WO2006080280A1 - Cryogenic fluid supply/discharge device and superconducting device - Google Patents

Cryogenic fluid supply/discharge device and superconducting device Download PDF

Info

Publication number
WO2006080280A1
WO2006080280A1 PCT/JP2006/300980 JP2006300980W WO2006080280A1 WO 2006080280 A1 WO2006080280 A1 WO 2006080280A1 JP 2006300980 W JP2006300980 W JP 2006300980W WO 2006080280 A1 WO2006080280 A1 WO 2006080280A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryogenic fluid
rotary joint
shaft
rotary
joint shaft
Prior art date
Application number
PCT/JP2006/300980
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Takahashi
Toshio Takeda
Original Assignee
Eagle Industry Co., Ltd.
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co., Ltd., Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Eagle Industry Co., Ltd.
Priority to JP2007500500A priority Critical patent/JP4602397B2/en
Publication of WO2006080280A1 publication Critical patent/WO2006080280A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/087Joints with radial fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/04Joints or fittings for double-walled or multi-channel pipes or pipe assemblies allowing adjustment or movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/185Adjustable joints, joints allowing movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a cryogenic fluid for supplying and discharging a cryogenic fluid such as liquid nitrogen or liquid helium to a portion requiring cooling through a rotating shaft of a rotating machine such as a superconducting motor.
  • the present invention relates to a fluid supply / discharge device and a superconducting device using the device. More specifically, it has excellent heat insulation, minimizes leakage of cryogenic fluid to the outside, and is compact with very little power loss.
  • the present invention relates to a low-cost cryogenic fluid supply / discharge device with excellent durability, reliability and maintainability, and a superconducting device using the device.
  • a superconducting device such as a superconducting motor needs to supply a cryogenic fluid such as liquid nitrogen or liquid helium to a place where superconducting is required.
  • a cryogenic fluid such as liquid nitrogen or liquid helium
  • FIG. 8 of Japanese Patent Application Laid-Open No. 2004-235625 conceptually shows an apparatus for supplying and discharging a cryogenic fluid for supplying a cryogenic fluid to a rotor portion of a superconducting motor.
  • the rotor assembly has a single disk-like rotor, and the configuration of the cryogenic fluid supply / discharge device for supplying the cryogenic fluid around it is simple. It is.
  • FIG. 9 of Japanese Patent Application Laid-Open No. 2003-65477 discloses that a cryogenic fluid is used as a rotor of a superconducting motor.
  • a cryogenic fluid supply / discharge device for supplying to the assembly a double pipe structure is used.
  • One of the double pipes is used as a cryogenic fluid inflow passage and the other as an outflow passage.
  • the superconducting motor described in Japanese Patent Laid-Open No. 2003-65477 there is a single flow path to which the cryogenic fluid is supplied, and there is a structure in which a plurality of positions are simultaneously cooled by a plurality of flow paths. is not.
  • the vacuum cavity is used to insulate the entire outer periphery of the mouth assembly (see FIG. 16 in Patent Document 2). ). Therefore, if an attempt is made to cool a plurality of rotors of a superconducting device using the device disclosed in Japanese Patent Laid-Open No. 2003-65477, the vacuum cavity increases and the entire device increases.
  • FIG. 7 of Japanese Patent No. 2838013 there is also known a cryogenic fluid supply / discharge device that attempts to circulate a refrigerant through a shaft hole formed in a rotating shaft of a rotor rear assembly. Yes.
  • the cryogenic fluid supply / discharge device shown in Patent Document 3 there is a single flow path to which the cryogenic fluid is supplied, and a structure in which a plurality of flow paths are used to simultaneously cool a plurality of locations. It ’s a good idea.
  • this conventional rotary joint is not premised on supplying a cryogenic fluid, and has a power that is not considered in the heat insulation.
  • the apparatus for vacuum insulation becomes too large to be realistic.
  • covering each flow path through which the cryogenic fluid circulates with a vacuum insulation space In addition, a flow path for evacuation is required, which is not realistic.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-235625 (FIG. 8)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-65477 (Fig. 9)
  • Patent Document 3 Japanese Patent No. 2838013
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-19912
  • the present invention has been made in view of such a situation, and an object thereof is to be a compact in which the heat loss is excellent, the leakage of the cryogenic fluid to the outside is minimized, the power loss is extremely small, and the force is also small. It is to provide a low-cost cryogenic fluid supply / discharge device excellent in durability, reliability and maintainability, and a superconducting device using the device.
  • a cryogenic fluid supply / discharge device comprises:
  • a cryogenic fluid supply / discharge device for supplying and discharging a cryogenic fluid such as liquid nitrogen and liquid helium to a plurality of cooling-necessary locations in a rotor assembly, wherein a rotary fluid is provided at a shaft end of a rotating shaft of the rotor assembly.
  • a joint is connected, and the rotary joint is
  • a rotary joint shaft that is detachably connected to the rotary shaft of the rotor assembly; and a casing that is disposed so as to cover the rotary joint shaft and is stationary with respect to the rotation of the rotary joint shaft;
  • a plurality of joint-side flow paths are formed on the rotary joint shaft,
  • a rotation communication hole is formed on the outer periphery of the rotary joint shaft so as to communicate with the joint-side flow path at positions of different axial lengths along the axial direction of the respective joint-side flow paths.
  • a rotation ring is fixed to the outer periphery of the rotary joint shaft at every other rotation communication hole position in the axial direction.
  • fixed connection ports communicating with the rotary communication holes or the rotary ring holes are formed at a plurality of axial positions corresponding to the rotary communication holes and the rotary ring holes, respectively.
  • a seal member that slides against the axial surface of the rotary ring and seals between the rotary communication holes adjacent to each other in the axial direction is provided inside the casing, and the center of the rotary joint shaft Is formed with an axial hole for vacuuming that communicates with the vacuum insulation space of the rotor assembly along the axial direction.
  • a vacuum fixed connection port communicating with the vacuum drawing shaft hole is formed in a portion located on the axially outer side of the plurality of fixed connection ports,
  • At least a portion that contacts the cryogenic fluid is made of a member having better heat insulation than metal
  • a part of the casing in which the fixed connection port for vacuum and the fixed connection port are formed, and at least a portion in contact with the cryogenic fluid is made of a member having better heat insulation than metal.
  • the rotating ring is fixed to the outer periphery of the rotary joint shaft at the position of every other rotational communication hole in the axial direction, and the seal member force slides with respect to the axial surface of the rotating ring.
  • the gap between the cryogenic fluid flow paths adjacent to each other in the axial direction is sealed within one single. For this reason, the number of sealing members is reduced through the part where cryogenic fluid flows from the fixed connection port formed in the stationary member to the rotating communication hole or rotating ring hole, which is the rotating part.
  • the cryogenic fluid can be efficiently sealed.
  • a vacuum suction shaft hole communicating with the vacuum heat insulating space of the rotor assembly is formed along the axial direction at the center of the rotary joint shaft, and a plurality of fixed holes are fixed to the casing.
  • a fixed connection port for vacuum communicating with the evacuation shaft hole is formed in a portion located on the outer side in the axial direction of the connection port (the farthest side of the connection partial force with the rotor assembly). For this reason, the vacuum insulation space is formed on the side farthest from the connection part force with the rotor assembly, reaches the vacuum insulation space of the rotor assembly through the evacuation shaft hole, and the hollow portion of the rotor assembly is connected to the vacuum insulation space. Can be.
  • the flow path of the cryogenic fluid from the plurality of fixed connection ports formed in the casing through the rotation communication hole or the rotation ring hole of the rotary joint shaft to the joint side flow path in the rotary joint shaft is It is efficiently insulated by the vacuum heat insulation space formed on the outer side in the axial direction of the rotary joint shaft and the member having better heat insulation than metal.
  • the hollow portion of the rotary shaft of the rotor assembly in the superconducting device is in communication with the evacuation shaft hole of the rotary joint shaft, the hollow portion also becomes a vacuum heat insulating space, and the tube disposed inside the hollow portion is a vacuum insulation space. Thermal insulation is improved.
  • a cryogenic fluid circulates inside the tube.
  • At least a portion of the rotary joint shaft and the rotary ring that is in contact with the cryogenic fluid is formed of a member that has better heat insulation than metal, and a fixed connection port for vacuum.
  • a part of the casing in which the fixed connection port is formed and at least a part in contact with the cryogenic fluid is formed of a member having better heat insulation than metal.
  • the cryogenic fluid is heated and gas is heated at all points from the stationary part of the rotary joint to the rotating part and the part requiring cooling in the rotor assembly part of the rotating partial force superconducting device. Can be minimized.
  • the inlet of the cryogenic fluid and A fixed connection port is formed adjacent to the axial direction, and a cryogenic fluid flow path extending from the stationary member to the rotating member is formed adjacent to the axial direction.
  • a space is formed.
  • the seal location for preventing leakage of cryogenic fluid to the outside of the casing inside the casing is one of the axially inner sides of the rotary joint shaft (the side close to the connecting portion with the rotary shaft of the rotor assembly). It becomes a power station and the leakage of cryogenic fluid to the outside can be minimized.
  • the fixed connection port serving as the inlet for the cryogenic fluid is formed adjacent to the axial direction, and the flow path of the cryogenic fluid from the stationary member to the rotating member is in the axial direction. Since they are formed adjacent to each other, they can cool each other and block the heat input path from the outside.
  • the rotary joint is compact, and the heat transfer area with the outside can be minimized.
  • the cryogenic fluid can be introduced into the hollow portion of the rotor assembly from the rotary joint without using the vacuum heat insulating flexible tube.
  • the rotary joint shaft is formed with a vacuum evacuating shaft hole therethrough, and the periphery of the axially outer end portion of the rotary joint shaft communicates with the vacuum fixed connection port.
  • the shaft end is a vacuum chamber.
  • the cover member on the axially outer end side of the rotary joint shaft in the casing does not necessarily need to be composed of a heat insulating member. You may comprise with a metal member.
  • the shaft end vacuum chamber is provided with a bearing for rotatably holding the rotary joint shaft with respect to the inside of the casing. Space can be used effectively by placing bearings in the shaft end vacuum chamber.
  • the body of the casing on which the bearing outer ring in the bearing is mounted may be made of metal so that the outer periphery is warmed so that the bearing does not freeze.
  • the superconducting device Fixed connection port located at a close position Return port for cryogenic fluid.
  • a drain fixed connection port is formed at a position closer to the superconducting device than the fixed connection port corresponding to the return port.
  • the member strength fiber-reinforced plastic is excellent in heat insulation.
  • FRP member strength fiber-reinforced plastic
  • the sealing member force is a bellows seal.
  • the bellows seal is preferably a metal bellows seal consisting of a metal bellows and a sliding part.
  • this metal bellows is a metal bellows using a nickel-base alloy such as Inconel 718, which has excellent low temperature brittleness. More preferably, it is rose.
  • Metal bellows seals are often used as seals for cryogenic fluids, and the amount of leakage is small.
  • the stationary bellows seal forms a mechanical seal together with the rotating ring, and the rotary shaft diameter of the rotary joint can be set to the minimum diameter that can secure the required flow path. Can be determined and is not governed by the diameter of the rotating shaft in the superconducting device.
  • the overall width dimension of the rotating ring can be shortened.
  • the sliding portion of the bellows seal is equipped with a fluorine resin member that slides with respect to the axial surface of the rotating ring.
  • the bellows is placed on the stationary side, elastically biased in the axial direction by the bellows, and the sliding part is in close contact with the sliding surface of the rotating ring attached to the outer periphery of the rotary shaft. I do.
  • Fluororesin is particularly preferred because of its excellent heat insulation, cold resistance and durability.
  • a sleeve made of a member having better heat insulation than metal is attached to the outer periphery of the rotary joint shaft, and the rotary ring is positioned by the sleeve so that the rotary joint is positioned.
  • the rotating ring that forms part of the mechanical seal is inserted into the rotary joint shaft in sequence using a sleeve made of heat insulating material such as FRP, and the sleeve collar is bolted or screwed from the shaft end. Tighten them together to prevent rotation.
  • the use of the sleeve facilitates the mounting and positioning of the rotating ring.
  • the sleeve is made of a resin having excellent heat insulation, the heat insulation of the portion that comes into contact with the cryogenic fluid is improved.
  • the casing is partitioned by the seal member so as to communicate with a fixed connection port formed in the casing and a rotation communication hole formed in the rotary joint shaft.
  • the cryogenic fluid is introduced into each fixed connection port so that the pressure in each inflow space for the cryogenic fluid formed is substantially the same pressure.
  • the cryogenic fluid supply / discharge device comprises:
  • a cryogenic fluid supply and discharge device that supplies and discharges cryogenic fluid such as liquid nitrogen and liquid helium to and from the places where cooling is required in the rotor assembly.
  • a rotary joint is connected to the shaft end of the rotary shaft of the rotor assembly, and the rotary joint includes a rotary joint shaft that is detachably connected to the rotary shaft.
  • the rotary joint shaft includes a plurality of joint-side passages formed along the axial direction of the rotary joint shaft so as to communicate with the portion requiring cooling, and the rotary joint so as to communicate with the joint-side passage.
  • a plurality of rotation communication holes formed on the outer periphery of the shaft, a communication hole for evacuation formed along the axial direction of the rotary joint shaft so as to communicate with the vacuum heat insulation space of the rotor assembly, and the vacuum suction A vacuum communication hole formed on the outer periphery of the rotary joint shaft so as to communicate with the communication hole,
  • the casing communicates with the rotation communication hole at a position corresponding to the rotation communication hole.
  • a seal member for preventing leakage of the cryogenic fluid between the rotation communication hole and the fixed connection port is disposed.
  • the cryogenic fluid is supplied and discharged from the outer peripheral side force of the rotary joint shaft of the rotary joint.
  • Parts such as a cooling fluid source are not arranged on the anti-load side of the joint, and motor loads such as propellers can be easily and continuously connected. Therefore, if the present invention is used, the entire apparatus can be made compact even if a plurality of motor loads are connected.
  • a superconducting device has the cryogenic fluid supply / discharge device described above.
  • the rotary shaft of the rotor assembly is formed with a hollow portion as the vacuum heat insulating space
  • the hollow portion there are a plurality of joint-side flow passages formed at different positions along the circumferential direction of the rotary joint shaft, and a plurality of tubes respectively communicating with the plurality of cooling-required portions in the rotor assembly.
  • the hollow portion communicates with the surroundings of each cooling-required portion where the cryogenic fluid is introduced, and is maintained in an adiabatic vacuum state through the vacuum fixed connection port and the vacuuming shaft hole.
  • the superconducting device is not particularly limited, and examples thereof include a superconducting motor and a superconducting generator.
  • the superconducting motor is not limited to the axial gap type superconducting motor, and the present invention can also be applied to a radial gap type superconducting motor.
  • the rotor of the rotating shaft is generally formed in a disk shape, and the stator is fixed to the casing through an axial gap between the rotor and the rotor.
  • a radial gap type superconducting motor generally has a rotating shaft. A rotor is fixed to the outer periphery along the longitudinal direction, and a stator is fixed to the casing via a radial gap between the rotor and the rotor.
  • the rotor assembly of the superconducting device is a rotor assembly of an axial gap type superconducting motor
  • a plurality of disk-like rotors are fixed to the rotation shaft of the rotor assembly at predetermined intervals along the axial direction,
  • the cryogenic fluid flows through a tube disposed in the hollow portion of the rotor assembly so as to cool the coils of each disk-like rotor.
  • stator cores fixed to a casing of the superconducting device are respectively arranged in front and rear positions in the axial direction of the respective disk-like rotors in the rotor assembly of the superconducting device.
  • the rotor assembly of the superconducting device is a rotor assembly of a radial gap type superconducting motor
  • a rotor is fixed to the rotation shaft of the rotor assembly along the axial direction, and the stator is fitted with a predetermined radial gap in the radial direction perpendicular to the axial direction of the rotor. It may be fixed to the thing.
  • the cryogenic fluid flows through a tube disposed in a hollow portion of the rotor assembly so as to cool a coil constituting the rotor.
  • the present invention it is excellent in heat insulation, minimizing leakage of cryogenic fluid to the outside, minimizing power loss, and having excellent durability, reliability, and maintainability. It is possible to provide a low-cost cryogenic fluid supply / discharge device and a superconducting device using the device.
  • FIG. 1 is a schematic sectional view of a superconducting motor according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of the rotary joint shown in FIG.
  • FIG. 3 is a view taken along the line III-III in FIG.
  • FIG. 4 is an enlarged sectional view showing the relationship between the metal bellows seal shown in FIG. 2 and the flow path.
  • a superconducting motor 2 according to an embodiment of the present invention is housed in an inner portion of a nosing / housing 4.
  • a pair of bearings 6 are fixed to the housing 4, and these bearings 6 enable the rotary shaft 10 of the rotor assembly 20 in the motor 2 to rotate.
  • the rotor assembly 20 includes a rotating shaft 10 and four disk-shaped rotors 16 fixed at predetermined intervals along the axial direction of the rotating shaft 10.
  • a stator 12 fixed to the casing 11 of the motor 2 is disposed at a predetermined axial gap at the front and rear positions of the disk-like rotor 16 in the axial direction.
  • a magnet 14 is embedded in the stator 12, and a rotational force is applied to the rotor 16 between the stator 12 and a superconducting coil 15 disposed on the rotor 16.
  • the casing 11 is fixed to the housing 4.
  • the superconducting motor 2 of this embodiment is an axial gap type superconducting motor.
  • the rotating shaft 10 is driven to rotate by the rotational force applied to the rotor 16, and the propeller 8 mounted on the outside of the housing 4 is rotated.
  • the rotating shaft 10 of the rotor assembly 20 has a hollow portion (vacuum heat insulating space) 22 at the center of the shaft core.
  • each supply tube 24 communicates with an internal cooling space (a place where cooling is necessary) 25 of each disk-like rotor 16 mounted on the outer periphery of the rotating shaft 10 at predetermined intervals along the axial direction.
