WO2006083011A1 - System for discriminating direction of high-energy ray source direction - Google Patents

System for discriminating direction of high-energy ray source direction Download PDF

Info

Publication number
WO2006083011A1
WO2006083011A1 PCT/JP2006/302211 JP2006302211W WO2006083011A1 WO 2006083011 A1 WO2006083011 A1 WO 2006083011A1 JP 2006302211 W JP2006302211 W JP 2006302211W WO 2006083011 A1 WO2006083011 A1 WO 2006083011A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
radiation
collimator
dimensional
radiation source
Prior art date
Application number
PCT/JP2006/302211
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Aoki
Yoshinori Hatanaka
Original Assignee
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005028866A external-priority patent/JP4164578B2/en
Priority claimed from JP2005028865A external-priority patent/JP4164577B2/en
Application filed by National University Corporation Shizuoka University filed Critical National University Corporation Shizuoka University
Publication of WO2006083011A1 publication Critical patent/WO2006083011A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2907Angle determination; Directional detectors; Telescopes

Definitions

  • the present invention relates to a technique for identifying the direction of radiation of soot energy radiation and specifying the direction of the radiation source.
  • the ionization chamber was used to monitor radiation and the radiation was monitored.
  • problems in identifying the direction of flight such as those in which the direction of flight was indistinguishable, or the discharge persisted or became indistinguishable for many flights.
  • a collimator has been placed in front of the sensor to identify the direction of flight from the direction of the collimator, but the collimator has to be directed toward the source, etc. It was difficult to use to specify the direction of the radiation source.
  • Patent Document 1 Japanese Patent Publication No. 6-1 0 5 3 0 3 Disclosure of the invention
  • collimators are designed to allow radiation in only one direction as much as possible, and are designed to avoid incidence at tilt angles.
  • the present invention is based on a new idea of specifying the radiation direction of radiation using the shadow of a collimator with respect to incidence at an inclination angle.
  • the shadow of the collimator is formed according to the radiation direction of radiation, and the direction of flight can be determined by calculating the distribution relation of the output signal based on the positional relationship of the shadow.
  • Fig. 1 is a side view of the arrangement of sensors and collimators.
  • FIG. 2 shows the sensor output for each radiation source.
  • FIG. 3 is a front view showing the arrangement of the two-dimensional sensor and the shadow of the collimator.
  • FIG. 4 is a diagram showing a case where a plurality of radiation rays are incident.
  • Fig. 4 (a) shows an example where radiation E 1 is incident from the front and radiation E 2 is incident slightly from the right.
  • Fig. 5 shows an example in which there is one source on the left and two sources on the right.
  • Fig. 6 shows the signal intensity when radiation is incident on the ring-shaped one-dimensional sensor.
  • FIG. 7 is a diagram showing a configuration example in which a collimator is attached to a ring-shaped one-dimensional sensor and signal intensity.
  • FIG. 8 is an enlarged view showing the positional relationship between the sensor and the collimator.
  • FIG. 9 is a diagram showing a configuration in which ring-shaped one-dimensional sensors are stacked.
  • FIG. Lo is a diagram showing signal intensity in the laminated state.
  • a one-dimensional sensor into a ring shape or a polygonal shape
  • an attempt is made to specify the direction of radiation radiation from the output distribution, and high-energy radiation penetrates the sensor on the incident side and is emitted.
  • a signal output is also obtained from the sensor on the side, and the source direction can be specified as the direction connecting the straight line from one incident side to the output side, so high accuracy is obtained.
  • the one-dimensional sensor is formed in a ring shape, the circuit configuration of the one-dimensional sensor can be used as it is, and the production method can be used to reduce the production cost.
  • the collimator is placed so that the sensor is sandwiched by a distance D1, which is a half of the length M of the sensor sensitivity surface.
  • sensor A (l) and sensor B (2) are placed at a distance of D2.
  • collimator S (3) is placed on the upper surface of sensor A (1) with a distance of D 1
  • collimator T (4) is placed on the lower surface of sensor B (2) with a distance of D 1 .
  • the photosensitive surface of the sensor and the aperture of the collimator have the same dimensions. The dimensions here are only examples, and can be arbitrarily set while paying attention to the receiving angle.
  • the top row in Fig. 2 shows the signal distribution of sensor A (l) and sensor B (2) when radiation enters from the direction E1 in Fig. 1, that is, from the vertical direction of the sensor.
  • the second row in Fig. 2 shows the signal distribution when radiation enters from the direction of E 2 in Fig. 1.
  • the third row in Fig. 2 shows E 3 in Fig. 1, and the lower row in Fig. 2 shows each sensor A (l) and sensor B when radiation enters from the direction of E 4 in Fig. 1.
  • the signal distribution of (2) is shown.
  • the outputs of sensors A and B are obtained from the entire sensor. It is done. In other words, there is no lack of signal. If the source is far away from E 2 and radiation comes from the E 2 vector, a collimator shadow will appear on sensors A and B. In this case, the direction of the radiation source can be obtained from the following simple relationship. However, the length of the sensitivity surface of sensor A is M, and the length of the missing signal is m.
  • the length of the sensitivity surface of ⁇ ⁇ sensor is ⁇ (2 ⁇ ), and the length of the missing signal is ⁇ .
  • c sensors and collimators thickness was negligible, but in this example has a radiation source arrives from the direction of the upper, If coming from the direction of the bottom, by comparing the m and n, small Judging from the side. Or, it is assumed that M-m and N-n come from the larger one. Even in the vertical case, the signal amount is judged because the signal amount of the sensor on the radiation direction side is large. Is easily obtained.
  • the sensor 1 and the sensor 1 are not the same sensor but have different frequency and single sensitivity characteristics, it is possible to have a wide band.
  • the direction in the vertical direction can be determined regardless of the difference in the signal level.
  • Figure 3 shows how the collimator shadows are produced when two two-dimensional sensors A and B are placed apart.
  • Figure 3 shows the case where sensor A (l) and sensor B (2) are two-dimensional sensors. In this case, the one-dimensional case is expanded to two dimensions, and the idea is the same.
  • the horizontal cross section is the same as in Fig. 1, so it is omitted.
  • Fig. 3 (a) is a view from above of sensor A (l).
  • sensor A (l) is visible through the opening.
  • Sensor B (2) is invisible behind sensor A (l).
  • the collimator T (4) cannot be seen behind the collimator S (3).
  • Note that the area around the collimator S (3) is omitted. This is an example when radiation from outside is incident with directionality E5.
  • Fig. 3 (b) and Fig. 3 (c) show the signal detection area of sensor A (l) and sensor B (2), but the shaded area shows the area without signal due to the shadow of the collimator. .
  • sensor A (l) there are two areas where no radiation can be detected: an area without a signal (5) and an area with a signal that can detect radiation (6). Zensa
  • B (2) an area where no radiation can be detected is distinguished as an area (7) where there is no signal and an area (8) where there is a signal where radiation can be detected.
  • the angle in the arrival direction is obtained for each of the vertical and horizontal directions, so the angle on the two-dimensional plane is obtained.
  • the direction of the radiation source in all directions can be specified.
