WO2006085310A1 - Substrate-guided optical device particularly for vision enhanced optical systems - Google Patents
Substrate-guided optical device particularly for vision enhanced optical systems Download PDFInfo
- Publication number
- WO2006085310A1 WO2006085310A1 PCT/IL2006/000158 IL2006000158W WO2006085310A1 WO 2006085310 A1 WO2006085310 A1 WO 2006085310A1 IL 2006000158 W IL2006000158 W IL 2006000158W WO 2006085310 A1 WO2006085310 A1 WO 2006085310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- image
- optical
- substrate
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Definitions
- the present invention relates to substrate-guided optical systems, and in particular, to devices which include a plurality of partially reflecting surfaces carried by a common light-transmissive substrate, also referred to as a light wave-guide optical element (LOE).
- a common light-transmissive substrate also referred to as a light wave-guide optical element (LOE).
- LOE light wave-guide optical element
- the invention can be implemented to advantage in a large number of imaging applications, such as head-mounted and head-up displays, cellular phones, compact displays, 3-D displays, compact beam expanders as well as non-imaging applications such as flat-panel indicators, compact illuminators and scanners.
- imaging applications such as head-mounted and head-up displays, cellular phones, compact displays, 3-D displays, compact beam expanders as well as non-imaging applications such as flat-panel indicators, compact illuminators and scanners.
- an optical module serves both as an imaging lens and a combiner, in that a two-dimensional display is imaged to infinity and reflected into the eye of an observer.
- the display can be obtained directly from either a spatial light modulator (SLM) such as a cathode ray tube (CRT), a liquid crystal display (LCD), an organic light emitting diode array (OLED), a scanning source or similar devices, or indirectly, by means of a relay lens or an optical fiber bundle.
- SLM spatial light modulator
- CTR cathode ray tube
- LCD liquid crystal display
- OLED organic light emitting diode array
- the display comprises an array of elements (pixels) imaged to infinity by a collimating lens and transmitted into the eye of the viewer by means of a reflecting or partially reflecting surface acting as a combiner for non-see-through and see-through applications, respectively.
- a conventional, free-space optical module is used for these purposes.
- FOV field-of-view
- the present invention facilitates the design and fabrication of very compact LOE for, amongst other applications, head-mounted displays.
- the invention allows relatively wide FOVs together with relatively large eye-motion-box values.
- the resulting optical system offers a large, high-quality image, which also accommodates large movements of the eye.
- the optical system offered by the present invention is particularly advantageous because it is substantially more compact than state-of-the- art implementations and yet it can be readily incorporated, even into optical systems having specialized configurations.
- the invention also enables the construction of improved head-up displays (HUDs). Since the inception of such displays more than three decades ago, there has been significant progress in the field. Indeed, HUDs have become popular and they now play an important role, not only in most modern combat aircraft, but also in civilian aircraft, in which HUD systems have become a key component for low- visibility landing operation. Furthermore, there have recently been numerous proposals and designs for HUDs in automotive applications where they can potentially assist the driver in driving and navigation tasks. Nevertheless, state-of- the-art HUDs suffer several significant drawbacks. All HUDs of the current designs require a display source that must be offset a significant distance from the combiner to ensure that the source illuminates the entire combiner surface.
- the combiner-projector HUD system is necessarily bulky, large and requires considerable installation space, which makes it inconvenient for installation and at times even unsafe to use.
- the large optical aperture of conventional HUDs also poses a significant optical design challenge, either rendering the HUDs with compromising performance, or leading to high cost wherever high-performance is required.
- the chromatic dispersion of high-quality holographic HUDs is of particular concern.
- the combiner is illuminated with a compact display source that can be attached to the substrate.
- the overall system is very compact and can be readily installed in a variety of configurations for a wide range of applications.
- the chromatic dispersion of the display is negligible and, as such, can operate with wide spectral sources, including a conventional white-light source.
- the present invention expands the image so that the active area of the combiner can be much larger than the area that is actually illuminated by the light source.
- a further application of the present invention is to provide a compact display with a wide FOV for mobile, hand-held application such as cellular phones.
- a compact display with a wide FOV for mobile, hand-held application such as cellular phones.
- the limiting factor remains the quality of the display within the device of the end-user.
- the mobility requirement restricts the physical size of the displays, and the result is a direct-display with poor image viewing quality.
- the present invention enables a physically very compact display with a very large virtual image. This is a key feature in mobile communications, and especially for mobile internet access, solving one of the main limitations for its practical implementation. Thereby, the present invention enables the viewing of the digital content of a full format internet page within a small, hand-held device, such as a cellular phone.
- a broad object of the present invention is therefore to alleviate the drawbacks of state-of-the-art compact optical display devices and to provide other optical components and systems having improved performance, according to specific requirements.
- an optical system comprising a mechanical body, a light-transmitting substrate having at least two major surfaces and edges, embedded in said mechanical body, optical means for coupling light into said substrate by total internal reflection, a plurality of partially reflecting surfaces carried by said substrate wherein said partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of said substrate, at least one image capturing device, at least one display source, and an image processing unit, characterized in that the image capturing device is connected via the image processing unit to the display source.
- Fig. 1 is a side view of a generic form of a prior art folding optical system
- Fig. 2 is a side view of an exemplary LOE
- Figs. 3A and 3B illustrate the desired reflectance and transmittance characteristics of selectively reflecting surfaces used in the present invention for two ranges of incident angles;
- Fig. 4 is a diagram illustrating a detailed sectional view of an exemplary array of selectively reflective surfaces
- Fig. 5 illustrates the reflectance and the transmittance performance of an anisotropic reflecting surface which is oriented to reflect s-polarized light
- Fig. 6 illustrates the reflectance and the transmittance performance of an anisotropic reflecting surface which is oriented to reflect p-polarized light
- Fig. 7 illustrates another detailed sectional view of an exemplary array of selectively reflective surfaces
- Fig. 8 is a schematic sectional-view of a reflective surface according to the present invention.
- Fig. 9 illustrates an exemplary embodiment of an LOE embedded in 1 standard eyeglass frames
- Fig. 10 illustrates an exemplary embodiment of an LOE embedded in st ⁇ indard eyeglass frames wherein an image-capturing device is attached to the eyeglass frames;
- Fig. 11 illustrates an exemplary embodiment of an LOE embedded in a hand carried display system
- Fig. 12 illustrates an exemplary embodiment of an LOE embedded in a hand carried display system wherein an image capturing device is attached to the mechanical body of the hand carried display system;
- Fig. 13 illustrates an exemplary HUD system
- Fig. 14 illustrates an exemplary FfUD system, in accordance with the present invention, wherein an image-capturing device is attached to the mechanical body of the HUD system.
- Fig. 1 illustrates a prior folding optics arrangement, wherein the substrate 2 is illuminated by a display source 4.
- the display is collimated by a collimating lens 6.
- the light from the display source 4 is coupled into substrate 2 by a first reflecting surface 8, in such a way that the main ray 10 is parallel to the substrate plane.
- a second reflecting surface 12 couples the light out of the substrate and into the eye 14 of a viewer.
- Fig. I 5 the maximum allowed off-axis angle inside the substrate is:
- T is the substrate thickness
- d eye is the desired exit-pupil diameter
- / is the distance between reflecting surfaces 8 and 12.
- v is the refractive index of the substrate.
- the refractive index values lie in the range of 1.5-1.6.
- the diameter of the eye pupil is 2-6 mm.
- a larger exit-pupil diameter is necessary.
- the desired substrate thickness would be of the order of 12 mm.
- a sun is the angle between the reflecting surface and the normal to the substrate plane, and R eye , is the distance between the eye of the viewer and the substrate (typically, about 30-40 mm).
- tan ⁇ SMr cannot be much larger than 1; hence, for the same parameters described above for a FOV of 8°, the required substrate thickness here is of the order of 7 mm, which is an improvement on the previous limit. Nevertheless, as the desired FOV is increased, the substrate thickness increases rapidly. For instance, for desired FOVs of 15° and 30°, the substrate limiting thickness. is 18 mm and 25 mm, respectively..
- the present invention utilizes an array of selectively reflecting surfaces fabricated within an LOE.
- Fig. 2 illustrates a sectional view of an LOE according to the present invention.
- the first reflecting surface 16 is illuminated by a collimated display 18 emanating from a light source (not shown) located behind the device.
