JPH0244281A - Positron ct apparatus scanning mechanism - Google Patents
Positron ct apparatus scanning mechanismInfo
- Publication number
- JPH0244281A JPH0244281A JP63194406A JP19440688A JPH0244281A JP H0244281 A JPH0244281 A JP H0244281A JP 63194406 A JP63194406 A JP 63194406A JP 19440688 A JP19440688 A JP 19440688A JP H0244281 A JPH0244281 A JP H0244281A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- time
- cycle
- measurement
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 abstract description 24
- 238000005070 sampling Methods 0.000 abstract description 16
- 230000001360 synchronised effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002583 angiography Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はポジトロンCT装置に係シ、%に心電図同期心
造影法による計測時に好適な走査機構に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a positron CT apparatus, and more particularly to a scanning mechanism suitable for measurement by electrocardiogram-gated cardiac angiography.
ポジトロンCT装置(以下PCT装置と略称する。)は
、被検体に投与したポジトロン放出核種の被検体内分布
像をポジトロン消滅ガンマ線の計測データから構成さる
装置である。第2図はPCT装置のガンマ線検出部の全
体図である。被検体5を取シまいて複数個の検出リーン
グ4が円環状に配置されている。複数個の検出器リング
4け被検体5から放出されたガンマ線を検出してそれを
被検体内情報として受は取る。第3図はウオブリング走
査における検出器リング及び検出器の動きの一例を示し
ている。検出器リング4の中心点が軌道6上を動くと(
これをウオブリングという)、これに伴って各検出器は
円周7上に中心点をもつ円を描く。このウオブリングに
よって、装置が実際に装備している検出器の数よりもず
っと多くの位置でガンマ線を検出することができてサン
プリング密度が密になる。また検出器の配列による影響
も減少し、定量性が向上する。A positron CT device (hereinafter abbreviated as a PCT device) is a device that generates a distribution image within a subject of a positron-emitting nuclide administered to a subject from measurement data of positron annihilation gamma rays. FIG. 2 is an overall view of the gamma ray detection section of the PCT device. A plurality of detection rings 4 are arranged in an annular shape surrounding the subject 5. A plurality of four detector rings detect gamma rays emitted from the subject 5 and receive them as information inside the subject. FIG. 3 shows an example of the movement of the detector ring and detector in wobbling scanning. When the center point of the detector ring 4 moves on the orbit 6 (
This is called wobbling), and each detector draws a circle with its center point on the circumference 7. This wobbling allows gamma rays to be detected at far more positions than the number of detectors the device is actually equipped with, increasing the sampling density. In addition, the influence of detector arrangement is reduced, and quantitative performance is improved.
上記クオブリング機能を備えたPCT装置における従来
の走査機構では、装置の設計・調整時にウオブリング走
査速度を決定してそれを装置固有の走査速度としていた
。In the conventional scanning mechanism of a PCT apparatus equipped with the above-mentioned quabbling function, the wobbling scanning speed is determined at the time of designing and adjusting the apparatus, and is used as a scanning speed unique to the apparatus.
上記従来技術によるPCT装置において心電図同期心造
影法による計測(以下ゲート計測と略称する。)金行う
とき被検体5の心拍周期が走査周期と一致すると、サン
プリング時の検出器リング4の位置はいつも変化せず、
リングが常に静止しているのと等しい状態となる。また
、上記2つの周期が完全に一致せずとも短い周期で同期
するとサンプリング点の偏りが生じる。上記従来技術で
は以上のように心拍周期の計測に与える影響が大きくサ
ンプリング密度や分布状態が著しく低下する可能性があ
る。また得られるデータに再現性が乏しいため、定量性
、信頼性という点でも問題がある。When the PCT device according to the prior art performs measurement using electrocardiogram-gated cardiac imaging (hereinafter referred to as gate measurement), if the heartbeat cycle of the subject 5 matches the scanning cycle, the position of the detector ring 4 at the time of sampling will always be unchanged,
This is the same state as if the ring were always at rest. Furthermore, even if the two periods do not completely match, if they are synchronized with a short period, sampling points will be biased. As described above, the above-mentioned conventional technology has a large influence on the measurement of the heartbeat cycle, and there is a possibility that the sampling density and distribution condition may be significantly reduced. Furthermore, since the data obtained has poor reproducibility, there are also problems in terms of quantitativeness and reliability.