  • the system can be tailored to the purpose by adjusting the length of the one-dimensional sensor as needed or by modifying the symmetry of the two-dimensional length.
  • the senor is arranged in a spherical shape to enable detection of radiation from all directions.
  • a two-dimensional sensor is used as the sensor and is arranged in a substantially spherical shape.
  • a sphere is formed of a material having a radiation shielding effect as the outer shell of the sensor assembly.
  • a hole as a collimator is drilled at a position corresponding to the center of each 2D sensor, and the shadow of the incoming radiation is projected onto each 2D sensor.
  • the two-dimensional sensors are discretely arranged, and a hole is made at a position corresponding to the approximate center of each two-dimensional sensor.
  • the hole shall be drilled at any place on the outer shell.
  • holes should be drilled at several points equally divided on the spherical surface.
  • the two-dimensional sensor is arranged in a substantially spherical shape, it should be considered to be a polyhedral solid from the viewpoint of manufacturing. For example, it would be easy to manufacture a regular 12-sided body with 12 two-dimensional sensors affixed to each surface and 12 holes in the outer shell. Also, it is up to the force to make the outer shell a sphere, whether to make a multi-dimensional solid.
  • Figure 4 shows the case of multiple incident radiation.
  • Figure 4 (a) shows radiation E 1 from the front.
  • radiation E 2 is incident from the right.
  • Radiation E 2 is simplified and shown by a single arrow, but it is incident with a width similar to radiation E 1.
  • Difference between the falling position of sensor A's output (A) and the falling position of sensor B's output (B) Force ⁇ The incident direction of radiation E 2 can be determined.
  • Figure 4 (b) shows an example in which the radiation E 1 is incident from the front and the radiation E 3 is incident slightly from the left.
  • the incident direction of the radiation E 3 can be determined from the difference between the rising position of the output (A) of the sensor A and the rising position of the output (B) of the sensor B.
  • Fig. 4 (c) there are three radiation sources, but the same judgment can be made.
  • Figure 5 shows an example in which there is no front source, one source is on the left, and two sources are on the right. Even in this case, the incident direction of the radiation E 2 can be determined from the distance m 2 from the fall of the signal A to the right end due to the radiation E 2 and the distance n 2 from the fall of the signal B to the right end. Thereby, the azimuth
  • the incident direction of radiation E 3 can be determined from the distance m 3 from the rising edge of signal A to the left edge and the distance n 3 from the rising edge of signal B to the left edge.
  • the incident direction of the radiation E 4 can be determined from the distance m 4 and the distance n 4.
  • the falling positions of the signals due to radiation E 2 and radiation E 4 do not change the order in each sensor, and distance n 2 is easy for distance m 2 and distance n 4 is easy for distance m 4. Can be associated.
  • the increase and decrease of the sensor output is expressed as the rise and fall of the signal. This is an implication for time-series signal readout, and it should be understood that the horizontal axis in the figure indicates the position and the time axis.
  • Fig. 6 (a) shows that radiation is incident from the direction of R on the one-dimensional sensor (1 1) in a ring shape.
  • Figure 6 (b) shows the output signal intensity distribution from the sensor at that time.
  • the sensor (1 1) unit is arranged in a ring shape or polygonal shape, the effective area incident on the photosensitive surface varies depending on the incident angle.
  • the angle is taken with the incident line R as the base point, the effective area is a function of Cose, and becomes a maximum at 0 degrees and 180 degrees. Therefore, the direction of incidence is the one with the highest peak signal intensity on the straight line connecting the maximum 0 ° and 1880 ° points.
  • the collimator is a collimation that allows a slight incident on the unit sensor on both sides of the unit sensor at 180 degrees.
  • Fig. 7 (a) shows that the radiation is incident from the direction of R on the one-dimensional sensor (1 1) in the ring shape and the collimator (1 2) placed on the outer periphery.
  • Figure 7 (b) shows the output signal intensity distribution from the sensor at that time.
  • the signal intensity distribution at this time is sharp.
  • the collimator is made of a heavy metal such as lead or tin and is made of a material with a high radiation blocking effect.
  • Figure 8 shows an enlarged view.
  • FIG. 8 shows the structural details of the sensor (1 1) and the collimator (1 2).
  • the aperture of the collimator is the same as the photosensitive area of the unit sensor.
  • the light may be received by a plurality of unit sensors.
  • the collimator (1 2) consists of double rings, the inner ring (1 2 a) and the outer ring (1 2 b) are connected by a space Da, and the inner ring (1 2 a) and sensor ( 1 1) and space Db There is. By adjusting this interval, the strength of the collimation can be adjusted.
  • the unit sensor here refers to the smallest unit that generates a signal upon receiving radiation, that is, the detection element, and determines the resolution.
  • the collimator here is a double ring, but even with a single ring, the signal intensity distribution is sufficiently sharp, and this does not exclude the embodiment of the single ring.
  • the number of collimator openings (1 3) is an odd number, the front-rear sensitivity ratio becomes large, and the front and rear identification of the radiation source position becomes easy.
  • the unit sensor is provided over the entire circumference of the ring, but it may be provided only at a location facing the opening (13).
  • a ring-shaped one-dimensional sensor is stacked to change the sensitivity with respect to an angle in the vertical direction with respect to a virtual plane in which the sensors are arranged in a ring shape.
  • the ring-shaped one-dimensional sensor (l la, l lb, l lc, l ld) from above, the first sensor (l la), the second sensor (l lb), and the third sensor (11c) Stack the 4th sensor (l id).
  • the detection range in the vertical direction can be set by changing the space Dc between the stacked rings and the space Dd above and below the collimator and sensor.
  • the inner collimator (1 2 a) and the outer collimator (1 2 b) are both cylindrical and extend in the vertical direction in FIG.
  • the intensity of the sensor located at 0 degree with respect to radiation R 1 is the strongest. It is.
  • the output of the sensor located at 180 degrees is the largest (the upper part of FIG. 10).
  • an example of the signal output of the sensor 1 when the radiation R 2 comes from the right or slightly below in FIG. 9 is shown in the middle of FIG. In this case, the sensor at the 0 degree position of the fourth sensor (lid) has no signal output because the radiation R 2 is blocked by the collimators (12a, 12b).
  • radiation R 2 is blocked by the collimators (12a, 12b) of the third and fourth sensors (l lc, l ld) at the 180 ° position, and there is no signal output.
  • the signal output when the radiation R 3 comes from the right direction in FIG. 9 appears slightly as shown in the lower part of FIG. In both figures, the radiation direction is 0 degrees, the deviation from the direction is ⁇ , and the position of each sensor on the ring is plotted on the horizontal axis.
  • the collimator is also a double ring, but even with a single ring, the signal intensity distribution is sufficiently sharp, and this does not exclude the single ring embodiment. .
  • a large number of incoming radiation is measured as an integrated intensity distribution, and the amount of incident radiation and the incoming direction can be determined at appropriate time intervals, and the calculation method is also simple. Yes, and the circuit configuration can be greatly simplified.
  • monitoring of nuclear facilities and monitoring of nuclear waste will function extremely effectively in identifying the source direction.

