JP4704869B2 - Superconducting rotating electrical machine refrigerant supply / discharge device - Google Patents

Superconducting rotating electrical machine refrigerant supply / discharge device Download PDF

Info

Publication number
JP4704869B2
JP4704869B2 JP2005275325A JP2005275325A JP4704869B2 JP 4704869 B2 JP4704869 B2 JP 4704869B2 JP 2005275325 A JP2005275325 A JP 2005275325A JP 2005275325 A JP2005275325 A JP 2005275325A JP 4704869 B2 JP4704869 B2 JP 4704869B2
Authority
JP
Japan
Prior art keywords
vacuum heat
pipe
refrigerant
heat insulating
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005275325A
Other languages
Japanese (ja)
Other versions
JP2007089314A (en
Inventor
雄一 坪井
段 楳田
孝 米良
幹生 ▲高▼畠
安雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005275325A priority Critical patent/JP4704869B2/en
Publication of JP2007089314A publication Critical patent/JP2007089314A/en
Application granted granted Critical
Publication of JP4704869B2 publication Critical patent/JP4704869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、超電導回転電機の冷媒給排装置に関するものである。   The present invention relates to a refrigerant supply / discharge device for a superconducting rotating electrical machine.

超電導回転電機として、回転子の界磁巻線に超電導線を利用した発電機が知られている。超電導線を用いた界磁巻線は、その超電導性を維持するために約100K以下の極低温に冷却する必要があり、冷却媒体(冷媒)として液体ヘリウム、気体ヘリウムあるいは液体窒素などが用いられている。   As a superconducting rotating electrical machine, a generator using a superconducting wire for a field winding of a rotor is known. A field winding using a superconducting wire needs to be cooled to an extremely low temperature of about 100 K or less in order to maintain its superconductivity, and liquid helium, gaseous helium, liquid nitrogen, or the like is used as a cooling medium (refrigerant). ing.

超電導回転電機の冷媒給排装置は、回転子の回転軸端部に設けられ、回転軸中心に挿入された冷媒供給管から回転子内部および界磁巻線に冷媒を供給するようになっている。界磁巻線を含む回転子の発熱を吸収し、比較的高温となった冷却後の戻り冷媒は、一対のポールピース、マグネットおよび磁性流体などで構成される磁性流体シールを用いて形成された回転軸と固定体(ケーシング)間の空間を通じて、回転軸内部から固定体側に回収されるようになっている(例えば特許文献1参照)。この戻り冷媒の温度は、約200K〜300K程度の温度であり、磁性流体シールが使用可能な温度領域であった。
特開平8−308211号公報
A refrigerant supply / discharge device for a superconducting rotating electrical machine is provided at a rotating shaft end portion of a rotor, and supplies a refrigerant into a rotor and a field winding from a refrigerant supply pipe inserted at the center of the rotating shaft. . The return refrigerant after cooling, which has absorbed the heat generated by the rotor including the field winding and became relatively high temperature, was formed using a magnetic fluid seal composed of a pair of pole pieces, a magnet, a magnetic fluid, and the like. Through the space between the rotating shaft and the fixed body (casing), it is collected from the inside of the rotating shaft to the fixed body side (see, for example, Patent Document 1). The temperature of the return refrigerant was about 200K to 300K, which was a temperature range in which the magnetic fluid seal could be used.
JP-A-8-308211

ところで、近年各国で開発が進められている高温超電導回転電機では、界磁巻線を含む回転子の発熱を吸収した戻り冷媒の温度が最高でも約100K程度の極低温になってきている。このため従来の冷媒給排装置では、磁性流体シールが凍結してしまい、極低温の戻り冷媒を回転軸内部から固定体側に回収することができないという問題があった。また従来の冷媒給排装置は、ケーシング等の固定体が常温であり、この固定体を介して外部からの熱が、回転軸内部からの戻り冷媒に侵入していたために、回収後の戻り冷媒が温度上昇し、再度極低温に冷却するための冷却装置が大型化するという問題があった。   By the way, in the high-temperature superconducting electric rotating machine that has been developed in recent years in each country, the temperature of the return refrigerant that has absorbed the heat generated by the rotor including the field windings has reached a very low temperature of about 100K. For this reason, the conventional refrigerant supply / discharge device has a problem that the magnetic fluid seal is frozen and the cryogenic return refrigerant cannot be recovered from the inside of the rotating shaft to the fixed body side. Further, in the conventional refrigerant supply / discharge device, the fixed body such as the casing is at room temperature, and heat from outside enters the return refrigerant from the inside of the rotating shaft through the fixed body, so that the return refrigerant after recovery However, there is a problem that the temperature of the cooling device increases and the cooling device for cooling to a very low temperature increases.

