried out for 7 hours. Thereafter, after cooling to 25 ° C., the reaction solution was transferred to a beaker, 600 ml of ethanol was added, and the reaction solution was dropped into 4.5 L of pure water to form a precipitate. After separation by filtration, the obtained polymer was dissolved by adding 300 ml of acetone, and then dropped into 3 L of pure water to cause precipitation. After filtration and washing with water and vacuum drying at 60 ° C for 4 hours, the polymer was put into a Soxhlet extractor. After performing Soxhlet extraction with methanol 20 times and vacuum drying at 25 ° C for 4 hours, 6.8 g of cellulose N- (p-tolyl) carbamate (4) was obtained (hereinafter referred to as synthetic product (4) may be called.) 0 DS of synthetic (4) is the result of proton NMR analysis, it was 3. The DS is obtained by comparing the chemical shift area (3.4 to 5.5 ppm) of protons derived from the cellulose skeleton with the chemical shift area (6.6 to 7.7 ppm) of protons in the p-tolyl group. Were determined.
[0147] (実験例 28)  [0147] (Experimental example 28)
合成品(4) 0. 48gに 2—ブタノン 5. 52gを加え、 25°C下で溶解した。さらに、 N— フエ-ルカルバミン酸ェチル (東京化成工業製) 0. 32gを加え、 25°C下で溶解した。 次に、この塗工液をバーコ一ターを用いて 150 m厚のガラス基板 (平均屈折率: 1. 52,面内位相差: Onm,厚み位相差: lnm)に塗工した後、 100°Cで 1分間、空気中 で乾燥して光学素子を作製した。乾燥後の塗工膜厚 (d (nm) )は、光学素子全体の 厚みを測定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記によって得 られた光学素子の物性測定を行い、結果を表 5に示した。 N—フエ-ルカルバミン酸 ェチルを添加していない実験例 30と比べると、厚み位相差が負の方向に向上した光 学素子が得られた。  Synthetic product (4) To 0.58 g of 2-butanone 5.52 g was added and dissolved at 25 ° C. Further, 0.32 g of N-phenylcarbamate ethyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and dissolved at 25 ° C. Next, this coating solution was applied to a 150 m-thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and then 100 ° The optical element was fabricated by drying in air for 1 minute at C. The coating thickness after drying (d (nm)) was determined by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 5. Compared with Experimental Example 30 in which N-phenylcarbamate ethyl was not added, an optical element having an improved thickness retardation in the negative direction was obtained.
[0148] (実験例 29)  [0148] (Experimental example 29)
合成品(4) 0. 32gに N, N—ジメチルホルムアミド 3. 68gを加え、 25°C下で溶解し た。さらに、 N, N,—ジフエ-ル尿素 (東京化成工業製) 0. 48gを加え、 25°C下で溶 解した。次に、この塗工液をバーコ一ターを用いて 150 m厚のガラス基板 (平均屈 折率: 1.52,面内位相差: Onm,厚み位相差: lnm)に塗工した後、 130°Cで 5分間 、空気中で乾燥して光学素子を作製した。乾燥後の塗工膜厚 (d(nm))は、光学素 子全体の厚みを測定し、ガラス基板の厚みを差し引くことにより求めた。次に、上記に よって得られた光学素子の物性測定を行い、結果を表 5に示した。 N, N'—ジフエ- ル尿素を添加していない実験例 31と比べると、厚み位相差が負の方向に向上した光 学素子が得られた。 3. 68 g of N, N-dimethylformamide was added to 0.32 g of the synthesized product (4) and dissolved at 25 ° C. Add 0.48 g of N, N, -diphenylurea (Tokyo Chemical Industry Co., Ltd.) and dissolve at 25 ° C. I understood. Next, this coating solution was applied to a 150 m thick glass substrate (average refractive index: 1.52, in-plane retardation: Onm, thickness retardation: lnm) using a bar coater, and then 130 ° C. And dried in air for 5 minutes to produce an optical element. The coating thickness after drying (d (nm)) was obtained by measuring the thickness of the entire optical element and subtracting the thickness of the glass substrate. Next, physical properties of the optical element obtained above were measured, and the results are shown in Table 5. Compared with Experimental Example 31 in which N, N'-diphenylurea was not added, an optical element having an improved thickness retardation in the negative direction was obtained.
