WO2006085024A1 - Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne - Google Patents

Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne Download PDF

Info

Publication number
WO2006085024A1
WO2006085024A1 PCT/FR2006/050105 FR2006050105W WO2006085024A1 WO 2006085024 A1 WO2006085024 A1 WO 2006085024A1 FR 2006050105 W FR2006050105 W FR 2006050105W WO 2006085024 A1 WO2006085024 A1 WO 2006085024A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
heat exchange
flow
engine
fluid
Prior art date
Application number
PCT/FR2006/050105
Other languages
English (en)
Inventor
Armel Le Lievre
Emmanuel Boudard
Pierre Dumoulin
Original Assignee
Peugeot Citroën Automobiles Sa.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles Sa. filed Critical Peugeot Citroën Automobiles Sa.
Priority to EP06709484A priority Critical patent/EP1848887A1/fr
Priority to JP2007554611A priority patent/JP2008530429A/ja
Priority to US11/816,223 priority patent/US20080257526A1/en
Publication of WO2006085024A1 publication Critical patent/WO2006085024A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a device for the thermal regulation of recirculated gases of an internal combustion engine.
  • a heat exchange is generally provided between these gases.
  • recirculated exhaust and engine coolant a recircled gas / heat transfer liquid heat exchanger is supplied with coolant at the engine outlet by a stitching on the engine water outlet housing, upstream of the thermostat.
  • FIG. 1 illustrates a device for the thermal regulation of the recirculated gases of an internal combustion engine according to the prior art, comprising a heat transfer liquid circuit 1 connected to an internal combustion engine 2, the circuit comprising first means 3 of heat exchanger coolant / air A, such as a radiator, located in a first loop 13 connected to the engine 2, second recirculating liquid heat exchange / recirculating exhaust gas exchange means GB 4 located in a second loop 14 connected in parallel to the first loop 13, to allow the supply of the second 4 exchange means heat transfer liquid from the first 3 heat exchange means.
  • first means 3 of heat exchanger coolant / air A such as a radiator
  • the flow of coolant admitted to circulate in the first loop 13 is controlled, for example, by a thermostat 7 located in the housing 16 of water outlet.
  • a first pump 10, for example mechanical, linked to the engine 2 ensures the activation of the fluid flow in the cooling circuit 1.
  • the second exchanger 4 liquid / recirculated gas exchanger
  • a conventional radiator creates a pressure drop of the order of 300 mbar.
  • a standard electric pump 5 provides in the second loop 14 a back pressure of about 200 mbar, therefore less than the pressure drop in the radiator 3.
  • this parasitic flow direction is represented by the arrows 24 in FIG. 1).
  • This reversal of circulation is preceded by an operating point during which there is a zero or almost zero flow in the second exchanger 4. This operating point at zero flow can occur, for example at a speed of the order of 2700 rpm.
  • one solution is to have a non-return valve 17 in the second branch 14, so as to reduce the flow rate therein in the engine cooling phase (see Figure 1).
  • This solution is generally satisfactory for the reverse parasite flow but it entails a significant additional cost in the context of a large scale production.
  • the use of a non-return valve generates an additional pressure drop in the hydraulic circuit and requires calibrating a leak to maintain a minimum flow in the exchanger 4.
  • Another solution is to increase the power of the electric pump disposed in the second loop 14.
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device for regulating the heat of the gases reci ructed from an internal combustion engine is essentially characterized in that that the ends of the second loop are connected directly to the body of the first heat exchange means.
  • the invention may include one or more of the following features:
  • the ends of the second loop are respectively connected to inputs and outputs of the first heat exchange means, which are distributed between the input and the output of the connection of the first heat exchange means to the motor,
  • the ends of the second loop are connected to the first heat exchange means so as to connect the input and output of the second heat exchange means with, respectively, the outputs and the input of the first heat exchange means,
  • the first heat exchange means comprise at least one heat exchanger beam connected to a fluid inlet housing and a fluid outlet housing, the ends of the second loop being connected directly to the respective fluid inlet and outlet boxes,
  • the second loop comprises activation means controlled by the flow of heat transfer fluid, such as a pump, the device comprises means for regulating the flow rate of heat transfer fluid allowed to circulate in the first loop,
  • the flow control means comprise a proportional type valve, such as a thermostat,
  • the flow control means comprise a pump
  • the means for activating the flow rate in the second loop and the means for regulating the flow rate in the first loop are independent, so as to enable the flow activation means to start or stop in the second loop, regardless of the flow of coolant admitted to circulate in the first loop.
  • FIG. 1 represents a schematic view of a cooling circuit of an internal combustion engine according to the prior art
  • FIG. 2 represents a schematic view of a cooling circuit of an internal combustion engine according to an exemplary embodiment of the invention
  • FIG. 3 represents a diagrammatic front view of a detail of FIG. 2, illustrating an exemplary embodiment of the heat exchange means such as a radiator according to the invention
  • FIG. 4 represents a cross-sectional and schematic cross-sectional view of the heat exchange means of FIG. 3, along the line AA,
  • FIG. 5 schematically represents a graph illustrating comparative fluid flow rates of cooling in the second loop 14 of the circuit according to the engine speed.