  • a heat insulating vacuum chamber (not shown) is formed around the internal cooling space 25 of each rotor 16, and each vacuum chamber communicates with the hollow portion 22 of the rotating shaft 10.
  • Superconducting coils 15 are arranged in the internal cooling spaces 25 of the respective rotors 16, and the superconducting state is exhibited by the cryogenic fluid supplied to the internal cooling spaces 25 through the supply tubes 24. It will be cooled down to a low temperature.
  • the cryogenic fluid to be supplied is not particularly limited, and examples thereof include liquid nitrogen and liquid helium.
  • each rotor 16 In the internal cooling space 25 of each rotor 16, a supply tube 24 and a discharge tube 26 are provided. The cryogenic fluid that is connected and supplied to the internal cooling space 25 is discharged through each discharge tube 26.
  • the rotating shaft 10 in the superconducting motor 2 is connected to a motor load such as a propeller at one end on the drive side, and a rotary joint 30 constituting a cryogenic fluid supply / discharge device is connected to the other end on the non-drive side. Is done.
  • the rotary joint 30 includes a rotary handle shaft 32 and a joint housing 38 that rotatably holds the rotary handle shaft 32 via a bearing 74.
  • a flange 34 is formed in a body.
  • the flange 34 is hermetically connected to one end of the rotating shaft 10 on the side opposite to the driving side with a bolt, a gasket, or the like.
  • a cold-resistant packing is attached to the joint surface between the flange 34 and one end of the rotating shaft 10 on the non-driving side.
  • the cold-resistant packing is not particularly limited, and examples thereof include a fluorine resin packing such as PTFE, a metal packing made of a metal such as aluminum or stainless steel, or a composite packing combining these.
  • a vacuum pulling shaft hole 36 penetrating along the axial direction is formed in the center of the shaft center of the rotary joint shaft 32, and the shaft hole 36 is a hollow portion 22 at the center of the flange 34. It communicates with.
  • the rotary joint shaft 32 includes a shaft of the rotary joint shaft 32 at different positions along the circumferential direction of the rotary joint shaft 32 at the axially inner end.
  • a plurality of joint-side flow paths 64 are formed along the direction. In the illustrated example, five joint-side flow paths 64 are formed at equal intervals in the circumferential direction, and the flow path lengths in the axial direction are different from each other.
  • a single discharge tube 26 is connected to the axially inner opening end 64a of the joint-side flow path 64 having the shortest flow path length.
  • the single discharge tube 26 is connected to the four discharge tubes 26 shown in FIG. 1 inside the hollow portion 22 of the rotating shaft 10.
  • the four supply tubes 24 shown in FIG. 1 are connected to the open ends 64a of the remaining four joint-side flow paths 64 shown in FIG.
  • the axial lengths of the joint-side flow paths 64 formed inside the rotary joint shaft 32 are different at predetermined intervals, and are different from each other in the axial direction of each flow path 64 (the anti-joint of the rotary joint shaft 32).
  • Side) end Rotational communication holes 66 that open to the outer periphery of the rotary joint shaft 32 are connected in the vicinity.
  • a rotary ring 60 On the outer periphery of the rotary joint shaft 32, a rotary ring 60 is air-tightly mounted at a position corresponding to the rotary communication hole 66 arranged on the innermost side in the axial direction. The rotating ring 60 is airtightly attached at the position of the rotation connecting hole 66. Between the axial directions of the rotary ring 60, an intermediate sleeve 70 is mounted on the outer periphery of the rotary joint shaft 32, and an end sleeve 72 is bolted or screwed on the outer periphery of the outer end of the rotary joint shaft 32 in the axial direction. The rotating ring 60 and the intermediate sleeve 70 are collectively stopped. That is, the rotary ring 60 is fixed to the outer periphery of the rotary joint shaft 32 and is rotated together.
  • a rotating ring hole 62 communicating with a rotating communication hole 66 formed in a portion where the rotating ring 60 is located is formed on the outer periphery of the rotating ring 60.
  • the intermediate sleeve 70 has a rotary communication hole 6 formed in a portion where the intermediate sleeve 70 is located.
  • a communication hole 71 communicating with 6 is formed.
  • the casing 38 is a bearing located on the outer side in the axial direction of the rotary joint shaft 32.
  • An end cover 40 in which 74 is mounted is provided, and a bearing retaining ring 46 in which a bearing 74 on the inner side in the axial direction of the rotary joint shaft 32 is mounted.
  • connection port forming rings 42a to 42g and the bellows retaining ring 44 are alternately and airtightly connected, and the whole constitutes the casing 38. Yes.
  • a single or a plurality of vacuum fixed connection ports 50 are formed in the connection port forming ring 42a located on the outermost side in the axial direction of the rotary joint shaft 32.
  • the connection port 50 communicates with a shaft end vacuum chamber 90 formed in a gap between the outer periphery of the rotary joint shaft 32 in the axial direction and the end cover 40 inside the casing 38.
  • a vacuum evacuation device is connected to the connection port 50, and the shaft end vacuum chamber 90 and the hollow portion 22 are depressurized through the connection port 50 to maintain a high vacuum state.
  • the shaft end vacuum chamber 90 communicates with a vacuum pulling shaft hole 36 formed in the rotary joint shaft 32.
  • connection port forming ring 42a On the axially inner side of the connection port forming ring 42a in which the vacuum fixed connection port 50 is formed, there is a supply fixed connection port 52 for supplying a cryogenic fluid via the bellows holding ring 44.
  • connection port forming rings 42b to 42e each formed are arranged.
  • Cryogenic fluid such as liquid-nitrogen or liquid-helium at the same temperature is supplied from the connection ports 52 formed in the four connection-port-forming rings 42b to 42e at the same pressure. It is.
  • connection port 52 The cryogenic fluid supplied from each connection port 52 is supplied to the internal cooling space 25 of the disk-like rotor 16 via the supply tube 24 shown in FIG.
  • connection port 52 positioned on the outermost side in the axial direction is formed on the rotary ring 60 positioned on the outermost side in the axial direction.
  • the rotary ring 60 is formed at a position communicating with the rotary ring hole 62.
  • the sliding part of the tip of the metal bellows seal 80 rotates and slides on both sides in the axial direction of the rotating ring 60 to seal the space flow path 92 between the rotating ring hole 62 and the connection port 52. It has become.
  • Each metal bellows seal 80 is composed of a metal bellows and a tip sliding portion, and the base end portion of the metal bellows is fixed to the inside of the bellows holding ring 44 and can be expanded and contracted in the axial direction. The panel is urged so that the tip sliding portion is pressed against each side of the rotating ring 60.
  • the tip sliding portion of the bellows seal 80 is made of, for example, fluorine resin such as PTFE or carbon. Fluorine resin is excellent in abrasion resistance, strength and cold resistance.
  • the metal bellows is preferably a metal bellows using a nickel alloy such as Inconel 718 having excellent low-temperature brittleness.
  • Metal bellows seals are suitable for cryogenic fluids.
  • the metal bellows seal 80 located on the outermost side in the axial direction seals between the shaft end vacuum chamber 90 and the space flow path 92.
  • the metal bellows seal 80 located next to it is a cryogenic fluid.
  • the space channel 92 to which the gas is supplied and the space channel 94 adjacent thereto are sealed.
  • the supply connection port 52 located between the rotating ring 60 and the rotating ring 60 along the axial direction is a spatial flow located between the rotating ring 60 and the rotating ring 60. It is designed to communicate with Road 94.
  • the space flow path 94 is sealed with a metal bellows seal 80 so as not to communicate with the rotary ring hole 62 of the rotary ring 60.
  • the space channel 94 communicates with the rotary communication hole 66 through a communication hole 71 formed in the intermediate sleeve 70.
  • a return fixed connection port 54 for discharging used cryogenic fluid is formed through a bellows holding ring 44.
  • a connection port forming ring 42f is arranged.
  • the return fixed connection port 54 communicates with the rotation ring hole 62 of the rotation ring 60 through the space flow path 92, and communicates with the discharge tube 26 through the rotation communication hole 66 and the shortest joint side flow path 64. .
  • connection port forming rings 42a to 42g a drain fixed connection port 56 is formed in the connection port forming ring 42g located on the innermost side in the axial direction.
  • the drain fixed connection port 56 communicates with the outer periphery of the rotary joint shaft 32 positioned on the innermost side in the axial direction outside the flange 34 and the bearing 74! /.
  • the rotary joint shaft 32, the sleeves 70 and 72, and the rotary ring 60 are made of FRP.
  • the connection port forming rings 42a to 42g are made of FRP.
  • the end cover 40, the bearing retaining ring 46, and the bellows retaining ring 44 are made of stainless steel, Inconel, titanium, etc. Made of metal.
  • the outer periphery of the holding rings 44 and 46 can be made of FRP.
  • the bearing 74 positioned at the outer end of the rotary joint shaft 32 in the axial direction is preferably disposed within the end vacuum chamber 90 and configured by a sealed bearing filled with vacuum grease. Yes.
  • the bearing 74 on the inner side in the axial direction of the rotary joint shaft 32 is preferably installed at a position as far as possible in the radial direction from the joint-side flow path 64 of the cryogenic fluid provided in the rotary joint shaft 32. That is, it is preferable that the outer diameter of the rotary joint shaft 32 held by the bearing 74 on the side close to the flange 34 is formed to be larger than the other portions.
  • the bearing 74 on the side close to the flange 34 is in contact with the outside air and operates in an air atmosphere.
  • Each of these bearings 74 is disposed inside the housing 38, respectively.
  • the flow path (52, 92, 94, 62, 66, 64) through which the cryogenic fluid circulates is installed at both ends, and is insulated by the FRP sleeve 72 and the rotary joint shaft 32 with excellent heat insulation. It is. Since each bearing 74 is held inside the metal end cover 40 and the bearing retaining ring 46, the bearing 74 is heated from the outside of the end cover 40 or the bearing retaining ring 46 to prevent the bearing from freezing. Freezing may be prevented.
  • the rotary ring 60 is provided on the outer periphery of the rotary joint shaft 32 at the positions of the other rotational communication holes 66 in the axial direction.
  • metal bellows seal 80 force slides on both axial sides of the rotating ring 60, and seals between the spatial flow paths 92 and 94 that are axially adjacent to each other in the casing 38. is doing. For this reason, the number of seal members in the portion where the cryogenic fluid flows from the fixed supply port 52 for supply formed in the casing 38 as a stationary member to the rotary communication hole 62 or the rotary ring hole 66 as the rotating portion. And the cryogenic fluid can be efficiently sealed.
  • the evacuation shaft hole 36 communicating with the hollow portion 22 of the rotary shaft 10 is formed in the center of the rotary joint shaft 32 along the axial direction.
  • a vacuum fixed connection port 50 communicating with the vacuum suction shaft hole 36 is formed in a portion located on the outer side in the axial direction (the farthest side of the connection partial force with the rotor assembly). For this reason, it is possible to form a connection portion force with the vacuum adiabatic space force rotor assembly 20 at the farthest shaft end portion, and also to make the hollow portion 22 of the rotary shaft 10 a vacuum insulation space.
  • the flow path of the low-temperature fluid is efficiently insulated by the vacuum heat insulating space of the shaft end vacuum chamber 90 formed on the outer side in the axial direction of the rotary joint shaft 32 and the heat insulating member made of FRP.
  • the hollow portion 22 of the rotary shaft 10 in the superconducting motor 2 communicates with the vacuum pulling shaft hole 36 of the rotary joint shaft 32, the hollow portion 22 also becomes a vacuum heat insulating space and is disposed in the interior thereof.
  • the heat insulation of some tubes 24 and 26 is improved.
  • a cryogenic fluid circulates inside the tubes 24 and 26.
  • tubes 24 and 26 are cooled in the rotor assembly 20 as shown in FIG. Are connected to the internal cooling space 25 at multiple positions where it is necessary to cool each part individually.
  • At least a portion of the rotary joint shaft 32 and the rotary ring 60 that is in contact with the cryogenic fluid is formed of an FRP member that has better heat insulation than metal.
  • the casing 38 includes a metal end cover 40 and rings 44 and 46, and FRP connection port forming rings 42a to 42g.
  • at least the part in contact with the cryogenic fluid can be composed of an FRP member having better heat insulation than metal, and the part in contact with the metal in the part where the cryogenic fluid circulates inside the rotary joint 30. The heat insulation is improved in this respect as well.
  • the cryogenic temperature is reduced at all points from the stationary part of the rotary joint 30 to the rotating part and the internal cooling space 25 of the rotating part force 20 of the rotor assembly 20 of the superconducting motor 2. It is possible to minimize the fluid (liquid) from warming and gasifying.
  • a gas such as helium gas has been mainstream, but in the present invention, a liquid such as liquid nitrogen can be used.
  • high heat insulation can be realized, it is possible to suppress frost formation on the rotary joint 30 and the rotor assembly 20.
  • the apparatus can be reduced in size. be able to.
  • the flow paths from the rotary joint 30 to the plurality of internal cooling spaces 25 are independent, the reliability is high. Therefore, it is possible to supply a low-temperature fluid to the internal cooling space 25 farthest from the rotary joint 30 as much as the internal cooling space 25 located closest.
  • the fixed connection port 52 serving as the inlet of the cryogenic fluid is formed adjacent to the axial direction, and the stationary member is rotated to the rotating member.
  • a cryogenic fluid flow path is formed adjacent to each other in the axial direction, and a shaft end vacuum space 90 is formed on the outer side in the axial direction.
  • the seal portion for preventing leakage of cryogenic fluid to the outside of the casing is located on the inner side in the axial direction of the rotary joint shaft 32 (close to the connecting portion with the rotary shaft of the rotor assembly). )
  • the seal diameter can be reduced, the structure is difficult to leak.
  • the fixed connection port 52 serving as an inlet for the cryogenic fluid is formed adjacent to the axial direction, and the flow path of the cryogenic fluid from the stationary member to the rotating member is the axial direction. Therefore, in these channels, the heat input path of external force that hardly transfers heat to each other can be blocked.
  • the fixed connection port arranged at a position close to the rotating shaft 10 of the superconducting motor 2 54 force Cryogenic fluid return port It is. With this configuration, the heat input path from the outside to the flow path for supplying the cryogenic fluid can be blocked.
  • a drain fixed connection port 56 is formed at a position closer to the rotary shaft 10 than the fixed connection port 54 corresponding to the return port.
  • the stationary metal bellows seal 80 forms a mechanical seal together with the rotary ring 60, and the rotary shaft diameter of the rotary joint shaft 32 is the smallest diameter that can secure a necessary flow path.
  • the size in the radial direction can be arbitrarily determined and is not governed by the shaft diameter of the rotating shaft 10 in the superconducting motor.
  • a bellows seal 80 using a short bellows in the axial direction and the metal bellows seal 80 slides on both side surfaces of one rotating ring 60, so that the axial direction of the rotary joint 30 The length can be made compact. Furthermore, the metal bellows seal 80 follows the sliding surface of the rotating ring 60 due to the expansion of the bellows, and has no friction part other than the sliding surface, so the load due to the bellows must be minimized. Can do. For this reason, there is extremely little torque cross due to the seal.
  • the seal differential pressure acts on the case.
  • the other seals contain a cryogenic fluid of approximately the same pressure on both the inner and outer circumferences of the seal, and there is no differential pressure, so the pressing force on the sliding surface is only an elastic bias by a metal bellows. It is. For this reason, the temperature rise of the cryogenic fluid due to friction is extremely low.
  • the rotating ring hole 62 in the rotating ring 60 is formed and forming the flow path for the cryogenic fluid, the overall width dimension of the rotating ring 60 can be shortened. Furthermore, the rotary joint 30 is compact, and the heat transfer area with the outside can be minimized.
  • the hollow portion 22 formed in the rotating shaft 10 of the superconducting motor 2 communicates with the periphery of each internal cooling space 25 into which the cryogenic fluid is introduced, and is fixed for vacuum. It is maintained in an adiabatic vacuum state through the connection port 50, the vacuuming shaft hole 36 and the hollow portion 22 of the rotary shaft 10.
  • the rotating shaft 10 of the superconducting motor 2 does not need to be a good multi-pipe as long as it has a hollow portion 22 that can accommodate tubes 24, 26, etc. for fluid transfer. .
  • the hollow rotating shaft is vacuum insulated, it is not necessary to separately heat the rotating shaft 10.
  • the rotary joint 30 can be easily attached and detached, and the manpower is not reduced.
  • connection force from the superconducting motor 2 side to the cryogenic fluid supply Z discharge port of the rotary joint 30 is provided on the shaft end surface of the flange 34 of the rotary joint 30.
  • the man-hour is not strong.
  • the shape of the shaft end of the rotary shaft 10 is simple and the number of machining steps is extremely small! /.
  • the heat dissipation is excellent, the leakage of the cryogenic fluid to the outside is minimized, the power loss is extremely small, and the force is durable, reliable, and maintainable.
  • An excellent and low-cost cryogenic fluid supply / discharge device and a superconducting motor 2 using the device can be provided.
  • the force using a so-called axial gap type superconducting motor as the superconducting device is a so-called radial gap type superconducting motor. It can also be applied to data. Further, the present invention is not limited to a superconducting motor but can be applied to a superconducting device such as a superconducting generator.
  • these rings 44 in order to hold the metal bellows seal 80 on the inner side of the ring 44, a force composed of these rings 44 made of metal. If a cull seal can be used, these rings 44 can be made of a member having excellent heat insulation other than metal.
  • the force provided by four rotors 16 along the axial direction of the rotary shaft 10 is not limited, and the number is not limited to four or more, or two or 3 is OK. It is also possible to arrange two or more supply tubes 26 for a single rotor 16.
  • the force for cooling only the inside of the rotor assembly 20 can be used to cool the outside of the rotor assembly 20 by using the apparatus according to the present invention.
  • connection between the rotary shaft 10 of the rotor assembly 20 and the rotary joint 30 is a flange connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Joints Allowing Movement (AREA)
  • Mechanical Sealing (AREA)

Abstract

A cryogenic fluid supply/discharge device for supplying/discharging a cryogenic fluid to/from a plurality of internal space channels (25) in the rotor assembly (20) of a superconducting motor (2) comprising a rotary joint shaft (32) and a rotary joint (30) having a casing (38), wherein the casing (38) is provided with fixed connection ports (52, 54) at a plurality of axial positions corresponding, respectively, to rotary communicating holes (66) and rotary ring holes (62), a rotary ring (60) is secured to the outer circumference of the rotary joint shaft (32) at the position of every other rotary interconnection hole (66) in the axial direction, and portions of the rotary joint shaft (32) and the rotary ring (60), and a part of the casing provided with the fixed connection openings (50, 52, 54, 56) to come into contact with a cryogenic fluid are made of FRP exhibiting an excellent thermal insulation as compared with metal. The cryogenic fluid supply/discharge device exhibits an excellent thermal insulation and minimizes leakage of the cryogenic fluid to the outside.