Abstract

A system for discriminating the direction of a high-energy ray source, wherein a collimator (2) is formed of double rings, and a space of Da is secured between the inner ring (2a) and the outer ring (2b) and also a space Db is secured between the inner ring (2a) and a sensor (1). A distribution function for signals can be adjusted by adjusting these spaces. When the collimation of the collimator is at such a degree that allows an incidence to sensors on both sides of unit sensors positioned apart 180° from each other, an insensible incidence angle by a space between the unit sensors can be eliminated. Also, when a plurality of ring-like two-dimensional sensors are stacked and formed to be extended in the closed state of the opening part (3) of the collimator formed in the outer periphery thereof, the flying direction of energy ray from a vertical direction to the flat surfaces of the rings can also be discriminated.

Description

高エネルギー線源方向判別システム  High energy source direction discrimination system
技術分野 Technical field
この発明は、 髙エネルギー放射線の飛来方向を識別し、 線源方向を特定する技 術に関する。  The present invention relates to a technique for identifying the direction of radiation of soot energy radiation and specifying the direction of the radiation source.
 Light
糸 ^ _ I  Thread ^ _ I
背景技術 書  Technical background
従来は、 放射線をモニターするために電離チャンバ一をもちいて、 放射線の飛 来をモニターしていた。 しかしながら、 飛来方向の区別がつかないもの、 または、 多数の飛来に対して、 放電が持続し、 または区別が不能になるなど、 飛来方向の 特定には問題点が多かった。  In the past, the ionization chamber was used to monitor radiation and the radiation was monitored. However, there were many problems in identifying the direction of flight, such as those in which the direction of flight was indistinguishable, or the discharge persisted or became indistinguishable for many flights.
電離チャンバ一に代えて、 センサーの前面にコリメータを配置して、 コリメ一 タの方向から、 飛来方向を特定するものはこれまでもあったが、 コリメータを線 源の方向に向ける必要があるなど、 線源の方向を特定するには使いづらいもので あった。  Instead of the ionization chamber, a collimator has been placed in front of the sensor to identify the direction of flight from the direction of the collimator, but the collimator has to be directed toward the source, etc. It was difficult to use to specify the direction of the radiation source.
また、 2枚以上の 2次元センサーを重ねて放射線入射の信号出力の相互位置関 係を計算することにより、 放射線の入射方向を検出するもの(特許文献 1参照)が ある。 しカゝし、 これは、 単一の放射線が各層の特定の画素に相当する位置に信号 を出力することから計算出来るものであり、 入射放射線の個数が増加すると、 区 別が困難となる。 一定の時間内に多数の放射線が一定の方向から飛来するとき、 各層の各画素の積分値は平均化され、 方向の判別は出来なくなる。  In addition, there is one that detects the incident direction of radiation by calculating the mutual positional relationship of the signal output of radiation incidence by superimposing two or more two-dimensional sensors (see Patent Document 1). However, this can be calculated because a single radiation outputs a signal at a position corresponding to a specific pixel in each layer. As the number of incident radiation increases, it becomes difficult to distinguish. When a lot of radiation comes from a certain direction within a certain time, the integral value of each pixel of each layer is averaged, and the direction cannot be determined.
【特許文献 1】 特公平 6— 1 0 5 3 0 3号公報 発明の開示 [Patent Document 1] Japanese Patent Publication No. 6-1 0 5 3 0 3 Disclosure of the invention
従来コリメータは出来る限り一方向のみの放射線の入射を許すように設計され、 傾斜角度での入射を避けるように作られている。  Traditionally collimators are designed to allow radiation in only one direction as much as possible, and are designed to avoid incidence at tilt angles.
この発明は、 傾斜角度での入射に対する、 コリメータの陰を利用して放射線の 飛来方向を特定する新しい考えによるものである。  The present invention is based on a new idea of specifying the radiation direction of radiation using the shadow of a collimator with respect to incidence at an inclination angle.
この発明では、 放射線の飛来方向によって、 コリメータの陰が形成されて、 そ の陰の出来る位置関係によって、 出力信号の分布関係を計算することにより飛来 方向を判定できる特徴を有する。 図面の簡単な説明  According to the present invention, the shadow of the collimator is formed according to the radiation direction of radiation, and the direction of flight can be determined by calculating the distribution relation of the output signal based on the positional relationship of the shadow. Brief Description of Drawings
第 1図は、 センサーとコリメータの配置を横から見た図である。  Fig. 1 is a side view of the arrangement of sensors and collimators.
第 2図は、 各線源に対するセンサー出力を示す図である。  FIG. 2 shows the sensor output for each radiation source.
第 3図は、 2次元センサーにおける配置とコリメータの影を示す正面図である。 第 4図は、 複数の放射線放射線が入射した場合を示す図である。 図 4 ( a )は正 面から放射線 E 1が入射し、 やや右方から放射線 E 2が入射する例を示す。 図 4 FIG. 3 is a front view showing the arrangement of the two-dimensional sensor and the shadow of the collimator. FIG. 4 is a diagram showing a case where a plurality of radiation rays are incident. Fig. 4 (a) shows an example where radiation E 1 is incident from the front and radiation E 2 is incident slightly from the right. Fig 4
( b )は、 正面から放射線 E 1が入射し、 やや左方から放射線 E 3が入射する例を 示す。 図 4 ( c )では線源が 3個ある場合を示している。 (b) shows an example where radiation E 1 is incident from the front and radiation E 3 is incident slightly from the left. Figure 4 (c) shows the case with three radiation sources.
第 5図は、 左方に 1個の線源が存在し、 右方に 2個の線源が存在する例を示す 図である。  Fig. 5 shows an example in which there is one source on the left and two sources on the right.
第 6図は、 リング状一次元センサーに放射線が入射した際の信号強度を示す図 である。  Fig. 6 shows the signal intensity when radiation is incident on the ring-shaped one-dimensional sensor.
第 7図は、 リング状一次元センサーにコリメータをつけた構成例及び信号強度 を示す図である。  FIG. 7 is a diagram showing a configuration example in which a collimator is attached to a ring-shaped one-dimensional sensor and signal intensity.
第 8図は、 センサーとコリメータとの位置関係を示す拡大図である。  FIG. 8 is an enlarged view showing the positional relationship between the sensor and the collimator.