- the reflecting surface 16 reflects the incident light from the source such that the light is trapped inside a planar substrate 20 by total internal reflection. After several reflections off the surfaces of the substrate, the trapped waves reach an array of selectively reflecting surfaces 22, which couple the light out of the substrate into the eye 24 of a viewer.
- the input surface of the LOE will be defined as the surface through which the input waves enter the LOE and the output surface of the LOE will be defined as the surface through which the trapped waves exit the LOE.
- both the input and the output surfaces coincide with the lower surface 26.
- Other configurations, however, are envisioned in which the input and the image waves could be located on opposite' sides of the substrate. Assuming that the central wave of the source is coupled out of the substrate 20 in a direction normal to the substrate surface 26, the reflecting surfaces 22 are flat, and the off-axis angle of the coupled wave inside the substrate 20 is (X 1n , then the angle ⁇ sur2 between the reflecting surfaces and the normal to the substrate plane is:
- the trapped rays arrive at the reflecting surfaces from two distinct directions 28, 30.
- the trapped rays arrive at the reflecting surface from one of these directions 28 after an even number of reflections from the substrate surfaces 26 and 27, wherein the incident angle ⁇ ref between the trapped ray and the normal to the reflecting surface is:
- each ray first arrives at the surface from the direction 30, wherein some of the rays impinge on the surface again, from direction 28.
- the reflectance be negligible for the rays that impinge on the surface having the second direction 28.
- Fig. 3 A and 3B illustrate the desired reflectance behavior of selectively reflecting surfaces. While the ray 32 (Fig. 3A), having an off-axis angle of ⁇ re / ⁇ 25°, is partially reflected and is coupled out of the substrate 34, the ray 36 (Fig. 3B), which arrives at an off-axis angle of ⁇ % e / ⁇ 75° to the reflecting surface (which is equivalent to ⁇ ' re / ⁇ 105°), is transmitted through the reflecting surface 34 without any notable reflection.
- Fig. 4 is a detailed sectional view of an array of selectively reflective surfaces which couple light trapped inside the substrate out and into the eye of a viewer.
- the coupled ray passes through reflecting surfaces 38, having a direction of a ⁇ n - 130°, whereby the angle between the ray and the normal to the reflecting surfaces is ⁇ 75° and the reflections from these surfaces are negligible.
- An alternative solution utilizes anisotropic reflecting surfaces, that is, optical surfaces having a major axis parallel to the surface plane wherein the reflection and transmission properties of the surface depend strongly in the orientation of the polarization of the incident light in relation to the major axis of the surface.
- the desired discrimination between the two incident directions can be achieved by exploiting the fact that the undesired direction meets the surface after the ray has transferred the surface in the desired direction.
- Fig. 5 Illustrates an example of an anisotropic partially reflecting surface 40 having a major axis 42.
- An unpolarized light wave 44 impinges on the surface.
- the partially reflecting surface reflects the component of the light 46 with its electrical field vector parallel to the major axis 42 and transmits the component of the light 48 with its electrical field vector perpendicular to the major axis 42.
- a possible candidate for the required anisotropic partially reflecting element can be a wire grid polarizing beamsplitter 50, generally in the form of an array of thin parallel conductors supported by a transparent substrate.
- the key factor that determines the performance of a wire grid polarizing beamsplitter 50 is the relationship between the center-to-center spacing, or period, of the parallel grid elements and the wavelength of the incident radiation. When the grid spacing- or period is much shorter than the wavelength, the grid functions as a polarizing beamsplitter 50 that reflects electromagnetic radiation polarized parallel to the grid elements, and transmits radiation of the orthogonal polarization.
- the major axis of a wire grid polarizing beamsplitter 50 is defined as parallel to the array of conductors.
- the wire grid polarizing beamsplitter should be used to transmit the p-polarization and reflect the s-polarization, as illustrated in Fig. 5.
- the polarizing beamsplitter Since now the major axis of the polarizing beamsplitter is parallel to the electric field of the p-polarized light, the polarizing beamsplitter reflects the component of the p-polarized light 56 with its electrical fiel'd vector parallel to the major axis 52 and transmits the component of the s-p ⁇ larized light 58 with its electrical field vector perpendicular to the major axis 52.
- the geometry illustrated in Fig. 6 has reduced efficiency and contrast compared to the one described in Fig. 5. However, for some applications this geometry can also be useful.
- Fig. 7 illustrates an example of an LOE, exploiting wire grid polarizing beamsplitters as partially reflecting surfaces according to the present invention.
- the first reflecting surface 16 is illuminated by an unpolarized collimated display 18 emanating from a light source (not shown) located behind the device.
- the reflecting surface 16 reflects the incident light from the source such that the light is trapped inside the planar substrate 20 by total internal reflection. After several reflections off the surfaces of the substrate, the trapped waves reach the first partially reflecting surface 22a, the major axis of which is oriented to reflect the s-polarized component 60 of the trapped wave 18.
- the p-polarized component 62 is transmitted and then reflected by the second reflecting surface 22b, the major axis of which is oriented to reflect p-polarized light waves.
- Both the s-polarized 60 and p-polarized 62 waves are coupled out of the substrate into the eye 24 of a viewer.
- the polarization components of the input beam should be balanced. Hence, care must be taken to prevent birefringent effects from the collimating lens as well as in the substrate 20 itself.
- Fig. 8 is a detailed sectional view of the selectively reflective surface 22 which couples light, trapped inside the substrate, out and into the eye of a viewer.
- the coupled ray 18 passes through reflecting surfaces 22 three times.
- the s-polarized component 72 is reflected and coupled out of the substrate.
- the transmitted p-polarized component 74 is reflected off one of the outer surfaces 27 and then meets surface 22a again at the points 76 and 78, in between which it is again reflected off the opposite outer surface.
- the incident light is p-polarized, while the orientation of surface 22a is set to reflect s-polarized light and to transmit p-polarized light.
- the reflections at these points can be negligible, as required above, in relation to Fig. 2, in order to prevent undesired reflections and ghost images.
- this concept can be valid not only for the example illustrated in Figs. 7 and 8 but also in more general cases, wherein more than two partially reflecting surfaces are utilized to project the image into the eyes of a viewer.
- the input display source can be located very close to the substrate, so that the overall optical system is very compact and lightweight, offering an unparalleled form-factor;
- the present invention offers flexibility as to location of the input display source relative to the eyepiece. This flexibility, combined with the ability to locate the source close to the expanding substrate, alleviates the need to use an off-axis optical configuration that is common to other display systems.
- the input aperture of the LOE is much smaller than the active area of the output aperture, the numerical aperture of the collimating lens 6 is much smaller than required for a comparable conventional imaging system. Consequently a significantly more convenient optical system can be implemented and the many difficulties associated with off-axis optics and high numerical-aperture lenses, such as field or chromatic aberrations can be compensated for relatively easily and efficiently;
- the reflectance coefficients of the selectively reflective surfaces in the present invention are essentially identical over the entire relevant spectrum. Hence, both monochromatic and polychromatic light sources may be used as display sources.
- the LOE has a negligible wavelength-dependence, ensuring high-quality color displays with high resolutions;
- Fig. 9 illustrates an embodiment of the present invention, in which the LOE 20 is embedded in eyeglass frames 88.
- the display source 4, the collimating lens, and the folding element 90 are assembled inside the arm portions 92 of the eyeglass frames, next to the edge of the LOE 20.
- the display source is an electronic element, such as a small CRT, LCD or OLED
- the driving electronics 94 for the display source might be assembled inside the back portion of the arm 92.
- a power supply and data interface 96 can be connected to arm 92 by a lead 98 or any other communication means, including radio or optical transmission.
- a battery and miniature data link electronics can be integrated into the eyeglass frames.
- a variable filter can be placed in front of the system in such a way that the viewer can control the level of brightness of the light emerging from the external scene.
- This variable filter could either be a mechanically controlled device, such as a folding filter or two rotating polarizers, an electronically controlled device, or even an automatic device whereby the transmittance of the filter is determined by the brightness of the external background.
- Fig. 10 illustrates a modified version of the embodiment described in Fig. 9.
- a miniature video camera 100 with, or affixed to, optional optical zoom capability is installed in e.g., the front region of the frame 92.