  • the thermal control device also comprises a third loop 19, optional connected in parallel with the first 13 and second 14 loops of the circuit 1.
  • the third loop 19 comprises a coolant / air exchanger 18 such as a heater for, for example, giving calories to a volume such as a vehicle cabin.
  • Such an internal combustion engine 2 conventionally comprises intake ducts (not shown) delivering fresh gases into the cylinders of the engine 2.
  • the GB burnt gases from the combustion in the cylinders are collected by exhaust ducts (not shown).
  • a bypass makes it possible to recirculate a fraction of the exhaust gases at the intake level.
  • the bypass may comprise for this purpose a controlled valve for regulating the flow rate of the recirculated exhaust gas.
  • the circuit 1 according to the invention differs from that described above in that the second loop 14 which contains the exchanger 4 heat transfer liquid / recirculated exhaust gas GB is connected in parallel to the first loop 13 directly on the body of the first means 3 of heat exchange. Furthermore, this second loop 14 may dispense with non-return valve 17 and in this case contains only a pump 5, preferably electric.
  • the two ends of the second loop 14 are connected directly to the radiator 3, so as to connect the inlet 11 and outlet 12 of the exchanger 4 heat transfer liquid / recirculated exhaust gas with respectively 6 and input 5 of the radiator 3.
  • the radiator 3 may comprise a heat exchanger comprising at least one bundle 7 of tubes / fins whose ends are respectively connected to a fluid inlet housing 8 and a fluid outlet housing 9 (FIGS. 3 and 4).
  • the two ends of the lines of the second loop 14 can be connected directly to, respectively, the inlet casings 8 and the fluid outlet 9 of the radiator 3.
  • the invention thus makes it possible to minimize the hydraulic head losses at the terminals of the circuit 14, in particular within the fluid outlet inlet casings 9, with respect to the system according to the prior art in which the second loop 14 is connected. on pipes or hoses of the first loop.
  • the invention thus makes it possible, for the same type of pump 5 arranged in the second loop 14, to push the operating points at risk to higher speeds.
  • FIG. 5 illustrates on a same graph the variation of the flow rate D of cooling fluid in the exchanger 4 coolant / exhaust gas recirculated in liters per minute (in ordinate) as a function of the engine speed N in revolutions per minute ( on the abscissa).
  • the graph represents this flow rate for a circuit according to the prior art (curve 20) and for a modified circuit according to the invention (curve 21). That is to say that for a hydraulic circuit according to the prior art (according to FIG. 1), it can be seen that the flow rate in the second loop 14 and therefore in the exchanger 4 liquid / recirculated gas becomes zero and reverses from 2700 rpm. about.
  • the invention allows a thermal regulation
  • the ends of the second loop 14 can be connected respectively to input 5 and output 6 of the radiator 3 which are distinct from the input 15 and output 16 connecting the radiator 3 to the engine 2.
  • the device according to the invention makes it possible, with a simple and inexpensive structure, to guarantee an optimum temperature for the recirculated exhaust gases.
  • the nominal efficiency of the recirculated liquid / exhaust gas exchanger 4 is maintained over a very wide engine operating range (and encompassing the currently defined use points of this exchanger).
  • the invention makes it possible to ensure a minimum flow rate of 5 to 6 l / min in a conventional exchanger 4 when the latter must be operational.
  • the circulations of the coolant in the first 13 and second 14 loops can be controlled independently.
  • the circulation of the coolant in the third loop 19 is also independent of the circulation in the other loop 14.
  • the circuit 1 makes it possible to feed the exchanger 4 coolant / recirculated exhaust gas with liquid cooled by the radiator 3.
  • the heat transfer fluid circulating in the exchanger 4 coolant / recirculated gas remains at a temperature close to room temperature. In this way, the efficiency of the exchanger 4 is improved, which promotes the reduction of pollutants in the engine exhaust gases (especially NOx).
  • the electric pump 5 of the second circuit 4 can be started to increase the heat exchange between the coolant and the recirculated exhaust gas.
  • Stopping this electric pump 5 also makes it possible to eliminate the circulation of coolant in the exchanger 4 liquid / recirculated gas in the engine start phase, that is to say at a time when the starting of a catalysis system is not yet initiated (usually when the temperature of the exhaust gas is below a threshold temperature of between 100 and 250 0 C, generally about 150 0 C).
  • This configuration makes it possible to reduce the pollutants of the type in particular CO and HC and thus makes it possible to eliminate the conventional by-pass on the coolant or on the exhaust gases.
  • Means for measuring the temperature of the exhaust gas such as a probe may be provided for this purpose at the exhaust.
  • the circuit 14 includes a check valve, when the recirculation of the exhaust gas is interrupted by the corresponding valve, the pump 5 located in the second loop 14 is not turned on.
  • the pump 5 is stopped with a determined time after this stop recycling.
  • the pump 5 located in the second loop 14 is energized only when the exhaust gas is recirculated and the temperature of the latter has reached a threshold value (catalyst initiated).
  • the thermostat 7 When the operating configuration of the engine requires simultaneous cooling of the engine 2 and recirculated exhaust gas, the thermostat 7 is open and the pump 5 located in the second loop 14 is turned on.
  • the coolant cool in the radiator 3 is shared between the engine 2 and the exchanger 4 liquid / recirculated gas.
  • the radiator 3 is fed with a mixture of liquid from the engine 2 and the recirculated liquid / exhaust gas exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