本発明は、上記の問題を解決するためになされたもので、超電導回転電機に給排される冷媒を、極低温での使用を可能にし、また外部から冷媒への熱の侵入を抑制して、冷媒を再冷却するための冷却装置を比較的小型とすることのできる超電導回転電機の冷媒給排装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. The refrigerant supplied to and discharged from the superconducting rotating electric machine can be used at a very low temperature, and the heat can be prevented from entering the refrigerant from the outside. An object of the present invention is to obtain a refrigerant supply / discharge device for a superconducting rotating electrical machine in which a cooling device for recooling the refrigerant can be made relatively small.

上記の課題を解決するため、本発明による超電導回転電機の冷媒給排装置は、回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、前記第2の回転真空断熱配管の外周側に設けられ、軸受を介して前記第2の回転真空断熱配管を回転自在に支持する固定体と、この固定体の側方に連結されるとともに前記第2の回転真空断熱配管の端部の外周側に位置して設けられ、内周面に真空断熱部が形成された固定軸と、前記第1の回転真空断熱配管の内周側に設けられ、開放端部が前記第1の回転真空断熱配管内に位置する固定真空断熱配管と、この固定真空断熱配管と前記第1の回転真空断熱配管との間をシールする耐寒性の材料よりなる第1のシール部材と、前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間をシールする耐寒性の材料よりなる第2のシール部材と、前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間にあって、前記第2のシール部材よりも前記軸受側に位置し、前記固定軸に設けられた真空引きポートを挟むように、その両側に設けられた磁性流体シールと、前記固定軸の外部に設けられ、前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間および前記固定真空断熱配管の内部空間にそれぞれ連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、を備えてなる。   In order to solve the above-described problems, a refrigerant supply / discharge device for a superconducting rotating electrical machine according to the present invention is provided at an end of a rotor, is coaxially arranged at the center of a rotation axis, and an inner space is an interior of the rotor. The first rotary vacuum heat insulation pipe communicated with the first rotary vacuum heat insulation pipe and the second rotary vacuum insulation pipe coaxially arranged on the outer peripheral side of the first rotary vacuum heat insulation pipe, the inner space communicating with the interior of the rotor A rotary vacuum insulation pipe and a fixed body provided on the outer peripheral side of the second rotary vacuum heat insulation pipe and rotatably supporting the second rotary vacuum heat insulation pipe via a bearing, and on the side of the fixed body A fixed shaft that is connected and provided on the outer peripheral side of the end portion of the second rotary vacuum heat insulating pipe and has a vacuum heat insulating section formed on the inner peripheral surface thereof, and the inside of the first rotary vacuum heat insulating pipe Provided on the circumferential side, the open end is located in the first rotary vacuum insulation pipe A constant vacuum heat insulation pipe, a first sealing member made of a cold-resistant material for sealing between the fixed vacuum heat insulation pipe and the first rotary vacuum heat insulation pipe, the second rotary vacuum heat insulation pipe and the fixed A second seal member made of a cold-resistant material that seals between the vacuum heat insulation portion of the shaft, the second rotary vacuum heat insulation pipe, and the vacuum heat insulation portion of the fixed shaft, and the second seal A magnetic fluid seal provided on both sides of the evacuation port provided on the fixed shaft, located on the bearing side of the member, and the second rotation provided on the outside of the fixed shaft. A cooling device that is connected to the vacuum heat insulation pipe and the vacuum heat insulation portion of the fixed shaft and to the internal space of the fixed vacuum heat insulation pipe to supply and recover the refrigerant that cools the rotor. .