[0149] (実験例 30)  [0149] (Experiment 30)
N—フエ-ルカルバミン酸ェチルを添カ卩しないこと以外は実験例 28と同様の操作を 行った。得られた光学素子の物性測定を行い、結果を表 6に示した。  The same operation as in Experimental Example 28 was carried out except that N-phenylcarbamate was not added. The physical properties of the obtained optical element were measured, and the results are shown in Table 6.
[0150] (実験例 31)  [0150] (Experimental example 31)
N, N'—ジフエニル尿素を添加しないこと以外は実験例 29と同様の操作を行った 。得られた光学素子の物性測定を行い、結果を表 6に示した。  The same operation as in Experimental Example 29 was performed except that N, N′-diphenylurea was not added. The physical properties of the obtained optical element were measured, and the results are shown in Table 6.
[0151] [表 5] 塗工膜厚: d 面内位 ffl差: 厚み位相差:  [0151] [Table 5] Coating film thickness: d In-plane position ffl difference: Thickness phase difference:
(nm) (n x— n y) X d 〔 (nx + ny) /2— n J X d (nm) (n x — n y ) X d ((n x + n y ) / 2— n JX d
(n m) (n m)  (n m) (n m)
実験例 28 10200 1 - 95 実験例 29 10300 3 - 16  Experimental example 28 10 200 1-95 Experimental example 29 10 300 3-16
[0152] [表 6] 塗工膜厚: d 面內位相差: 厚み位相差: [0152] [Table 6] Coating film thickness: d Surface defect phase difference: Thickness phase difference:
(nm) (n x— n y) X d C (nx + ny) /2 - n J X d (nm) (n x — n y ) X d C (n x + n y ) / 2-n JX d
(nm) ( n m)  (nm) (n m)
実験例 30 10800 0 19 実験例 31 10700 1 6 産業上の利用可能性  Experimental example 30 10800 0 19 Experimental example 31 10700 1 6 Industrial applicability
なお、本発明の光学補償用塗工膜、該光学補償用塗工膜形成用塗工液、それら を用いて製造した光学素子および光学補償フィルム (位相差フィルム)は、 VA方式、 IPS方式、 OCB方式等の液晶セルを用いた液晶表示装置の視野角拡大用途に使 用できる。本発明における光学補償用塗工膜の光学特性の性能を十分に発揮する ためには、 IPS方式が特に好ましい。また、前記光学補償用塗工膜、該塗工膜形成 用塗工液、それらを用いて製造した光学素子および光学補償フィルム (位相差フィル ム)は、ビデオ、カメラ、携帯電話、ノ ソコン、テレビ、モニター、 自動車のインパネ等 の液晶表示装置作製部品等に好適に使用できる。 The coating film for optical compensation of the present invention, the coating liquid for forming the coating film for optical compensation, the optical element produced using them, and the optical compensation film (retardation film) are VA system, It can be used to expand the viewing angle of liquid crystal display devices using liquid crystal cells such as IPS and OCB. The IPS method is particularly preferable in order to sufficiently exhibit the performance of the optical properties of the coating film for optical compensation in the present invention. In addition, the optical compensation coating film, the coating film forming coating liquid, the optical element and the optical compensation film (retardation film) produced using the coating film, video, camera, mobile phone, laptop computer, It can be suitably used for liquid crystal display device production parts such as televisions, monitors, and instrument panels of automobiles.