- the camera captures images from the external scene, transfers the video signal to an image-processing unit 102, which can be installed inside the electronics unit 94 and which can be controlled in real-time by the user.
- the processed image signal is then transferred to the image source 4 which projects the image through the LOE 20 into the eye of the user.
- the embodiment of Fig. 10 can be implemented in a wide variety of applications.
- a possible utilization is for users who require an ability to perform close-up views on distant objects.
- the user can set the zoom position of the video camera according to the desired magnification.
- the captured image can then be processed by the image-processing unit and projected by the optical system.
- the image-capturing device 100 does not necessarily have to be a simple video camera.
- Another application can combine a thermal camera or a miniature star-light-amplifier (SLA) to materialize a night-vision goggle device.
- SLA star-light-amplifier
- the image from the external scene can be recorded, even in bad lighting conditions or even in complete darkness, and translated by the processing unit 102 to a conventional video image, which can be seen easily by the user.
- the optical axes of the image capturing device and the imaging system could be mutually aligned, along with a unity magnification. Therefore, the projected image could be combined together with the real external scene to yield an optimal hybrid image. While using a thermal camera as the image- capturing device, it would be advantageous to use a camera, which utilizes an uncooled detector. This can yield a low-cost and very compact system.
- FIG. 10 Another potential application of the embodiment illustrated in Fig. 10 is a visual aid for people who suffer from age-related macular degeneration (AMD).
- AMD age-related macular degeneration
- AMD is a progressive eye condition affecting many millions people around the world.
- the disease attacks the macula of the eye, where the sharpest central vision occurs. Although it rarely results in complete blindness, it destroys the clear, "straight ahead" central vision necessary for reading, driving, identifying faces, watching television, doing fine detailed work, safely navigating stairs and performing other daily tasks that are usually taken for granted, leaving only dim images or black holes at the center of vision. It can also dim contrast sensitivity and color perception. Peripheral vision may not be affected, and it is possible to see "out of the corner of the eye”.
- spectacle-mounted magnifiers which exploit the undamaged peripheral vision of the patient to enable him to function as normally as possible.
- Spectacle-mounted telescopes for distance, or spectacle-mounted microscopes for close-up can significantly improve visual capabilities. These devices protrude from the spectacle frame, and can be used with one or both eyes and they can magnify between 2 to 10 times, depending on the size of the telescope. Unfortunately, as the desired magnification of the system increases, these devices become larger, heavier and bulkier, and therefore, even for moderate performance, impractical.
- an LOE can utilize the embodiments illustrated in Figs. 9 and 10.
- the simplest option is to use a single element for one eye.
- Another option is to use an element and a display source for each eye, projecting the same image, wherein the preferred place for the display sources is next to the temples.
- a similar option is to project the same image for both eyes but utilizing only one display source which is located between the two glasses, whereby its output is split between the two LOEs.
- Yet another possibility is to project two different scenes, one to each eye, in order to create a stereoscopic image.
- Figs. 9 and 10 are just examples illustrating the simple implementation of the present invention. Since the LOE, constituting the core of the system, is very compact and lightweight, it could be installed in a vast variety of arrangements. Hence, many other embodiments are also possible, including a visor, a folding display, a monocle, and many more. This embodiment is designated for applications where the display should be near-to-eye, head-mounted, head-worn or head-carried. There are, however, applications where the display is located differently.
- An example of such an application is a hand-held device for mobile application, such as a cellular phone.
- Fig. 11 illustrates an alternative embodiment, based on the present invention, which eliminates the current necessary compromise between the small size of mobile devices and the desire to view digital content on a full format display.
- This application is a hand-held display (HHD), which resolves the previously opposing requirements of achieving small mobile devices, and the desire to view digital content on a full format display, by projecting high quality images directly into the eye of the user.
- An optical module including the display source 4, the collimating and folding element 90 and the substrate 20 is integrated into the body of a cellular phone 110, where the substrate 20 replaces the existing protective cover-window of the phone.
- the volume of the support components, including source 4 and collimating and folding element 90 is sufficiently small to fit inside the acceptable volume for modern cellular devices.
- the user In order to view the full screen, transmitted by the device, the user positions the window in front of his eye 24, observing the image with high FOV, a large eye-motion-box and a comfortable eye-relief. It is also possible to view the entire FOV at a larger eye-relief by tilting the device to display different portions of the image. Furthermore, since the optical module can operate in see-through configuration, a dual operation of the device is possible; namely there is an option to maintain the conventional cellular display 111 intact. In this manner, the standard, low-resolution display can be viewed through the LOE 20 when the display source 4 is shut-off.
- a second, virtual-mode designated for e-mail reading, internet surfing, or video operation
- the conventional display 111 is shut-off, while the display source 4 projects the required wide FOV image into the eye of the viewer through the LOE 20.
- the embodiment described in Fig. 11 is only an example, illustrating that applications other than head-mounted displays can be materialized.
- Other possible hand-carried arrangements include palm computers, compact entertainment devices like the IPod, small displays embedded into wristwatches, a pocket-carried display having the size and weight reminiscent of a credit card, and many more.
- Fig. 12 illustrates a modified version of the embodiment described in Fig. 11.
- a miniature image capturing device 112 with optional optical zoom capability is installed in the front region of the body 110.
- the camera captures images from the external scene and transfers the video signal to an image-processing unit 114, which can be installed inside the electronic unit of the hand-held display and which can be controlled in realtime by the user.
- the processed image signal is then transferred to the images display source 4, which projects the image through the LOE 20 into the eye of the user. 1 :
- a digital-video (DV) camera either that which is installed inside a cellular phone or a DV camera per-se.
- the display device which enables the user to see the recorded scene during the operation, is either an eyepiece or a miniature TV screen.
- the resolution and the quality of the projected image are much lower than the recorded image.
- the recorded image is not as was envisioned during the recording process in many cases. Much better results could be achieved if the user would have a higher resolution image which would be projected utilizing the LOE-based optical system illustrated in Fig. 12.
- Another possible application is a high-resolution surveillance system.
- a high-resolution zoom video camera can capture a distant image and project it into the eyes of the viewer as a fine-details wide virtual image.
- a thermal camera or a miniature SLA as the image capturing device 114, it is possible to materialize a high resolution surveillance system also in bad lighting conditions, and even in complete darkness.
- the embodiments described above are mono-ocular optical systems, that is, the image is projected onto a single eye.
- applications such as head-up displays (HUD), wherein it is desired to project an image onto both eyes.
- HUD systems have been used mainly in advanced combat and civilian aircraft.
- Fig. 13 illustrates a method of materializing an HUD system based on the present invention.
- the light from a display source 4 is collimated by a lens 6 to infinity and coupled by the first reflecting surface 16 into substrate 20.
- the optical waves After reflection at a second reflecting array (not shown), the optical waves impinge on a third set of reflecting surfaces 22, which couple the light out into the eyes 24 of the viewer.
- the overall system can be very compact and lightweight, of the size of a large postcard having a thickness of a few millimeters.
- the display source having a volume of a few cubic centimeters, can be attached to one of the corners of the substrate, where an electrical cord can transmit the power and data to the system.
- Fig. 14 illustrates a modified version of the embodiment described in Fig. 13.
- a miniature image capturing device 116 is installed in the front region of the body of the FfUD system, and is connected via an image processing unit (not shown) to the display source 4.
- the image-capturing device could be aligned with another external sensor such as the aerial RADAR, a tracking mechanism of an air missile or a navigation system.
- the detected target could be captured by the image-capturing device, transferred through the image-processing unit into the display source, and a fine- detailed image of the target could be projected into the eyes of the pilot.
- This system may be utilized as an enhanced friend-foe-identification (FFI) device for military aircrafts or as an air-traffic warning system for civilian aircrafts.
- the image-capturing device could be a digital video camera for day-light conditions, or a thermal camera, an SLA system or a millimeter-wave detection system, for low- vision conditions.
- the image-capturing device can be a thermal camera, a millimeter-wave detection device, a video camera operating in the near-IR region to detect the runway lamps, or any combination of the above detectors.