また本発明による超電導回転電機の冷媒給排装置は、回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、前記第2の回転真空断熱配管の外周側に前記第2の回転真空断熱配管と同軸的に配置されて、その内側の空間が前記回転子の内部に連通されるとともに、先端部に間隔をおいて一対の端板が固定され、この一対の端板間の空間が真空引きされ、かつ前記先端部の内周面にベローズ構造部が形成された真空断熱回転軸と、前記第1の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する第1の配管支えと、前記第2の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する第2の配管支えと、一対の軸受を介して前記真空断熱回転軸を回転自在に支持し、かつ前記一対の軸受の間に位置する内周面に真空断熱部が設けられた固定体と、この固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記端板と前記第1の配管支えとの間の空間に連通される第1の冷媒流通孔と、前記固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記第1および第2の配管支え間の空間に連通される第2の冷媒流通孔と、前記第1の冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなる第1のシール部材と、前記第2の冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなる第2のシール部材と、これら第1および第2のシール部材の反冷媒流通孔側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間にそれぞれ設置された一対の磁性流体シールと、各一対の磁性流体シール間の空間に連通するように前記固定体および前記真空断熱部を貫通して形成された真空引きポートと、前記第1および第2の冷媒流通孔に配管を介して連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、を備えてなる。   The superconducting rotating electrical machine refrigerant supply / discharge device according to the present invention is provided at the end of the rotor, is coaxially disposed at the center of the rotation axis, and has an inner space communicating with the interior of the rotor. A rotary vacuum heat insulation pipe, a second rotary vacuum heat insulation pipe arranged coaxially on the outer periphery of the first rotary vacuum heat insulation pipe and having an inner space communicating with the interior of the rotor, It is arranged coaxially with the second rotary vacuum heat insulation pipe on the outer peripheral side of the second rotary vacuum heat insulation pipe, and the inner space communicates with the inside of the rotor, and is spaced from the tip. A pair of end plates is fixed, a space between the pair of end plates is evacuated, and a vacuum heat insulating rotating shaft having a bellows structure portion formed on an inner peripheral surface of the tip portion, and the first rotary vacuum heat insulating material A space on both sides in the axial direction, arranged between the piping and the vacuum heat insulating rotary shaft A first pipe support that shuts off and insulates, and a second pipe support that is disposed between the second rotary vacuum heat insulation pipe and the vacuum heat insulation rotary shaft and blocks and insulates the space on both sides in the axial direction. And a fixed body that rotatably supports the vacuum heat insulating rotating shaft via a pair of bearings, and that has a vacuum heat insulating portion provided on an inner peripheral surface located between the pair of bearings, and the fixed body and the A first refrigerant flow hole formed through the vacuum heat insulating portion and the vacuum heat insulating rotating shaft and communicated with a space between the end plate and the first pipe support; the fixed body; and the vacuum heat insulating material. A second refrigerant flow hole formed through the portion and the vacuum heat insulating rotating shaft and communicated with the space between the first and second pipe supports, and the first refrigerant flow hole interposed therebetween. Vacuum disconnection between the vacuum heat insulating rotary shaft and the fixed body located on both sides thereof A first seal member made of a cold-resistant material installed in a space between the first portion, the vacuum heat insulating rotary shaft located on both sides of the second coolant circulation hole, and the fixed body A second sealing member made of a cold-resistant material installed in a space between the vacuum heat insulating portion, the vacuum heat insulating rotating shaft located on the anti-refrigerant circulation hole side of the first and second sealing members, and the A pair of magnetic fluid seals installed in the space between the vacuum heat insulating portion of the fixed body and the fixed body and the vacuum heat insulating portion are formed so as to communicate with the space between each pair of magnetic fluid seals. And a cooling device that communicates with the first and second refrigerant flow holes via a pipe to supply and recover the refrigerant that cools the rotor.