Description

極低温流体供給排出用装置および超電導装置  Cryogenic fluid supply / discharge device and superconducting device
技術分野  Technical field
[0001] 本発明は、液体窒素や液体へリウムなどの極低温流体を超電導モータなどの回転 機械の回転軸を介して、極低温流体を冷却必要箇所に供給するとともに排出するた めの極低温流体供給排出用装置と、それを用いた超電導装置に係り、さらに詳しく は、断熱性に優れ、極低温流体の外部への漏出を極小とし、動力損失がきわめて小 さぐコンパクトであり、しカゝも耐久性、信頼性およびメンテナンス性に優れ、低コストの 極低温流体供給排出用装置と、それを用いた超電導装置に関する。  [0001] The present invention relates to a cryogenic fluid for supplying and discharging a cryogenic fluid such as liquid nitrogen or liquid helium to a portion requiring cooling through a rotating shaft of a rotating machine such as a superconducting motor. The present invention relates to a fluid supply / discharge device and a superconducting device using the device. More specifically, it has excellent heat insulation, minimizes leakage of cryogenic fluid to the outside, and is compact with very little power loss. In addition, the present invention relates to a low-cost cryogenic fluid supply / discharge device with excellent durability, reliability and maintainability, and a superconducting device using the device.
背景技術  Background art
[0002] 超電導モータなどの超電導装置は、超電導状態を維持させるために、液体窒素や 液体へリウムなどの極低温流体を、超電導が必要な箇所に供給する必要がある。特 に、超電導モータでは、超電導が必要な箇所に極低温流体を効率よく供給および排 出する必要があり、極低温流体の供給装置力 超電導の必要箇所への流路が問題 となる。  In order to maintain a superconducting state, a superconducting device such as a superconducting motor needs to supply a cryogenic fluid such as liquid nitrogen or liquid helium to a place where superconducting is required. In particular, in a superconducting motor, it is necessary to efficiently supply and discharge a cryogenic fluid to a place where superconductivity is required, and the flow path to the superconducting part is a problem.
[0003] 特開 2004— 235625号公報の図 8には、極低温流体を超電導モータのロータ部 分に供給する極低温流体供給排出用装置が概念的に示してある。特許文献 1に記 載してある超電導モータでは、ロータアッセンプリの円盤状回転子が単一であり、そ の周囲に極低温流体を供給するための極低温流体供給排出用装置の構成も単純 である。  FIG. 8 of Japanese Patent Application Laid-Open No. 2004-235625 conceptually shows an apparatus for supplying and discharging a cryogenic fluid for supplying a cryogenic fluid to a rotor portion of a superconducting motor. In the superconducting motor described in Patent Document 1, the rotor assembly has a single disk-like rotor, and the configuration of the cryogenic fluid supply / discharge device for supplying the cryogenic fluid around it is simple. It is.
[0004] しかしながら、この特開 2004— 235625号公報に記載の超電導モータにおいては 、ロータの回転子が極低温流体に浸されたままで回転するために、動力ロスが大きく 、実用化が困難である。また、モータの出力を大きくするために、円盤状回転子を軸 方向に沿って複数にする必要がある力 その場合に、各回転子の外周毎に、特開 2 004— 235625号公報に示す構成の極低温流体供給排出用装置を取り付けるとす ると、超電導モータの装置全体が大きくなる。  [0004] However, in the superconducting motor described in Japanese Patent Application Laid-Open No. 2004-235625, the rotor rotor rotates while immersed in a cryogenic fluid, so that power loss is large and practical application is difficult. . Further, in order to increase the output of the motor, it is necessary to use a plurality of disk-shaped rotors along the axial direction. In that case, for each outer periphery of each rotor, as shown in Japanese Patent Laid-Open No. 2004-235625 If the cryogenic fluid supply / discharge device of the configuration is installed, the entire superconducting motor device becomes large.
[0005] また、特開 2003— 65477号公報の図 9〖こは、極低温流体を超電導モータのロータ アッセンプリに供給する極低温流体供給排出用装置として、二重管構造を用い、二 重管の内部の一方を極低温流体の流入用通路とし、他方を流出用通路としている。 この特開 2003— 65477号公報に記載してある超電導モータにおいては、極低温流 体が供給される流路は単一であり、複数の流路で複数箇所を同時に冷却するような 構造にはなっていない。 [0005] FIG. 9 of Japanese Patent Application Laid-Open No. 2003-65477 discloses that a cryogenic fluid is used as a rotor of a superconducting motor. As a cryogenic fluid supply / discharge device for supplying to the assembly, a double pipe structure is used. One of the double pipes is used as a cryogenic fluid inflow passage and the other as an outflow passage. In the superconducting motor described in Japanese Patent Laid-Open No. 2003-65477, there is a single flow path to which the cryogenic fluid is supplied, and there is a structure in which a plurality of positions are simultaneously cooled by a plurality of flow paths. is not.
[0006] しかも、特開 2003— 65477号公報に記載の発明では、その図 1に示すように、口 ータアッセンプリの全外周を断熱のために真空キヤビティ (特許文献 2の図 1では、符 号 16)で覆う構成になっている。そのため、特開 2003— 65477号公報に示す装置 を用いて、超電導装置の複数の回転子を冷却しょうとすると、真空キヤビティが大きく 成り、装置全体が大きく成る。  In addition, in the invention described in Japanese Patent Application Laid-Open No. 2003-65477, as shown in FIG. 1, the vacuum cavity is used to insulate the entire outer periphery of the mouth assembly (see FIG. 16 in Patent Document 2). ). Therefore, if an attempt is made to cool a plurality of rotors of a superconducting device using the device disclosed in Japanese Patent Laid-Open No. 2003-65477, the vacuum cavity increases and the entire device increases.
[0007] また、特許第 2838013号公報の図 7で示すように、ロータリアッセンプリの回転軸 に形成してある軸孔を通して冷媒を流通させようとする極低温流体供給排出用装置 も知られている。しかしながら、この特許文献 3に示す極低温流体供給排出用装置に おいても、極低温流体が供給される流路は単一であり、複数の流路で複数箇所を同 時に冷却するような構造にはなって 、な 、。  [0007] Further, as shown in FIG. 7 of Japanese Patent No. 2838013, there is also known a cryogenic fluid supply / discharge device that attempts to circulate a refrigerant through a shaft hole formed in a rotating shaft of a rotor rear assembly. Yes. However, even in the cryogenic fluid supply / discharge device shown in Patent Document 3, there is a single flow path to which the cryogenic fluid is supplied, and a structure in which a plurality of flow paths are used to simultaneously cool a plurality of locations. It ’s a good idea.
[0008] 複数の流路で複数箇所を同時に冷却するためには、シール箇所を多数設ける必 要がある。そのため、シールが不適切であると、極低温流体が装置の外部に漏れる おそれがある。また、シール箇所を多数設ける場合には、回転軸と直接に摺動する 箇所が多くなり、トルクロスが生じやすい。  [0008] In order to simultaneously cool a plurality of locations in a plurality of flow paths, it is necessary to provide a large number of seal locations. Therefore, if the seal is inappropriate, the cryogenic fluid may leak out of the device. In addition, when a large number of seal locations are provided, the number of locations that slide directly with the rotating shaft increases, and torcross tends to occur.
[0009] なお、特開 2004— 19912号公報に示すように、半導体ウェハの表面を研磨する ための研磨装置などで用いられるロータリジョイントは知られている。  [0009] As shown in Japanese Patent Application Laid-Open No. 2004-19912, a rotary joint used in a polishing apparatus or the like for polishing the surface of a semiconductor wafer is known.
[0010] し力しながら、この従来のロータリジョイントは、極低温流体を供給することを前提と しておらず、断熱性には考慮されていな力つた。特に、真空断熱するための流路に ついては考慮する必要もな力つた。断熱が不十分であると、極低温流体は揮発し、 摺動部でドライ摺動になりやすぐシールおよび相手摺動部が摩耗し、早期に密封 性が損なわれ、外部に漏出し易い。そのような不都合を避けるために、装置の全体を 真空断熱しょうとすると、真空断熱のための装置が大きく成りすぎて現実的ではない 。また、極低温流体が流通する各流路毎に、真空断熱空間で覆うことは、各流路毎 に、真空引きのための流路を必要とし、これも現実的ではない。 [0010] However, this conventional rotary joint is not premised on supplying a cryogenic fluid, and has a power that is not considered in the heat insulation. In particular, it was necessary to consider the flow path for vacuum insulation. If the heat insulation is insufficient, the cryogenic fluid will volatilize and dry sliding will occur at the sliding part, and the seal and the mating sliding part will soon wear out. In order to avoid such inconvenience, if it is attempted to insulate the entire apparatus by vacuum insulation, the apparatus for vacuum insulation becomes too large to be realistic. In addition, covering each flow path through which the cryogenic fluid circulates with a vacuum insulation space In addition, a flow path for evacuation is required, which is not realistic.
[0011] そこで、複数の回転部分に、異なる流路で極低温流体を供給することが可能であり ながら、必要最小限の部分で、効率的に真空断熱を行い、極低温流体が暖められて ガス化することを防止し、し力も、極低温流体の外部への漏出を極小とし、動力損失 力 Sきわめて小さぐコンパクトであり、し力も耐久性、信頼性およびメンテナンス性に優 れ、低コストの極低温流体供給排出用装置が求められていた。  [0011] Therefore, while it is possible to supply cryogenic fluid to a plurality of rotating parts through different flow paths, vacuum insulation is efficiently performed at the minimum necessary part to warm the cryogenic fluid. Gasification is prevented, the leakage force is minimized, the leakage of cryogenic fluid to the outside is minimized, the power loss force S is extremely small and compact, and the force is also durable, reliable and easy to maintain, and low cost There was a need for a cryogenic fluid supply and discharge device.
特許文献 1:特開 2004— 235625号公報(図 8)  Patent Document 1: Japanese Patent Laid-Open No. 2004-235625 (FIG. 8)
特許文献 2 :特開 2003— 65477号公報(図 9)  Patent Document 2: Japanese Patent Laid-Open No. 2003-65477 (Fig. 9)
特許文献 3:特許第 2838013号公報  Patent Document 3: Japanese Patent No. 2838013
特許文献 4:特開 2004 - 19912号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-19912
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、このような実状に鑑みてなされ、その目的は、断熱性に優れ、極低温流 体の外部への漏出を極小とし、動力損失がきわめて小さぐコンパクトであり、し力も 耐久性、信頼性およびメンテナンス性に優れ、低コストの極低温流体供給排出用装 置と、それを用いた超電導装置を提供することである。 [0012] The present invention has been made in view of such a situation, and an object thereof is to be a compact in which the heat loss is excellent, the leakage of the cryogenic fluid to the outside is minimized, the power loss is extremely small, and the force is also small. It is to provide a low-cost cryogenic fluid supply / discharge device excellent in durability, reliability and maintainability, and a superconducting device using the device.
課題を解決するための手段  Means for solving the problem
[0013] 上記目的を達成するために、本発明の第 1の観点に係る極低温流体供給排出用 装置は、 In order to achieve the above object, a cryogenic fluid supply / discharge device according to the first aspect of the present invention comprises:
液体窒素や液体へリウムなどの極低温流体を、ロータアッセンブリにおける複数の冷 却必要箇所に供給および排出する極低温流体供給排出用装置であって、 前記ロータアッセンプリの回転軸の軸端にロータリジョイントが接続してあり、 前記ロータリジョイントは、  A cryogenic fluid supply / discharge device for supplying and discharging a cryogenic fluid such as liquid nitrogen and liquid helium to a plurality of cooling-necessary locations in a rotor assembly, wherein a rotary fluid is provided at a shaft end of a rotating shaft of the rotor assembly. A joint is connected, and the rotary joint is
前記ロータアッセンプリの回転軸に対して着脱自在に連結される回転継手軸と、 前記回転継手軸を覆うように配置され、前記回転継手軸の回転に対して静止して!/、 るケーシングと、を有し、  A rotary joint shaft that is detachably connected to the rotary shaft of the rotor assembly; and a casing that is disposed so as to cover the rotary joint shaft and is stationary with respect to the rotation of the rotary joint shaft; Have
前記ロータアッセンプリにおける複数の冷却必要箇所と各々連通するように、前記回 転継手軸の円周方向に沿って異なる位置で、前記回転継手軸の軸方向に沿って、 複数の継手側流路が前記回転継手軸に形成してあり、 Along the axial direction of the rotary joint shaft at different positions along the circumferential direction of the rotary joint shaft so as to communicate with a plurality of cooling-required portions in the rotor assembly, A plurality of joint-side flow paths are formed on the rotary joint shaft,
それぞれの前記継手側流路における軸方向に沿って各々異なる軸方向長さの位置 で、当該継手側流路にそれぞれ連通するように、前記回転継手軸の外周に、回転連 通孔が形成してあり、 A rotation communication hole is formed on the outer periphery of the rotary joint shaft so as to communicate with the joint-side flow path at positions of different axial lengths along the axial direction of the respective joint-side flow paths. And
それぞれ軸方向に異なる位置に形成してある前記回転連通孔のうち、軸方向に一つ 置きの回転連通孔の位置で、前記回転継手軸の外周に、回転リングが固定してあり 各回転リングの外周には、当該回転リングが位置する部分に形成してある前記回転 連通孔に対して連通する回転リング孔が形成してあり、 Among the rotation communication holes formed at different positions in the axial direction, a rotation ring is fixed to the outer periphery of the rotary joint shaft at every other rotation communication hole position in the axial direction. A rotation ring hole communicating with the rotation communication hole formed in a portion where the rotation ring is located,
前記ケーシングには、前記回転連通孔および前記回転リング孔のそれぞれに対応 する複数の軸方向位置に、前記回転連通孔または前記回転リング孔のそれぞれに 連通する固定接続口が形成してあり、 In the casing, fixed connection ports communicating with the rotary communication holes or the rotary ring holes are formed at a plurality of axial positions corresponding to the rotary communication holes and the rotary ring holes, respectively.
前記回転リングの軸方向面に対して摺動し、軸方向に相互に隣り合う前記回転連通 孔の相互間を密封するシール部材が前記ケーシングの内側に具備してあり、 前記回転継手軸の中心には、前記ロータアッセンプリの真空断熱空間に連通する真 空引き用軸孔が軸方向に沿って形成してあり、 A seal member that slides against the axial surface of the rotary ring and seals between the rotary communication holes adjacent to each other in the axial direction is provided inside the casing, and the center of the rotary joint shaft Is formed with an axial hole for vacuuming that communicates with the vacuum insulation space of the rotor assembly along the axial direction.
前記ケーシングには、複数の前記固定接続口の軸方向外側に位置する部分に、前 記真空引き用軸孔に連通する真空用固定接続口が形成してあり、 In the casing, a vacuum fixed connection port communicating with the vacuum drawing shaft hole is formed in a portion located on the axially outer side of the plurality of fixed connection ports,
前記回転継手軸および前記回転リングのうち、少なくとも前記極低温流体と接触する 部分が、金属よりも断熱性に優れた部材で構成してあると共に、 Of the rotary joint shaft and the rotary ring, at least a portion that contacts the cryogenic fluid is made of a member having better heat insulation than metal,
前記真空用固定接続口および前記固定接続口が形成してあるケーシングの一部で 、少なくとも前記極低温流体と接触する部分が、金属よりも断熱性に優れた部材で構 成してあることを特徴とする。 A part of the casing in which the fixed connection port for vacuum and the fixed connection port are formed, and at least a portion in contact with the cryogenic fluid is made of a member having better heat insulation than metal. Features.
本発明では、軸方向に一つ置きの回転連通孔の位置で、回転継手軸の外周に、 回転リングが固定してあり、シール部材力 回転リングの軸方向面に対して摺動し、ケ 一シング内で軸方向に相互に隣り合う極低温流体用流路の間をシールして 、る。そ のため、静止部材に形成された固定接続口から、回転する部分である回転連通孔ま たは回転リング孔へと極低温流体が流通する部分にぉ 、て、シール部材の数を低減 し、効率的に極低温流体を密封することができる。 In the present invention, the rotating ring is fixed to the outer periphery of the rotary joint shaft at the position of every other rotational communication hole in the axial direction, and the seal member force slides with respect to the axial surface of the rotating ring. The gap between the cryogenic fluid flow paths adjacent to each other in the axial direction is sealed within one single. For this reason, the number of sealing members is reduced through the part where cryogenic fluid flows from the fixed connection port formed in the stationary member to the rotating communication hole or rotating ring hole, which is the rotating part. In addition, the cryogenic fluid can be efficiently sealed.