第 9図は、 リング状一次元センサーを積層した構成を示す図である。 第 l o図は、 積層状態における信号強度を示す図である。 発明を実施するための最良の形態 FIG. 9 is a diagram showing a configuration in which ring-shaped one-dimensional sensors are stacked. FIG. Lo is a diagram showing signal intensity in the laminated state. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は一次元センサーをリング状または多角形状にすることにより、 その出 力分布から放射線の飛来方向を特定しょうとするものであり、 高エネルギーの放 射線は入射側のセンサーを貫通し、 出射側のセンサーからも信号出力が得られ、 一入射側と出射側の直線を結ぶ方向として線源方向を特定出来るので高い精度が 得ら る。  In the present invention, by making a one-dimensional sensor into a ring shape or a polygonal shape, an attempt is made to specify the direction of radiation radiation from the output distribution, and high-energy radiation penetrates the sensor on the incident side and is emitted. A signal output is also obtained from the sensor on the side, and the source direction can be specified as the direction connecting the straight line from one incident side to the output side, so high accuracy is obtained.
一次元センサーをリング状にすることから、 一次元センサーの回路構成をその まま使用できること、 生産方法も同じ方法が採れることにより、 生産コストが安 価に出来る、 等の特徴を有する。  Since the one-dimensional sensor is formed in a ring shape, the circuit configuration of the one-dimensional sensor can be used as it is, and the production method can be used to reduce the production cost.
【実施例 1】  [Example 1]
1次元センサー A, Bの 2個を空間的に離して配置した例について説明する。 センサーの感度面の長さ Mの 2分の 1の距離 D 1だけ離して、 センサーをはさむ 形でコリメータが置かれている。 コリメータの材質は高エネルギー線に対し遮蔽 機能を有すもの(鉛など)とし、 コリメータの開口はセンサーの感度面の大きさと 同じとする。 また、 D 1 =D 2とする。  An example in which two one-dimensional sensors A and B are spatially separated will be described. The collimator is placed so that the sensor is sandwiched by a distance D1, which is a half of the length M of the sensor sensitivity surface. The material of the collimator shall have a shielding function against high-energy rays (such as lead), and the collimator aperture shall be the same as the sensitivity surface of the sensor. Further, D 1 = D 2 is assumed.
図 1に示されるように、 センサー A(l)とセンサー B (2)とが D 2の間隔で置 かれている。 さらに、 コリメータ S (3)がセンサー A (1)の上面に D 1の間隔を 保って、 またコリメータ T (4)がセンサー B (2)の下面に D 1の間隔を保って置 かれている。 センサーの感光面とコリメータの開口は同じ寸法となっている。 こ こでの寸法は例示であって、 受光角に留意しながら任意に設定できる。  As shown in Fig. 1, sensor A (l) and sensor B (2) are placed at a distance of D2. In addition, collimator S (3) is placed on the upper surface of sensor A (1) with a distance of D 1 and collimator T (4) is placed on the lower surface of sensor B (2) with a distance of D 1 . The photosensitive surface of the sensor and the aperture of the collimator have the same dimensions. The dimensions here are only examples, and can be arbitrarily set while paying attention to the receiving angle.
図 2の最上段は、 図 1における E 1の方向、 即ち、 センサーの鉛直方向から放 射線が入射した場合のセンサー A(l)とセンサー B (2)の信号分布を示す。 図 2 の 2段目は、 図 1における E 2の方向から放射線が入射した場合の信号分布を示 し、 図 2の 3段目は、 図 1における E 3、 図 2の最下段は図 1における E 4のそ れぞれの方向から放射線が入射した場合の各センサー A(l)とセンサー B (2)の 信号分布を示す。 The top row in Fig. 2 shows the signal distribution of sensor A (l) and sensor B (2) when radiation enters from the direction E1 in Fig. 1, that is, from the vertical direction of the sensor. The second row in Fig. 2 shows the signal distribution when radiation enters from the direction of E 2 in Fig. 1. The third row in Fig. 2 shows E 3 in Fig. 1, and the lower row in Fig. 2 shows each sensor A (l) and sensor B when radiation enters from the direction of E 4 in Fig. 1. The signal distribution of (2) is shown.
線源が E 1の遠方向にあり、 E 1なるベタ トルをもって入射する場合すなわち 鉛直(θ 1 =0)の方向から来る場合には、 センサー A及び Bの出力はセンサーの 全体から出力が得られる。 すなわち、 信号の欠けたところは存在しない。 線源が E 2の遠方向にあり、 E 2のベク トルにより放射線が来る場合、 コリメータの影 がセンサー A, B上に生ずる。 この場合線源の方向は、 以下のような簡単な関係 から求められる。 ただし、 センサー Aの感度面の長さを Mとし、 信号の欠けたと ころの長さを mとする。  When the radiation source is in the far direction of E 1 and incident with a vector of E 1, that is, when coming from the vertical (θ 1 = 0) direction, the outputs of sensors A and B are obtained from the entire sensor. It is done. In other words, there is no lack of signal. If the source is far away from E 2 and radiation comes from the E 2 vector, a collimator shadow will appear on sensors A and B. In this case, the direction of the radiation source can be obtained from the following simple relationship. However, the length of the sensitivity surface of sensor A is M, and the length of the missing signal is m.
センサーに対する放射線の入射角を鉛直線から Θ 1とすると  If the incident angle of radiation to the sensor is Θ 1 from the vertical line
D 1 · Τ ηθ 1 =m …(:!) D 1 · Τ ηθ 1 = m… (:!)
であるから Because
Tan Θ 1 =m/D 1=2 m/M ·'·(2)  Tan Θ 1 = m / D 1 = 2 m / M (2)
このときセンサー Βは、 センサー Αと D 2の距離だけ離して、 ほぼ平行に配置 してあるとし、 センサーに対する放射線の入射角を鉛直線から 0 2とすると (D 1 +D 2)Tan02 η ·'·(3)  At this time, if the sensor Β is separated from the sensor Α by a distance of D 2 and arranged almost in parallel, and the incident angle of radiation to the sensor is 0 2 from the vertical line, (D 1 + D 2) Tan02 η '· (3)
であるから Because
Tan0 2 = n/(D l +D 2) = η/Ν ·'·(4)  Tan0 2 = n / (D l + D 2) = η / Ν (4)
ただし、 Βのセンサーの感度面の長さを Ν (二 Μ)とし、 信号の欠けたところの 長さを ηとする。 なお、 センサー及びコリメータの厚みは無視できるものとした c また、 この例では線源が上の方向から到来するとしているが、 もし、 下の方向 から来る場合、 mと nを比較して、 小さい側から到来するものと判断する。 また は、 M— mと N—nを比較して大きい方から到来するものとする。 鉛直の場合で も、 信号量としては放射線の到来方向の側のセンサーの信号量が大きいから判断 が容易に得られる。 However, the length of the sensitivity surface of 感 度 sensor is Ν (2 Μ), and the length of the missing signal is η. Incidentally, also c sensors and collimators thickness was negligible, but in this example has a radiation source arrives from the direction of the upper, If coming from the direction of the bottom, by comparing the m and n, small Judging from the side. Or, it is assumed that M-m and N-n come from the larger one. Even in the vertical case, the signal amount is judged because the signal amount of the sensor on the radiation direction side is large. Is easily obtained.
センサー Aとセンサー Bの両方で放射線を検出できる場合には、  If both sensor A and sensor B can detect radiation,
D 2 · Tan03= | n | — | m | '··(5) D 2 · Tan03 = | n | — | m | '· (5)
ただし、 I η I > l m |のとき、 一 45° ≤ Θ3≤45°  However, when I η I> l m |, 45 ° ≤ Θ3≤45 °
| n | < | m | のとき、 1 35° ≤ Θ3≤ 225°  n | <| m | 1 35 ° ≤ Θ3≤ 225 °
としても求めることができる。 センサ一 Αとセンサー Βを同一のセンサーとせず に、 異なる周波数一感度特性を持つものにすると、 広帯域とすることも可能であ る。 Can also be obtained. If the sensor 1 and the sensor 1 are not the same sensor but have different frequency and single sensitivity characteristics, it is possible to have a wide band.