Claims

請求の範囲 [1] セルロース N—置換カーバメート、または芳香族ビュル系重合体のいずれかの重 合体を含有して形成されることを特徴とする光学補償用塗工膜。 [2] 面内の屈折率のうち最大のものを n、最小のものを nとし、厚み方向の屈折率を n、膜厚を dとした時に、〔(n +n ) /2-n〕 X dく 0の関係を満たすことを特徴とする 請求項 1記載の光学補償用塗工膜。 [3] 前記セルロース N—置換カーバメートが、セルロースの水酸基の少なくとも一つがN—置換カーバメート化されており、かつ、セルロースカーバメートの窒素原子に結 合した水素原子の少なくとも一つが下記一般式(1)〜(3)から選ばれる基で置換さ れており、かつ、複数の N—置換基は同一又は異なって、下記一般式(1)〜(3)から 選ばれる基である化合物であることを特徴とする請求項 1又は請求項 2に記載の光学 補償用塗工膜。 Claims [1] A coating film for optical compensation, comprising a polymer of any one of cellulose N-substituted carbamate and aromatic bulle polymer. [2] When the maximum refractive index in the plane is n, the minimum refractive index is n, the refractive index in the thickness direction is n, and the film thickness is d, [(n + n) / 2-n] 2. The optical compensation coating film according to claim 1, wherein X d satisfies the relationship of 0. [3] In the cellulose N-substituted carbamate, at least one hydroxyl group of cellulose is N-substituted carbamate, and at least one hydrogen atom bonded to a nitrogen atom of the cellulose carbamate is represented by the following general formula (1): The compound is substituted with a group selected from (3), and a plurality of N-substituents are the same or different and are compounds selected from the following general formulas (1) to (3). 3. The coating film for optical compensation according to claim 1, wherein the coating film is for optical compensation.
[化 1]  [Chemical 1]
Figure imgf000048_0001
Figure imgf000048_0001
Figure imgf000048_0002
R4、 R5は、同一又は異なって、水素原子、炭素数 1〜20のアルキ ル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル基、炭素 数 6〜20のァリール基、炭素数 6〜20のァリールォキシ基、炭素数 7〜20のァラル キル基、炭素数 7〜20のァラルキルォキシ基、炭素数 1〜21のァシルォキシ基、ハ ロゲン原子、ニトロ基を表す。 )
Figure imgf000048_0002
R 4 and R 5 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. An aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, and a nitro group. )
[化 2] [Chemical 2]
Figure imgf000049_0001
Figure imgf000049_0001
(式中 R6、 R7、 R8、 R9、 R1Q、 RU、 R12は、同一又は異なって、水素原子、炭素数 1〜20 のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキル 基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) (In the formula, R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. Represents a halogenated alkyl group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, or a nitro group.
[化 3]  [Chemical 3]
Figure imgf000049_0002
Figure imgf000049_0002
(式中 R13、 R"、 R15、 Rln、 R"、 R18、 R19は、同一又は異なって、水素原子、炭素数 1〜 20のアルキル基、炭素数 1〜20のアルコキシ基、炭素数 1〜20のハロゲン化アルキ ル基、炭素数 1〜21のァシルォキシ基、ハロゲン原子、ニトロ基を表す。 ) (In the formula, R 13 , R ″, R 15 , R ln , R ″, R 18 , R 19 are the same or different and are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. Represents a halogenated alkyl group having 1 to 20 carbon atoms, an acyloxy group having 1 to 21 carbon atoms, a halogen atom, or a nitro group.
[4] 芳香族ビュル系重合体力 ポリ(1—ビュルナフタレン)、ポリ(2—ビュルナフタレン )、ポリ(4—ビニルビフエ-ル)力も選ばれる少なくとも一つを含有してなることを特徴 とする請求項 1又は請求項 2に記載の光学補償用塗工膜。  [4] Aromatic Bulle Polymer Strength Poly (1-Burnaphthalene), Poly (2-Burnaphthalene), Poly (4-Vinyl Vinyl) Force Contains at least one selected Item 3. The coating film for optical compensation according to Item 1 or Item 2.
[5] 位相差調整剤を含有して形成されることを特徴とする請求項 1から請求項 4のいず れカゝ 1項に記載の光学補償用塗工膜。  [5] The optical compensation coating film according to any one of [1] to [4], wherein the optical compensation coating film is formed containing a phase difference adjusting agent.