L'invention concerne un dispositif de régulation thermique des gaz recirculés d'un moteur à combustion interne, comprenant un circuit (1) de liquide caloporteur raccordé à un moteur (2) à combustion interne, le circuit (1) comprenant des premiers moyens (3) d'échange thermique liquide caloporteur/air tel qu'un radiateur, situés dans une première boucle (13) raccordée au moteur (2), des seconds moyens (4) d'échange thermique liquide caloporteur/gaz d'échappement recirculés situés dans une seconde boucle (14) raccordée en parallèle à la première boucle (13), pour permettre l'alimentation des seconds (4) moyens d'échange thermique en liquide caloporteur provenant des premiers moyens (3) d'échange thermique, caractérisé en ce que les extrémités de la seconde boucle (14) sont raccordées directement sur le corps des premiers moyens (3) d'échange thermique.

Description

Dispositif de régulation thermique des gaz recirculés d'un moteur à combustion interne
L'invention se rapporte à dispositif de régulation thermique des gaz recirculés d'un moteur à combustion interne.
Pour rendre plus efficace la recirculation d'une partie des gaz d'échappement dans les gaz frais d'admission d'un moteur, en vue notamment de la réduction des émissions des gaz Nox, un échange de chaleur est généralement prévu entre ces gaz d'échappement recirculés et le liquide de refroidissement du moteur. A cet effet, un échangeur de chaleur gaz recirclés/liquide caloporteur est alimenté avec du liquide de refroidissement en sortie du moteur par un piquage sur le boîtier de sortie d'eau du moteur, en amont du thermostat.
Cependant, ces systèmes connus ne sont pas satisfaisants dans certaines situations de fonctionnement du moteur, la température des gaz d'échappement recirculés étant mal maîtrisée. En particulier, lorsque la température du moteur augmente, le liquide de refroidissement atteint des températures élevées nuisibles à l'efficacité du recyclage des gaz d'échappement pour la réduction des oxydes d'azote.
La figure 1 illustre un dispositif de régulation thermique des gaz recirculés d'un moteur à combustion interne selon l'art antérieur, comprenant un circuit 1 de liquide caloporteur raccordé à un moteur 2 à combustion interne, le circuit comprenant des premiers moyens 3 d'échange thermique liquide caloporteur/air A, tel qu'un radiateur, situés dans une première boucle 13 raccordée au moteur 2, des seconds moyens 4 d'échange thermique liquide caloporteur/gaz d'échappement recirculés GB situés dans une seconde boucle 14 raccordée en parallèle à la première boucle 13, pour permettre l'alimentation des seconds 4 moyens d'échange thermique en liquide caloporteur provenant des premiers 3 moyens d'échange thermique.
Une telle architecture, conforme au préambule de la revendication principale, est décrite notamment dans le document FR2752440A1.
Le débit de liquide caloporteur admis à circuler dans la première 13 boucle est commandé, par exemple, par un thermostat 7 situé dans le boîtier 16 de sortie d'eau.
Cependant, ce type d'architecture hydraulique utilisant un radiateur présente des risques de fluctuation du débit de fluide au sein de ses composants.
En effet, lorsque le thermostat 7 est complètement ouvert pour laisser circuler le fluide de refroidissement dans la première boucle (flèche 23 figure 1), il peut y avoir une inversion parasite (flèches 24 figure 1) du sens de circulation de fluide dans une partie 14 du circuit 1.
Une première pompe 10, par exemple mécanique, liée au moteur 2 assure l'activation du débit de fluide dans le circuit 1 de refroidissement. A des régimes moteur élevés il peut arriver qu'une partie du fluide sortant du moteur 2 au niveau du thermostat 7 entre directement dans le deuxième échangeur 4 (échangeur liquide/gaz recirculés) au lieu de passer d'abord quasi exclusivement dans le radiateur 3. Cette inversion de débit survient même lorsque une seconde pompe 5 située dans la boucle 14 du deuxième échangeur 4 fonctionne dans un sens qui s'oppose à cette inversion.
Pour un circuit déterminé, lorsque le régime moteur est de l'ordre de 3300 tours/min par exemple, la pompe mécanique
10 du moteur génère un débit dans le radiateur 3 de l'ordre, par exemple de 8000l/h. Dans ces conditions, un radiateur classique créé une perte de charge de l'ordre de 300 mbar. A débit nul, une pompe 5 électrique de type standard assure dans la seconde boucle 14 une contre-pression de 200 mbar environ, donc inférieure à la perte de charge dans le radiateur 3.