本発明の目的は、PCT装置におけるゲート計測時のサ
ンプリング特性及び定量性の低下を防ぐことにある。An object of the present invention is to prevent deterioration of sampling characteristics and quantitative performance during gate measurement in a PCT apparatus.
上記目的は、検出器リングを走査する機構を備え、前記
検出器リングの走査速度を変化できるポジトロンCT装
置において、前記検出器リングの走査周期が心電図心拍
周期と常に非同期となる工うに走査速度を調整する機構
を設けたことを特徴とするポジトロンCT装置、により
達成される。The above object is to increase the scanning speed so that the scanning period of the detector ring is always asynchronous with the electrocardiogram heartbeat period in a positron CT device that is equipped with a mechanism for scanning a detector ring and can change the scanning speed of the detector ring. This is achieved by a positron CT apparatus characterized by being provided with an adjustment mechanism.
PCT装置を1例えばウオブリング走査によシ常に、心
拍周期と同期しない走査周期で走査させることにより、
ゲート計測時に心拍周期が計測結果に与える影響はなく
なり、ゲート計測時にも通常計測時と同等のサンプリン
グ特性や定量性が保障できるようになる。By constantly scanning the PCT device using a wobbling scan, for example, at a scanning period that is not synchronized with the heartbeat cycle,
The influence of the heartbeat cycle on the measurement results during gated measurement is eliminated, and the same sampling characteristics and quantitative performance as during normal measurement can be guaranteed during gated measurement.
以下、本発明の一実施例を第1図により説明する。第1
図はウオブリング機能全備えたPCT装置での実施例を
示す図である。ウオブリング機能を備えたPCT装置に
おけるゲート計測時、まず心電計1にて心拍周期Tc’
を測定する。このTcとサンプリングの遅れ時間T1
と計測時間T2及び総計側時間T丁をマイクロコンピュ
ータ2等に入力して最適な走査周期Ts″を求める。第
5図に1、ひ拍周期と計測時間の関係を示す。第5図に
示す如く、心拍周期Tc0間に、計測時間T2の間だけ
計測を行い、計測は基準点から遅れ時間T1を置いて開
始される。以下T8の算出法を、検出器リング中心点位
置の変位をその軌道上で表した第4図にて説明する。An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows an example of a PCT device equipped with a full wobbling function. During gate measurement with a PCT device equipped with a wobbling function, first the heartbeat cycle Tc' is measured using the electrocardiograph 1.
Measure. This Tc and the sampling delay time T1
, the measurement time T2, and the total time T2 are input into the microcomputer 2, etc. to determine the optimal scanning period Ts''. Fig. 5 shows the relationship between the beat period and the measurement time. As shown in Fig. 5. As shown, measurement is performed only during the measurement time T2 during the heartbeat cycle Tc0, and the measurement is started after a delay time T1 from the reference point.The calculation method for T8 is as follows: This will be explained with reference to FIG. 4, which is shown on orbit.
心拍周期Tckサンブリジグ時間T2で割ってその商を
Nl、余りをαとする。但しNlは自然数、αはTzよ
りも小さい正値である。次に、仮に心拍周期TcのN2
倍とサンプリング時間T2の(Nl −1)倍と先に設
定したαとの和を走査周期Tsと定義する。The heartbeat cycle Tck is divided by the sampling time T2, the quotient is Nl, and the remainder is α. However, Nl is a natural number, and α is a positive value smaller than Tz. Next, if the heartbeat cycle Tc is N2
The sum of (Nl −1) times the sampling time T2 and the previously set α is defined as the scanning period Ts.