[6] 力ルバミン酸エステル、 N—置換力ルバミン酸エステル、尿素、 N—置換尿素から選 ばれる少なくとも一つ力もなるセルロース N—置換カーノメート用位相差調整剤を 含有することを特徴とする請求項 5記載の光学補償用塗工膜。  [6] The cellulose N-substituted carnomate phase difference adjusting agent having at least one force selected from strong rubamic acid ester, N-substituted rubamic acid ester, urea, and N-substituted urea. 5. An optical compensation coating film according to 5.
[7] 力ルバミン酸ェチル、力ルバミン酸フエ-ル、 N—フエ-ルカルバミン酸ェチル、 N フエ-ルカルバミン酸フエ-ル、 N— (4—トリル)力ルバミン酸ェチル、 N—(4 トリ ル)力ルバミン酸フエ-ル、尿素、 N, N,ージフエ-ル尿素、 N, N,ージ—p—トリル 尿素、 N フエ-ルー N' - (p トリル)尿素の群力 選ばれる少なくとも 1つ力 なる セルロース N 置換カーバメート用位相差調整剤を含有することを特徴とする請求 項 6記載の光学補償用塗工膜。 [7] strength rubamate ethyl, strength rubamate phenyl, N-phenylcarbamate ethyl, N Phenylcarbamate phenol, N— (4-Tolyl) strength rubamate ethyl, N— (4 Tolyl) strength rubamate phenol, urea, N, N, diphenol urea, N, N, 7. A group strength of di-p-tolyl urea and N ferrue N ′-(p tolyl) urea, comprising at least one force selected, a retardation adjusting agent for cellulose N-substituted carbamate, Optical compensation coating film.
[8] 下記 (A)、 (B)を含有して形成される光学補償用塗工膜形成用塗工液。 [8] A coating solution for forming an optical compensation coating film, which comprises the following (A) and (B).
(A)請求項 1から請求項 4記載のセルロース N 置換カーバメート、または芳香族 ビュル系重合体の 、ずれかの重合体、  (A) Any one of the cellulose N-substituted carbamates according to claims 1 to 4 or the aromatic bulle polymer,
(B) (A)成分が溶解可溶な溶媒。  (B) A solvent in which component (A) is soluble and soluble.
[9] (A)、 (B)を含有し、さらに、(C)位相差調整剤を含有して形成されることを特徴と する請求項 8記載の光学補償用塗工膜形成用塗工液。  [9] The coating for forming an optical compensation coating film according to claim 8, characterized in that it comprises (A) and (B), and further comprises (C) a retardation adjusting agent. liquid.
[10] (C)位相差調整剤が、力ルバミン酸エステル、 N 置換力ルバミン酸エステル、尿 素、 N 置換尿素から選ばれる少なくとも一つからなるセルロース N 置換カーバメ ート用位相差調整剤であることを特徴とする請求項 9記載の光学補償用塗工膜形成 用塗工液。 [10] (C) The phase difference adjusting agent is a phase difference adjusting agent for cellulose N-substituted carbamate comprising at least one selected from force rubamic acid ester, N-substituted force rubamic acid ester, urea, and N-substituted urea. 10. The coating solution for forming an optical compensation coating film according to claim 9, wherein the coating solution is for optical compensation.
[11] (C)位相差調整剤が、カルノ ミン酸ェチル、カルノ ミン酸フエ-ル、 N フエ-ルカ ルバミン酸ェチル、 N—フエ-ルカルバミン酸フエ-ル、 N— (4—トリル)力ルバミン酸 ェチル、 N— (4—トリル)力ルバミン酸フエ-ル、尿素、 N, N,ージフエ-ル尿素、 N, N,—ジ— p トリル尿素、 N—フエ-ル N, - (p トリル)尿素の群から選ばれる少 なくとも 1つ力もなるセルロース N 置換カーノメート用位相差調整剤であることを 特徴とする請求項 10記載の光学補償用塗工膜形成用塗工液。  [11] (C) Retardation adjuster is ethyl carnomate, vinyl carnomate, N-phenyl carbamate, N-phenyl carbamate, N- (4-tolyl) force Rutile ethyl, N— (4-tolyl) strength rubamate, urea, N, N, diphenylurea, N, N, —di-p-tolylurea, N—phenol N,-(p 11. The coating solution for forming a coating film for optical compensation according to claim 10, wherein the coating solution is a retardation adjusting agent for cellulose N-substituted carnomate selected from the group of (tolyl) urea.
[12] 力ルバミン酸エステル、 N—置換力ルバミン酸エステル、尿素、 N—置換尿素から選 ばれる少なくとも一つ力もなることを特徴とするセルロース N 置換カーノメート用 位相差調整剤。  [12] A retardation adjusting agent for cellulose N-substituted carnomate, characterized in that it also has at least one force selected from rubamic acid ester, N-substituted rubamic acid ester, urea, and N-substituted urea.
[13] 力ルバミン酸ェチル、力ルバミン酸フエ-ル、 N—フエ-ルカルバミン酸ェチル、 N  [13] hard rubamate, strong rubamate, N-phenyl carbamate, N