De ce fait, dans certaines conditions de fonctionnement, il y a une inversion du sens de circulation du fluide dans le deuxième échangeur 4 (ce sens de circulation parasite est représenté par les flèches 24 à la figure 1). Cette inversion de circulation est précédée d'un point de fonctionnement durant lequel il y a un débit nul ou quasi nul dans le deuxième échangeur 4. Ce point de fonctionnement à débit nul peut se présenter, par exemple à un régime de l'ordre de 2700 tours/min.
Ce type de fonctionnement défectueux entraîne une baisse d'efficacité du radiateur et du second échangeur 4. En cas de débit nul ou faible dans le second échangeur 4, il y a, de plus, un risque d'ébu Ilition du liquide de refroidissement dans ce dernier.
En outre, ces points de fonctionnement dégradés peuvent coïncider avec des états du moteur ou d'autres organes dans lesquels la régulation thermique est cruciale. De ce fait, il est nécessaire d'une part de détecter le débit de fluide circulant dans le second échangeur 4 et, d'autre part, de prévoir une stratégie complexe de pilotage de la pompe 5.
Pour résoudre ces problèmes, une solution consiste à disposer un clapet anti-retour 17 dans la seconde branche 14, de façon à réduire le débit dans celle-ci en phase de refroidissement du moteur (cf. figure 1). Cette solution est globalement satisfaisante pour le débit parasite inversé mais elle entraîne un surcoût important dans le cadre d'une production à grande échelle. De plus, l'utilisation d'un clapet anti-retour génère une perte de charge supplémentaire dans le circuit hydraulique et nécessite de calibrer une fuite pour maintenir un débit minimum dans l'échangeur 4. U ne autre solution consiste à augmenter la puissance de la pompe 5 électrique disposée dans la seconde boucle 1 4.
Cette solution présente les mêmes inconvénients en terme de coût, nécessite une stratégie complexe de pi lotage de la pompe 5 et entraîne u ne su rconsommation de carburant.
U n but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieu r relevés ci-dessus.
A cette fin , le dispositif de régulation thermique des gaz reci rcu lés d'u n moteur à combustion interne selon l'invention , par ailleurs conforme à la définition générique qu'en don ne le préambule ci-dessus, est essentiellement caractérisé en ce que les extrémités de la seconde boucle sont raccordées directement sur le corps des premiers moyens d'échange thermique. Par ai lleurs, l'i nvention peut comporter l'u ne ou plusieurs des caractéristiques suivantes :
- les extrémités de la seconde boucle sont raccordées respectivement à des entrée et sortie des premiers moyens d'échange thermique disti nctes des entrée et sortie de raccordement des premiers moyens d'échange thermique au moteu r,
- les extrémités de la seconde boucle sont raccordées aux premiers moyens d'échange thermique de façon à relier les entrée et sortie des seconds moyens d'échange thermique avec, respectivement des sortie et entrée des premiers moyens d'échange thermique,
- les premiers moyens d'échange thermique comportent au moi ns u n faisceau échangeur de chaleu r relié à un boîtier d'entrée de f luide et u n boîtier de sortie de fluide, les extrémités de la seconde boucle étant raccordées di rectement su r respectivement les boîtiers d'entrée et de sortie de fluide,
- la seconde boucle comprend des moyens d'activation pilotés du débit de liquide caloporteur, tel qu'u ne pompe, - le dispositif comporte des moyens de régulation du débit de liquide caloporteur admis à circuler dans la première boucle,
- les moyens de régulation du débit comportent une vanne de type proportionnel, tel qu'un thermostat,
- les moyens de régulation du débit comportent une pompe,
- les moyens d'activation du débit dans la seconde boucle et les moyens de régulation du débit dans la première boucle sont indépendants, de façon à permettre la mise en marche ou l'arrêt des moyens d'activation du débit dans la seconde boucle quel que soit le débit de liquide caloporteur admis à circuler dans la première boucle.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la figure 1 représente une vue schématique d'un circuit de refroidissement d'un moteur à combustion interne selon l'art antérieur,
- la figure 2 représente une vue schématique d'un circuit de refroidissement d'un moteur à combustion interne selon un exemple de réalisation de l'invention,