さらに本発明による超電導回転電機の冷媒給排装置は、回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、回転子の端部に設けられ、前記第2の回転真空断熱配管の外周側に前記第2の回転真空断熱配管と同軸的に配置されて、その先端部の内周面と前記第1の回転真空断熱配管との間に、軸方向に間隔をおいて一対の端板が固定され、この一対の端板間の空間が真空引きされ、かつ前記先端部の内周面にベローズ構造部が形成された真空断熱回転軸と、前記第2の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する配管支えと、一対の軸受を介して前記真空断熱回転軸を回転自在に支持し、かつ前記一対の軸受の間に位置する内周面に真空断熱部が設けられた固定体と、この固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記端板と前記配管支えとの間の空間に連通される冷媒流通孔と、この冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなるシール部材と、これらシール部材の反冷媒流通孔側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間にそれぞれ設置された一対の磁性流体シールと、各一対の磁性流体シール間の空間に連通するように前記固定体および前記真空断熱部を貫通して形成された真空引きポートと、前記第1の回転真空断熱配管の内周側に設けられ、前記固定体の端部に取り付けられた端板を貫通して設けられ、その開放端部が前記第1の回転真空断熱配管内に位置する固定真空断熱配管と、この固定真空断熱配管および前記冷媒流通孔に配管を介して連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、を備えてなる。   Furthermore, a refrigerant supply / discharge device for a superconducting rotating electrical machine according to the present invention is provided at the end of the rotor, is coaxially disposed at the center of the rotation axis, and has an inner space communicating with the interior of the rotor. A rotary vacuum heat insulation pipe, a second rotary vacuum heat insulation pipe coaxially disposed on the outer peripheral side of the first rotary vacuum heat insulation pipe and having an inner space communicating with the interior of the rotor, Provided at the end of the child, arranged coaxially with the second rotary vacuum heat insulation pipe on the outer peripheral side of the second rotary vacuum heat insulation pipe, and the inner peripheral surface of the tip and the first rotary vacuum A pair of end plates are fixed between the heat insulation pipes in the axial direction, a space between the pair of end plates is evacuated, and a bellows structure portion is formed on the inner peripheral surface of the tip portion. Between the vacuum heat insulation rotary shaft, the second rotary vacuum heat insulation pipe and the vacuum heat insulation rotary shaft A pipe support that is disposed and that shields and insulates the space on both sides in the axial direction; and an inner peripheral surface that rotatably supports the vacuum heat insulating rotary shaft via a pair of bearings and is positioned between the pair of bearings. A fixed body provided with a vacuum heat insulating part, and a refrigerant formed through the fixed body, the vacuum heat insulating part, and the vacuum heat insulating rotating shaft, and communicated with a space between the end plate and the pipe support. A sealing member made of a cold-resistant material installed in a space between the flow hole and the vacuum heat insulating rotary shaft located on both sides of the flow hole and the vacuum heat insulating part of the fixed body so as to sandwich the refrigerant flow hole; Between a pair of magnetic fluid seals respectively installed in a space between the vacuum heat insulating rotating shaft and the vacuum heat insulating portion of the fixed body located on the anti-refrigerant circulation hole side of these seal members, and between each pair of magnetic fluid seals The fixed body so as to communicate with the space And an evacuation port formed through the vacuum heat insulating part, and an end plate provided on the inner peripheral side of the first rotary vacuum heat insulating pipe and attached to the end of the fixed body. A fixed vacuum heat insulating pipe whose open end is located in the first rotary vacuum heat insulating pipe, and a refrigerant that cools the rotor by communicating with the fixed vacuum heat insulating pipe and the refrigerant circulation hole via the pipe. A cooling device for supplying and recovering.

本発明によれば、冷媒の流路は、第1および第2の回転真空断熱配管などの真空断熱層で囲まれていることになり、冷媒が外部と熱交換したり、供給冷媒と回収冷媒が熱交換したりする現象を抑制することができる。また磁性流体シールにより形成される空間は、常時真空の状態に維持されることにより、外部からの熱がシール部材側に侵入するのを抑制することができ、しかも磁性流体シールは、シール部材の存在により冷媒に接触せず、また内外周が真空断熱層に挟まれて冷媒から断熱されているので、冷媒が極低温の状態であっても凍結などの不具合を発生することはない。   According to the present invention, the flow path of the refrigerant is surrounded by the vacuum heat insulating layer such as the first and second rotary vacuum heat insulating pipes, and the refrigerant exchanges heat with the outside, or the supplied refrigerant and the recovered refrigerant. Can suppress the phenomenon of heat exchange. In addition, the space formed by the magnetic fluid seal is always maintained in a vacuum state, so that heat from the outside can be prevented from entering the seal member side. Due to its presence, it does not come into contact with the refrigerant, and the inner and outer peripheries are sandwiched between the vacuum heat insulating layers and insulated from the refrigerant, so that problems such as freezing do not occur even when the refrigerant is in an extremely low temperature state.