- the captured image of the runway area could be projected into the eyes of the pilot and could assist him during the landing procedure.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007554733A JP2008533507A (ja) | 2005-02-10 | 2006-02-08 | 特に視力強化光学系のための基板案内光学装置 |
| EP06704654A EP1846796A1 (en) | 2005-02-10 | 2006-02-08 | Substrate-guided optical device particularly for vision enhanced optical systems |
| US11/815,549 US7751122B2 (en) | 2005-02-10 | 2006-02-08 | Substrate-guided optical device particularly for vision enhanced optical systems |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IL166799A IL166799A (en) | 2005-02-10 | 2005-02-10 | Aluminum shale surfaces for use in a conductive substrate |
| IL166799 | 2005-02-10 | ||
| IL173452 | 2006-01-31 | ||
| IL173452A IL173452A (en) | 2006-01-31 | 2006-01-31 | Optical component in conductive substrate in optical vision enhancement systems |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2006085310A1 true WO2006085310A1 (en) | 2006-08-17 |
Family
ID=36178421
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IL2006/000158 Ceased WO2006085310A1 (en) | 2005-02-10 | 2006-02-08 | Substrate-guided optical device particularly for vision enhanced optical systems |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7751122B2 (enExample) |
| EP (1) | EP1846796A1 (enExample) |
| JP (1) | JP2008533507A (enExample) |
| WO (1) | WO2006085310A1 (enExample) |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008023367A1 (en) | 2006-08-22 | 2008-02-28 | Lumus Ltd. | Substrate-guided optical device |
| EP2124087A1 (en) | 2006-02-14 | 2009-11-25 | Lumus Ltd | Substrate-guided imaging lens with first and second substrate |
| EP2662723A1 (en) * | 2012-05-09 | 2013-11-13 | Sony Corporation | Display instrument and image display method |
| WO2015162611A1 (en) | 2014-04-23 | 2015-10-29 | Lumus Ltd. | Compact head-mounted display system |
| WO2016075689A1 (en) | 2014-11-11 | 2016-05-19 | Lumus Ltd. | Compact head-mounted display system protected by a hyperfine structure |
| US9389431B2 (en) | 2011-11-04 | 2016-07-12 | Massachusetts Eye & Ear Infirmary | Contextual image stabilization |
| WO2016132347A1 (en) | 2015-02-19 | 2016-08-25 | Lumus Ltd. | Compact head-mounted display system having uniform image |
| US9753284B2 (en) | 2012-01-24 | 2017-09-05 | Sony Corporation | Display device |
| US9791701B2 (en) | 2013-02-20 | 2017-10-17 | Sony Corporation | Display device |
| WO2017199232A1 (en) | 2016-05-18 | 2017-11-23 | Lumus Ltd. | Head-mounted imaging device |
| US10261321B2 (en) | 2005-11-08 | 2019-04-16 | Lumus Ltd. | Polarizing optical system |
| US10302835B2 (en) | 2017-02-22 | 2019-05-28 | Lumus Ltd. | Light guide optical assembly |
| DE212017000261U1 (de) | 2016-12-02 | 2019-08-05 | Lumus Ltd. | Optisches System mit kompaktem Kollimator-Bildprojektor |
| US10437031B2 (en) | 2016-11-08 | 2019-10-08 | Lumus Ltd. | Light-guide device with optical cutoff edge and corresponding production methods |
| DE202019103499U1 (de) | 2018-06-26 | 2019-10-30 | Lumus Ltd. | Kompaktes optisches Kollimatorgerät und -system |
| US10481319B2 (en) | 2017-03-22 | 2019-11-19 | Lumus Ltd. | Overlapping facets |
| US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
| US10564417B2 (en) | 2016-10-09 | 2020-02-18 | Lumus Ltd. | Aperture multiplier using a rectangular waveguide |
| US10642040B2 (en) | 2014-03-17 | 2020-05-05 | Sony Corporation | Display apparatus and optical apparatus |
| US10649214B2 (en) | 2005-02-10 | 2020-05-12 | Lumus Ltd. | Substrate-guide optical device |
| EP3715935A1 (en) | 2014-12-25 | 2020-09-30 | Lumus Ltd. | Substrate-guided optical device |
| US10895679B2 (en) | 2017-04-06 | 2021-01-19 | Lumus Ltd. | Light-guide optical element and method of its manufacture |
| EP3796069A1 (en) | 2012-05-21 | 2021-03-24 | Lumus Ltd | Head-mounted display with an eyeball-tracker integrated system |
| US11243434B2 (en) | 2017-07-19 | 2022-02-08 | Lumus Ltd. | LCOS illumination via LOE |
| US11262587B2 (en) | 2018-05-22 | 2022-03-01 | Lumus Ltd. | Optical system and method for improvement of light field uniformity |
| US11448816B2 (en) | 2019-01-24 | 2022-09-20 | Lumus Ltd. | Optical systems including light-guide optical elements with two-dimensional expansion |
| US11789264B2 (en) | 2021-07-04 | 2023-10-17 | Lumus Ltd. | Display with stacked light-guide elements providing different parts of field of view |
| US11796729B2 (en) | 2021-02-25 | 2023-10-24 | Lumus Ltd. | Optical aperture multipliers having a rectangular waveguide |
| US11914161B2 (en) | 2019-06-27 | 2024-02-27 | Lumus Ltd. | Apparatus and methods for eye tracking based on eye imaging via light-guide optical element |
| US11966061B2 (en) | 2020-01-06 | 2024-04-23 | Vuzix Corporation | Near-eye display with pivot waveguide and camera |
| US12135445B2 (en) | 2019-04-15 | 2024-11-05 | Lumus Ltd. | Method of fabricating a light-guide optical element |
| US12140790B2 (en) | 2019-07-18 | 2024-11-12 | Lumus Ltd. | Encapsulated light-guide optical element |
Families Citing this family (194)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL166799A (en) * | 2005-02-10 | 2014-09-30 | Lumus Ltd | Aluminum shale surfaces for use in a conductive substrate |
| GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
| GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
| US9618748B2 (en) * | 2008-04-02 | 2017-04-11 | Esight Corp. | Apparatus and method for a dynamic “region of interest” in a display system |
| US8135227B2 (en) * | 2007-04-02 | 2012-03-13 | Esight Corp. | Apparatus and method for augmenting sight |
| US8059342B2 (en) * | 2009-04-03 | 2011-11-15 | Vuzix Corporation | Beam segmentor for enlarging viewing aperture of microdisplay |
| CA2758633C (en) * | 2009-04-14 | 2017-09-26 | Bae Systems Plc | Optical waveguide and display device |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
| JP5104820B2 (ja) * | 2009-07-10 | 2012-12-19 | 株式会社島津製作所 | 表示装置 |
| US10795160B1 (en) | 2014-09-25 | 2020-10-06 | Rockwell Collins, Inc. | Systems for and methods of using fold gratings for dual axis expansion |
| US11300795B1 (en) | 2009-09-30 | 2022-04-12 | Digilens Inc. | Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion |
| US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
| US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
| WO2011042711A2 (en) | 2009-10-09 | 2011-04-14 | Milan Momcilo Popovich | Compact edge illuminated diffractive display |
| US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
| US8659826B1 (en) | 2010-02-04 | 2014-02-25 | Rockwell Collins, Inc. | Worn display system and method without requiring real time tracking for boresight precision |
| US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
| US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
| US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
| US9097891B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment |
| US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