- la figure 3 représente une vue schématique et de face d'un détail de la figure 2, illustrant un exemple de réalisation des moyens d'échange thermique tel qu'un radiateur, conforme à l'invention,
- la figure 4 représente une vue en coupe transversale et schématique du moyen d'échange thermique de la figure 3, selon la ligne AA,
- la figure 5 représente de façon schématique un graphique illustrant des débits comparés de fluide de refroisissement dans la seconde boucle 14 du circuit en fonction du régime moteur.
En plus des caractéristiques décrites ci-dessus, le dispositif de régulation thermique selon l'art antérieur représenté à la figure 1 comprend également une troisième boucle 19, facultative raccordée en parallèle aux première 13 et seconde 14 boucles du circuit 1. La troisième boucle 19 comprend un échangeur 18 liquide de refroidissement/air tel qu'un aérotherme destiné, par exemple, à céder des calories à un volume tel qu'un habitacle de véhicule.
Un tel moteur 2 à combustion interne comprend classiquement, des conduits d'admission (non représentés) délivrant des gaz frais dans les cylindres du moteur 2. Les gaz brûlés GB issus de la combustion dans les cylindres sont collectés par des conduits d'échappement (non représentés). Classiquement, une dérivation permet de faire recirculer une fraction des gaz d'échappement au niveau de l'admission. La dérivation peut comporter à cet effet une vanne pilotée pour réguler le débit des gaz d'échappement recirculés.
Le dispositif selon l'invention va à présent être décrit en référence à la figure 2. Par soucis de concision, les éléments identiques à ceux décrits ci-dessus sont désignés par les mêmes références numériques et ne seront pas décrits en détails une seconde fois.
Le circuit 1 selon l'invention se distingue de celui décrit précédemment en ce que la seconde boucle 14 qui contient l'échangeur 4 liquide caloporteur/gaz d'échappement recirculés GB est raccordée en parallèle à la première boucle 13 directement sur le corps des premiers moyens 3 d'échange thermique. Par ailleurs, cette seconde boucle 14 peut se dispenser de clapet 17 anti-retour et dans ce cas contient uniquement une pompe 5, de préférence électrique.
On constate selon l'invention une réduction très importante les pertes de charge aux extrémités de la seconde boucle 14 par rapport aux solutions de l'art antérieur. Par exemple, les deux extrémités de la seconde boucle 14 sont raccordées directement sur le radiateur 3, de façon à relier les entrée 11 et sortie 12 de l'échangeur 4 liquide caloporteur/gaz d'échappement recirculés avec, respectivement des sortie 6 et entrée 5 du radiateur 3.
Le radiateur 3 peut comporter un échangeur de chaleur comprenant au moins un faisceau 7 de tubes/ailettes dont les extrémités sont reliées respectivement un boîtier d'entrée 8 de fluide et un boîtier de sortie 9 de fluide (figures 3 et 4). Les deux extrémités des conduites de la seconde boucle 14 peuvent être raccordée directement sur, respectivement, les boîtiers d'entrée 8 et de sortie 9 de fluide du radiateur 3.
L'invention permet ainsi de minimiser les pertes de charge hydrauliques aux bornes du circuit 14, notamment au sein des boîtiers d'entrée 8 de sortie 9 de fluide, par rapport au système selon l'art antérieur dans lequel la seconde boucle 14 est raccordée sur des conduites ou durits de la première 13 boucle.
L'invention permet ainsi, pour un même type de pompe 5 disposée dans la seconde boucle 14, de repousser à des régimes supérieurs les points de fonctionnement à risque
(débit nul ou inverse dans la seconde boucle 14 de l'échangeur liquide/gaz d'échappement recirculés). Le dispositif selon l'invention permet même, dans certains cas, de supprimer ces modes de fonctionnement à risque. L'usage d'un clapet anti-retour sur la seconde branche 14 peut ainsi être évité.
La figure 5 illustre sur un même graphique la variation du débit D de fluide de refroidissement dans l'échangeur 4 liquide caloporteur/gaz d'échappement recirculés en litres par minute (en ordonnée) en fonction du régime N du moteur en tours par minutes (en abscisse). La graphique représente ce débit pour un circuit selon l'art antérieur (courbe 20) et pour un circuit modifié selon l'invention (courbe 21). C'est-à-dire que pour un circuit hydraulique selon l'art antérieur (conforme à la figure 1), on constate que le débit dans la seconde boucle 14 et donc dans l'échangeur 4 liquide/gaz recirculés, devient nul et s'inverse à partir de 2700 tr./min. environ.