さらに、 角度を変えて第 3, 第 4のセンサー及びコリメータを設ければ、 信号 量の差によらずとも鉛直時における方向の判定が可能となる。  Furthermore, if the third and fourth sensors and collimator are installed at different angles, the direction in the vertical direction can be determined regardless of the difference in the signal level.
【実施例 2】  [Example 2]
図 3に 2次元センサ一 A, Bを 2個離して配置した場合についての、 コリメ一 タの影の出来方について示す。 図 3には、 センサー A(l)とセンサー B (2)とが 2次元センサーとなった場合について示している。 この場合は、 前記の一次元の 場合を二次元に拡張したもので、 考え方は同じものである。 横の断面は図 1と同 じであるから省略してある。 図 3 (a)は、 センサー A(l)のある上側から見た図 である。 手前にコリメータ S (3)があり、 その開口部からセンサー A(l)が見え ている。 センサー B (2)は、 センサー A(l)の陰になっており見えない。 コリメ ータ T (4)も同様にコリメータ S (3)の陰になり見えない。 なお、 コリメータ S (3)の周辺は省略している。 外部からの放射線は E 5の方向性をもって入射した 場合の例である。  Figure 3 shows how the collimator shadows are produced when two two-dimensional sensors A and B are placed apart. Figure 3 shows the case where sensor A (l) and sensor B (2) are two-dimensional sensors. In this case, the one-dimensional case is expanded to two dimensions, and the idea is the same. The horizontal cross section is the same as in Fig. 1, so it is omitted. Fig. 3 (a) is a view from above of sensor A (l). There is a collimator S (3) in the foreground, and sensor A (l) is visible through the opening. Sensor B (2) is invisible behind sensor A (l). Similarly, the collimator T (4) cannot be seen behind the collimator S (3). Note that the area around the collimator S (3) is omitted. This is an example when radiation from outside is incident with directionality E5.
図 3 (b), 図 3 (c)は、 センサー A(l)とセンサー B (2)の信号検出エリアを 示してあるが、 斜線の部分はコリメータの陰により信号のないエリヤを示してい る。 センサー A(l)においては放射線の検出できないエリアとして信号のないェ リア(5)と、 放射線が検出できる信号のあるエリア(6)とに区別される。 ゼンサ 一 B ( 2 )においても、 同様に放射線の検出できないエリアとして信号のないエリ ァ(7 )と、 放射線が検出できる信号のあるエリア(8 )とに区別される。 Fig. 3 (b) and Fig. 3 (c) show the signal detection area of sensor A (l) and sensor B (2), but the shaded area shows the area without signal due to the shadow of the collimator. . In sensor A (l), there are two areas where no radiation can be detected: an area without a signal (5) and an area with a signal that can detect radiation (6). Zensa Similarly, in B (2), an area where no radiation can be detected is distinguished as an area (7) where there is no signal and an area (8) where there is a signal where radiation can be detected.
この場合も、 上記の一次元の場合と同じように、 縦横についてそれぞれ、 到来 方向の角度が求められるので、 2次元の面上での角度が求められる。  In this case as well, as in the case of the above one-dimensional case, the angle in the arrival direction is obtained for each of the vertical and horizontal directions, so the angle on the two-dimensional plane is obtained.
上記の 1次元、 または 2次元の方向を検出できるものを、 複数配置することに より、 全方向の線源の方向を特定できる。 このシステムは、 必要に応じて 1次元 状のセンサーの長さを調節し、 または 2次元の長さの対称性を変形して、 目的に あわせたものとすることが出来る。  By arranging multiple detectors that can detect the above one-dimensional or two-dimensional directions, the direction of the radiation source in all directions can be specified. The system can be tailored to the purpose by adjusting the length of the one-dimensional sensor as needed or by modifying the symmetry of the two-dimensional length.
また、 変形の一例としてセンサーを球面状に配置し全方位からの放射線の検出 を可能とすることが考えられる。 これは、 センサーとして 2次元センサーを用い ることとし、 略球面状に配置する。 そのセンサーの集合体の外殻として放射線遮 蔽効果を有する材質により球体を形成する。 各 2次元センサーのほぼ中央に対応 する位置にコリメータとしての穴を穿ち、 飛来する放射線の影が、 個々の 2次元 センサーに投影するように構成する。 ここでは、 2次元センサーが離散的に配置 されるものとして、 各 2次元センサーのほぼ中央に対応する位置に穴を穿つもの としたが、 球面状に連続して 2次元センサーを配置した場合においては、 外殻の 任意の場所に穴を穿つこととする。 好ましくは、 球面上を等分するいくつかの点 に穴を穿つものとする。 また、 2次元センサーの配置を略球面状としたが、 製造 上からは多面立体とすることも考慮されるべきである。 たとえば、 正 1 2面体と し 1 2個の 2次元センサーを各面に固着させ、 外殻に 1 2個の穴を穿つ構造とす れば製作しやすいであろう。 また、 外殻を球体とする力、 多面立体とするかは任 As an example of deformation, it is conceivable that the sensor is arranged in a spherical shape to enable detection of radiation from all directions. This means that a two-dimensional sensor is used as the sensor and is arranged in a substantially spherical shape. A sphere is formed of a material having a radiation shielding effect as the outer shell of the sensor assembly. A hole as a collimator is drilled at a position corresponding to the center of each 2D sensor, and the shadow of the incoming radiation is projected onto each 2D sensor. Here, it is assumed that the two-dimensional sensors are discretely arranged, and a hole is made at a position corresponding to the approximate center of each two-dimensional sensor. However, when two-dimensional sensors are continuously arranged in a spherical shape, The hole shall be drilled at any place on the outer shell. Preferably, holes should be drilled at several points equally divided on the spherical surface. In addition, although the two-dimensional sensor is arranged in a substantially spherical shape, it should be considered to be a polyhedral solid from the viewpoint of manufacturing. For example, it would be easy to manufacture a regular 12-sided body with 12 two-dimensional sensors affixed to each surface and 12 holes in the outer shell. Also, it is up to the force to make the outer shell a sphere, whether to make a multi-dimensional solid.
,¾ C'fcる。 , ¾ C'fc.
他の変形例として、 2次元センサーと放射線遮蔽効果を有する材質からなるコ リメータ部とを一体化してなるュニットを略球面状に配置することも考えられる。 図 4に、 複数の放射線が入射した場合を示す。 図 4 ( a )は正面から放射線 E 1 が入射し、 やや右方から放射線 E 2が入射する例である。 放射線 E 2は単純化し、 一本の矢印で示したが、 これは放射線 E 1と同様に幅を持って入射している。 セ ンサー Aの出力(A)の立下り位置及びセンサー Bの出力(B )の立下り位置の違い 力 ^放射線 E 2の入射方向が判定できる。 As another modification, it is conceivable that a unit formed by integrating a two-dimensional sensor and a collimator made of a material having a radiation shielding effect is arranged in a substantially spherical shape. Figure 4 shows the case of multiple incident radiation. Figure 4 (a) shows radiation E 1 from the front. In this example, radiation E 2 is incident from the right. Radiation E 2 is simplified and shown by a single arrow, but it is incident with a width similar to radiation E 1. Difference between the falling position of sensor A's output (A) and the falling position of sensor B's output (B) Force ^ The incident direction of radiation E 2 can be determined.