これにより、戻り冷媒が極低温で使用される場合であっても、磁性流体シールやシール部材が動作不能になることはなく、しかも戻り冷媒が極低温であることにより、戻り冷媒を再冷却するために冷却装置を大型化する必要もない。   Thus, even when the return refrigerant is used at an extremely low temperature, the magnetic fluid seal or the sealing member is not disabled, and the return refrigerant is re-cooled because the return refrigerant is at an extremely low temperature. Therefore, it is not necessary to increase the size of the cooling device.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明による第1の実施の形態に係る超電導回転電機の冷媒給排装置の主要部を示す断面図である。図1において、1は外周に図示しない界磁巻線を有し、内部が中空に形成された回転子であり、この回転子1の端部に第1および第2の回転真空断熱配管2,3が回転子1から軸方向外側(図示左側)に向けて延びるように連結されている。この第1および第2の回転真空断熱配管2,3は、それぞれ二重管で構成され、その端部の間に栓体2a,3aが取り付けられて内部が真空引きされた断熱構成を有している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of a refrigerant supply / discharge device for a superconducting rotating electrical machine according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a rotor having a field winding (not shown) on the outer periphery and formed hollow inside, and first and second rotary vacuum heat insulating pipes 2 are provided at the end of the rotor 1. 3 is connected so that it may extend toward the axial direction outer side (illustration left side) from the rotor 1. FIG. Each of the first and second rotary vacuum heat insulation pipes 2 and 3 is composed of a double pipe, and has a heat insulation structure in which plugs 2a and 3a are attached between the end portions and the inside is evacuated. ing.

この第1および第2の回転真空断熱配管2,3は、軸方向の長さが同一で径寸法が異なり、回転軸中心50のまわりに同軸的に配置されて、それぞれの内側の空間が後述する冷媒の通路となって回転子1の内部に連通されている。   The first and second rotary vacuum heat insulating pipes 2 and 3 have the same axial length and different diameter dimensions, and are arranged coaxially around the rotary shaft center 50, and the inner spaces are described later. It becomes a passage for a refrigerant to communicate with the inside of the rotor 1.

第2の回転真空断熱配管3の外周側には、ケーシングを構成する筒状の固定体4が設けられており、この固定体4と第2の回転真空断熱配管3との間に軸受5,5が配設され、第2の回転真空断熱配管3が固定体4に回転自在に支持されている。また固定体4の軸方向端部側方には、筒状の固定軸6が連結されている。   A cylindrical fixed body 4 constituting a casing is provided on the outer peripheral side of the second rotary vacuum heat insulating pipe 3, and bearings 5, between the fixed body 4 and the second rotary vacuum heat insulating pipe 3 are provided. 5 is disposed, and the second rotary vacuum heat insulating pipe 3 is rotatably supported by the fixed body 4. A cylindrical fixed shaft 6 is connected to the side of the axial end portion of the fixed body 4.