En revanche, pour un circuit identique où seul le raccordement des la seconde boucle 14 a été modifié selon l'invention (piquage directement sur le radiateur 3 conformément à la figure 2), le débit D dans la seconde 14 boucle 14 reste supérieur à 8 litres par minute environ.
L'invention permet une régulation thermique
(refroidissement) optimale du moteur en s'affranchissant des risques d'ébu I liti on dans l'échangeur 4 liquide/gaz d'échappement recirculés et des risques de dégradation d'efficacité de cet échangeur 4.
Comme représenté aux figures 3 et 4, les extrémités de la seconde boucle 14 peuvent être raccordées respectivement à des entrée 5 et sortie 6 du radiateur 3 qui sont distinctes des entrée 15 et sortie 16 de raccordement du radiateur 3 au moteur 2.
En particulier, le dispositif selon l'invention permet, avec une structure simple et peu coûteuse, de garantir une température optimale pour les gaz d'échappement recirculés.
De plus, l'augmentation du débit dans l'échangeur 3, généré par la pompe 5, permet d'obtenir un gain d'efficacité de cet échangeur pour le refroidissement moteur.
L'efficacité nominale de l'échangeur 4 liquide/gaz d'échappement recirculés est conservée sur une plage de fonctionnement moteur très étendue (et englobant les points d'utilisation actuellement définis de cet échangeur). En particulier, l'invention permet d'assurer un débit minimum de 5 à 6l/min dans un échangeur 4 classique lorsque ce dernier doit être opérationnel. Selon d'autres particularités, les circulations du liquide de refroidissement dans les première 13 et seconde 14 boucles peuvent être commandées de façon indépendante. La circulation du liquide caloporteur dans la troisième boucle 19 est également indépendante de la circulation dans l'autre boucle 14.
Lorsque le moteur 2 est très chaud, le circuit 1 selon l'invention permet d'alimenter l'échangeur 4 liquide caloporteur/gaz d'échappement recirculés avec du liquide refroidi par le radiateur 3.
Lorsque le thermostat 7 qui commande la circulation naturelle du liquide caloporteur dans le radiateur 3 est fermé, le liquide caloporteur qui circule dans l'échangeur 4 liquide caloporteur/gaz recirculés reste à une température proche de la température ambiante. De cette façon, l'efficacité de l'échangeur 4 est améliorée, ce qui favorise la réduction des polluants dans les gaz d'échappement du moteur (Nox notamment).
La pompe 5 électrique du second circuit 4 peut être mise en marche pour augmenter l'échange thermique entre le liquide caloporteur et les gaz d'échappement recirculés.
L'arrêt de cette pompe 5 électrique permet également de supprimer la circulation de liquide caloporteur dans l'échangeur 4 liquide/gaz recirculés dans la phase de démarrage du moteur, c'est-à-dire à un moment où le démarrage d'un système de catalyse n'est pas encore amorcé (en général lorsque la température des gaz d'échappement est inférieure à une température seuil comprise entre 100 et 2500C, en général 1500C environ). Cette configuration permet de réduire les polluants du type notamment CO et HC et permet donc de supprimer les by-pass classiques sur le liquide caloporteur ou sur les gaz d'échappement.
Des moyens de mesure de la température des gaz d'échappement, tels qu'une sonde peuvent être prévus à cet effet au niveau de l'échappement. De la même façon, si le circuit 14 comporte un clapet anti-retour, lorsque la recirculation des gaz d'échappement est interrompue par la vanne correspondante, la pompe 5 située dans la seconde boucle 14 n'est pas mise en marche. De préférence, la pompe 5 est mise à l'arrêt avec une temporisation déterminée après cet arrêt du recyclage. Ainsi, de préférence, la pompe 5 située dans la seconde boucle 14 n'est alimentée que lorsque les gaz d'échappement sont recirculés et que la température de ces derniers a atteint une valeur seuil (catalyseur amorcé).
Lorsque la configuration de fonctionnement du moteur nécessite un refroidissement simultané du moteur 2 et des gaz d'échappement recirculés, le thermostat 7 est ouvert et la pompe 5 située dans la seconde boucle 14 est mise en marche. Le liquide caloporteur refroidit dans le radiateur 3 est partagé entre le moteur 2 et l'échangeur 4 liquide/gaz recirculés. De même, le radiateur 3 est alimenté par un mélange de liquide provenant du moteur 2 et de l'échangeur liquide/gaz d'échappement recirculés.