図 4 ( b )は、 正面から放射線 E 1が入射し、 やや左方から放射線 E 3が入射す る例である。 この場合は、 センサー Aの出力(A)の立上がり位置及びセンサー B の出力(B )の立上がり位置の違いから放射線 E 3の入射方向が判定できる。 図 4 ( c )では線源が 3個あるが、 同様の判定ができる。  Figure 4 (b) shows an example in which the radiation E 1 is incident from the front and the radiation E 3 is incident slightly from the left. In this case, the incident direction of the radiation E 3 can be determined from the difference between the rising position of the output (A) of the sensor A and the rising position of the output (B) of the sensor B. In Fig. 4 (c), there are three radiation sources, but the same judgment can be made.
図 5では正面の線源がなく、 左方に 1個の線源が存在し、 右方に 2個の線源が 存在する例を示す。 この場合であっても、 放射線 E 2による信号 Aの立下りから 右端までの距離 m 2と、 信号 Bの立下りから右端までの距離 n 2とから放射線 E 2の入射方向が判定できる。 これにより線源の方位が求められる。  Figure 5 shows an example in which there is no front source, one source is on the left, and two sources are on the right. Even in this case, the incident direction of the radiation E 2 can be determined from the distance m 2 from the fall of the signal A to the right end due to the radiation E 2 and the distance n 2 from the fall of the signal B to the right end. Thereby, the azimuth | direction of a radiation source is calculated | required.
同様に、 信号 Aの立ち上がりから左端までの距離 m 3と、 信号 Bの立ち上がり から左端までの距離 n 3とから放射線 E 3の入射方向が判定できる。  Similarly, the incident direction of radiation E 3 can be determined from the distance m 3 from the rising edge of signal A to the left edge and the distance n 3 from the rising edge of signal B to the left edge.
また、 距離 m 4と距離 n 4とから放射線 E 4の入射方向が判定できる。 この場 合、 放射線 E 2と放射線 E 4による信号の立下り位置は、 各センサーにおいてそ の順序は入れ替わることがなく、 距離 m 2には距離 n 2、 距離 m 4には距離 n 4 と容易に対応付けることができる。  Further, the incident direction of the radiation E 4 can be determined from the distance m 4 and the distance n 4. In this case, the falling positions of the signals due to radiation E 2 and radiation E 4 do not change the order in each sensor, and distance n 2 is easy for distance m 2 and distance n 4 is easy for distance m 4. Can be associated.
ここの説明では、 センサー出力の増減を信号の立ち上がり、 立下りと表現した。 これは時系列での信号読み出しとしての意味合いであり、 図中の横軸は位 ¾を示 すとともに時間軸を示しているものとして理解されたい。  In the explanation here, the increase and decrease of the sensor output is expressed as the rise and fall of the signal. This is an implication for time-series signal readout, and it should be understood that the horizontal axis in the figure indicates the position and the time axis.
【実施例 3】  [Example 3]
図 6 ( a )は一次元センサー(1 1 )をリング状にしたものに、 Rの方向から放射 線が入射することを示している。 図 6 ( b )はそのときのセンサーからの出力信号 強度分布を示している。 リング状または多角形状にセンサー(1 1 )のユニットを配置するとき、 入射角 度によって感光面に入射する実効面積が変化する。 図 6のように入射線 Rを基点 として角度を取ると、 実効面積は Cos eの関数となり、 0度と 1 8 0度で極大と なる。 したがって、 極大となる 0度と 1 8 0度の点を結んだ直線上でピークの信 号強度が大きい方が入射の方向となる。 Fig. 6 (a) shows that radiation is incident from the direction of R on the one-dimensional sensor (1 1) in a ring shape. Figure 6 (b) shows the output signal intensity distribution from the sensor at that time. When the sensor (1 1) unit is arranged in a ring shape or polygonal shape, the effective area incident on the photosensitive surface varies depending on the incident angle. As shown in Fig. 6, when the angle is taken with the incident line R as the base point, the effective area is a function of Cose, and becomes a maximum at 0 degrees and 180 degrees. Therefore, the direction of incidence is the one with the highest peak signal intensity on the straight line connecting the maximum 0 ° and 1880 ° points.
C os 0の 0度と 1 8 0度近傍は角度に対する関数の変化が少なく、 分解能を高 く取ることが出来ない。 したがって、 センサーの前面にコリメータを配置して、 センサに対する傾き入射に対する制限を言 けることにより、 0度と 1 8 0度の点 で鋭いピークをもつ関数とすることができ、 分解能を高く出来る。 このとき、 コ リメータは 1 8 0度のところの単位センサーの両隣の単位センサーにも多少入射 が可能な程度のコリメ一シヨンとする。 図 7 ( a )は一次元センサー(1 1 )をリン グ状にしたものの外周にコリメータ(1 2 )を配置したものに、 Rの方向から放射 線が入射することを示している。 図 7 ( b )はそのときのセンサーからの出力信号 強度分布を示している。 このときの信号強度分布はシャープなものとなる。 コリ メータは鉛、 又は錫などの重金属で出来ていて、 放射線の阻止効果の大きい材料 の物とする。 図 8にその拡大図を示す。  In the vicinity of 0 degrees and 1800 degrees of C os 0, the change of the function with respect to the angle is small and the resolution cannot be taken high. Therefore, by placing a collimator in front of the sensor and saying the restriction on the tilted incidence on the sensor, it is possible to obtain a function with sharp peaks at the points of 0 ° and 180 °, and the resolution can be increased. At this time, the collimator is a collimation that allows a slight incident on the unit sensor on both sides of the unit sensor at 180 degrees. Fig. 7 (a) shows that the radiation is incident from the direction of R on the one-dimensional sensor (1 1) in the ring shape and the collimator (1 2) placed on the outer periphery. Figure 7 (b) shows the output signal intensity distribution from the sensor at that time. The signal intensity distribution at this time is sharp. The collimator is made of a heavy metal such as lead or tin and is made of a material with a high radiation blocking effect. Figure 8 shows an enlarged view.
図 8はセンサー(1 1 )とコリメータ(1 2 )との構成上の詳細を示している。 内 側と外側のコリメータの間隔 Da、 内側コリメータとセンサーとの間隔 Db、 これ らを調節することにより信号の分布関数を調節でき、 素子の間隔による不感角度 をなくすることが出来る。 なお、 開口部(1 3 )は全周に存在するが、 図 8では一 部省略してある。  FIG. 8 shows the structural details of the sensor (1 1) and the collimator (1 2). By adjusting the distance Da between the inner and outer collimators, the distance Db between the inner collimator and the sensor, the signal distribution function can be adjusted, and the dead angle due to the element spacing can be eliminated. Note that the opening (1 3) exists all around, but is partially omitted in FIG.