この固定軸6の内周面には、二重管で構成された真空断熱部7が設けられており、この真空断熱部7と第2の回転真空断熱配管3との間にシール部材(第2のシール部材)8および磁性流体シール9が設けられている。シール部材8は、真空断熱部7と第2の回転真空断熱配管3との間をシールするためのものであり、テフロン(デュポン社商品名)のような耐寒性に優れ、10K程度でも使用可能なフッ素樹脂などのシール材料により断面矩形のリング状に形成され、第2の回転真空断熱配管3の端部側に、1個または複数個が軸方向に沿って並べて配設されている。シール部材8の設置個数は、シールすべき冷媒の圧力によって決定され、圧力に応じた適切な個数が配設される。   A vacuum heat insulating portion 7 formed of a double pipe is provided on the inner peripheral surface of the fixed shaft 6, and a sealing member (first member) is provided between the vacuum heat insulating portion 7 and the second rotary vacuum heat insulating pipe 3. 2 seal member) 8 and a magnetic fluid seal 9 are provided. The seal member 8 is for sealing between the vacuum heat insulating portion 7 and the second rotary vacuum heat insulating pipe 3, and is excellent in cold resistance like Teflon (a product name of DuPont) and can be used even at about 10K. It is formed in a ring shape having a rectangular cross section by a sealing material such as a fluororesin, and one or more are arranged along the axial direction on the end side of the second rotary vacuum heat insulating pipe 3. The number of the sealing members 8 to be installed is determined by the pressure of the refrigerant to be sealed, and an appropriate number according to the pressure is provided.

磁性流体シール9は、一対のポールピース、マグネットおよび磁性流体により構成されており、シール部材8よりも軸受5側に位置して固定軸4に設けられた貫通孔よりなる真空引きポート10を挟むように、その両側にそれぞれ設けられている。この磁性流体シール9,9は、真空断熱部6と第2の回転真空断熱配管3との間の空間が常時真空引きされることにより、常温にある固定体4などの外部からの熱がシール部材8側に侵入するのを抑制するためのものである。真空引きポート10の周囲にリング状の永久磁石11が設けられている。   The magnetic fluid seal 9 is composed of a pair of pole pieces, a magnet, and a magnetic fluid, and sandwiches a vacuum suction port 10 that is located closer to the bearing 5 than the seal member 8 and includes a through hole provided in the fixed shaft 4. As shown in FIG. The magnetic fluid seals 9 and 9 seal the heat from outside such as the fixed body 4 at room temperature by constantly evacuating the space between the vacuum heat insulating portion 6 and the second rotary vacuum heat insulating pipe 3. This is for suppressing entry into the member 8 side. A ring-shaped permanent magnet 11 is provided around the vacuum port 10.

固定軸6の図示左側の端部には、端板(図示せず)が設けられており、この端板を貫通して固定真空断熱配管12が設けられている。この固定真空断熱配管12についても、二重管で構成され、その端部の間に栓体12aが取り付けられて内部が真空引きされた断熱構成を有している。固定真空断熱配管12は、回転子1側に延びるように回転軸中心50のまわりに同軸的に配設され、その先端開口部(開放端部)が第1の回転真空断熱配管2の内部空間に位置するように配設されている。   An end plate (not shown) is provided at the left end of the fixed shaft 6 in the figure, and a fixed vacuum heat insulating pipe 12 is provided through the end plate. The fixed vacuum heat insulating pipe 12 is also constituted by a double pipe, and has a heat insulating structure in which a stopper 12a is attached between the end portions and the inside is evacuated. The fixed vacuum heat insulation pipe 12 is coaxially arranged around the rotation axis center 50 so as to extend toward the rotor 1, and the tip opening (open end) thereof is the internal space of the first rotary vacuum heat insulation pipe 2. It arrange | positions so that it may be located in.

固定真空断熱配管12と第1の回転真空断熱配管2との間には、フッ素樹脂などのシール材料により形成されたシール部材(第1のシール部材)13が1個または複数個配設されており、その間の空間をシールするようになっている。   Between the fixed vacuum heat insulation pipe 12 and the first rotary vacuum heat insulation pipe 2, one or a plurality of seal members (first seal members) 13 formed of a seal material such as fluororesin are disposed. And the space between them is sealed.