Claims

R EV E N D I CAT I O N S
1. Dispositif de régulation thermique des gaz recirculés d'un moteur à combustion interne, comprenant un circuit (1) de liquide caloporteur raccordé à un moteur (2) à combustion interne, le circuit (1) comprenant des premiers moyens (3) d'échange thermique liquide caloporteur/air tel qu'un radiateur, situés dans une première boucle (13) raccordée au moteur (2), des seconds moyens (4) d'échange thermique liquide caloporteur/gaz d'échappement recirculés situés dans une seconde boucle (14) raccordée en parallèle à la première boucle (13), pour permettre l'alimentation des seconds (4) moyens d'échange thermique en liquide caloporteur provenant des premiers moyens (3) d'échange thermique, caractérisé en ce que les extrémités de la seconde boucle (14) sont raccordées directement sur le corps des premiers moyens (3) d'échange thermique.
2. Dispositif de régulation selon la revendication 1, caractérisé en ce que les extrémités de la seconde boucle (14) sont raccordées respectivement à des entrée (50) et sortie (6) des premiers moyens (3) d'échange thermique distinctes des entrée (15) et sortie (16) de raccordement des premiers moyens (3) d'échange thermique au moteur (2).
3. Dispositif de régulation selon la revendication 1 ou 2, caractérisé en ce que les extrémités de la seconde boucle (14) sont raccordées aux premiers moyens (3) d'échange thermique de façon à relier les entrée (11) et sortie (12) des seconds moyens (4) d'échange thermique avec, respectivement des sortie (6) et entrée (50) des premiers moyens (3) d'échange thermique.
4. Dispositif de régulation selon l'une quelconque des revendication 1 à 3, caractérisé en ce que les premiers moyens (3) d'échange thermique comportent au moins un faisceau (7) échangeur de chaleur relié à un boîtier d'entrée (8) de fluide et un boîtier de sortie (9) de fluide, et en ce que les extrémités de la seconde boucle (14) sont raccordées directement sur respectivement les boîtiers d'entrée (8) et de sortie (9) de fluide.
5. Dispositif de régu lation selon l'u ne quelconque des revendications 1 à 4, caractérisé en ce que la seconde boucle (14) comprend des moyens (5) d'activation pilotés du débit de liquide caloporteur, tel qu'u ne pompe.
6. Dispositif de régu lation selon l'u ne quelconque des revendications 2 à 5, caractérisé en ce qu'i l comporte des moyens (7, 1 0) de régulation du débit de liquide caloporteur admis à circuler dans la première boucle (13).
7. Dispositif de régulation selon la revendication 6, caractérisé en ce que les moyens de régu lation du débit comportent u ne vanne (7) de type proportion nel, tel qu'u n thermostat.
8. Dispositif de régu lation selon la revendication 6 ou 7, caractérisé en ce que les moyens de régu lation du débit comportent u ne pompe ( 1 0).
9. Dispositif de régu lation selon la revendication 5 prise en combinaison avec l'u ne quelconque des revendications 6 à 8, caractérisé en ce que les moyens (5) d'activation du débit dans la seconde boucle ( 14) et les moyens (7, 1 0) de régu lation du débit dans la première boucle (13) sont i ndépendants, de façon à permettre la mise en marche ou l'arrêt des moyens (5) d'activation du débit dans la seconde boucle ( 14) quel que soit le débit de liquide caloporteu r admis à circu ler dans la première boucle ( 13) .
PCT/FR2006/050105 2005-02-14 2006-02-07 Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne WO2006085024A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06709484A EP1848887A1 (fr) 2005-02-14 2006-02-07 Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne
JP2007554611A JP2008530429A (ja) 2005-02-14 2006-02-07 内燃機関の再循環ガスの熱制御装置
US11/816,223 US20080257526A1 (en) 2005-02-14 2006-02-07 Device for Thermal Control of Recirculated Gases in an Internal Combustion Engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550416A FR2882105B1 (fr) 2005-02-14 2005-02-14 Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne
FR0550416 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085024A1 true WO2006085024A1 (fr) 2006-08-17

Family

ID=34954563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050105 WO2006085024A1 (fr) 2005-02-14 2006-02-07 Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne

Country Status (5)

Country Link
US (1) US20080257526A1 (fr)
EP (1) EP1848887A1 (fr)
JP (1) JP2008530429A (fr)
FR (1) FR2882105B1 (fr)
WO (1) WO2006085024A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185002A (ja) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd エンジン冷却装置
KR101423780B1 (ko) 2008-07-11 2014-07-25 현대자동차주식회사 이지알 가스 냉각시스템