| US8477425B2 (en) | 2010-02-28 | 2013-07-02 | Osterhout Group, Inc. | See-through near-eye display glasses including a partially reflective, partially transmitting optical element |
| US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
| US10180572B2 (en) | 2010-02-28 | 2019-01-15 | Microsoft Technology Licensing, Llc | AR glasses with event and user action control of external applications |
| US9229227B2 (en) | 2010-02-28 | 2016-01-05 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a light transmissive wedge shaped illumination system |
| US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
| US9091851B2 (en) | 2010-02-28 | 2015-07-28 | Microsoft Technology Licensing, Llc | Light control in head mounted displays |
| US8482859B2 (en) | 2010-02-28 | 2013-07-09 | Osterhout Group, Inc. | See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film |
| US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
| US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
| US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
| US20150309316A1 (en) | 2011-04-06 | 2015-10-29 | Microsoft Technology Licensing, Llc | Ar glasses with predictive control of external device based on event input |
| US9134534B2 (en) | 2010-02-28 | 2015-09-15 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses including a modular image source |
| US9759917B2 (en) | 2010-02-28 | 2017-09-12 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered AR eyepiece interface to external devices |
| US9223134B2 (en) | 2010-02-28 | 2015-12-29 | Microsoft Technology Licensing, Llc | Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses |
| US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
| AU2011220382A1 (en) | 2010-02-28 | 2012-10-18 | Microsoft Corporation | Local advertising content on an interactive head-mounted eyepiece |
| US9285589B2 (en) | 2010-02-28 | 2016-03-15 | Microsoft Technology Licensing, Llc | AR glasses with event and sensor triggered control of AR eyepiece applications |
| CN101840065B (zh) * | 2010-04-29 | 2012-07-04 | 广州南北电子科技有限公司 | 单光路体视放大镜系统 |
| US8788197B2 (en) * | 2010-04-30 | 2014-07-22 | Ryan Fink | Visual training devices, systems, and methods |
| JP5732808B2 (ja) * | 2010-10-19 | 2015-06-10 | セイコーエプソン株式会社 | 虚像表示装置 |
| US8625200B2 (en) | 2010-10-21 | 2014-01-07 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more reflective optical surfaces |
| US9632315B2 (en) | 2010-10-21 | 2017-04-25 | Lockheed Martin Corporation | Head-mounted display apparatus employing one or more fresnel lenses |
| US8781794B2 (en) | 2010-10-21 | 2014-07-15 | Lockheed Martin Corporation | Methods and systems for creating free space reflective optical surfaces |
| US10359545B2 (en) | 2010-10-21 | 2019-07-23 | Lockheed Martin Corporation | Fresnel lens with reduced draft facet visibility |
| US8503087B1 (en) | 2010-11-02 | 2013-08-06 | Google Inc. | Structured optical surface |
| US8743464B1 (en) | 2010-11-03 | 2014-06-03 | Google Inc. | Waveguide with embedded mirrors |
| US8582209B1 (en) | 2010-11-03 | 2013-11-12 | Google Inc. | Curved near-to-eye display |
| MX2013006722A (es) | 2010-12-16 | 2014-01-31 | Lockheed Corp | Visualizador colimante con lentes de pixel. |
| US8743244B2 (en) | 2011-03-21 | 2014-06-03 | HJ Laboratories, LLC | Providing augmented reality based on third party information |
| US8189263B1 (en) | 2011-04-01 | 2012-05-29 | Google Inc. | Image waveguide with mirror arrays |
| US9274349B2 (en) | 2011-04-07 | 2016-03-01 | Digilens Inc. | Laser despeckler based on angular diversity |
| US8508851B2 (en) | 2011-07-20 | 2013-08-13 | Google Inc. | Compact see-through display system |
| US8823740B1 (en) | 2011-08-15 | 2014-09-02 | Google Inc. | Display system |
| EP2748670B1 (en) | 2011-08-24 | 2015-11-18 | Rockwell Collins, Inc. | Wearable data display |
| WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
| US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US8941560B2 (en) | 2011-09-21 | 2015-01-27 | Google Inc. | Wearable computer with superimposed controls and instructions for external device |
| US8767306B1 (en) | 2011-09-22 | 2014-07-01 | Google Inc. | Display system |
| US8749890B1 (en) | 2011-09-30 | 2014-06-10 | Rockwell Collins, Inc. | Compact head up display (HUD) for cockpits with constrained space envelopes |
| US9715067B1 (en) | 2011-09-30 | 2017-07-25 | Rockwell Collins, Inc. | Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials |
| US8903207B1 (en) | 2011-09-30 | 2014-12-02 | Rockwell Collins, Inc. | System for and method of extending vertical field of view in head up display utilizing a waveguide combiner |
| US9366864B1 (en) | 2011-09-30 | 2016-06-14 | Rockwell Collins, Inc. | System for and method of displaying information without need for a combiner alignment detector |
| US9599813B1 (en) | 2011-09-30 | 2017-03-21 | Rockwell Collins, Inc. | Waveguide combiner system and method with less susceptibility to glare |
| US8937772B1 (en) | 2011-09-30 | 2015-01-20 | Rockwell Collins, Inc. | System for and method of stowing HUD combiners |
| US8634139B1 (en) | 2011-09-30 | 2014-01-21 | Rockwell Collins, Inc. | System for and method of catadioptric collimation in a compact head up display (HUD) |
| US8773599B2 (en) | 2011-10-24 | 2014-07-08 | Google Inc. | Near-to-eye display with diffraction grating that bends and focuses light |
| US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
| US9239415B2 (en) * | 2012-03-08 | 2016-01-19 | Google Inc. | Near-to-eye display with an integrated out-looking camera |
| US9523852B1 (en) | 2012-03-28 | 2016-12-20 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
| US8830588B1 (en) | 2012-03-28 | 2014-09-09 | Rockwell Collins, Inc. | Reflector and cover glass for substrate guided HUD |
| CN103562802B (zh) | 2012-04-25 | 2016-08-17 | 罗克韦尔柯林斯公司 | 全息广角显示器 |
| US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
| US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
| CN105247861B (zh) | 2013-03-22 | 2017-11-10 | 精工爱普生株式会社 | 红外视频显示眼镜 |
| US9674413B1 (en) | 2013-04-17 | 2017-06-06 | Rockwell Collins, Inc. | Vision system and method having improved performance and solar mitigation |
| WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
| WO2015015138A1 (en) | 2013-07-31 | 2015-02-05 | Milan Momcilo Popovich | Method and apparatus for contact image sensing |
| US9658454B2 (en) | 2013-09-06 | 2017-05-23 | Omnivision Technologies, Inc. | Eyewear display system providing vision enhancement |
| ITMI20131527A1 (it) * | 2013-09-17 | 2015-03-18 | Menci Software S R L | Dispositivo chirurgico di visualizzazione |
| FR3010938B1 (fr) | 2013-09-26 | 2015-10-30 | Valeo Vision | Dispositif et procede d'aide a la conduite |
| FR3011096B1 (fr) | 2013-09-26 | 2015-10-16 | Valeo Vision | Lunettes anti-eblouissement et de vision a trois dimensions |
| FR3011091A1 (fr) * | 2013-09-26 | 2015-03-27 | Valeo Vision | Lunettes a affichage de donnees munies d'un ecran anti-eblouissement |
| US9244281B1 (en) | 2013-09-26 | 2016-01-26 | Rockwell Collins, Inc. | Display system and method using a detached combiner |