図 8に示すように、 コリメータの開口は単位センサーの感光面積と同じとする 力 複数の単位センサーで受光するようにしてもよい。 コリメータ(1 2 )は 2重 のリングからなり内側のリング( 1 2 a )と外側のリング( 1 2 b )とはスペース D aがとつてあり、 内側のリング(1 2 a )とセンサー(1 1 )との間にもスペース Db がとつてある。 この間隔を調整することにより上記のコリメーシヨンの強さを調 節することができる。 As shown in FIG. 8, the aperture of the collimator is the same as the photosensitive area of the unit sensor. The light may be received by a plurality of unit sensors. The collimator (1 2) consists of double rings, the inner ring (1 2 a) and the outer ring (1 2 b) are connected by a space Da, and the inner ring (1 2 a) and sensor ( 1 1) and space Db There is. By adjusting this interval, the strength of the collimation can be adjusted.
上記 1 8 0度に位置する単位センサーの両隣のセンサーに入射を許す程度のコ リメーションとするとき、 単位センサーの間隔による不感入射角度をなくするこ とが出来る。 ここでいう単位センサーとは放射線を受けて信号を発生する最小の ユニット、 すなわち検出素子を指しており、 分解能を決定する。  When the collimation is sufficient to allow the incident to the sensor adjacent to the unit sensor located at 1800 degrees, the insensitive incident angle due to the unit sensor interval can be eliminated. The unit sensor here refers to the smallest unit that generates a signal upon receiving radiation, that is, the detection element, and determines the resolution.
ここでのコリメ一タは 2重のリングとなっているが、 1重のリングであっても 信号強度分布は十分シャープであり、 1重のリングの実施形態を排除するもので はない。 また、 コリメータの開口部(1 3 )の数を奇数個とすると前後の感度比が 大となり、 線源位置の前方後方の識別が容易となる。 なお、 単位センサ一はリン グ全周にわたって設けられるものであるが、 開口部(1 3 )に面する箇所にのみ設 けるものであってもよい。  The collimator here is a double ring, but even with a single ring, the signal intensity distribution is sufficiently sharp, and this does not exclude the embodiment of the single ring. In addition, if the number of collimator openings (1 3) is an odd number, the front-rear sensitivity ratio becomes large, and the front and rear identification of the radiation source position becomes easy. The unit sensor is provided over the entire circumference of the ring, but it may be provided only at a location facing the opening (13).
【実施例 4】  [Example 4]
リング状一次元センサーを積層して、 リング状にセンサーが配置された仮想的 な平面に対して、 上下方向の角度に対する感度変化を持たせる実施例について説 明する。 図 9に示すように、 リング状一次元センサー(l la,l lb,l lc,l ld)を上から 第 1のセンサー(l la), 第 2のセンサー(l lb), 第 3のセンサー(11c)及ぴ第 4の センサー(l id)を積み重ねる。 これらセンサー間の空隙はあってもよいし、 密着 するものであってもよい。 このとき、 積み重ねるリング間のスペース D c、 コリ メータとセンサーの上下のスペース D dを変化させることにより、 上下方向の検 出範囲を設定することが出来る。  An embodiment will be described in which a ring-shaped one-dimensional sensor is stacked to change the sensitivity with respect to an angle in the vertical direction with respect to a virtual plane in which the sensors are arranged in a ring shape. As shown in Fig. 9, the ring-shaped one-dimensional sensor (l la, l lb, l lc, l ld) from above, the first sensor (l la), the second sensor (l lb), and the third sensor (11c) Stack the 4th sensor (l id). There may be a gap between these sensors, or they may be in close contact with each other. At this time, the detection range in the vertical direction can be set by changing the space Dc between the stacked rings and the space Dd above and below the collimator and sensor.
図 9において、 内側のコリメータ(1 2 a ) , 外側のコリメータ(1 2 b )はいず れも円筒形状であり、 図 9の上下方向に延びている。 図 9の右方向から放射線 R 1が飛来するとき、 各リング状センサーの第 1乃至第 4のすべてにおいて検出さ れ、 その強度は放射線 R 1に対して 0度に位置するセンサーの出力が最強であり. それに次いで 1 8 0度に位置するセンサーの出力が大である(図 1 0上段)。 同様 に、 図 9の右方向やや下方から放射線 R 2が飛来したときのセンサ一の信号出力 の例を図 1 0中段に示す。 この場合には、 第 4のセンサー(l id)の 0度位置のセ ンサ一はコリメータ(12a,12b)により放射線 R 2が阻止されるため、 信号出力が ない。 また、 第 3及び第 4のセンサー(l lc,l ld)の 1 8 0度位置のセンサーも同 じくコリメータ(12a,12b)により放射線 R 2が阻止されており、 信号出力がない。 また、 図 9の右方向やや上方から放射線 R 3が飛来したときの信号出力は、 図 1 0の下段に示されるように現れる。 いずれの図においても、 放射線の飛来方向 を 0度とし、 飛来方向からのずれを Θとして各センサーのリング上の位置を横軸 にとつている。 In FIG. 9, the inner collimator (1 2 a) and the outer collimator (1 2 b) are both cylindrical and extend in the vertical direction in FIG. When radiation R 1 comes from the right in Fig. 9, it is detected in all of the first to fourth of each ring sensor, and the intensity of the sensor located at 0 degree with respect to radiation R 1 is the strongest. It is. Next, the output of the sensor located at 180 degrees is the largest (the upper part of FIG. 10). Similarly, an example of the signal output of the sensor 1 when the radiation R 2 comes from the right or slightly below in FIG. 9 is shown in the middle of FIG. In this case, the sensor at the 0 degree position of the fourth sensor (lid) has no signal output because the radiation R 2 is blocked by the collimators (12a, 12b). In addition, radiation R 2 is blocked by the collimators (12a, 12b) of the third and fourth sensors (l lc, l ld) at the 180 ° position, and there is no signal output. In addition, the signal output when the radiation R 3 comes from the right direction in FIG. 9 appears slightly as shown in the lower part of FIG. In both figures, the radiation direction is 0 degrees, the deviation from the direction is Θ, and the position of each sensor on the ring is plotted on the horizontal axis.
この構成によれば、 リング状(あるいは多角形状)一次元センサーの配置される 仮想的な平面に対する線源の傾き角度が測定可能である。  According to this configuration, it is possible to measure the inclination angle of the radiation source with respect to a virtual plane where the ring-shaped (or polygonal) one-dimensional sensor is arranged.
なお、 この実施例においてもコリメータは 2重のリングとなっているが、 1重 のリングであっても信号強度分布は十分シャープであり、 1重のリングの実施形 態を排除するものではない。 産業上の利用可能性  In this embodiment, the collimator is also a double ring, but even with a single ring, the signal intensity distribution is sufficiently sharp, and this does not exclude the single ring embodiment. . Industrial applicability
本発明によれば、 多数飛来する放射線を積分強度分布として計測し、 かつ、 適 当な時間間隔で、 任意にその時間内で入射した放射線量と飛来方向を求められる ので、 計算方法も簡単であり、 また、 回路構成も極めて簡単化できる。  According to the present invention, a large number of incoming radiation is measured as an integrated intensity distribution, and the amount of incident radiation and the incoming direction can be determined at appropriate time intervals, and the calculation method is also simple. Yes, and the circuit configuration can be greatly simplified.
特に、 核利用施設のモニタリング、 核廃棄物のモニタリングにおいて、 その線 源方向の特定において極めて、 有効に機能するものとなる。  In particular, monitoring of nuclear facilities and monitoring of nuclear waste will function extremely effectively in identifying the source direction.