フエ-ルカルバミン酸フエ-ル、 N— (4—トリル)力ルバミン酸ェチル、 N—(4 トリ ル)力ルバミン酸フエ-ル、尿素、 N, N,ージフエ-ル尿素、 N, N,ージ—p—トリル 尿素、 N フエ-ルー N' - (p トリル)尿素の群力 選ばれる少なくとも 1つ力 なる ことを特徴とする請求項 12記載のセルロース N—置換カーバメート用位相差調整 剤。 Phenylcarbamate phenol, N— (4-Tolyl) strength rubamate ethyl, N— (4 Tolyl) strength rubamate phenol, urea, N, N, diphenol urea, N, N, Di-p-tolyl urea, N ferrue N '-(p tolyl) urea group power at least one force selected The retardation adjusting agent for cellulose N-substituted carbamate according to claim 12,
[14] 請求項 8から請求項 11記載の塗工液を基板に塗工し塗工基板とした後、該塗工基 板を乾燥することを特徴とする光学補償用塗工膜の形成方法。  [14] A method for forming an optical compensation coating film, comprising: coating a substrate with the coating liquid according to claims 8 to 11 to obtain a coated substrate; and drying the coated substrate. .
[15] 該塗工基板を下限 0°C、上限 40°Cの範囲の温度で 1次乾燥した後、更に、該塗工 基板を下限 80°C、上限 300°Cで 2次乾燥することを特徴とする請求項 14記載の光 学補償用塗工膜の形成方法。 [15] The coated substrate is primarily dried at a temperature in the range of 0 ° C at the lower limit and 40 ° C at the upper limit, and further dried at the lower limit of 80 ° C and the upper limit of 300 ° C. 15. The method for forming a coating film for optical compensation according to claim 14, wherein:
[16] 請求項 8から請求項 11記載の塗工液を基板に塗工し塗工基板とした後、(B)成分 の蒸気にさらして塗工膜をアニーリングし、更に乾燥することを特徴とする光学補償 用塗工膜の形成方法。 [16] The coating liquid according to claim 8 to claim 11 is applied to a substrate to form a coated substrate, and then the coating film is annealed by exposure to the vapor of component (B) and further dried. A method for forming a coating film for optical compensation.
[17] 請求項 14から請求項 16記載の形成方法を用いたことを特徴とする光学素子の製 造方法。  [17] A method for manufacturing an optical element, wherein the forming method according to any one of claims 14 to 16 is used.
[18] 請求項 17記載の製造方法を用いて製造したことを特徴とする光学素子。  18. An optical element manufactured using the manufacturing method according to claim 17.
[19] 請求項 14から請求項 16記載の形成方法を用いて製造したことを特徴とする光学 補償フィルム。 [19] An optical compensation film produced by using the forming method according to any one of claims 14 to 16.
[20] 偏光子の少なくとも片面に請求項 19記載の光学補償フィルムを偏光子保護フィル ムとして装着したことを特徴とする偏光板。  [20] A polarizing plate, wherein the optical compensation film according to claim 19 is mounted as a polarizer protective film on at least one surface of the polarizer.
[21] 請求項 19記載の光学補償フィルムを備えた液晶表示装置。 21. A liquid crystal display device comprising the optical compensation film according to claim 19.
[22] 請求項 20記載の偏光板を備えた液晶表示装置。 22. A liquid crystal display device comprising the polarizing plate according to claim 20.
PCT/JP2006/301496 2005-02-14 2006-01-31 Coating film for optical compensation, and optical element WO2006085449A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005-036958 2005-02-14
JP2005036958A JP2006221116A (en) 2005-02-14 2005-02-14 Coating film for optical compensation, coating liquid for forming coating film, optical element manufactured by using the coating liquid, and method of manufacturing optical element
JP2005039873A JP2006227222A (en) 2005-02-16 2005-02-16 Coating film for optical compensation, coating liquid for forming coating film, optical element manufactured by using the coating liquid and manufacturing method of optical element
JP2005-039873 2005-02-16
JP2005-128722 2005-04-26
JP2005128722 2005-04-26
JP2005-141980 2005-05-13
JP2005141980A JP2006317813A (en) 2005-05-13 2005-05-13 Phase difference conditioner, coating film for optical compensation, coating liquid for forming the coating film, optical element produced using the coating liquid, and method for producing the optical element
JP2005-312216 2005-10-27
JP2005312216 2005-10-27
JP2006009344A JP4772515B2 (en) 2005-04-26 2006-01-18 Optical compensation coating film and optical element
JP2006-009344 2006-01-18