| FR3011092B1 (fr) * | 2013-09-26 | 2016-12-23 | Valeo Vision | Lunettes a affichage de donnees munies d'un ecran anti-eblouissement |
| FR3011095B1 (fr) | 2013-09-26 | 2016-12-23 | Valeo Vision | Filtre optique adaptatif pour verre de lunettes |
| FR3011090B1 (fr) | 2013-09-26 | 2016-12-23 | Valeo Vision | Lunettes a affichage de donnees munies d'un ecran anti-eblouissement |
| EP2857885A1 (en) * | 2013-10-01 | 2015-04-08 | BAE Systems PLC | Improvements in and relating to displays |
| US10732407B1 (en) | 2014-01-10 | 2020-08-04 | Rockwell Collins, Inc. | Near eye head up display system and method with fixed combiner |
| US9519089B1 (en) | 2014-01-30 | 2016-12-13 | Rockwell Collins, Inc. | High performance volume phase gratings |
| EP3260892A1 (en) | 2014-03-18 | 2017-12-27 | 3M Innovative Properties Company | Optic |
| US9244280B1 (en) | 2014-03-25 | 2016-01-26 | Rockwell Collins, Inc. | Near eye display system and method for display enhancement or redundancy |
| US9915823B1 (en) | 2014-05-06 | 2018-03-13 | Google Llc | Lightguide optical combiner for head wearable display |
| US9931248B2 (en) | 2014-06-16 | 2018-04-03 | International Business Machines Corporation | Non-invasive vision enhancement |
| US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
| WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
| US9715110B1 (en) | 2014-09-25 | 2017-07-25 | Rockwell Collins, Inc. | Automotive head up display (HUD) |
| US10088675B1 (en) | 2015-05-18 | 2018-10-02 | Rockwell Collins, Inc. | Turning light pipe for a pupil expansion system and method |
| WO2016046514A1 (en) | 2014-09-26 | 2016-03-31 | LOKOVIC, Kimberly, Sun | Holographic waveguide opticaltracker |
| US10684476B2 (en) | 2014-10-17 | 2020-06-16 | Lockheed Martin Corporation | Head-wearable ultra-wide field of view display device |
| WO2016069398A2 (en) * | 2014-10-24 | 2016-05-06 | Emagin Corporation | Microdisplay based immersive headset |
| EP3245551B1 (en) | 2015-01-12 | 2019-09-18 | DigiLens Inc. | Waveguide light field displays |
| EP3245444B1 (en) | 2015-01-12 | 2021-09-08 | DigiLens Inc. | Environmentally isolated waveguide display |
| JP6867947B2 (ja) | 2015-01-20 | 2021-05-12 | ディジレンズ インコーポレイテッド | ホログラフィック導波路ライダー |
| JP2015096982A (ja) * | 2015-02-10 | 2015-05-21 | セイコーエプソン株式会社 | 虚像表示装置 |
| US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
| US9939650B2 (en) | 2015-03-02 | 2018-04-10 | Lockheed Martin Corporation | Wearable display system |
| US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| US11366316B2 (en) | 2015-05-18 | 2022-06-21 | Rockwell Collins, Inc. | Head up display (HUD) using a light pipe |
| US10126552B2 (en) | 2015-05-18 | 2018-11-13 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
| US10247943B1 (en) | 2015-05-18 | 2019-04-02 | Rockwell Collins, Inc. | Head up display (HUD) using a light pipe |
| US10108010B2 (en) | 2015-06-29 | 2018-10-23 | Rockwell Collins, Inc. | System for and method of integrating head up displays and head down displays |
| JP6598269B2 (ja) | 2015-10-05 | 2019-10-30 | ディジレンズ インコーポレイテッド | 導波管ディスプレイ |
| US10754156B2 (en) | 2015-10-20 | 2020-08-25 | Lockheed Martin Corporation | Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system |
| US10598932B1 (en) | 2016-01-06 | 2020-03-24 | Rockwell Collins, Inc. | Head up display for integrating views of conformally mapped symbols and a fixed image source |
| CN109073889B (zh) | 2016-02-04 | 2021-04-27 | 迪吉伦斯公司 | 全息波导光学跟踪器 |
| JP2017161563A (ja) * | 2016-03-07 | 2017-09-14 | セイコーエプソン株式会社 | 導光装置及び虚像表示装置 |
| CN107167919B (zh) * | 2016-03-07 | 2021-08-03 | 精工爱普生株式会社 | 导光装置以及虚像显示装置 |
| WO2017162999A1 (en) | 2016-03-24 | 2017-09-28 | Popovich Milan Momcilo | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| US9995936B1 (en) | 2016-04-29 | 2018-06-12 | Lockheed Martin Corporation | Augmented reality systems having a virtual image overlaying an infrared portion of a live scene |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| WO2018129398A1 (en) | 2017-01-05 | 2018-07-12 | Digilens, Inc. | Wearable heads up displays |
| US10295824B2 (en) | 2017-01-26 | 2019-05-21 | Rockwell Collins, Inc. | Head up display with an angled light pipe |
| US11500143B2 (en) | 2017-01-28 | 2022-11-15 | Lumus Ltd. | Augmented reality imaging system |
| CN108521794B (zh) * | 2017-04-28 | 2020-08-28 | 深圳市柔宇科技有限公司 | 一种光波导结构及光学系统 |
| EP3688526B1 (en) | 2017-09-29 | 2023-07-12 | Lumus Ltd. | Augmented reality display |
| EP3698214A4 (en) | 2017-10-16 | 2021-10-27 | Digilens Inc. | SYSTEMS AND METHODS FOR MULTIPLICATION OF THE IMAGE RESOLUTION OF A PIXELIZED DISPLAY |
| WO2019077614A1 (en) | 2017-10-22 | 2019-04-25 | Lumus Ltd. | Head-mounted augmented reality device employing an optical bench |
| JP7036572B2 (ja) | 2017-11-02 | 2022-03-15 | マクセル株式会社 | 虚像表示装置およびそれを用いたヘッドマウントディスプレイ |
| CA3082067C (en) | 2017-11-21 | 2023-08-01 | Lumus Ltd. | Optical aperture expansion arrangement for near-eye displays |
| IL274894B2 (en) | 2017-12-03 | 2024-04-01 | Lumus Ltd | Optical instrument alignment methods |
| US11226261B2 (en) | 2017-12-03 | 2022-01-18 | Lumus Ltd. | Optical device testing method and apparatus |
| JP7076995B2 (ja) * | 2017-12-07 | 2022-05-30 | キヤノン株式会社 | 表示装置及びヘッドマウントディスプレイ |
| CA3068659A1 (en) | 2018-01-02 | 2019-07-11 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
| US10506220B2 (en) | 2018-01-02 | 2019-12-10 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
| EP3710876A4 (en) | 2018-01-08 | 2022-02-09 | DigiLens Inc. | SYSTEMS AND PROCESSES FOR THE MANUFACTURE OF WAVEGUIDE CELLS |
| CN115356905B (zh) | 2018-01-08 | 2025-05-09 | 迪吉伦斯公司 | 波导单元格中全息光栅高吞吐量记录的系统和方法 |
| US20190212699A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Methods for Fabricating Optical Waveguides |
| US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| JP2019120815A (ja) | 2018-01-09 | 2019-07-22 | セイコーエプソン株式会社 | 表示装置 |
| CN119471906A (zh) | 2018-03-16 | 2025-02-18 | 迪吉伦斯公司 | 包含双折射控制的全息波导及用于它们的制造的方法 |
| JP7389491B2 (ja) | 2018-04-08 | 2023-11-30 | ルムス エルティーディー. | 光学サンプルの特性評価 |
| KR102752134B1 (ko) | 2018-05-14 | 2025-01-08 | 루머스 리미티드 | 근안 디스플레이용 세분 광학 개구를 구비한 프로젝터 구성 및 대응하는 광학 시스템 |
| WO2019220386A1 (en) | 2018-05-17 | 2019-11-21 | Lumus Ltd. | Near-eye display having overlapping projector assemblies |
| TWI837049B (zh) | 2018-05-23 | 2024-03-21 | 以色列商魯姆斯有限公司 | 包括具有部分反射內表面的光導光學元件的光學系統 |
| CN119595595A (zh) | 2018-06-21 | 2025-03-11 | 鲁姆斯有限公司 | 光导光学元件(loe)的板之间折射率不均匀性的测量技术 |
| KR102786034B1 (ko) | 2018-07-16 | 2025-03-24 | 루머스 리미티드 | 편광 내부 반사기를 사용하는 광 가이드 광학 요소 |
| WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| AU2019330119B2 (en) | 2018-08-26 | 2023-08-24 | Lumus Ltd. | Reflection suppression in near eye displays |
| EP4495661B1 (en) | 2018-09-09 | 2025-11-19 | Lumus Ltd. | Optical systems including light-guide optical elements with two-dimensional expansion |
| TWM642752U (zh) | 2018-11-08 | 2023-06-21 | 以色列商魯姆斯有限公司 | 用於將圖像顯示到觀察者的眼睛中的顯示器 |
| KR102777541B1 (ko) | 2018-11-08 | 2025-03-06 | 루머스 리미티드 | 이색성 빔스플리터 색상 조합기를 갖는 광학 디바이스 및 시스템 |
| DE202019106214U1 (de) | 2018-11-11 | 2020-04-15 | Lumus Ltd. | Augennahe Anzeige mit Zwischenfenster |