[0015] また、本発明では、回転継手軸の中心には、ロータアッセンプリの真空断熱空間に 連通する真空引き用軸孔が軸方向に沿って形成してあり、ケーシングには、複数の 固定接続口の軸方向外側(ロータアッセンプリとの接続部分力 最も遠 、側)に位置 する部分に、真空引き用軸孔に連通する真空用固定接続口が形成してある。このた め、真空断熱空間が、ロータアッセンプリとの接続部分力も最も遠い側に形成され、 真空引き用軸孔を通してロータアッセンプリの真空断熱空間に至り、ロータアッセン プリの中空部を真空断熱空間にすることができる。  [0015] In the present invention, a vacuum suction shaft hole communicating with the vacuum heat insulating space of the rotor assembly is formed along the axial direction at the center of the rotary joint shaft, and a plurality of fixed holes are fixed to the casing. A fixed connection port for vacuum communicating with the evacuation shaft hole is formed in a portion located on the outer side in the axial direction of the connection port (the farthest side of the connection partial force with the rotor assembly). For this reason, the vacuum insulation space is formed on the side farthest from the connection part force with the rotor assembly, reaches the vacuum insulation space of the rotor assembly through the evacuation shaft hole, and the hollow portion of the rotor assembly is connected to the vacuum insulation space. Can be.
[0016] そのため、ケーシングに形成された複数の固定接続口から回転継手軸の回転連通 孔または回転リング孔を通り、回転継手軸内の継手側流路へと至る極低温流体の流 路は、回転継手軸の軸方向外側に形成してある真空断熱空間と、金属よりも断熱性 に優れた部材とにより、効率的に断熱される。また、超電導装置におけるロータアツセ ンプリの回転軸の中空部が、回転継手軸の真空引き用軸孔と連通していることから、 その中空部も真空断熱空間となり、その内部に配置してあるチューブの断熱性が向 上する。チューブの内部には、極低温流体が流通する。  [0016] Therefore, the flow path of the cryogenic fluid from the plurality of fixed connection ports formed in the casing through the rotation communication hole or the rotation ring hole of the rotary joint shaft to the joint side flow path in the rotary joint shaft is It is efficiently insulated by the vacuum heat insulation space formed on the outer side in the axial direction of the rotary joint shaft and the member having better heat insulation than metal. In addition, since the hollow portion of the rotary shaft of the rotor assembly in the superconducting device is in communication with the evacuation shaft hole of the rotary joint shaft, the hollow portion also becomes a vacuum heat insulating space, and the tube disposed inside the hollow portion is a vacuum insulation space. Thermal insulation is improved. A cryogenic fluid circulates inside the tube.
[0017] これらのチューブは、ロータアッセンブリにおける冷却が必要な複数位置にそれぞ れ連通してあり、各箇所を個別に冷却することができる。  [0017] These tubes communicate with a plurality of positions where cooling in the rotor assembly is necessary, and can cool each part individually.
[0018] また、本発明では、回転継手軸および回転リングのうち、少なくとも極低温流体と接 触する部分が、金属よりも断熱性に優れた部材で構成してあると共に、真空用固定 接続口および前記固定接続口が形成してあるケーシングの一部で、少なくとも前記 極低温流体と接触する部分が、金属よりも断熱性に優れた部材で構成してある。この ため、ロータリジョイントの内部で極低温流体が流通する部分では、金属に接触する 部分が極力少なくなり、この点でも断熱性が向上する。  [0018] In the present invention, at least a portion of the rotary joint shaft and the rotary ring that is in contact with the cryogenic fluid is formed of a member that has better heat insulation than metal, and a fixed connection port for vacuum. A part of the casing in which the fixed connection port is formed and at least a part in contact with the cryogenic fluid is formed of a member having better heat insulation than metal. For this reason, in the portion where the cryogenic fluid circulates inside the rotary joint, the portion in contact with the metal is reduced as much as possible, and the heat insulation is also improved in this respect.
[0019] したがって、本発明では、ロータリジョイントの静止部分から回転部分と、その回転 部分力 超電導装置のロータアッセンプリ部分における冷却必要箇所へと至る全て の箇所において、極低温流体が暖められてガス化することを最小限に抑制すること ができる。  [0019] Therefore, in the present invention, the cryogenic fluid is heated and gas is heated at all points from the stationary part of the rotary joint to the rotating part and the part requiring cooling in the rotor assembly part of the rotating partial force superconducting device. Can be minimized.
[0020] また、本発明では、ロータリジョイントのケーシングにおいて、極低温流体の入口と なる固定接続口が、軸方向に隣接して形成してあり、静止部材から回転部材に至る 極低温流体の流路が軸方向に隣接して形成してあり、それらの軸方向外側に真空空 間が形成される。このため、ケーシングの内部において、極低温流体のケーシング外 部への漏洩を防止するためのシール箇所は、回転継手軸の軸方向内側(ロータアツ センプリの回転軸との連結部分に近い側)の一力所になり、極低温流体の外部への 漏出を極小とすることができる。 [0020] Further, in the present invention, in the casing of the rotary joint, the inlet of the cryogenic fluid and A fixed connection port is formed adjacent to the axial direction, and a cryogenic fluid flow path extending from the stationary member to the rotating member is formed adjacent to the axial direction. A space is formed. For this reason, the seal location for preventing leakage of cryogenic fluid to the outside of the casing inside the casing is one of the axially inner sides of the rotary joint shaft (the side close to the connecting portion with the rotary shaft of the rotor assembly). It becomes a power station and the leakage of cryogenic fluid to the outside can be minimized.
[0021] また、本発明では、極低温流体の入口となる固定接続口が、軸方向に隣接して形 成してあり、静止部材から回転部材に至る極低温流体の流路が軸方向に隣接して形 成してあることから、それらの流路では、相互に冷却し合い、外部からの入熱経路を 遮断することができる。  [0021] In the present invention, the fixed connection port serving as the inlet for the cryogenic fluid is formed adjacent to the axial direction, and the flow path of the cryogenic fluid from the stationary member to the rotating member is in the axial direction. Since they are formed adjacent to each other, they can cool each other and block the heat input path from the outside.
[0022] さらに、ロータリージョイントがコンパクトで、外部との伝熱面積を極少とすることがで きる。また、本発明では、真空断熱フレキシブルチューブを用いることなぐロータリジ ョイントからロータアッセンプリの中空部に極低温流体を導入することができる。  [0022] Further, the rotary joint is compact, and the heat transfer area with the outside can be minimized. Further, in the present invention, the cryogenic fluid can be introduced into the hollow portion of the rotor assembly from the rotary joint without using the vacuum heat insulating flexible tube.
[0023] したがって、本発明によれば、動力損失がきわめて小さぐコンパクトであり、し力も 耐久性、信頼性およびメンテナンス性に優れ、低コストの極低温流体供給排出用装 置を実現することができる。  [0023] Therefore, according to the present invention, it is possible to realize a compact cryogenic fluid supply / discharge device that has a very small power loss, is compact, has excellent durability, reliability, and maintainability, and is low in cost. it can.
[0024] 好ましくは、前記回転継手軸には、真空引き用軸孔が貫通して形成してあり、前記 回転継手軸の軸方向外側端部の周囲が、前記真空用固定接続口に連通する軸端 真空室となっている。このように構成することで、真空断熱効果が向上する。また、回 転継手軸における軸方向外側端部の全体が真空断熱されるために、ケーシングに おける回転継手軸の軸方向外側端部側のカバー部材は、必ずしも断熱部材で構成 する必要が無くなり、金属部材で構成しても良い。  [0024] Preferably, the rotary joint shaft is formed with a vacuum evacuating shaft hole therethrough, and the periphery of the axially outer end portion of the rotary joint shaft communicates with the vacuum fixed connection port. The shaft end is a vacuum chamber. By comprising in this way, the vacuum heat insulation effect improves. In addition, since the entire axially outer end of the rotary joint shaft is thermally insulated by vacuum, the cover member on the axially outer end side of the rotary joint shaft in the casing does not necessarily need to be composed of a heat insulating member. You may comprise with a metal member.
[0025] 好ましくは、前記軸端真空室には、前記回転継手軸をケーシングの内側に対して 回転自在に保持する軸受が配置してある。軸端真空室に軸受を配置することで、ス ペースの有効利用を図ることができる。なお、本発明では、軸受におけるベアリング 外輪が装着されるケーシングのボディを金属として、その外周を暖め、軸受が凍結し ないように構成しても良い。  [0025] Preferably, the shaft end vacuum chamber is provided with a bearing for rotatably holding the rotary joint shaft with respect to the inside of the casing. Space can be used effectively by placing bearings in the shaft end vacuum chamber. In the present invention, the body of the casing on which the bearing outer ring in the bearing is mounted may be made of metal so that the outer periphery is warmed so that the bearing does not freeze.
[0026] 好ましくは、前記ケーシングに形成してある固定接続口のうち、前記超電導装置に 近い位置に配置してある固定接続口力 極低温流体の戻り口である。このように構成 することで、極低温流体の供給用流路に対する外部からの入熱経路を遮断すること ができる。 [0026] Preferably, out of the fixed connection ports formed in the casing, the superconducting device Fixed connection port located at a close position Return port for cryogenic fluid. With this configuration, it is possible to block the heat input path from the outside to the flow path for supplying the cryogenic fluid.
[0027] 好ましくは、前記ケーシングにおいて、前記戻り口に相当する前記固定接続口より もさらに前記超電導装置に近い位置には、ドレン用固定接続口が形成してある。この ように構成することで、ケーシング外部への極低温流体の漏洩を極力防止できると共 に、外部力もの入熱経路を遮断することができる。  [0027] Preferably, in the casing, a drain fixed connection port is formed at a position closer to the superconducting device than the fixed connection port corresponding to the return port. With this configuration, leakage of the cryogenic fluid to the outside of the casing can be prevented as much as possible, and the heat input path with external force can be blocked.
[0028] 好ましくは、前記断熱性に優れた部材力 繊維強化プラスチック (FRP)である。 FR Pで構成することにより、金属よりも断熱性が向上すると共に、機械的強度も十分であ り、特に好ましい。  [0028] Preferably, the member strength fiber-reinforced plastic (FRP) is excellent in heat insulation. By comprising FRP, the heat insulation is improved as compared with metal, and the mechanical strength is sufficient, which is particularly preferable.
[0029] 好ましくは、前記シール部材力 ベローズシールである。ベローズシールは、金属 ベローズと摺動部と力 成る金属べローズシールであることが好ましぐさらに、この金 属べローズは、低温脆性に優れたインコネル 718などのニッケル基合金を使用した 金属べローズであることがさらに好ましい。金属べローズシールは、極低温流体用シ ールとして多用されており、漏出量が少ない。  [0029] Preferably, the sealing member force is a bellows seal. The bellows seal is preferably a metal bellows seal consisting of a metal bellows and a sliding part. Furthermore, this metal bellows is a metal bellows using a nickel-base alloy such as Inconel 718, which has excellent low temperature brittleness. More preferably, it is rose. Metal bellows seals are often used as seals for cryogenic fluids, and the amount of leakage is small.
[0030] 静止側のベローズシールは、回転リングと共に、メカ-カルシールを構成し、ロータ リージョイントの回転軸径は必要な流路を確保できる最小径とすることができ、任意に 半径方向のサイズを決定でき、超電導装置における回転軸の軸径に支配されない。  [0030] The stationary bellows seal forms a mechanical seal together with the rotating ring, and the rotary shaft diameter of the rotary joint can be set to the minimum diameter that can secure the required flow path. Can be determined and is not governed by the diameter of the rotating shaft in the superconducting device.
[0031] また、軸方向に短いベローズを使用したベローズシールで構成し、一個の回転リン グの両側面にそれぞれ金属べローズシールが摺動することで、ロータリジョイントの軸 方向長さをコンパクトにすることができる。  [0031] In addition, it is composed of a bellows seal that uses a short bellows in the axial direction, and the metal bellows seal slides on both sides of a single rotating ring, thereby reducing the axial length of the rotary joint. can do.
[0032] さらに、回転リングの外周面に回転リング孔を形成し、極低温流体の流路を形成す ることで、回転リングの全幅寸法を短くすることができる。  [0032] Furthermore, by forming a rotating ring hole on the outer peripheral surface of the rotating ring and forming a flow path for the cryogenic fluid, the overall width dimension of the rotating ring can be shortened.
[0033] 好ましくは、前記べローズシールの摺動部には、前記回転リングの軸方向面に対し て摺動するフッ素榭脂部材が装着してある。ベローズは静止側に配置し、ベローズに より軸方向に弾性付勢が与えられ、摺動部は、ロータリージョイントの回転軸外周に 装着してある回転リングの摺動面と密接摺動してシールを行う。フッ素榭脂は、断熱 性、耐寒性、耐久性に優れているため特に好ましい。 [0034] 好ましくは、前記回転継手軸の外周には、金属よりも断熱性に優れた部材で構成し てあるスリーブが装着してあり、当該スリーブにより、前記回転リングが位置決めされ て前記回転継手軸の外周に固定される。メカ-カルシールの一部を構成する回転リ ングを、 FRPなどの断熱材榭脂で製作されたスリーブにより、順次回転継手軸に挿 入し、軸端よりスリーブカラーをボルト締め又はねじ止めして一括締め付けして回り止 めを行なう。スリーブを用いることで、回転リングの取付と位置決めが容易になる。ま た、スリーブを断熱性に優れた榭脂で構成することにより、極低温流体と接触する部 分の断熱性が向上する。 [0033] Preferably, the sliding portion of the bellows seal is equipped with a fluorine resin member that slides with respect to the axial surface of the rotating ring. The bellows is placed on the stationary side, elastically biased in the axial direction by the bellows, and the sliding part is in close contact with the sliding surface of the rotating ring attached to the outer periphery of the rotary shaft. I do. Fluororesin is particularly preferred because of its excellent heat insulation, cold resistance and durability. [0034] Preferably, a sleeve made of a member having better heat insulation than metal is attached to the outer periphery of the rotary joint shaft, and the rotary ring is positioned by the sleeve so that the rotary joint is positioned. Fixed to the outer periphery of the shaft. The rotating ring that forms part of the mechanical seal is inserted into the rotary joint shaft in sequence using a sleeve made of heat insulating material such as FRP, and the sleeve collar is bolted or screwed from the shaft end. Tighten them together to prevent rotation. The use of the sleeve facilitates the mounting and positioning of the rotating ring. In addition, if the sleeve is made of a resin having excellent heat insulation, the heat insulation of the portion that comes into contact with the cryogenic fluid is improved.
[0035] 好ましくは、前記ケーシングに形成してある固定接続口と、前記回転継手軸に形成 してある回転連通孔とを連絡するように、前記シール部材により仕切られて前記ケー シングの内部に形成してある極低温流体のための各流入空間の圧力が実質的に同 圧となるように前記極低温流体が各固定接続口カゝら導入される。このように構成する ことで、流入空間の相互間における差圧がなくなり、相互間の漏出がない。  [0035] Preferably, the casing is partitioned by the seal member so as to communicate with a fixed connection port formed in the casing and a rotation communication hole formed in the rotary joint shaft. The cryogenic fluid is introduced into each fixed connection port so that the pressure in each inflow space for the cryogenic fluid formed is substantially the same pressure. By configuring in this way, there is no differential pressure between the inflow spaces, and there is no leakage between them.
[0036] 上記目的を達成するために、本発明の第 2の観点に係る極低温流体供給排出用 装置は、  In order to achieve the above object, the cryogenic fluid supply / discharge device according to the second aspect of the present invention comprises:
液体窒素や液体ヘリウムなど極低温流体をロータアッセンプリにおける冷却必要箇 所に供給および排出する極低温流体供給排出用装置であって、  A cryogenic fluid supply and discharge device that supplies and discharges cryogenic fluid such as liquid nitrogen and liquid helium to and from the places where cooling is required in the rotor assembly.
前記ロータアッセンプリの回転軸の軸端にロータリジョイントが接続してあり、 当該ロータリジョイントは、前記回転軸に対して着脱自在に連結される回転継手軸と A rotary joint is connected to the shaft end of the rotary shaft of the rotor assembly, and the rotary joint includes a rotary joint shaft that is detachably connected to the rotary shaft.
、当該回転継手軸の外周を覆うように配置されるとともに前記回転継手軸の回転に 対して静止しているケーシングと、を有し、 And a casing that is arranged so as to cover the outer periphery of the rotary joint shaft and is stationary with respect to the rotation of the rotary joint shaft,
前記回転継手軸は、前記冷却必要箇所と連通するように前記回転継手軸の軸方向 に沿って形成された複数の継手側流路と、当該継手側流路に連通するように前記回 転継手軸の外周に形成された複数の回転連通孔と、前記ロータリアッセンプリの真空 断熱空間と連通するように前記回転継手軸の軸方向に沿って形成された真空引き用 連通孔と、当該真空引き用連通孔と連通するように前記回転継手軸の外周に形成さ れた真空用連通孔と、を備え、  The rotary joint shaft includes a plurality of joint-side passages formed along the axial direction of the rotary joint shaft so as to communicate with the portion requiring cooling, and the rotary joint so as to communicate with the joint-side passage. A plurality of rotation communication holes formed on the outer periphery of the shaft, a communication hole for evacuation formed along the axial direction of the rotary joint shaft so as to communicate with the vacuum heat insulation space of the rotor assembly, and the vacuum suction A vacuum communication hole formed on the outer periphery of the rotary joint shaft so as to communicate with the communication hole,