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897676A1 (fr) * 2006-02-20 2007-08-24 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne
FR2904791B1 (fr) * 2006-08-11 2011-04-01 Peugeot Citroen Automobiles Sa Procede de refrigeration d'un habitacle de vehicule automobile, ensemble de refrigeration et vehicule automobile associes
GB2473437B (en) * 2009-09-09 2015-11-25 Gm Global Tech Operations Inc Cooling system for internal combustion engines
DE102010047092A1 (de) * 2010-10-01 2012-04-05 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Ladeluftkühleinrichtung für einen Verbrennungsmotor
FR2997448B1 (fr) * 2012-10-31 2018-11-09 Renault S.A.S Gestion du refroidissement d'un systeme de moteur equipe d'un dispositif de recirculation partielle des gaz d'echappement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752440A1 (fr) 1996-08-17 1998-02-20 Daimler Benz Ag Systeme de refroidissement pour un moteur a combustion interne
US20030116105A1 (en) 2001-12-15 2003-06-26 Harald Pfeffinger Cooling circuit of a liquid-cooled internal combustion engine
JP2003184658A (ja) * 2001-12-14 2003-07-03 Hino Motors Ltd Egrクーラ
FR2847004A1 (fr) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de l'air d'admission d'un moteur et de gaz d'echappement recircules emis par ce moteur
US20040194917A1 (en) * 2002-07-19 2004-10-07 Shoichiro Usui EGR gas cooling mechanism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8602971A (nl) * 1986-11-24 1988-06-16 Volvo Car Bv Koelsysteem voor een turbocompressor.
JP3324464B2 (ja) * 1997-10-01 2002-09-17 株式会社デンソー 車両用熱交換装置
SE523073C2 (sv) * 2001-06-28 2004-03-23 Valeo Engine Cooling Ab Sätt och anordning för kylning av laddluft och hydraulolja
JP2004293385A (ja) * 2003-03-26 2004-10-21 Toyota Motor Corp 排気ガス再循環装置
US8132547B2 (en) * 2003-12-22 2012-03-13 Valeo Systemes Thermiques Thermal energy management system for a vehicle heat engine provided with a time-delay switching means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752440A1 (fr) 1996-08-17 1998-02-20 Daimler Benz Ag Systeme de refroidissement pour un moteur a combustion interne
JP2003184658A (ja) * 2001-12-14 2003-07-03 Hino Motors Ltd Egrクーラ
US20030116105A1 (en) 2001-12-15 2003-06-26 Harald Pfeffinger Cooling circuit of a liquid-cooled internal combustion engine
US20040194917A1 (en) * 2002-07-19 2004-10-07 Shoichiro Usui EGR gas cooling mechanism
FR2847004A1 (fr) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de l'air d'admission d'un moteur et de gaz d'echappement recircules emis par ce moteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 11 5 November 2003 (2003-11-05) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185002A (ja) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd エンジン冷却装置
KR101423780B1 (ko) 2008-07-11 2014-07-25 현대자동차주식회사 이지알 가스 냉각시스템

Also Published As

Publication number Publication date
US20080257526A1 (en) 2008-10-23
FR2882105A1 (fr) 2006-08-18
EP1848887A1 (fr) 2007-10-31
JP2008530429A (ja) 2008-08-07
FR2882105B1 (fr) 2007-04-06

Similar Documents

Publication Publication Date Title
WO2006085024A1 (fr) Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne
EP1706610B1 (fr) Dispositif de regulation thermique de fluides circulant dans un vehicule a moteur thermique et procede mis en oeuvre par ce dispositif
EP2106999B2 (fr) Navire pourvu de moyens de récupération d'énergie thermique
WO2008125762A1 (fr) Circuit de gaz d'echappement egr basse pression avec prise en compte du chauffage de l'habitacle
FR2924169A1 (fr) Dispositif et procede de depollution et de chauffage pour vehicule automobile
EP1740803B1 (fr) Systeme ameliore de regulation de la temperature des gaz admis dans un moteur
EP1963657B1 (fr) Dispositif de refroidissement de l'air d'admission et des gaz d'echappement recircules
FR2890697A1 (fr) Moteur de vehicule comprenant un circuit de gaz recircules refroidis a basse temperature
EP2039906B1 (fr) Procédé de régulation de la température d'un moteur thermique à turbocompresseur et refroidisseur d'air de suralimentation
EP1636479B1 (fr) Procede de regulation de la temperature des gaz admis dans un moteur thermique de vehicule automobile et systeme pour la mise en oeuvre de ce procede
EP2084025B1 (fr) Systeme de chauffage pour vehicule couple a un systeme egr
FR2883807A1 (fr) Dispositif et procede de refroidissement du moteur et d'un organe de vehicule
FR2897392A1 (fr) Dispositif et procede de refroidissement pour moteur et organe de vehicule.
FR2908457A3 (fr) Systeme de refroidissement d'un moteur thermique
EP1892389B1 (fr) Dispositif permettant de commander un circuit de circulation d'un liquide de refroidissement ainsi qu'un circuit de circulation d'huile de lubrification d'un moteur thermique de véhicule
EP1375894A1 (fr) Module pour la régulation thermique de carburant destiné à un moteur thermique de véhicule automobile et dispositif d'alimentation en carburant muni de ce module
EP1681456A1 (fr) Installation de régulation thermique des gaz admis dans un moteur
FR2880652A1 (fr) Circuit de refroidissement d'un moteur thermique sur un vehicule
FR2904856A1 (fr) Dispositif permettant de commander un circuit de circulation d'un liquide de refroidissement ainsi qu'un circuit de circulation d'huile de lubrification d'un moteur thermique de vehicule
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile
FR2867813A1 (fr) Dispositif de regulation thermique des gaz recircules d'un moteur a combustion interne
FR2933906A1 (fr) Procede et dispositif d'amelioration de la montee en temperature de l'habitacle d'un vehicule
FR2865004A1 (fr) Dispositif de regulation thermique de l'air d'admission d'un moteur a combustion interne
WO2018211185A1 (fr) Procédé de régulation d'une température d'huile de lubrification d'un moteur thermique à deux flux de sortie
EP3112659A1 (fr) Moteur comportant un système de refroidissement du liquide de refroidissement par du carburant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006709484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816223

Country of ref document: US

Ref document number: 2007554611

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006709484

Country of ref document: EP