| WO2020149956A1 (en) | 2019-01-14 | 2020-07-23 | Digilens Inc. | Holographic waveguide display with light control layer |
| WO2020163524A1 (en) | 2019-02-05 | 2020-08-13 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
| EP3924759B1 (en) | 2019-02-15 | 2025-07-30 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| US12124050B2 (en) | 2019-02-28 | 2024-10-22 | Lumus Ltd. | Compact collimated image projector |
| IL284955B2 (en) | 2019-03-12 | 2025-09-01 | Lumus Ltd | Image projector |
| JP2022525165A (ja) | 2019-03-12 | 2022-05-11 | ディジレンズ インコーポレイテッド | ホログラフィック導波管バックライトおよび関連する製造方法 |
| US12210157B2 (en) | 2019-04-04 | 2025-01-28 | Lumus Ltd. | Air-gap free perpendicular near-eye display |
| CN113439230B (zh) | 2019-05-06 | 2024-04-02 | 鲁姆斯有限公司 | 用于观看场景的透明光导和近眼显示器 |
| US20200386947A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing |
| MX2022000009A (es) | 2019-07-04 | 2022-02-23 | Lumus Ltd | Guia de ondas de imagenes con multiplicacion de haz simetrico. |
| TWI845693B (zh) | 2019-07-11 | 2024-06-21 | 以色列商奧寶科技有限公司 | 用於檢驗之光學設備及方法 |
| WO2021021926A1 (en) | 2019-07-29 | 2021-02-04 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
| US10885819B1 (en) * | 2019-08-02 | 2021-01-05 | Harman International Industries, Incorporated | In-vehicle augmented reality system |
| EP4022370B1 (en) | 2019-08-29 | 2025-12-03 | Digilens Inc. | Method of manufacturing a deep surface relief grating |
| EP4041491B1 (en) | 2019-11-25 | 2023-07-26 | Lumus Ltd. | Method of polishing a surface of a waveguide |
| IL270991B (en) | 2019-11-27 | 2020-07-30 | Lumus Ltd | A light guide with an optical element to perform polarization mixing |
| TW202530744A (zh) | 2019-12-05 | 2025-08-01 | 以色列商魯姆斯有限公司 | 光學設備 |
| EP4042232B1 (en) | 2019-12-08 | 2025-02-19 | Lumus Ltd. | Optical systems with compact image projector |
| KR20220118445A (ko) | 2019-12-25 | 2022-08-25 | 루머스 리미티드 | 도광 광학 엘리먼트와 연관된 광학 배열체를 사용하여 눈으로부터 광을 방향 전환시키는 것에 기초한 시선 추적을 위한 광학계 및 방법 |
| KR20220118470A (ko) | 2019-12-30 | 2022-08-25 | 루머스 리미티드 | 2차원 확장 도광 광학 요소를 포함하는 광학 시스템 |
| WO2021171289A1 (en) | 2020-02-24 | 2021-09-02 | Lumus Ltd. | Mixed reality combiner |
| US12001022B2 (en) * | 2020-04-30 | 2024-06-04 | Marsupial Holdings, Inc. | Extended field-of-view near-to-eye wearable display |
| WO2021229563A1 (en) | 2020-05-12 | 2021-11-18 | Lumus Ltd. | Rotatable lightpipe |
| CA3169875C (en) | 2020-05-24 | 2023-07-04 | Lumus Ltd | Method of fabrication of compound light-guide optical elements |
| IL297615A (en) | 2020-06-01 | 2022-12-01 | Lumus Ltd | A virtual system for transferring images to close-up displays |
| AU2021331833A1 (en) | 2020-08-23 | 2023-03-09 | Lumus Ltd. | Optical system for two-dimensional expansion of an image reducing glints and ghosts from the waveguide |
| CN115885215A (zh) | 2020-08-26 | 2023-03-31 | 鲁姆斯有限公司 | 使用白光作为源生成彩色图像 |
| DE202021104723U1 (de) | 2020-09-11 | 2021-10-18 | Lumus Ltd. | An ein optisches Lichtleiterelement gekoppelter Bildprojektor |
| EP4222416B1 (en) | 2020-10-01 | 2025-12-10 | Lumus Ltd. | Compound light-guide optical elements |
| JP2024502255A (ja) | 2020-12-21 | 2024-01-18 | ディジレンズ インコーポレイテッド | 導波路ベースのディスプレイにおけるアイグロー抑制 |
| WO2022150841A1 (en) | 2021-01-07 | 2022-07-14 | Digilens Inc. | Grating structures for color waveguides |
| CN116635773B (zh) | 2021-03-01 | 2025-06-13 | 鲁姆斯有限公司 | 具有从投影仪到波导中的紧凑耦合的光学系统 |
| EP4288831A4 (en) | 2021-03-05 | 2025-01-15 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
| EP4341741A2 (en) * | 2021-05-21 | 2024-03-27 | Google LLC | Polarized multiplexed field of view and pupil expansion in a flat waveguide |
| EP4530697A3 (en) | 2021-08-23 | 2025-06-04 | Lumus Ltd. | Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors |
| TW202416015A (zh) | 2022-08-18 | 2024-04-16 | 以色列商魯姆斯有限公司 | 具有偏振折反射準直器的圖像投影儀 |
| WO2024055930A1 (zh) * | 2022-09-13 | 2024-03-21 | 合肥英睿系统技术有限公司 | 组合式瞄准系统及其光学系统 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0399865A1 (fr) * | 1989-05-23 | 1990-11-28 | Thomson-Csf | Dispositif optique pour l'introduction d'une image collimatée dans le champ visuel d'un observateur, et casque comportant au moins un tel dispositif |
| EP0566004A2 (en) * | 1992-04-07 | 1993-10-20 | Hughes Aircraft Company | Virtual image display having a high efficiency grid beamsplitter |
| WO2001095027A2 (en) * | 2000-06-05 | 2001-12-13 | Lumus Ltd. | Substrate-guided optical beam expander |
| US6349001B1 (en) * | 1997-10-30 | 2002-02-19 | The Microoptical Corporation | Eyeglass interface system |
| WO2003081320A1 (en) * | 2002-03-21 | 2003-10-02 | Lumus Ltd. | Light guide optical device |
| EP1385023A1 (en) * | 2002-07-17 | 2004-01-28 | C.R.F. Società Consortile per Azioni | A light guide for display devices of the head-mounted or head-up type |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002090690A (ja) * | 2000-09-13 | 2002-03-27 | Olympus Optical Co Ltd | 画像表示装置 |
| SE0102584D0 (sv) * | 2001-07-23 | 2001-07-23 | Ck Man Ab | Sätt och anordning för bildpresentation |
| US6791760B2 (en) * | 2001-07-24 | 2004-09-14 | Itt Manufacturing Enterprises, Inc. | Planar diffractive relay |
| US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
| JP2005286927A (ja) * | 2004-03-30 | 2005-10-13 | Konica Minolta Photo Imaging Inc | 透過式頭部搭載表示装置 |
-
2006
- 2006-02-08 WO PCT/IL2006/000158 patent/WO2006085310A1/en not_active Ceased
- 2006-02-08 EP EP06704654A patent/EP1846796A1/en not_active Ceased
- 2006-02-08 US US11/815,549 patent/US7751122B2/en active Active
- 2006-02-08 JP JP2007554733A patent/JP2008533507A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0399865A1 (fr) * | 1989-05-23 | 1990-11-28 | Thomson-Csf | Dispositif optique pour l'introduction d'une image collimatée dans le champ visuel d'un observateur, et casque comportant au moins un tel dispositif |
| EP0566004A2 (en) * | 1992-04-07 | 1993-10-20 | Hughes Aircraft Company | Virtual image display having a high efficiency grid beamsplitter |
| US6349001B1 (en) * | 1997-10-30 | 2002-02-19 | The Microoptical Corporation | Eyeglass interface system |
| WO2001095027A2 (en) * | 2000-06-05 | 2001-12-13 | Lumus Ltd. | Substrate-guided optical beam expander |
| WO2003081320A1 (en) * | 2002-03-21 | 2003-10-02 | Lumus Ltd. | Light guide optical device |
| EP1385023A1 (en) * | 2002-07-17 | 2004-01-28 | C.R.F. Società Consortile per Azioni | A light guide for display devices of the head-mounted or head-up type |
Cited By (63)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10649214B2 (en) | 2005-02-10 | 2020-05-12 | Lumus Ltd. | Substrate-guide optical device |
| US10598937B2 (en) | 2005-11-08 | 2020-03-24 | Lumus Ltd. | Polarizing optical system |
| US10261321B2 (en) | 2005-11-08 | 2019-04-16 | Lumus Ltd. | Polarizing optical system |
| EP2124087A1 (en) | 2006-02-14 | 2009-11-25 | Lumus Ltd | Substrate-guided imaging lens with first and second substrate |
| WO2008023367A1 (en) | 2006-08-22 | 2008-02-28 | Lumus Ltd. | Substrate-guided optical device |
| US10571715B2 (en) | 2011-11-04 | 2020-02-25 | Massachusetts Eye And Ear Infirmary | Adaptive visual assistive device |