前記ケーシングは、前記回転連通孔に対応する位置に前記回転連通孔と連通する ように形成された固定接続口と、前記真空用連通孔に対応する位置に前記真空用 連通孔と連通するように形成された真空用固定接続口と、を備え、 The casing communicates with the rotation communication hole at a position corresponding to the rotation communication hole. A fixed connection port formed as described above, and a vacuum fixed connection port formed so as to communicate with the vacuum communication hole at a position corresponding to the vacuum communication hole.
前記回転連通孔と前記固定接続口との間における前記極低温流体の漏洩を防止す るシール部材が配置されて 、る、ことを特徴とする。  A seal member for preventing leakage of the cryogenic fluid between the rotation communication hole and the fixed connection port is disposed.
[0037] 本発明の第 2の観点に係る極低温流体供給排出用装置では、ロータリジョイントの 回転継手軸の外周側力ゝら極低温流体を供給および排出するようにしてあるので、口 一タリジョイントの反負荷側に冷却流体源等の部品が配置されておらず、プロペラな どのモータ負荷を容易に続けて連結することができる。したがって、本発明を用いれ ば、複数のモータ負荷を連結したとしても、装置全体をコンパクトに構成することがで きる。  [0037] In the cryogenic fluid supply / discharge device according to the second aspect of the present invention, the cryogenic fluid is supplied and discharged from the outer peripheral side force of the rotary joint shaft of the rotary joint. Parts such as a cooling fluid source are not arranged on the anti-load side of the joint, and motor loads such as propellers can be easily and continuously connected. Therefore, if the present invention is used, the entire apparatus can be made compact even if a plurality of motor loads are connected.
[0038] 本発明に係る超電導装置は、上記のいずれかに記載の極低温流体供給排出用装 置を有する。  [0038] A superconducting device according to the present invention has the cryogenic fluid supply / discharge device described above.
[0039] 好ましくは、前記ロータアッセンプリの回転軸には、前記真空断熱空間としての中空 部が形成してあり、  [0039] Preferably, the rotary shaft of the rotor assembly is formed with a hollow portion as the vacuum heat insulating space,
当該中空部には、前記回転継手軸の円周方向に沿って異なる位置に形成してある 複数の継手側流路と、前記ロータアッセンプリにおける複数の冷却必要箇所と各々 連通する複数のチューブが配置してあり、  In the hollow portion, there are a plurality of joint-side flow passages formed at different positions along the circumferential direction of the rotary joint shaft, and a plurality of tubes respectively communicating with the plurality of cooling-required portions in the rotor assembly. Arranged,
前記中空部は、前記極低温流体が導入される各冷却必要箇所の周囲に連通してお り、前記真空用固定接続口、真空引き用軸孔を通して、断熱真空状態に保持される 。このように構成することで、複数の極低温流体の供給流路において、必要最小限の 部分での真空断熱が可能になり、サイズのコンパクト化と真空断熱とを両立させること ができる。  The hollow portion communicates with the surroundings of each cooling-required portion where the cryogenic fluid is introduced, and is maintained in an adiabatic vacuum state through the vacuum fixed connection port and the vacuuming shaft hole. With this configuration, it is possible to perform vacuum insulation at a minimum necessary portion in a plurality of cryogenic fluid supply channels, and to achieve both size reduction and vacuum insulation.
[0040] 本発明では、超電導装置としては、特に限定されず、超電導モータ、超電導発電 機などが例示される。また、超電導モータとしては、アキシャルギャップ型の超電導モ ータに限定されず、ラジアルギャップ型の超電導モータにも本発明を適用することが 可能である。アキシャルギャップ型の超電導モータは、一般に、回転軸の回転子が円 盤状に形成してあり、回転子との間に軸方向ギャップを介して、ステータがケ一シン グに固定してある。また、ラジアルギャップ型の超電導モータは、一般に、回転軸の 外周に回転子が長手方向に沿って固定してあり、回転子との間に半径方向方向ギヤ ップを介して、ステータがケ一シングに固定してある。 In the present invention, the superconducting device is not particularly limited, and examples thereof include a superconducting motor and a superconducting generator. Further, the superconducting motor is not limited to the axial gap type superconducting motor, and the present invention can also be applied to a radial gap type superconducting motor. In the axial gap type superconducting motor, the rotor of the rotating shaft is generally formed in a disk shape, and the stator is fixed to the casing through an axial gap between the rotor and the rotor. In addition, a radial gap type superconducting motor generally has a rotating shaft. A rotor is fixed to the outer periphery along the longitudinal direction, and a stator is fixed to the casing via a radial gap between the rotor and the rotor.
[0041] 好ましくは、前記超電導装置のロータアッセンプリが、アキシャルギャップ型の超電 導モータのロータアッセンブリであり、  [0041] Preferably, the rotor assembly of the superconducting device is a rotor assembly of an axial gap type superconducting motor,
前記ロータアッセンプリの回転軸には、軸方向に沿って所定間隔で複数の円盤状回 転子が固定してあり、  A plurality of disk-like rotors are fixed to the rotation shaft of the rotor assembly at predetermined intervals along the axial direction,
各円盤状回転子のコイルを冷却するように、前記ロータアッセンプリの中空部に配置 されたチューブを通して、前記極低温流体が流れる。  The cryogenic fluid flows through a tube disposed in the hollow portion of the rotor assembly so as to cool the coils of each disk-like rotor.
[0042] 好ましくは、前記超電導装置のロータアッセンプリにおける各円盤状回転子の軸方 向前後位置には、超電導装置のケーシングに固定されたステータコアがそれぞれ配 置してある。 [0042] Preferably, stator cores fixed to a casing of the superconducting device are respectively arranged in front and rear positions in the axial direction of the respective disk-like rotors in the rotor assembly of the superconducting device.
[0043] あるいは、前記超電導装置のロータアッセンプリが、ラジアルギャップ型の超電導モ ータのロータアッセンブリであり、  [0043] Alternatively, the rotor assembly of the superconducting device is a rotor assembly of a radial gap type superconducting motor,
前記ロータアッセンプリの回転軸には、軸方向に沿って回転子が固定してあり、 前記回転子の軸方向と垂直方向である半径方向には、所定の半径方向ギャップで、 ステータがケ一シングに固定してあっても良い。  A rotor is fixed to the rotation shaft of the rotor assembly along the axial direction, and the stator is fitted with a predetermined radial gap in the radial direction perpendicular to the axial direction of the rotor. It may be fixed to the thing.
[0044] その場合には、前記回転子を構成するコイルを冷却するように、前記ロータアッセン プリの中空部に配置されたチューブを通して、前記極低温流体が流れることが好まし い。 [0044] In that case, it is preferable that the cryogenic fluid flows through a tube disposed in a hollow portion of the rotor assembly so as to cool a coil constituting the rotor.
[0045] 本発明によれば、断熱性に優れ、極低温流体の外部への漏出を極小とし、動力損 失がきわめて小さぐコンパクトであり、し力も耐久性、信頼性およびメンテナンス性に 優れ、低コストの極低温流体供給排出用装置と、それを用いた超電導装置を提供す ることがでさる。  [0045] According to the present invention, it is excellent in heat insulation, minimizing leakage of cryogenic fluid to the outside, minimizing power loss, and having excellent durability, reliability, and maintainability. It is possible to provide a low-cost cryogenic fluid supply / discharge device and a superconducting device using the device.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]図 1は本発明の一実施形態に係る超電導モータの概略断面図である。 FIG. 1 is a schematic sectional view of a superconducting motor according to an embodiment of the present invention.
[図 2]図 2は図 1に示すロータリジョイントの概略断面図である。  2 is a schematic sectional view of the rotary joint shown in FIG.
[図 3]図 3は図 2の III— III線に沿う矢視図である。  [FIG. 3] FIG. 3 is a view taken along the line III-III in FIG.
[図 4]図 4は図 2に示す金属べローズシールと流路との関係を示す拡大断面図である 発明を実施するための最良の形態 4 is an enlarged sectional view showing the relationship between the metal bellows seal shown in FIG. 2 and the flow path. BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、本発明を、図面に示す実施形態に基づき説明する。  Hereinafter, the present invention will be described based on embodiments shown in the drawings.
[0048] 図 1に示すように、本発明の一実施形態に係る超電導モータ 2は、ノ、ウジング 4の内 部に収容してある。ハウジング 4には、一対の軸受 6が固定してあり、これらの軸受 6 により、モータ 2におけるロータアッセンブリ 20の回転軸 10が回転可能になっている  As shown in FIG. 1, a superconducting motor 2 according to an embodiment of the present invention is housed in an inner portion of a nosing / housing 4. A pair of bearings 6 are fixed to the housing 4, and these bearings 6 enable the rotary shaft 10 of the rotor assembly 20 in the motor 2 to rotate.
[0049] ロータアッセンブリ 20は、回転軸 10と、その回転軸 10の軸方向に沿って所定間隔 で固定してある 4つの円盤状回転子 16とを有する。円盤状回転子 16の軸方向前後 位置には、モータ 2のケーシング 11に固定してあるステータ 12が所定の軸方向隙間 で配置してある。ステータ 12には、マグネット 14が埋め込まれ、回転子 16に配置して ある超電導コイル 15との間で、回転子 16に対して回転力を付与するようになってい る。ケーシング 11はハウジング 4に対して固定してある。図 1に示すように、本実施形 態の超電導モータ 2は、アキシャルギャップ型の超電導モータである。 The rotor assembly 20 includes a rotating shaft 10 and four disk-shaped rotors 16 fixed at predetermined intervals along the axial direction of the rotating shaft 10. A stator 12 fixed to the casing 11 of the motor 2 is disposed at a predetermined axial gap at the front and rear positions of the disk-like rotor 16 in the axial direction. A magnet 14 is embedded in the stator 12, and a rotational force is applied to the rotor 16 between the stator 12 and a superconducting coil 15 disposed on the rotor 16. The casing 11 is fixed to the housing 4. As shown in FIG. 1, the superconducting motor 2 of this embodiment is an axial gap type superconducting motor.
[0050] 回転子 16に加えられた回転力で、回転軸 10が回転駆動され、ハウジング 4の外部 に装着してあるプロペラ 8を回転させるようになつている。ロータアッセンブリ 20の回 転軸 10は、その軸芯中央部に中空部 (真空断熱空間) 22を有している。  The rotating shaft 10 is driven to rotate by the rotational force applied to the rotor 16, and the propeller 8 mounted on the outside of the housing 4 is rotated. The rotating shaft 10 of the rotor assembly 20 has a hollow portion (vacuum heat insulating space) 22 at the center of the shaft core.
[0051] 中空部 22の内部には、供給チューブ 24と、排出チューブ 26とが配置してある。各 供給チューブ 24は、回転軸 10の外周に軸方向に沿って所定間隔で装着してある各 円盤状回転子 16の内部冷却空間(冷却必要箇所) 25に連通してある。  [0051] Inside the hollow part 22, a supply tube 24 and a discharge tube 26 are arranged. Each supply tube 24 communicates with an internal cooling space (a place where cooling is necessary) 25 of each disk-like rotor 16 mounted on the outer periphery of the rotating shaft 10 at predetermined intervals along the axial direction.
[0052] 各回転子 16の内部冷却空間 25の周囲には、断熱用真空室(図示省略)が形成し てあり、各真空室は、それぞれ回転軸 10の中空部 22に連通している。  A heat insulating vacuum chamber (not shown) is formed around the internal cooling space 25 of each rotor 16, and each vacuum chamber communicates with the hollow portion 22 of the rotating shaft 10.
[0053] 各回転子 16の内部冷却空間 25には、それぞれ超電導コイル 15が配置してあり、 各供給チューブ 24を通して各内部冷却空間 25へと供給される極低温流体により、 超電導状態が発揮される低温にまで冷却されるようになって ヽる。供給される極低温 流体としては、特に限定されないが、たとえば液体窒素や液体ヘリウムなどが例示さ れる。  [0053] Superconducting coils 15 are arranged in the internal cooling spaces 25 of the respective rotors 16, and the superconducting state is exhibited by the cryogenic fluid supplied to the internal cooling spaces 25 through the supply tubes 24. It will be cooled down to a low temperature. The cryogenic fluid to be supplied is not particularly limited, and examples thereof include liquid nitrogen and liquid helium.
[0054] 各回転子 16の内部冷却空間 25には、供給チューブ 24と共に、排出チューブ 26が 接続してあり、内部冷却空間 25に供給された極低温流体は、各排出チューブ 26を 通して排出される。 [0054] In the internal cooling space 25 of each rotor 16, a supply tube 24 and a discharge tube 26 are provided. The cryogenic fluid that is connected and supplied to the internal cooling space 25 is discharged through each discharge tube 26.
[0055] 超電導モータ 2における回転軸 10は、その駆動側一端にプロペラなどのモータ負 荷が連結され、その反駆動側一端に、極低温流体供給排出用装置を構成するロー タリジョイント 30が接続される。  [0055] The rotating shaft 10 in the superconducting motor 2 is connected to a motor load such as a propeller at one end on the drive side, and a rotary joint 30 constituting a cryogenic fluid supply / discharge device is connected to the other end on the non-drive side. Is done.
[0056] 図 2に示すように、ロータリジョイント 30は、回転 ϋ手軸 32と、その回転 ϋ手軸 32を 軸受 74を介して回転自在に保持するジョイント用ハウジング 38とを有する。回転継手 軸 32の軸方向内側(モータの回転軸 10との接続側)の一端には、フランジ 34がー体 に形成してある。  As shown in FIG. 2, the rotary joint 30 includes a rotary handle shaft 32 and a joint housing 38 that rotatably holds the rotary handle shaft 32 via a bearing 74. At one end of the rotary joint shaft 32 in the axial direction (connection side with the motor rotary shaft 10), a flange 34 is formed in a body.
[0057] フランジ 34は、ボルトおよびガスケットなどにより、回転軸 10の反駆動側一端に気 密に接続してある。フランジ 34を回転軸 10の反駆動側一端と気密に接続するために 、フランジ 34と回転軸 10の反駆動側一端との接合面には、耐寒性パッキンが装着し てある。耐寒性パッキンとしては、特に限定されないが、 PTFEなどのフッ素榭脂製パ ツキンゃ、アルミニウム、ステンレス鋼などの金属で構成された金属製パッキン、ある いはこれらを組み合わせた複合パッキンなどが例示される。  [0057] The flange 34 is hermetically connected to one end of the rotating shaft 10 on the side opposite to the driving side with a bolt, a gasket, or the like. In order to hermetically connect the flange 34 to one end of the rotating shaft 10 on the non-driving side, a cold-resistant packing is attached to the joint surface between the flange 34 and one end of the rotating shaft 10 on the non-driving side. The cold-resistant packing is not particularly limited, and examples thereof include a fluorine resin packing such as PTFE, a metal packing made of a metal such as aluminum or stainless steel, or a composite packing combining these. The
[0058] 回転継手軸 32の軸芯中央には、軸方向に沿って貫通している真空引き用軸孔 36 が形成してあり、この軸孔 36は、フランジ 34の中心にて中空部 22と連通してある。  A vacuum pulling shaft hole 36 penetrating along the axial direction is formed in the center of the shaft center of the rotary joint shaft 32, and the shaft hole 36 is a hollow portion 22 at the center of the flange 34. It communicates with.
[0059] 図 2および図 3に示すように、回転継手軸 32には、軸方向内側の端部に、回転継 手軸 32の円周方向に沿って異なる位置で、回転継手軸 32の軸方向に沿って、複数 の継手側流路 64が形成してある。図示する例では、円周方向の等倍間隔で 5つの 継手側流路 64が形成してあり、それぞれに軸方向の流路長さが異なる。  [0059] As shown in Figs. 2 and 3, the rotary joint shaft 32 includes a shaft of the rotary joint shaft 32 at different positions along the circumferential direction of the rotary joint shaft 32 at the axially inner end. A plurality of joint-side flow paths 64 are formed along the direction. In the illustrated example, five joint-side flow paths 64 are formed at equal intervals in the circumferential direction, and the flow path lengths in the axial direction are different from each other.
[0060] 最も短い流路長さの継手側流路 64の軸方向内側開口端 64aに対して、単一の排 出チューブ 26が接続してある。単一の排出チューブ 26は、図 1に示す 4つの排出チ ユーブ 26に対して、回転軸 10の中空部 22の内部で接続される。図 1に示す 4つの供 給チューブ 24は、それぞれ図 3に示す残りの 4つの継手側流路 64の開口端 64aに 対して接続される。  [0060] A single discharge tube 26 is connected to the axially inner opening end 64a of the joint-side flow path 64 having the shortest flow path length. The single discharge tube 26 is connected to the four discharge tubes 26 shown in FIG. 1 inside the hollow portion 22 of the rotating shaft 10. The four supply tubes 24 shown in FIG. 1 are connected to the open ends 64a of the remaining four joint-side flow paths 64 shown in FIG.
[0061] 回転継手軸 32の内部に形成してある各継手側流路 64の軸方向長さは、所定間隔 で、それぞれ異なり、各流路 64の軸方向外側(回転継手軸 32の反継手側)の端部 付近には、それぞれ回転継手軸 32の外周に開口している回転連通孔 66が連通して いる。 [0061] The axial lengths of the joint-side flow paths 64 formed inside the rotary joint shaft 32 are different at predetermined intervals, and are different from each other in the axial direction of each flow path 64 (the anti-joint of the rotary joint shaft 32). Side) end Rotational communication holes 66 that open to the outer periphery of the rotary joint shaft 32 are connected in the vicinity.