Claims

請 求 の 範 囲 The scope of the claims
1 . 1次元または 2次元のセンサーを空間に配置し、 前記センサーの前面にはコ リメータとして、 放射線に対し遮蔽機能をもつ鉛などの板に穴を開けたものを、 前記センサーと一定の距離を置いて配置し、 放射線の到来方向によって、 コリメ ータの穴の影がセンサー面上の異なる位置に形成されることにより線源の到来方 向を推定することを特徴とする高エネルギー線源方向判別システム 1. A one-dimensional or two-dimensional sensor is placed in a space, and a hole made in a plate of lead or the like having a shielding function against radiation is provided at a certain distance from the sensor as a collimator in front of the sensor. The high energy radiation source is characterized by estimating the arrival direction of the radiation source by forming the shadow of the collimator hole at different positions on the sensor surface according to the radiation arrival direction. Direction discrimination system
2 . 前記センサーは 1次元のセンサーを 2個以上空間的に離して平行に配置した ものであり、 そこからの信号出力分布から、 放射線 · X線などの透過性の強い線 源の到来方向を推定することを特徴とする請求の範囲第 1項記載の高エネルギー 線源方向判別システム 2. The sensor consists of two or more one-dimensional sensors arranged in parallel and spatially separated from each other. From the signal output distribution from there, the direction of arrival of highly transmissive radiation sources such as radiation and X-rays can be determined. The high energy radiation source direction discriminating system according to claim 1, characterized in that it is estimated.
3 . 前記センサーは 2次元のセンサーを 2個以上空間的に離して平行に配置した ものであり、 そこからの信号出力分布から、 放射線 · X線などの透過性の強い線 源の到来方向を推定することを特徴とする請求の範囲第 1項記載の高エネルギー 線源方向判別システム。 3. The sensor consists of two or more two-dimensional sensors that are spatially separated and arranged in parallel. From the signal output distribution from there, the arrival direction of a highly transmissive radiation source such as radiation and X-rays can be determined. 2. The high energy radiation source direction discriminating system according to claim 1, wherein the direction is determined.
4 . 一次元センサーまたは 2次元センサーをリング状または多角形状に配置する とともに、 前記センサーの外周にコリメータを配置し、 前記コリメータの開口は 該コリメータ直後の単位センサーに入射して透過した放射線が前記リング状また は多角形状の中心に対し反対側 1 8 0度の位置にある単位センサーの両隣の単位 センサーを照射可能なコリメーシヨンとし、 前記センサーの出力信号分布から線 源の方向を推定することを特徴とする高エネルギー線源方向判別システム。 4. A one-dimensional sensor or a two-dimensional sensor is arranged in a ring shape or a polygonal shape, and a collimator is arranged on the outer periphery of the sensor. Estimate the direction of the radiation source from the output signal distribution of the sensor with the collimation that can irradiate the unit sensor on both sides of the unit sensor located 180 ° opposite to the center of the ring or polygonal shape. High energy radiation source direction discrimination system.
5 . 一次元センサーまたは 2次元センサーをリング状または多角形状に配置する とともに、 前記センサーの外周にコリメータを配置し、 前記リング状または多角 形状に配置されたセンサーを複数個適当な間隔で積層して配置して、 前記センサ 一の出力信号分布からリング状または多角形状の配置平面に対する線源の傾き角 度を推定するとともに、 前記センサーの出力信号分布から線源の方向を推定する ことを特徴とする高エネルギー線源方向判別システム。 5. A one-dimensional sensor or a two-dimensional sensor is arranged in a ring shape or a polygonal shape, a collimator is arranged on the outer periphery of the sensor, and a plurality of sensors arranged in the ring shape or the polygonal shape are stacked at an appropriate interval. And estimating the inclination angle of the radiation source with respect to the ring-shaped or polygonal arrangement plane from the output signal distribution of the sensor, and estimating the direction of the radiation source from the output signal distribution of the sensor. High energy source direction discrimination system.
PCT/JP2006/302211 2005-02-04 2006-02-02 System for discriminating direction of high-energy ray source direction WO2006083011A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005028866A JP4164578B2 (en) 2005-02-04 2005-02-04 High energy source direction discriminating ring system
JP2005028865A JP4164577B2 (en) 2005-02-04 2005-02-04 High energy source direction discrimination system
JP2005-028865 2005-02-04
JP2005-028866 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006083011A1 true WO2006083011A1 (en) 2006-08-10

Family

ID=36777376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302211 WO2006083011A1 (en) 2005-02-04 2006-02-02 System for discriminating direction of high-energy ray source direction

Country Status (1)

Country Link
WO (1) WO2006083011A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135885A (en) * 1986-11-28 1988-06-08 Kasei Optonix Co Ltd X rays detector
JPH0244281A (en) * 1988-08-05 1990-02-14 Hitachi Medical Corp Positron ct apparatus scanning mechanism
JPH03160391A (en) * 1989-11-17 1991-07-10 Hamamatsu Photonics Kk Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
JP6105303B2 (en) * 2012-07-20 2017-03-29 任天堂株式会社 Information processing program, information processing apparatus, information processing system, and posture calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135885A (en) * 1986-11-28 1988-06-08 Kasei Optonix Co Ltd X rays detector
JPH0244281A (en) * 1988-08-05 1990-02-14 Hitachi Medical Corp Positron ct apparatus scanning mechanism
JPH03160391A (en) * 1989-11-17 1991-07-10 Hamamatsu Photonics Kk Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
JP6105303B2 (en) * 2012-07-20 2017-03-29 任天堂株式会社 Information processing program, information processing apparatus, information processing system, and posture calculation method

Similar Documents

Publication Publication Date Title
EP2459808B1 (en) Pir motion sensor system
US4930864A (en) Domed segmented lens systems
AU2012246084B2 (en) Passive infra red detector
US20130043396A1 (en) Motion detector with hybrid lens
US4375034A (en) Passive infrared intrusion detection system
US4321594A (en) Passive infrared detector
US6211522B1 (en) Passive infra-red intrusion sensor
US4707604A (en) Ceiling mountable passive infrared intrusion detection system
EP0113069B1 (en) Optical system for ceiling mounted passive infrared sensor
US6559448B1 (en) Passive infrared detector
JPS5931757B2 (en) Infrared radiation theft detection device
CA1313239C (en) Range insensitive infrared intrusion detector
EP1575331A2 (en) Beamsteerer
JPS5845758B2 (en) Infrared radiation theft detection device
US4772797A (en) Ceiling mounted passive infrared intrusion detector with prismatic window
JPS61175529A (en) Infrared penetration detector
JP4164577B2 (en) High energy source direction discrimination system
WO2006083011A1 (en) System for discriminating direction of high-energy ray source direction
EP1264292B1 (en) Pet resistant pir detector
US8368535B2 (en) Intrusion detector
JP4164578B2 (en) High energy source direction discriminating ring system
US8618999B2 (en) Microwave motion sensor with a reflector
EP3188145B1 (en) Ceiling mount intrusion detector with arbitrary direction detection capability
US20060289767A1 (en) Reflective mirror structure
JP2016176801A (en) Detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713354

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713354

Country of ref document: EP