すなわち、
Ts=N2XTc+(Nl 1)XTz+α −(
1)但しN2はOまたは自然数である。上記のようにT
mf設定することによってサンプリング時間の最初の瞬
間の検出器リング4の位置が、その(N*+1)回前の
サンプリング時間の最後の瞬間の検出器リング4の位置
と一致するようになる。That is, Ts=N2XTc+(Nl 1)XTz+α −(
1) However, N2 is O or a natural number. T as above
By setting mf, the position of the detector ring 4 at the first moment of the sampling time matches the position of the detector ring 4 at the last moment of the (N*+1) previous sampling time.
すなわち、第2周期では前周期よりもTzだけ後へずれ
た時点から計測を開始する。走査速度をゆっくりとし総
計側時間を長くするのならNzを犬きく設定し、逆なら
ばNzft小さく設定すればよい。N2は走査装置の速
度設定範囲や総計側時間T〒などを考慮して定める。ま
た走査周期TgのN3倍が計測時間T2で割り切れると
きのN3が。That is, in the second cycle, measurement is started from a time point shifted later than the previous cycle by Tz. If the scanning speed is to be slowed and the total time is to be lengthened, Nz should be set sharply, and if the scanning speed is to be slowed down, Nzft may be set to be small. N2 is determined by considering the speed setting range of the scanning device, the total time T〒, etc. Also, when N3 times the scanning period Tg is divisible by the measurement time T2, N3 is.
検出器リング4のそのクオブリング軌道上各点での存在
時間が等しくなるために最小限必要な走査回数である。This is the minimum number of scans required to make the presence time of the detector ring 4 equal at each point on the orbit of the quab ring.
但しNsは自然数である。したがって総計側時間は走査
周期のN3倍の倍数でなくてはならないので、走査周期
TIIのN3倍の倍数で最もTtに近いものを実質計測
時間11丁とする。However, Ns is a natural number. Therefore, the total time must be a multiple of N3 times the scanning period, so the actual measurement time 11 is determined as a multiple of N3 times the scanning period TII that is closest to Tt.
以上のようにして求めた走査周期Tgのコンピュータ出
力信号をモータードライバなどで周波数による速度情報
に変換して、それをパルスモータ3等に入力する。パル
スモータ3は周波数により回転速度を調整され、それが
走査装置の駆動機構に伝わることによシウオブリング走
査速度が設定される。The computer output signal with the scanning period Tg obtained as described above is converted into frequency-based speed information using a motor driver or the like, and the information is input to the pulse motor 3 or the like. The rotational speed of the pulse motor 3 is adjusted according to the frequency, and this is transmitted to the drive mechanism of the scanning device, thereby setting the scanning speed of the scanning ring.
上記実施例にてT′τ時間の計測を行えば、機械的には
偏りのまったくないサンプリングが行える。If the T'τ time is measured in the above embodiment, mechanically unbiased sampling can be achieved.
本発明によれば、ゲート計測時のサンプリング特性が著
しく向上するのでより良好な画像が得られる。また従来
の方法による計測ニジも短時間で信頼性のあるデータが
得られ、定量性もよくなるという効果がある。According to the present invention, the sampling characteristics during gate measurement are significantly improved, so that better images can be obtained. In addition, reliable data can be obtained in a short period of time when measurement is performed using conventional methods, and quantitative performance is also improved.
第1図は本発明の実施例図、第2図は検出器部図、第3
図はウオブリング走査における検出器リング及び検出器
の軌道図、第4図は検出リング中心位置のウオブリング
による変位図、第5図は心拍周期と計測時間の関係を示
す図である。
1・・・被検体の心拍周期を測定するだめの心電計、2
・・・最適走査周期算出用マイクロコンピュータ、3・
・・走査速度調整用パルスモータ、4・・・検出器リン
グ、5・・・被検体、6・・・検出器リングの中心点の
軌道、7・・・ウオブリング走査のとき各検出器の運不
唄Fig. 1 is a diagram of an embodiment of the present invention, Fig. 2 is a diagram of a detector section, and Fig. 3 is a diagram of an embodiment of the present invention.