[0062] 回転継手軸 32の外周には、最も軸方向内側に配置してある回転連通孔 66に対応 する位置で回転リング 60が気密に装着してあり、そこ力 軸方向に沿って一つ置きの 回転連通孔 66の位置に回転リング 60が気密に装着してある。回転リング 60の軸方 向相互間では、回転継手軸 32の外周に、中間スリーブ 70が装着してあり、回転継手 軸 32の軸方向外側端部外周には、エンドスリーブ 72がボルトゃネジなどで締め付け られ、回転リング 60および中間スリーブ 70を一括して回り止めしてある。すなわち、 回転リング 60は、回転継手軸 32の外周に対して回り止めして固定され、共に回転す る。  [0062] On the outer periphery of the rotary joint shaft 32, a rotary ring 60 is air-tightly mounted at a position corresponding to the rotary communication hole 66 arranged on the innermost side in the axial direction. The rotating ring 60 is airtightly attached at the position of the rotation connecting hole 66. Between the axial directions of the rotary ring 60, an intermediate sleeve 70 is mounted on the outer periphery of the rotary joint shaft 32, and an end sleeve 72 is bolted or screwed on the outer periphery of the outer end of the rotary joint shaft 32 in the axial direction. The rotating ring 60 and the intermediate sleeve 70 are collectively stopped. That is, the rotary ring 60 is fixed to the outer periphery of the rotary joint shaft 32 and is rotated together.
[0063] 回転リング 60の外周には、当該回転リング 60が位置する部分に形成してある回転 連通孔 66に対して連通する回転リング孔 62が形成してある。中間スリーブ 70には、 図 4に示すように、その中間スリーブ 70が位置する部分に形成してある回転連通孔 6 [0063] On the outer periphery of the rotating ring 60, a rotating ring hole 62 communicating with a rotating communication hole 66 formed in a portion where the rotating ring 60 is located is formed. As shown in FIG. 4, the intermediate sleeve 70 has a rotary communication hole 6 formed in a portion where the intermediate sleeve 70 is located.
6に対して連通する連通孔 71が形成してある。 A communication hole 71 communicating with 6 is formed.
[0064] 図 2に示すように、ケーシング 38は、回転継手軸 32の軸方向外側に位置する軸受As shown in FIG. 2, the casing 38 is a bearing located on the outer side in the axial direction of the rotary joint shaft 32.
74が内部に装着してあるエンドカバー 40と、回転継手軸 32の軸方向内側の軸受 74 が内部に装着してある軸受保持リング 46とを有する。 An end cover 40 in which 74 is mounted is provided, and a bearing retaining ring 46 in which a bearing 74 on the inner side in the axial direction of the rotary joint shaft 32 is mounted.
[0065] エンドカバー 40と軸受保持リング 46との間には、接続口形成リング 42a〜42gと、 ベローズ保持リング 44とが交互に気密に連結してあり、これら全体がケーシング 38を 構成している。 [0065] Between the end cover 40 and the bearing retaining ring 46, the connection port forming rings 42a to 42g and the bellows retaining ring 44 are alternately and airtightly connected, and the whole constitutes the casing 38. Yes.
[0066] 回転継手軸 32における最も軸方向外側に位置する接続口形成リング 42aには、単 一または複数の真空用固定接続口 50が形成してある。この接続口 50は、ケーシング 38の内部において、回転継手軸 32の軸方向外側端部周囲とエンドカバー 40との間 の隙間に形成される軸端真空室 90に連通している。この接続口 50には、真空引き 装置が接続され、接続口 50を通して軸端真空室 90および中空部 22を減圧し、高真 空状態に維持する。軸端真空室 90は、回転継手軸 32に形成してある真空引き用軸 孔 36に連通してある。また、真空引き用軸孔 36は、回転継手軸 32の軸方向外側端 部付近に半径方向に形成してある真空用連通孔 91により接続口 50と連通してある。 [0067] 真空用固定接続口 50が形成してある接続口形成リング 42aの軸方向内側には、ベ ローズ保持リング 44を介して、極低温流体を供給するための供給用固定接続口 52 が各々形成してある 4つの接続口形成リング 42b〜42eが配置してある。 4つの接続 口形成リング 42b〜42eに各々形成してある接続口 52からは、同じ圧力で、同程度 に低温の液ィ匕窒素または液ィ匕ヘリウムなどの極低温流体が供給されるようになって いる。 [0066] A single or a plurality of vacuum fixed connection ports 50 are formed in the connection port forming ring 42a located on the outermost side in the axial direction of the rotary joint shaft 32. The connection port 50 communicates with a shaft end vacuum chamber 90 formed in a gap between the outer periphery of the rotary joint shaft 32 in the axial direction and the end cover 40 inside the casing 38. A vacuum evacuation device is connected to the connection port 50, and the shaft end vacuum chamber 90 and the hollow portion 22 are depressurized through the connection port 50 to maintain a high vacuum state. The shaft end vacuum chamber 90 communicates with a vacuum pulling shaft hole 36 formed in the rotary joint shaft 32. The evacuation shaft hole 36 communicates with the connection port 50 through a vacuum communication hole 91 formed radially in the vicinity of the axially outer end of the rotary joint shaft 32. [0067] On the axially inner side of the connection port forming ring 42a in which the vacuum fixed connection port 50 is formed, there is a supply fixed connection port 52 for supplying a cryogenic fluid via the bellows holding ring 44. Four connection port forming rings 42b to 42e each formed are arranged. Cryogenic fluid such as liquid-nitrogen or liquid-helium at the same temperature is supplied from the connection ports 52 formed in the four connection-port-forming rings 42b to 42e at the same pressure. It is.
なお、 4つの接続口 52から供給される極低温流体の圧力力 ほとんど同じであること が好ましいのは、後述するべローズシール 80においての密封性を高めるためである  Note that it is preferable that the pressure forces of the cryogenic fluid supplied from the four connection ports 52 be almost the same in order to improve the sealing performance in the bellows seal 80 described later.
[0068] 各接続口 52から供給される極低温流体は、それぞれ、図 1に示す供給チューブ 24 を介して円盤状回転子 16の内部冷却空間 25に供給される。 [0068] The cryogenic fluid supplied from each connection port 52 is supplied to the internal cooling space 25 of the disk-like rotor 16 via the supply tube 24 shown in FIG.
[0069] 各接続口形成リング 42b〜42eに各々形成してある接続口 52のうち、最も軸方向 外側に位置する接続口 52は、最も軸方向外側に位置する回転リング 60に形成して ある回転リング 60の回転リング孔 62に対して連通する位置に形成してある。回転リン グ 60の軸方向両側の側面には、それぞれ金属べローズシール 80の先端摺動部が 回転摺動し、回転リング孔 62と接続口 52との間の空間流路 92を密封するようになつ ている。  [0069] Of the connection ports 52 formed in each of the connection port forming rings 42b to 42e, the connection port 52 positioned on the outermost side in the axial direction is formed on the rotary ring 60 positioned on the outermost side in the axial direction. The rotary ring 60 is formed at a position communicating with the rotary ring hole 62. The sliding part of the tip of the metal bellows seal 80 rotates and slides on both sides in the axial direction of the rotating ring 60 to seal the space flow path 92 between the rotating ring hole 62 and the connection port 52. It has become.
[0070] 各金属べローズシール 80は、金属べローズと先端摺動部とから構成してあり、金属 ベローズの基端部がベローズ保持リング 44の内側に固定してあり、軸方向に伸縮可 能に構成してあり、先端摺動部が回転リング 60の各側面に対して押しつけられるよう にパネ付勢されている。ベローズシール 80の先端摺動部は、たとえば PTFEなどの フッ素榭脂ゃカーボンなどで構成される。フッ素榭脂ゃカーボンは、耐摩耗性に優れ 、し力も耐寒性にも優れている。  [0070] Each metal bellows seal 80 is composed of a metal bellows and a tip sliding portion, and the base end portion of the metal bellows is fixed to the inside of the bellows holding ring 44 and can be expanded and contracted in the axial direction. The panel is urged so that the tip sliding portion is pressed against each side of the rotating ring 60. The tip sliding portion of the bellows seal 80 is made of, for example, fluorine resin such as PTFE or carbon. Fluorine resin is excellent in abrasion resistance, strength and cold resistance.
[0071] 金属べローズは、低温脆性に優れたインコネル 718などのニッケル合金を使用した 金属べローズであることが好ましい。金属べローズシールは、極低温流体用として適 している。  [0071] The metal bellows is preferably a metal bellows using a nickel alloy such as Inconel 718 having excellent low-temperature brittleness. Metal bellows seals are suitable for cryogenic fluids.
[0072] 最も軸方向外側に位置する金属べローズシール 80は、軸端真空室 90と空間流路 92との間をシールする。その隣に位置する金属べローズシール 80は、極低温流体 が供給される空間流路 92と、その隣の空間流路 94とをシールする。 The metal bellows seal 80 located on the outermost side in the axial direction seals between the shaft end vacuum chamber 90 and the space flow path 92. The metal bellows seal 80 located next to it is a cryogenic fluid. The space channel 92 to which the gas is supplied and the space channel 94 adjacent thereto are sealed.
[0073] 図 2に示すように、軸方向に沿って回転リング 60と回転リング 60との間に位置する 供給用接続口 52は、回転リング 60と回転リング 60との間に位置する空間流路 94と 連通するようになっている。この空間流路 94は、回転リング 60の回転リング孔 62とは 連通しないように、金属べローズシール 80によりシールしてある。空間流路 94は、中 間スリーブ 70に形成してある連通孔 71を介して回転連通孔 66に連通している。  As shown in FIG. 2, the supply connection port 52 located between the rotating ring 60 and the rotating ring 60 along the axial direction is a spatial flow located between the rotating ring 60 and the rotating ring 60. It is designed to communicate with Road 94. The space flow path 94 is sealed with a metal bellows seal 80 so as not to communicate with the rotary ring hole 62 of the rotary ring 60. The space channel 94 communicates with the rotary communication hole 66 through a communication hole 71 formed in the intermediate sleeve 70.
[0074] 4つの接続口形成リング 42b〜42eの軸方向内側には、ベローズ保持リング 44を介 して、使用済みの極低温流体を排出するための戻り用固定接続口 54が形成してある 接続口形成リング 42fが配置してある。戻り用固定接続口 54は、空間流路 92を通し て、回転リング 60の回転リング孔 62に連通し、回転連通孔 66および最も短い継手側 流路 64を通して、排出チューブ 26に連通している。  [0074] On the inner side in the axial direction of the four connection port forming rings 42b to 42e, a return fixed connection port 54 for discharging used cryogenic fluid is formed through a bellows holding ring 44. A connection port forming ring 42f is arranged. The return fixed connection port 54 communicates with the rotation ring hole 62 of the rotation ring 60 through the space flow path 92, and communicates with the discharge tube 26 through the rotation communication hole 66 and the shortest joint side flow path 64. .
[0075] 全ての接続口形成リング 42a〜42gのうち、最も軸方向内側に位置する接続口形 成リング 42gには、ドレン用固定接続口 56が形成してある。ドレン用固定接続口 56は 、フランジ 34および軸受 74の軸方向外側で、最も軸方向内側に位置する回転継手 軸 32の外周に連通するようになって!/、る。  [0075] Of all the connection port forming rings 42a to 42g, a drain fixed connection port 56 is formed in the connection port forming ring 42g located on the innermost side in the axial direction. The drain fixed connection port 56 communicates with the outer periphery of the rotary joint shaft 32 positioned on the innermost side in the axial direction outside the flange 34 and the bearing 74! /.
[0076] 本実施形態では、回転継手軸 32、スリーブ 70および 72と回転リング 60とが、 FRP で構成してある。また、ケーシング 38を構成する部材の内、接続口形成リング 42a〜 42gが FRPで構成してあり、エンドカバー 40と軸受保持リング 46とべローズ保持リン グ 44とは、ステンレス鋼、インコネル、チタンなどの金属で構成してある。なお、保持リ ング 44および 46の外周部分は、 FRPで構成することも可能である。  [0076] In the present embodiment, the rotary joint shaft 32, the sleeves 70 and 72, and the rotary ring 60 are made of FRP. Of the members that make up the casing 38, the connection port forming rings 42a to 42g are made of FRP. The end cover 40, the bearing retaining ring 46, and the bellows retaining ring 44 are made of stainless steel, Inconel, titanium, etc. Made of metal. The outer periphery of the holding rings 44 and 46 can be made of FRP.
[0077] 回転継手軸 32の軸方向外側端部に位置する軸受 74は、端部真空室 90の内部に 配置してあり、真空グリースが封入されたシールドベアリングで構成してあることが好 ましい。回転継手軸 32の軸方向内側の軸受 74は、回転継手軸 32内に設けられてい る極低温流体の継手側流路 64から半径方向に極力遠 、位置に設置してあることが 好ましい。すなわち、フランジ 34に近い側の軸受 74で保持される回転継手軸 32の 外径は、他の部分よりも外径が大きく形成してあることが好ましい。フランジ 34に近い 側の軸受 74は、外気に接触し、大気雰囲気で動作するようになっている。  [0077] The bearing 74 positioned at the outer end of the rotary joint shaft 32 in the axial direction is preferably disposed within the end vacuum chamber 90 and configured by a sealed bearing filled with vacuum grease. Yes. The bearing 74 on the inner side in the axial direction of the rotary joint shaft 32 is preferably installed at a position as far as possible in the radial direction from the joint-side flow path 64 of the cryogenic fluid provided in the rotary joint shaft 32. That is, it is preferable that the outer diameter of the rotary joint shaft 32 held by the bearing 74 on the side close to the flange 34 is formed to be larger than the other portions. The bearing 74 on the side close to the flange 34 is in contact with the outside air and operates in an air atmosphere.
[0078] これらの各軸受 74は、ハウジング 38の内部において、それぞれ回転 ϋ手軸 32の 両端部に装着してあり、極低温流体が流通する流路(52, 92, 94, 62, 66, 64)と は、断熱性に優れた FRP製のスリーブ 72および回転継手軸 32により断熱してある。 各軸受 74は、金属製のエンドカバー 40および軸受保持リング 46の内側に保持して あるので、軸受が凍結しないように、エンドカバー 40または軸受保持リング 46の外側 から加熱して、軸受 74の凍結防止を図っても良い。 [0078] Each of these bearings 74 is disposed inside the housing 38, respectively. The flow path (52, 92, 94, 62, 66, 64) through which the cryogenic fluid circulates is installed at both ends, and is insulated by the FRP sleeve 72 and the rotary joint shaft 32 with excellent heat insulation. It is. Since each bearing 74 is held inside the metal end cover 40 and the bearing retaining ring 46, the bearing 74 is heated from the outside of the end cover 40 or the bearing retaining ring 46 to prevent the bearing from freezing. Freezing may be prevented.
[0079] 本実施形態に係るロータリジョイント 30およびそれを用いた超電導モータ 2によれ ば、軸方向に一つ置きの回転連通孔 66の位置で、回転継手軸 32の外周に、回転リ ング 60が固定してあり、金属べローズシール 80力 回転リング 60の軸方向両側面に 対して摺動し、ケーシング 38内で軸方向に相互に隣り合う空間流路 92, 94の間をシ ールしている。そのため、静止部材であるケーシング 38に形成された供給用固定接 続口 52から、回転する部分である回転連通孔 62または回転リング孔 66へと極低温 流体が流通する部分において、シール部材の数を低減し、効率的に極低温流体を 密封することができる。 [0079] According to the rotary joint 30 and the superconducting motor 2 using the rotary joint 30 according to the present embodiment, the rotary ring 60 is provided on the outer periphery of the rotary joint shaft 32 at the positions of the other rotational communication holes 66 in the axial direction. Is fixed, metal bellows seal 80 force slides on both axial sides of the rotating ring 60, and seals between the spatial flow paths 92 and 94 that are axially adjacent to each other in the casing 38. is doing. For this reason, the number of seal members in the portion where the cryogenic fluid flows from the fixed supply port 52 for supply formed in the casing 38 as a stationary member to the rotary communication hole 62 or the rotary ring hole 66 as the rotating portion. And the cryogenic fluid can be efficiently sealed.
[0080] また、本実施形態では、回転継手軸 32の中心には、回転軸 10の中空部 22に連通 する真空引き用軸孔 36が軸方向に沿って形成してあり、ケーシング 38には、軸方向 外側(ロータアッセンプリとの接続部分力 最も遠い側)に位置する部分に、真空引き 用軸孔 36に連通する真空用固定接続口 50が形成してある。このため、真空断熱空 間力 ロータアッセンプリ 20との接続部分力も最も遠い軸端部分に形成することがで きると共に、回転軸 10の中空部 22をも真空断熱空間にすることができる。  In the present embodiment, the evacuation shaft hole 36 communicating with the hollow portion 22 of the rotary shaft 10 is formed in the center of the rotary joint shaft 32 along the axial direction. A vacuum fixed connection port 50 communicating with the vacuum suction shaft hole 36 is formed in a portion located on the outer side in the axial direction (the farthest side of the connection partial force with the rotor assembly). For this reason, it is possible to form a connection portion force with the vacuum adiabatic space force rotor assembly 20 at the farthest shaft end portion, and also to make the hollow portion 22 of the rotary shaft 10 a vacuum insulation space.