| US9389431B2 (en) | 2011-11-04 | 2016-07-12 | Massachusetts Eye & Ear Infirmary | Contextual image stabilization |
| US9753284B2 (en) | 2012-01-24 | 2017-09-05 | Sony Corporation | Display device |
| US10018846B2 (en) | 2012-01-24 | 2018-07-10 | Sony Corporation | Display device |
| CN108490614A (zh) * | 2012-05-09 | 2018-09-04 | 索尼公司 | 显示装置和图像显示方法 |
| EP2662723A1 (en) * | 2012-05-09 | 2013-11-13 | Sony Corporation | Display instrument and image display method |
| CN108490614B (zh) * | 2012-05-09 | 2021-06-11 | 索尼公司 | 显示装置和图像显示方法 |
| CN103389580B (zh) * | 2012-05-09 | 2018-05-01 | 索尼公司 | 显示装置和图像显示方法 |
| US9972135B2 (en) | 2012-05-09 | 2018-05-15 | Sony Corporation | Display instrument and image display method |
| US9558540B2 (en) | 2012-05-09 | 2017-01-31 | Sony Corporation | Display instrument and image display method |
| CN103389580A (zh) * | 2012-05-09 | 2013-11-13 | 索尼公司 | 显示装置和图像显示方法 |
| EP3428711A1 (en) * | 2012-05-09 | 2019-01-16 | Sony Corporation | Display instrument and image display method |
| US10540822B2 (en) | 2012-05-09 | 2020-01-21 | Sony Corporation | Display instrument and image display method |
| EP3796069A1 (en) | 2012-05-21 | 2021-03-24 | Lumus Ltd | Head-mounted display with an eyeball-tracker integrated system |
| US10613329B2 (en) | 2013-02-20 | 2020-04-07 | Sony Corporation | Display device with transmissivity controlled based on quantity of light |
| US9791701B2 (en) | 2013-02-20 | 2017-10-17 | Sony Corporation | Display device |
| US10642040B2 (en) | 2014-03-17 | 2020-05-05 | Sony Corporation | Display apparatus and optical apparatus |
| US10809528B2 (en) | 2014-04-23 | 2020-10-20 | Lumus Ltd. | Compact head-mounted display system |
| EP3495870A1 (en) | 2014-04-23 | 2019-06-12 | Lumus Ltd | Compact head-mounted display system |
| EP4242515A2 (en) | 2014-04-23 | 2023-09-13 | Lumus Ltd. | Compact head-mounted display system |
| WO2015162611A1 (en) | 2014-04-23 | 2015-10-29 | Lumus Ltd. | Compact head-mounted display system |
| US10782532B2 (en) | 2014-11-11 | 2020-09-22 | Lumus Ltd. | Compact head-mounted display system protected by a hyperfine structure |
| CN111856753A (zh) * | 2014-11-11 | 2020-10-30 | 鲁姆斯有限公司 | 具有超精细结构的光学系统 |
| WO2016075689A1 (en) | 2014-11-11 | 2016-05-19 | Lumus Ltd. | Compact head-mounted display system protected by a hyperfine structure |
| US10520731B2 (en) | 2014-11-11 | 2019-12-31 | Lumus Ltd. | Compact head-mounted display system protected by a hyperfine structure |
| EP3654085A1 (en) | 2014-11-11 | 2020-05-20 | Lumus Ltd. | Compact head-mounted display system protected by a hyperfine structure |
| EP3715935A1 (en) | 2014-12-25 | 2020-09-30 | Lumus Ltd. | Substrate-guided optical device |
| WO2016132347A1 (en) | 2015-02-19 | 2016-08-25 | Lumus Ltd. | Compact head-mounted display system having uniform image |
| EP4235238A2 (en) | 2015-02-19 | 2023-08-30 | Lumus Ltd. | Compact head-mounted display system having uniform image |
| EP3936762A1 (en) | 2015-02-19 | 2022-01-12 | Lumus Ltd. | Compact head-mounted display system having uniform image |
| EP3587916A1 (en) | 2015-02-19 | 2020-01-01 | Lumus Ltd. | Compact head-mounted display system having uniform image |
| WO2017199232A1 (en) | 2016-05-18 | 2017-11-23 | Lumus Ltd. | Head-mounted imaging device |
| US10739598B2 (en) | 2016-05-18 | 2020-08-11 | Lumus Ltd. | Head-mounted imaging device |
| US11567316B2 (en) | 2016-10-09 | 2023-01-31 | Lumus Ltd. | Aperture multiplier with depolarizer |
| US10564417B2 (en) | 2016-10-09 | 2020-02-18 | Lumus Ltd. | Aperture multiplier using a rectangular waveguide |
| US10437031B2 (en) | 2016-11-08 | 2019-10-08 | Lumus Ltd. | Light-guide device with optical cutoff edge and corresponding production methods |
| US11378791B2 (en) | 2016-11-08 | 2022-07-05 | Lumus Ltd. | Light-guide device with optical cutoff edge and corresponding production methods |
| DE212017000261U1 (de) | 2016-12-02 | 2019-08-05 | Lumus Ltd. | Optisches System mit kompaktem Kollimator-Bildprojektor |
| US10684403B2 (en) | 2017-02-22 | 2020-06-16 | Lumus Ltd. | Light guide optical assembly |
| US10302835B2 (en) | 2017-02-22 | 2019-05-28 | Lumus Ltd. | Light guide optical assembly |
| US11194084B2 (en) | 2017-02-22 | 2021-12-07 | Lumus Ltd. | Light guide optical assembly |
| US10481319B2 (en) | 2017-03-22 | 2019-11-19 | Lumus Ltd. | Overlapping facets |
| US11125927B2 (en) | 2017-03-22 | 2021-09-21 | Lumus Ltd. | Overlapping facets |
| US10895679B2 (en) | 2017-04-06 | 2021-01-19 | Lumus Ltd. | Light-guide optical element and method of its manufacture |
| US11243434B2 (en) | 2017-07-19 | 2022-02-08 | Lumus Ltd. | LCOS illumination via LOE |
| US11385393B2 (en) | 2018-01-21 | 2022-07-12 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
| US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
| US11262587B2 (en) | 2018-05-22 | 2022-03-01 | Lumus Ltd. | Optical system and method for improvement of light field uniformity |
| DE202019103499U1 (de) | 2018-06-26 | 2019-10-30 | Lumus Ltd. | Kompaktes optisches Kollimatorgerät und -system |
| US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
| US11448816B2 (en) | 2019-01-24 | 2022-09-20 | Lumus Ltd. | Optical systems including light-guide optical elements with two-dimensional expansion |
| US12135445B2 (en) | 2019-04-15 | 2024-11-05 | Lumus Ltd. | Method of fabricating a light-guide optical element |
| US11914161B2 (en) | 2019-06-27 | 2024-02-27 | Lumus Ltd. | Apparatus and methods for eye tracking based on eye imaging via light-guide optical element |
| US12140790B2 (en) | 2019-07-18 | 2024-11-12 | Lumus Ltd. | Encapsulated light-guide optical element |
| US11966061B2 (en) | 2020-01-06 | 2024-04-23 | Vuzix Corporation | Near-eye display with pivot waveguide and camera |
| US12332456B2 (en) | 2020-01-06 | 2025-06-17 | Vuzix Corporation | Near-eye display with pivot waveguide and camera |
| US11796729B2 (en) | 2021-02-25 | 2023-10-24 | Lumus Ltd. | Optical aperture multipliers having a rectangular waveguide |
| US11789264B2 (en) | 2021-07-04 | 2023-10-17 | Lumus Ltd. | Display with stacked light-guide elements providing different parts of field of view |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008533507A (ja) | 2008-08-21 |
| EP1846796A1 (en) | 2007-10-24 |
| US7751122B2 (en) | 2010-07-06 |
| US20080186604A1 (en) | 2008-08-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7751122B2 (en) | Substrate-guided optical device particularly for vision enhanced optical systems | |
| US20220179221A1 (en) | Substrate-guide optical device | |
| US10962784B2 (en) | Substrate-guide optical device | |
| AU2004271392B2 (en) | Substrate-guided optical devices | |
| IL173452A (en) | Optical component in conductive substrate in optical vision enhancement systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 11815549 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006704654 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007554733 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006704654 Country of ref document: EP |