4 is a diagram showing the displacement of the center position of the detection ring due to wobbling, and FIG. 5 is a diagram showing the relationship between heartbeat cycle and measurement time. 1... Electrocardiograph for measuring the heartbeat cycle of the subject, 2
...Microcomputer for calculating optimum scanning period, 3.
...Pulse motor for scanning speed adjustment, 4...Detector ring, 5...Object, 6...Trajectory of the center point of the detector ring, 7...Operation of each detector during wobbling scanning. Fuuta
Claims (1)
ングの走査速度を変化できるポジトロンCT装置におい
て、前記検出器リングの走査周期が心電図心拍周期と常
に非同期となるように走査速度を調整する機構を設けた
ことを特徴とするポジトロンCT装置。1. In a positron CT device equipped with a mechanism for scanning a detector ring and capable of changing the scanning speed of the detector ring, the scanning speed is adjusted so that the scanning period of the detector ring is always asynchronous with the electrocardiogram heartbeat period. A positron CT device characterized by being equipped with a mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63194406A JPH0244281A (en) | 1988-08-05 | 1988-08-05 | Positron ct apparatus scanning mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63194406A JPH0244281A (en) | 1988-08-05 | 1988-08-05 | Positron ct apparatus scanning mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0244281A true JPH0244281A (en) | 1990-02-14 |
Family
ID=16324074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63194406A Pending JPH0244281A (en) | 1988-08-05 | 1988-08-05 | Positron ct apparatus scanning mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244281A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006083011A1 (en) * | 2005-02-04 | 2006-08-10 | National University Corporation Shizuoka University | System for discriminating direction of high-energy ray source direction |
-
1988
- 1988-08-05 JP JP63194406A patent/JPH0244281A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006083011A1 (en) * | 2005-02-04 | 2006-08-10 | National University Corporation Shizuoka University | System for discriminating direction of high-energy ray source direction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3343122B2 (en) | An automated coincidence timing calibration method for PET scanners | |
US6713766B2 (en) | Gamma camera with capability of modifying study during exam | |
US7263157B2 (en) | Imaging tomography apparatus with two acquisition systems, and method for determining their system angles | |
EP0172929A1 (en) | Three dimensional time-of-flight positron emission camera system | |
US5274549A (en) | Method of deriving a cardiac ejection fraction from nuclear image data | |
US4245646A (en) | Nuclear cardiology apparatus and method | |
JP2001004750A (en) | Correction of spatial change in dead time of monolithic scintillator-based detector in medical image processing system | |
JPH049417B2 (en) | ||
JP2001356172A (en) | Positron imaging | |
JPH0244281A (en) | Positron ct apparatus scanning mechanism | |
JP4411323B2 (en) | Improved radiation detection method and apparatus | |
US6198104B1 (en) | Randoms correction using artificial trigger pulses in a gamma camera system | |
US7667199B2 (en) | System and method for ascribing times to events in a medical imaging system | |
JPH0933658A (en) | Positron imaging equipment | |
Bunce et al. | Evaluation of free‐breathing three‐dimensional magnetic resonance coronary angiography with hybrid ordered phase encoding (HOPE) for the detection of proximal coronary artery stenosis | |
SU995739A1 (en) | Podograph | |
JPH04218791A (en) | Simultaneous counter | |
JPH0511512Y2 (en) | ||
JPS5814071A (en) | Simultaneous counter in a positron ct device | |
JPH06342075A (en) | Positron ct apparatus | |
GB2164230A (en) | Three-dimensional time-of-flight positron emission camera system | |
JP2015085187A (en) | Photon-counting type x-ray ct apparatus and synchronization program | |
JP2000147127A (en) | Positron tomograph | |
JPH0545149B2 (en) | ||
JPH0551110B2 (en) |