[0081] そのため、ケーシング 38に形成された複数の固定接続口 52から回転継手軸 32の 回転連通孔 66または回転リング孔 62を通り、回転継手軸 32内の継手側流路 64へと 至る極低温流体の流路は、回転継手軸 32の軸方向外側に形成してある軸端真空室 90の真空断熱空間と、 FRPで構成してある断熱部材とにより、効率的に断熱される。 また、超電導モータ 2における回転軸 10の中空部 22が、回転継手軸 32の真空引き 用軸孔 36と連通していることから、その中空部 22も真空断熱空間となり、その内部に 配置してあるチューブ 24, 26の断熱性が向上する。チューブ 24, 26の内部には、極 低温流体が流通する。  Therefore, the poles that pass from the plurality of fixed connection ports 52 formed in the casing 38 to the joint-side flow path 64 in the rotary joint shaft 32 through the rotary communication hole 66 or the rotary ring hole 62 of the rotary joint shaft 32. The flow path of the low-temperature fluid is efficiently insulated by the vacuum heat insulating space of the shaft end vacuum chamber 90 formed on the outer side in the axial direction of the rotary joint shaft 32 and the heat insulating member made of FRP. Further, since the hollow portion 22 of the rotary shaft 10 in the superconducting motor 2 communicates with the vacuum pulling shaft hole 36 of the rotary joint shaft 32, the hollow portion 22 also becomes a vacuum heat insulating space and is disposed in the interior thereof. The heat insulation of some tubes 24 and 26 is improved. A cryogenic fluid circulates inside the tubes 24 and 26.
[0082] これらのチューブ 24, 26は、図 1に示すように、ロータアッセンブリ 20における冷却 が必要な複数位置の内部冷却空間 25にそれぞれ連通してあり、各箇所を個別に冷 去 Pすることができる。 [0082] These tubes 24 and 26 are cooled in the rotor assembly 20 as shown in FIG. Are connected to the internal cooling space 25 at multiple positions where it is necessary to cool each part individually.
[0083] また、本実施形態では、回転継手軸 32および回転リング 60のうち、少なくとも極低 温流体と接触する部分が、金属よりも断熱性に優れた FRP部材で構成してある。また 、ケーシング 38が、金属製のエンドカバー 40およびリング 44, 46と、 FRP製の接続 口形成用リング 42a〜42gとで構成してある。このため、少なくとも極低温流体と接触 する部分が、金属よりも断熱性に優れた FRP部材で構成することができ、ロータリジョ イント 30の内部で極低温流体が流通する部分では、金属に接触する部分が極力少 なくなり、この点でも断熱性が向上する。  In the present embodiment, at least a portion of the rotary joint shaft 32 and the rotary ring 60 that is in contact with the cryogenic fluid is formed of an FRP member that has better heat insulation than metal. The casing 38 includes a metal end cover 40 and rings 44 and 46, and FRP connection port forming rings 42a to 42g. For this reason, at least the part in contact with the cryogenic fluid can be composed of an FRP member having better heat insulation than metal, and the part in contact with the metal in the part where the cryogenic fluid circulates inside the rotary joint 30. The heat insulation is improved in this respect as well.
[0084] したがって、本実施形態では、ロータリジョイント 30の静止部分から回転部分と、そ の回転部分力 超電導モータ 2のロータアッセンプリ 20部分における内部冷却空間 25へと至る全ての箇所において、極低温流体 (液体)が暖められてガス化することを 最小限に抑制することができる。なお、従来の装置では、ヘリウムガスなどの気体が 主流であつたが、本発明では、液体窒素などの液体を用いることが可能になる。また 、高断熱性が実現できることから、ロータリジョイント 30およびロータアッセンブリ 20に 霜が付くことを抑制することができる。  Therefore, in this embodiment, the cryogenic temperature is reduced at all points from the stationary part of the rotary joint 30 to the rotating part and the internal cooling space 25 of the rotating part force 20 of the rotor assembly 20 of the superconducting motor 2. It is possible to minimize the fluid (liquid) from warming and gasifying. In the conventional apparatus, a gas such as helium gas has been mainstream, but in the present invention, a liquid such as liquid nitrogen can be used. In addition, since high heat insulation can be realized, it is possible to suppress frost formation on the rotary joint 30 and the rotor assembly 20.
[0085] し力も本実施形態では、単一のロータリジョイント 30を用いて、複数の内部冷却空 間 (冷却必要箇所) 25に極低温流体を供給することができることから、装置の小型化 を図ることができる。また、ロータリジョイント 30から複数の内部冷却空間 25に至る流 路カ それぞれ独立しているため、信頼性が高い。そのため、ロータリジョイント 30か ら最も遠い位置にある内部冷却空間 25に対しても、最も近い位置にある内部冷却空 間 25と同程度に低温の流体を供給することが可能になる。  In this embodiment, since the cryogenic fluid can be supplied to a plurality of internal cooling spaces (locations requiring cooling) 25 using a single rotary joint 30 in this embodiment, the apparatus can be reduced in size. be able to. In addition, since the flow paths from the rotary joint 30 to the plurality of internal cooling spaces 25 are independent, the reliability is high. Therefore, it is possible to supply a low-temperature fluid to the internal cooling space 25 farthest from the rotary joint 30 as much as the internal cooling space 25 located closest.
[0086] また、本実施形態では、ロータリジョイント 30のケーシング 38において、極低温流 体の入口となる固定接続口 52が、軸方向に隣接して形成してあり、静止部材から回 転部材に至る極低温流体の流路が軸方向に隣接して形成してあり、それらの軸方向 外側に軸端真空空間 90が形成される。このため、ケーシング 38の内部において、極 低温流体のケーシング外部への漏洩を防止するためのシール箇所は、回転継手軸 32の軸方向内側(ロータアッセンプリの回転軸との連結部分に近 、側)の一力所にな り、極低温流体の外部への漏出を極小とすることができる。また、シール径を小さくで きることからも、漏れにくい構造となる。 [0086] In the present embodiment, in the casing 38 of the rotary joint 30, the fixed connection port 52 serving as the inlet of the cryogenic fluid is formed adjacent to the axial direction, and the stationary member is rotated to the rotating member. A cryogenic fluid flow path is formed adjacent to each other in the axial direction, and a shaft end vacuum space 90 is formed on the outer side in the axial direction. For this reason, inside the casing 38, the seal portion for preventing leakage of cryogenic fluid to the outside of the casing is located on the inner side in the axial direction of the rotary joint shaft 32 (close to the connecting portion with the rotary shaft of the rotor assembly). ) Thus, leakage of the cryogenic fluid to the outside can be minimized. In addition, since the seal diameter can be reduced, the structure is difficult to leak.
[0087] また、本実施形態では、極低温流体の入口となる固定接続口 52が、軸方向に隣接 して形成してあり、静止部材から回転部材に至る極低温流体の流路が軸方向に隣接 して形成してあることから、それらの流路では、相互に熱の移動がほとんど無ぐ外部 力 の入熱経路を遮断することができる。  [0087] In the present embodiment, the fixed connection port 52 serving as an inlet for the cryogenic fluid is formed adjacent to the axial direction, and the flow path of the cryogenic fluid from the stationary member to the rotating member is the axial direction. Therefore, in these channels, the heat input path of external force that hardly transfers heat to each other can be blocked.
[0088] さらに本実施形態では、ケーシング 38に形成してある固定接続口のうち、超電導モ ータ 2の回転軸 10に近い位置に配置してある固定接続口 54力 極低温流体の戻り 口である。このように構成することで、極低温流体の供給用流路に対する外部からの 入熱経路を遮断することができる。  Further, in the present embodiment, among the fixed connection ports formed in the casing 38, the fixed connection port arranged at a position close to the rotating shaft 10 of the superconducting motor 2 54 force Cryogenic fluid return port It is. With this configuration, the heat input path from the outside to the flow path for supplying the cryogenic fluid can be blocked.
[0089] さらにまた、本実施形態では、戻り口に相当する固定接続口 54よりもさらに回転軸 10に近い位置には、ドレン用固定接続口 56が形成してある。このように構成すること で、ケーシング 38外部への極低温流体の漏洩を極力防止できると共に、外部からの 入熱経路を遮断することができる。  Furthermore, in the present embodiment, a drain fixed connection port 56 is formed at a position closer to the rotary shaft 10 than the fixed connection port 54 corresponding to the return port. With this configuration, leakage of the cryogenic fluid to the outside of the casing 38 can be prevented as much as possible, and the heat input path from the outside can be blocked.
[0090] また、本実施形態では、各空間流路 92および 94に流入される極低温流体のの圧 力が実質的に同圧であるために、これらの流路 92および 94の相互間における差圧 がなくなり、相互間の漏出がない。  [0090] In this embodiment, since the pressure of the cryogenic fluid flowing into each of the spatial channels 92 and 94 is substantially the same, the pressure between these channels 92 and 94 is There is no differential pressure and there is no leakage between each other.
[0091] また本実施形態では、静止側の金属べローズシール 80は、回転リング 60と共に、メ 力-カルシールを構成し、回転継手軸 32の回転軸径は必要な流路を確保できる最 小径とすることができ、任意に半径方向のサイズを決定でき、超電導モータにおける 回転軸 10の軸径に支配されない。  In this embodiment, the stationary metal bellows seal 80 forms a mechanical seal together with the rotary ring 60, and the rotary shaft diameter of the rotary joint shaft 32 is the smallest diameter that can secure a necessary flow path. The size in the radial direction can be arbitrarily determined and is not governed by the shaft diameter of the rotating shaft 10 in the superconducting motor.
[0092] また、軸方向に短いベローズを使用したベローズシール 80で構成し、一個の回転リ ング 60の両側面にそれぞれ金属べローズシール 80が摺動することで、ロータリジョイ ント 30の軸方向長さをコンパクトにすることができる。さらに、金属べローズシール 80 は、ベローズが伸張することで、回転リング 60の摺動面に追随し、摺動面以外には 摩擦部を持たないので、ベローズによる荷重を必要最小限にすることができる。その ため、シールによるトルクロスが極端に少ない。  [0092] Further, it is constituted by a bellows seal 80 using a short bellows in the axial direction, and the metal bellows seal 80 slides on both side surfaces of one rotating ring 60, so that the axial direction of the rotary joint 30 The length can be made compact. Furthermore, the metal bellows seal 80 follows the sliding surface of the rotating ring 60 due to the expansion of the bellows, and has no friction part other than the sliding surface, so the load due to the bellows must be minimized. Can do. For this reason, there is extremely little torque cross due to the seal.
[0093] また、装着される金属べローズシールの内、シール差圧が作用するのは、ケーシン グ 38の内部で、軸方向の両端部の二力所のみである。その他のシール部は、シール の内周及び外周ともに、略同圧の極低温流体が介在しており、差圧がないので、摺 動面への押し付け力は、金属べローズによる弾性付勢のみである。このため、摩擦に よる極低温流体の温度上昇が極めて低 、。 [0093] Among the metal bellows seals to be mounted, the seal differential pressure acts on the case. There are only two force points inside the shaft 38 at both ends in the axial direction. The other seals contain a cryogenic fluid of approximately the same pressure on both the inner and outer circumferences of the seal, and there is no differential pressure, so the pressing force on the sliding surface is only an elastic bias by a metal bellows. It is. For this reason, the temperature rise of the cryogenic fluid due to friction is extremely low.
[0094] さらに、回転リング 60に回転リング孔 62を形成し、極低温流体の流路を形成するこ とで、回転リング 60の全幅寸法を短くすることができる。さらにまた、ロータリージョイン ト 30がコンパクトで、外部との伝熱面積を極少とすることができる。  [0094] Furthermore, by forming the rotating ring hole 62 in the rotating ring 60 and forming the flow path for the cryogenic fluid, the overall width dimension of the rotating ring 60 can be shortened. Furthermore, the rotary joint 30 is compact, and the heat transfer area with the outside can be minimized.
[0095] また、本実施形態では、超電導モータ 2の回転軸 10に形成してある中空部 22は、 極低温流体が導入される各内部冷却空間 25の周囲に連通しており、真空用固定接 続口 50、真空引き用軸孔 36および回転軸 10の中空部 22を通して、断熱真空状態 に保持される。このように構成することで、必要最小限の部分の真空断熱が可能にな り、真空断熱を図りながら装置のコンパクトィ匕を図れる。  In this embodiment, the hollow portion 22 formed in the rotating shaft 10 of the superconducting motor 2 communicates with the periphery of each internal cooling space 25 into which the cryogenic fluid is introduced, and is fixed for vacuum. It is maintained in an adiabatic vacuum state through the connection port 50, the vacuuming shaft hole 36 and the hollow portion 22 of the rotary shaft 10. This configuration makes it possible to insulate the minimum necessary part of the vacuum, and to achieve compactness of the device while achieving vacuum insulation.
[0096] さらに、本実施形態では、超電導モータ 2の回転軸 10は、流体移送用のチューブ 2 4, 26などを収納できる中空部 22を有していれば良ぐ多重管にする必要がない。ま た、中空の回転軸内部が真空断熱となっているため、別途、回転軸 10の断熱は必要 ない。さらに、ロータリージョイント 30の着脱が容易で工数力 Sかからない。  Furthermore, in the present embodiment, the rotating shaft 10 of the superconducting motor 2 does not need to be a good multi-pipe as long as it has a hollow portion 22 that can accommodate tubes 24, 26, etc. for fluid transfer. . In addition, since the hollow rotating shaft is vacuum insulated, it is not necessary to separately heat the rotating shaft 10. Furthermore, the rotary joint 30 can be easily attached and detached, and the manpower is not reduced.
[0097] また、超電導モータ 2側からロータリージョイント 30の極低温流体の供給 Z排出口 への接続口力 ロータリージョイント 30のフランジ 34の軸端面に設けられて!/、るので 、接続が容易で工数が力からない。また、回転軸 10の軸端部の形状がシンプルで、 加工段数が極めて少な!/、。  [0097] In addition, the connection force from the superconducting motor 2 side to the cryogenic fluid supply Z discharge port of the rotary joint 30 is provided on the shaft end surface of the flange 34 of the rotary joint 30. The man-hour is not strong. In addition, the shape of the shaft end of the rotary shaft 10 is simple and the number of machining steps is extremely small! /.
[0098] したがって、本実施形態によれば、断熱性に優れ、極低温流体の外部への漏出を 極小とし、動力損失がきわめて小さぐコンパクトであり、し力も耐久性、信頼性および メンテナンス性に優れ、低コストの極低温流体供給排出用装置と、それを用いた超電 導モータ 2を提供することができる。  Therefore, according to this embodiment, the heat dissipation is excellent, the leakage of the cryogenic fluid to the outside is minimized, the power loss is extremely small, and the force is durable, reliable, and maintainable. An excellent and low-cost cryogenic fluid supply / discharge device and a superconducting motor 2 using the device can be provided.
[0099] なお、本発明は、上述した実施形態に限定されるものではなぐ本発明の範囲内で 種々に改変することができる。  [0099] The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
[0100] たとえば、上述した実施形態では、超電導装置として、 、わゆるアキシャルギャップ 型の超電導モータを用いた力 本発明は、いわゆるラジアルギャップ型の超電導モ ータにも適用することができる。また、本発明は、超電導モータに限らず、超電導発 電機などの超電導装置にも適用することが可能である。 [0100] For example, in the above-described embodiment, the force using a so-called axial gap type superconducting motor as the superconducting device is a so-called radial gap type superconducting motor. It can also be applied to data. Further, the present invention is not limited to a superconducting motor but can be applied to a superconducting device such as a superconducting generator.
[0101] また、上述した実施形態では、金属べローズシール 80をリング 44の内側に保持す るために、これらのリング 44を金属で構成した力 金属べローズシール 80以外の非 金属製メカ-カルシールを用いることが可能であれば、これらのリング 44を、金属以 外の断熱性に優れた部材で構成することも可能である。  [0101] In the above-described embodiment, in order to hold the metal bellows seal 80 on the inner side of the ring 44, a force composed of these rings 44 made of metal. If a cull seal can be used, these rings 44 can be made of a member having excellent heat insulation other than metal.
[0102] さらに、上述した実施形態では、図 1に示すように、回転子 16を回転軸 10の軸方向 に沿って 4つ設けた力 その数は限定されず、 4つ以上、あるいは 2または 3でも良い 。また、単一の回転子 16に対して、二つ以上の供給チューブ 26を配置することも可 能である。  [0102] Furthermore, in the above-described embodiment, as shown in FIG. 1, the force provided by four rotors 16 along the axial direction of the rotary shaft 10 is not limited, and the number is not limited to four or more, or two or 3 is OK. It is also possible to arrange two or more supply tubes 26 for a single rotor 16.
[0103] さらにまた、上述した実施形態では、ロータアッセンブリ 20の内部のみを冷却してい る力 本発明に係る装置を用いれば、ロータアッセンプリ 20の外部を冷却することも 可能である。  [0103] Furthermore, in the above-described embodiment, the force for cooling only the inside of the rotor assembly 20 can be used to cool the outside of the rotor assembly 20 by using the apparatus according to the present invention.
[0104] また、上述した実施形態では、ロータアッセンブリ 20の回転軸 10とロータリジョイント 30との接続がフランジ接続になって 、るが、コネクタ接続としても良!、。  [0104] In the above-described embodiment, the connection between the rotary shaft 10 of the rotor assembly 20 and the rotary joint 30 is a flange connection.