Publications (1)

Publication Number Publication Date
WO2006085449A1 true WO2006085449A1 (en) 2006-08-17

Family

ID=36793025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301496 WO2006085449A1 (en) 2005-02-14 2006-01-31 Coating film for optical compensation, and optical element

Country Status (3)

Country Link
KR (1) KR20070111480A (en)
TW (1) TW200634108A (en)
WO (1) WO2006085449A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035242B2 (en) * 2006-07-13 2012-09-26 コニカミノルタアドバンストレイヤー株式会社 Manufacturing method of polarizing plate protective film, polarizing plate protective film, polarizing plate, and liquid crystal display device
WO2016060144A1 (en) * 2014-10-17 2016-04-21 コニカミノルタ株式会社 Polymer composition, optical film, circularly polarizing plate, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091746A (en) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp Optical film and liquid crystal display device
JP2001131291A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd Optically coherent particle and its manufacturing method
JP2003238601A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Method for producing cellulose carbamate
JP2004004474A (en) * 2002-04-18 2004-01-08 Nitto Denko Corp Optical compensation polarizing plate and display device
JP2004290963A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Drying method of coating film, optical film having construction laminating optical functional layers formed by the same, polarizer having the film, and picture indicating device provided with the polarizer
JP2004325971A (en) * 2003-04-25 2004-11-18 Nippon Zeon Co Ltd Laminated retardation plate and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091746A (en) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp Optical film and liquid crystal display device
JP2001131291A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd Optically coherent particle and its manufacturing method
JP2003238601A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Method for producing cellulose carbamate
JP2004004474A (en) * 2002-04-18 2004-01-08 Nitto Denko Corp Optical compensation polarizing plate and display device
JP2004290963A (en) * 2003-03-07 2004-10-21 Nitto Denko Corp Drying method of coating film, optical film having construction laminating optical functional layers formed by the same, polarizer having the film, and picture indicating device provided with the polarizer
JP2004325971A (en) * 2003-04-25 2004-11-18 Nippon Zeon Co Ltd Laminated retardation plate and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035242B2 (en) * 2006-07-13 2012-09-26 コニカミノルタアドバンストレイヤー株式会社 Manufacturing method of polarizing plate protective film, polarizing plate protective film, polarizing plate, and liquid crystal display device
WO2016060144A1 (en) * 2014-10-17 2016-04-21 コニカミノルタ株式会社 Polymer composition, optical film, circularly polarizing plate, and display device
JPWO2016060144A1 (en) * 2014-10-17 2017-07-27 コニカミノルタ株式会社 Polymer composition, optical film, circularly polarizing plate and display device

Also Published As

Publication number Publication date
KR20070111480A (en) 2007-11-21
TW200634108A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
TWI531822B (en) Unstretched retardation film
TWI549991B (en) Polyamic acid, polymide, polyamic acid solution, and use of polymide
JP7317939B2 (en) Polarizing element and image display device
TW201107783A (en) Process for production of optical film, optical film , laminated polarizing plate, and image display device
JP5407159B2 (en) Optical compensation film and manufacturing method thereof
JP2006221116A (en) Coating film for optical compensation, coating liquid for forming coating film, optical element manufactured by using the coating liquid, and method of manufacturing optical element
TWI450003B (en) An optical compensation film, an optical compensation film, and a method for manufacturing the same
JP4918759B2 (en) Optical film
JP5158322B2 (en) Optical compensation film and manufacturing method thereof
JP2009156908A (en) Optical compensation film
JP5672518B2 (en) Substrate for liquid crystal display and manufacturing method thereof
WO2006085449A1 (en) Coating film for optical compensation, and optical element
US6995395B2 (en) Multilayer optical compensator, liquid crystal display, and process
JPWO2009004861A1 (en) Liquid crystal display
JP2002047357A (en) Cellulose ester film, optical film, polarizing plate, optical compensation film and liquid crystal display device
JP5831174B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
JP2011102868A (en) Optical compensation film
JP6339530B2 (en) Polymer film, polarizing plate and liquid crystal display device
JP6916949B2 (en) Optical film, polarizing plate, image display device
JP2010249894A (en) Optical compensation film and polarizing plate obtained by using the same, and liquid crystal display apparatus
JP2008107659A (en) Optical compensation coating film, coating liquid for forming optical compensation coating film, polarizing plate, liquid crystal display device and method for forming the same
TW202037490A (en) Laminated body and manufacturing method thereof, forming method of optical film, polarization film and manufacturing method thereof, circular polarization plate, and manufacturing method of liquid crystal display device in which the laminated body includes a support body, a liquid crystal alignment film formed on the support body, and an optical film formed on the liquid crystal alignment film
JP5407677B2 (en) Optical compensation film and manufacturing method thereof
JP2021140095A (en) Optical film manufacturing method
JP4772515B2 (en) Optical compensation coating film and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077018497

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712639

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712639

Country of ref document: EP