Claims

請求の範囲 The scope of the claims
液体窒素や液体へリウムなどの極低温流体を、ロータアッセンブリにおける複数の 冷却必要箇所に供給および排出する極低温流体供給排出用装置であって、 前記ロータアッセンプリの回転軸の軸端にロータリジョイントが接続してあり、 前記ロータリジョイントは、  A cryogenic fluid supply / discharge device for supplying and discharging a cryogenic fluid such as liquid nitrogen or liquid helium to a plurality of cooling-necessary locations in a rotor assembly, wherein a rotary joint is attached to a shaft end of a rotating shaft of the rotor assembly. Is connected, and the rotary joint is
前記ロータアッセンプリの回転軸に対して着脱自在に連結される回転継手軸と、 前記回転継手軸を覆うように配置され、前記回転継手軸の回転に対して静止して!/、 るケーシングと、を有し、 A rotary joint shaft that is detachably connected to the rotary shaft of the rotor assembly; and a casing that is disposed so as to cover the rotary joint shaft and is stationary with respect to the rotation of the rotary joint shaft; Have
前記ロータアッセンプリにおける複数の冷却必要箇所と各々連通するように、前記回 転継手軸の円周方向に沿って異なる位置で、前記回転継手軸の軸方向に沿って、 複数の継手側流路が前記回転継手軸に形成してあり、 A plurality of joint-side flow paths along the axial direction of the rotary joint shaft at different positions along the circumferential direction of the rotary joint shaft so as to communicate with a plurality of cooling-needed portions in the rotor assembly. Is formed on the rotary joint shaft,
それぞれの前記継手側流路における軸方向に沿って各々異なる軸方向長さの位置 で、当該継手側流路にそれぞれ連通するように、前記回転継手軸の外周に、回転連 通孔が形成してあり、 A rotation communication hole is formed on the outer periphery of the rotary joint shaft so as to communicate with the joint-side flow path at positions of different axial lengths along the axial direction of the respective joint-side flow paths. And
それぞれ軸方向に異なる位置に形成してある前記回転連通孔のうち、軸方向に一つ 置きの回転連通孔の位置で、前記回転継手軸の外周に、回転リングが固定してあり 各回転リングの外周には、当該回転リングが位置する部分に形成してある前記回転 連通孔に対して連通する回転リング孔が形成してあり、 Among the rotation communication holes formed at different positions in the axial direction, a rotation ring is fixed to the outer periphery of the rotary joint shaft at every other rotation communication hole position in the axial direction. A rotation ring hole communicating with the rotation communication hole formed in a portion where the rotation ring is located,
前記ケーシングには、前記回転連通孔および前記回転リング孔のそれぞれに対応 する複数の軸方向位置に、前記回転連通孔または前記回転リング孔のそれぞれに 連通する固定接続口が形成してあり、 In the casing, fixed connection ports communicating with the rotary communication holes or the rotary ring holes are formed at a plurality of axial positions corresponding to the rotary communication holes and the rotary ring holes, respectively.
前記回転リングの軸方向面に対して摺動し、軸方向に相互に隣り合う前記回転連通 孔の相互間を密封するシール部材が前記ケーシングの内側に具備してあり、 前記回転継手軸の中心には、前記ロータアッセンプリの真空断熱空間に連通する真 空引き用軸孔が軸方向に沿って形成してあり、 A seal member that slides against the axial surface of the rotary ring and seals between the rotary communication holes adjacent to each other in the axial direction is provided inside the casing, and the center of the rotary joint shaft Is formed with an axial hole for vacuuming that communicates with the vacuum insulation space of the rotor assembly along the axial direction.
前記ケーシングには、複数の前記固定接続口の軸方向外側に位置する部分に、前 記真空引き用軸孔に連通する真空用固定接続口が形成してあり、 前記回転継手軸および前記回転リングのうち、少なくとも前記極低温流体と接触する 部分が、金属よりも断熱性に優れた部材で構成してあると共に、 In the casing, a vacuum fixed connection port communicating with the vacuum drawing shaft hole is formed in a portion located on the axially outer side of the plurality of fixed connection ports, Of the rotary joint shaft and the rotary ring, at least a portion that contacts the cryogenic fluid is made of a member having better heat insulation than metal,
前記真空用固定接続口および前記固定接続口が形成してあるケーシングの一部で 、少なくとも前記極低温流体と接触する部分が、金属よりも断熱性に優れた部材で構 成してあることを特徴とする  A part of the casing in which the fixed connection port for vacuum and the fixed connection port are formed, and at least a portion in contact with the cryogenic fluid is made of a member having better heat insulation than metal. Characterize
極低温流体供給排出用装置。  Cryogenic fluid supply / discharge device.
[2] 前記回転継手軸には、真空引き用軸孔が貫通して形成してあり、前記回転継手軸 の軸方向外側端部の周囲が、前記真空用固定接続口に連通する軸端真空室となつ て ヽる請求項 1に記載の極低温流体供給排出用装置。  [2] The rotary joint shaft is formed with a shaft hole for evacuation penetrating, and the periphery of the axially outer end of the rotary joint shaft communicates with the fixed connection port for vacuum. 2. The cryogenic fluid supply / discharge device according to claim 1, wherein the device is a chamber.
[3] 前記軸端真空室には、前記回転継手軸をケーシングの内側に対して回転自在に 保持する軸受が配置してある請求項 2に記載の極低温流体供給排出用装置。 3. The cryogenic fluid supply / discharge device according to claim 2, wherein a bearing that rotatably holds the rotary joint shaft with respect to the inner side of the casing is disposed in the shaft end vacuum chamber.
[4] 前記ケーシングに形成してある固定接続口のうち、前記超電導装置に近い位置に 配置してある固定接続口が、極低温流体の戻り口である請求項 1〜3のいずれかに 記載の極低温流体供給排出用装置。 [4] The fixed connection port arranged at a position close to the superconducting device among the fixed connection ports formed in the casing is a return port for a cryogenic fluid. For cryogenic fluid supply and discharge.
[5] 前記ケーシングにおいて、前記戻り口に相当する前記固定接続口よりもさらに前記 超電導装置に近い位置には、ドレン用固定接続口が形成してある請求項 4に記載の 極低温流体供給排出用装置。 [5] The cryogenic fluid supply / discharge according to claim 4, wherein in the casing, a drain fixed connection port is formed at a position closer to the superconducting device than the fixed connection port corresponding to the return port. Equipment.
[6] 前記断熱性に優れた部材が、繊維強化プラスチックである請求項 1〜5のいずれか に記載の極低温流体供給排出用装置。 6. The cryogenic fluid supply / discharge device according to any one of claims 1 to 5, wherein the member having excellent heat insulation is a fiber reinforced plastic.
[7] 前記シール部材力 ベローズシールである請求項 1〜6のいずれかに記載の極低 温流体供給排出用装置。 7. The cryogenic fluid supply / discharge device according to any one of claims 1 to 6, wherein the seal member force is a bellows seal.
[8] 前記べローズシールの摺動部には、前記回転リングの軸方向面に対して摺動する フッ素榭脂部材が装着してある請求項 7に記載の極低温流体供給排出用装置。 8. The cryogenic fluid supply / discharge device according to claim 7, wherein the sliding portion of the bellows seal is equipped with a fluorine resin member that slides with respect to the axial surface of the rotating ring.
[9] 前記回転継手軸の外周には、金属よりも断熱性に優れた部材で構成してあるスリー ブが装着してあり、当該スリーブにより、前記回転リングが位置決めされて前記回転 継手軸の外周に固定される請求項 1〜8のいずれか〖こ記載の極低温流体供給排出 用装置。 [9] A sleeve made of a member having better heat insulation than metal is attached to the outer periphery of the rotary joint shaft, and the rotary ring is positioned by the sleeve so that the rotary joint shaft The cryogenic fluid supply / discharge device according to any one of claims 1 to 8, which is fixed to the outer periphery.
[10] 前記ケーシングに形成してある固定接続口と、前記回転継手軸に形成してある回 転連通孔とを連絡するように、前記シール部材により仕切られて前記ケーシングの内 部に形成してある極低温流体のための各流入空間の圧力が実質的に同圧となるよう に前記極低温流体が各固定接続口カゝら導入される請求項 1〜9のいずれか〖こ記載 の極低温流体供給排出用装置。 [10] A fixed connection port formed in the casing and a rotation formed in the rotary joint shaft. The poles are arranged so that the pressure in each inflow space for the cryogenic fluid that is partitioned by the seal member and formed inside the casing is substantially the same pressure so as to communicate with the rolling communication hole. The cryogenic fluid supply / discharge device according to any one of claims 1 to 9, wherein a cryogenic fluid is introduced from each of the fixed connection ports.
[11] 液体窒素や液体ヘリウムなど極低温流体をロータアッセンプリにおける冷却必要箇 所に供給および排出する極低温流体供給排出用装置であって、 [11] A cryogenic fluid supply / discharge device that supplies and discharges cryogenic fluid such as liquid nitrogen and liquid helium to and from the cooling assembly in the rotor assembly.
前記ロータアッセンプリの回転軸の軸端にロータリジョイントが接続してあり、 当該ロータリジョイントは、前記回転軸に対して着脱自在に連結される回転継手軸 と、当該回転継手軸の外周を覆うように配置されるとともに前記回転継手軸の回転に 対して静止しているケーシングと、を有し、  A rotary joint is connected to the shaft end of the rotary shaft of the rotor assembly, and the rotary joint covers a rotary joint shaft that is detachably connected to the rotary shaft and an outer periphery of the rotary joint shaft. And a casing that is stationary with respect to the rotation of the rotary joint shaft,
前記回転継手軸は、前記冷却必要箇所と連通するように前記回転継手軸の軸方 向に沿って形成された複数の継手側流路と、当該継手側流路に連通するように前記 回転継手軸の外周に形成された複数の回転連通孔と、前記ロータリアッセンプリの真 空断熱空間と連通するように前記回転継手軸の軸方向に沿って形成された真空引き 用連通孔と、当該真空引き用連通孔と連通するように前記回転継手軸の外周に形成 された真空用連通孔と、を備え、  The rotary joint shaft includes a plurality of joint-side passages formed along the axial direction of the rotary joint shaft so as to communicate with the portion requiring cooling, and the rotary joint so as to communicate with the joint-side passage. A plurality of rotation communication holes formed on the outer periphery of the shaft, a vacuum suction communication hole formed along the axial direction of the rotary joint shaft so as to communicate with the vacuum heat insulation space of the rotor assembly, and the vacuum A vacuum communication hole formed on the outer periphery of the rotary joint shaft so as to communicate with the pulling communication hole,
前記ケーシングは、前記回転連通孔に対応する位置に前記回転連通孔と連通す るように形成された固定接続口と、前記真空用連通孔に対応する位置に前記真空用 連通孔と連通するように形成された真空用固定接続口と、を備え、  The casing communicates with the vacuum communication hole at a position corresponding to the rotation communication hole and a fixed connection port formed to communicate with the rotation communication hole at a position corresponding to the rotation communication hole. A fixed connection port for vacuum formed on
前記回転連通孔と前記固定接続口との間における前記極低温流体の漏洩を防止 するシール部材が配置されて ヽる、ことを特徴とする極低温流体供給排出用装置。  A cryogenic fluid supply / discharge device, wherein a sealing member for preventing leakage of the cryogenic fluid between the rotation communication hole and the fixed connection port is disposed.
[12] 請求項 1〜11のいずれかに記載の極低温流体供給排出用装置を有する超電導装 置。 [12] A superconducting device having the cryogenic fluid supply / discharge device according to any one of claims 1 to 11.
PCT/JP2006/300980 2005-01-26 2006-01-23 Cryogenic fluid supply/discharge device and superconducting device WO2006080280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500500A JP4602397B2 (en) 2005-01-26 2006-01-23 Cryogenic fluid supply / discharge device and superconducting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-018860 2005-01-26
JP2005018860 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006080280A1 true WO2006080280A1 (en) 2006-08-03

Family

ID=36740311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300980 WO2006080280A1 (en) 2005-01-26 2006-01-23 Cryogenic fluid supply/discharge device and superconducting device

Country Status (3)

Country Link
JP (1) JP4602397B2 (en)
TW (1) TW200636181A (en)
WO (1) WO2006080280A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119176A1 (en) * 2008-03-28 2009-10-01 イーグル工業株式会社 Rotary joint
WO2009122782A1 (en) * 2008-04-03 2009-10-08 イーグル工業株式会社 Rotary joint
WO2010140627A1 (en) * 2009-06-02 2010-12-09 国立大学法人東京海洋大学 Rotary joint for low-temperature application
US20120263551A1 (en) * 2011-04-15 2012-10-18 Tsudakoma Kogyo Kabushiki Kaisha Rotary joint device, method of machining rotary joint device, and main shaft driving apparatus for machine tool including rotary joint device
JP2013520616A (en) * 2010-02-23 2013-06-06 シングル・ブイ・ムアリングス・インコーポレイテッド Fluid swivel capable of transferring fluid across a rotating interface
JP2013253644A (en) * 2012-06-07 2013-12-19 Rix Corp Rotary joint
US10465826B2 (en) 2013-11-28 2019-11-05 Rix Corporation Rotary joint
JP2020537091A (en) * 2017-10-09 2020-12-17 デューブリン カンパニー Multi-passage rotary joint
CN112901774A (en) * 2021-01-13 2021-06-04 西安近代化学研究所 Laminated radial annular sealing device capable of compensating coaxial cylindrical surface gap

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100133839A1 (en) * 2007-04-17 2010-06-03 Aerokinetic Energy Corporation Fluid Powered Generator
CN105318129A (en) * 2014-05-30 2016-02-10 盛美半导体设备(上海)有限公司 Rotary shaft with a vent groove
KR101620201B1 (en) * 2014-10-10 2016-05-12 두산중공업 주식회사 Superconducting rotating machine
CN109531611A (en) * 2017-09-22 2019-03-29 西南石油大学 A kind of control joint apparatus for automatic change
JP7229096B2 (en) * 2019-05-17 2023-02-27 日本ピラー工業株式会社 rotary joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210160A (en) * 1983-11-28 1985-10-22 Hitachi Ltd Superconductive rotor
JPH0425471U (en) * 1990-06-20 1992-02-28
JPH0851767A (en) * 1994-08-10 1996-02-20 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210160A (en) * 1983-11-28 1985-10-22 Hitachi Ltd Superconductive rotor
JPH0425471U (en) * 1990-06-20 1992-02-28
JPH0851767A (en) * 1994-08-10 1996-02-20 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119176A1 (en) * 2008-03-28 2009-10-01 イーグル工業株式会社 Rotary joint
US9695942B2 (en) 2008-03-28 2017-07-04 Eagle Industry Co., Ltd Rotary joint
EP2258970A4 (en) * 2008-03-28 2016-07-13 Eagle Ind Co Ltd Rotary joint
TWI426687B (en) * 2008-03-28 2014-02-11 Eagle Ind Co Ltd Rotate the connector
JP5325878B2 (en) * 2008-03-28 2013-10-23 イーグル工業株式会社 Rotary joint
US8336921B2 (en) 2008-04-03 2012-12-25 Eagle Industry Co., Ltd. Rotary joint
TWI449858B (en) * 2008-04-03 2014-08-21 Eagle Ind Co Ltd Rotate the connector
JP5250852B2 (en) * 2008-04-03 2013-07-31 イーグル工業株式会社 Rotary joint
WO2009122782A1 (en) * 2008-04-03 2009-10-08 イーグル工業株式会社 Rotary joint
WO2010140627A1 (en) * 2009-06-02 2010-12-09 国立大学法人東京海洋大学 Rotary joint for low-temperature application
US8616587B2 (en) 2009-06-02 2013-12-31 National University Corporation Tokyo University Of Marine Science And Technology Cryo-rotary joint
CN102439345A (en) * 2009-06-02 2012-05-02 国立大学法人东京海洋大学 Rotary joint for low-temperature application
JP5505660B2 (en) * 2009-06-02 2014-05-28 国立大学法人東京海洋大学 Low temperature rotary joint
JP2013520616A (en) * 2010-02-23 2013-06-06 シングル・ブイ・ムアリングス・インコーポレイテッド Fluid swivel capable of transferring fluid across a rotating interface
US9004830B2 (en) * 2011-04-15 2015-04-14 Tsudakoma Kogyo Kabushiki Kaisha Rotary joint device, method of machining rotary joint device, and main shaft driving apparatus for machine tool including rotary joint device
US20120263551A1 (en) * 2011-04-15 2012-10-18 Tsudakoma Kogyo Kabushiki Kaisha Rotary joint device, method of machining rotary joint device, and main shaft driving apparatus for machine tool including rotary joint device
JP2013253644A (en) * 2012-06-07 2013-12-19 Rix Corp Rotary joint
US10465826B2 (en) 2013-11-28 2019-11-05 Rix Corporation Rotary joint
JP2020537091A (en) * 2017-10-09 2020-12-17 デューブリン カンパニー Multi-passage rotary joint
JP7319258B2 (en) 2017-10-09 2023-08-01 デューブリン カンパニー、エルエルシー Multipass rotary joint
CN112901774A (en) * 2021-01-13 2021-06-04 西安近代化学研究所 Laminated radial annular sealing device capable of compensating coaxial cylindrical surface gap

Also Published As

Publication number Publication date
TW200636181A (en) 2006-10-16
TWI349752B (en) 2011-10-01
JPWO2006080280A1 (en) 2008-08-07
JP4602397B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
WO2006080280A1 (en) Cryogenic fluid supply/discharge device and superconducting device
TWI426687B (en) Rotate the connector
TWI449858B (en) Rotate the connector
CA2717577C (en) Cooling system in a rotating reference frame
EP1248933B1 (en) Cooling system for high temperature superconducting machines
US7312544B2 (en) Fluid transfer device and method for conveying fluid to a rotating member
EP1583210A2 (en) System and method for cooling super-conducting device
JP5631350B2 (en) Compressor
EP2439438B1 (en) Rotary joint for low-temperature application
US7466045B2 (en) In-shaft reverse brayton cycle cryo-cooler
US6657333B2 (en) Vacuum coupling of rotating superconducting rotor
JP4704869B2 (en) Superconducting rotating electrical machine refrigerant supply / discharge device
JP3938572B2 (en) Superconducting synchronous machine
JP2010178486A (en) Superconducting rotating electric machine
JPH0851767A (en) Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit
JP7228073B1 (en) Pumping device, pumping system and method of operating the pumping system
KR100978205B1 (en) Super conduction main driving and traction moter
JPH0370960A (en) Refrigerant pumping machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500500

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712196

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712196

Country of ref document: EP