固定軸6の外部であり、また固定真空断熱配管12が貫通する端板の外部には、液体ヘリウム、気体ヘリウムあるいは液体窒素などの冷媒の冷却装置14が設けられている。この冷却装置14は、配管14aを介して固定真空断熱配管12に連通されて固定子1の内部に冷媒を給排できるようになっている。また冷却装置14は、配管14bを介して端板の内側に位置する真空断熱部7と固定真空断熱配管12との間の空間に連通され、さらに第1および第2の回転真空断熱配管2,3との間の空間に連通されて固定子1の内部に冷媒を給排できるようになっている。   A cooling device 14 for a refrigerant such as liquid helium, gaseous helium or liquid nitrogen is provided outside the fixed shaft 6 and outside the end plate through which the fixed vacuum heat insulating pipe 12 passes. The cooling device 14 communicates with the fixed vacuum heat insulating pipe 12 through a pipe 14 a so that the refrigerant can be supplied to and discharged from the stator 1. Further, the cooling device 14 is communicated with a space between the vacuum heat insulating portion 7 and the fixed vacuum heat insulating pipe 12 located inside the end plate via the pipe 14b, and further, the first and second rotary vacuum heat insulating pipes 2, The refrigerant can be supplied to and discharged from the stator 1 by communicating with the space between the stator 3 and the stator 3.

このように構成された超電導回転電機の冷媒給排装置においては、冷却装置14の冷媒は、実線矢印51で示すように、固定真空断熱配管12と固定軸6の真空断熱部7との間の空間を通り、さらに第1の回転真空断熱配管2と第2の回転真空断熱配管3との間の空間を通して界磁巻線を含む回転子1の内部に供給され、回転子1の内部からの戻り冷媒は、第1の回転真空断熱配管2の内部を通り、さらに固定真空断熱配管12の内部を通して回収されることになる。   In the refrigerant supply / discharge device of the superconducting rotating electrical machine configured as described above, the refrigerant of the cooling device 14 is between the fixed vacuum heat insulating pipe 12 and the vacuum heat insulating portion 7 of the fixed shaft 6 as indicated by the solid line arrow 51. It is supplied to the inside of the rotor 1 including the field winding through the space and further through the space between the first rotary vacuum insulation pipe 2 and the second rotary vacuum insulation pipe 3, and from the inside of the rotor 1. The return refrigerant passes through the inside of the first rotary vacuum insulation pipe 2 and is further collected through the inside of the fixed vacuum insulation pipe 12.

変形例として、上記とは逆に、点線矢印52で示すように、冷却装置14の冷媒を、固定真空断熱配管12の内部から第1の回転真空断熱配管2の内部を通して回転子1の内部に供給し、回転子1の内部からの戻り冷媒を、第1の回転真空断熱配管2と第2の回転真空断熱配管3との間の空間を通し、さらに固定真空断熱配管12と固定軸6の真空断熱部7との間の空間を通して回収するように構成することもできる。   As a modification, contrary to the above, as indicated by the dotted arrow 52, the refrigerant of the cooling device 14 passes from the inside of the fixed vacuum heat insulation pipe 12 to the inside of the rotor 1 through the inside of the first rotary vacuum heat insulation pipe 2. The refrigerant returned from the inside of the rotor 1 is passed through the space between the first rotary vacuum heat insulation pipe 2 and the second rotary vacuum heat insulation pipe 3, and further between the fixed vacuum heat insulation pipe 12 and the fixed shaft 6. It can also comprise so that it may collect | recover through the space between the vacuum heat insulation parts 7. FIG.

したがって本実施の形態によれば、冷媒の流路は、第1および第2の回転真空断熱配管2,3、真空断熱部7および固定真空断熱配管12などの真空断熱層で囲まれていることになり、冷媒が外部と熱交換したり、供給冷媒と回収冷媒が熱交換したりする現象を抑制することができる。また磁性流体シール9により形成される固定軸6と第2の回転真空断熱配管3との間の空間は、真空引きポート10に接続されている図示しない真空ポンプにより真空引きされて常時真空の状態に維持されることにより、固定体4などの外部からの熱が冷媒側に侵入するのを抑制することができる。しかも磁性流体シール9は、シール部材8の存在により冷媒に接触せず、また内外周が第2の回転真空断熱配管3および真空断熱部7に挟まれて冷媒から断熱されているので、冷媒が極低温の状態であっても凍結などの不具合を発生することはない。   Therefore, according to the present embodiment, the refrigerant flow path is surrounded by the vacuum heat insulation layers such as the first and second rotary vacuum heat insulation pipes 2 and 3, the vacuum heat insulation section 7 and the fixed vacuum heat insulation pipe 12. Thus, the phenomenon that the refrigerant exchanges heat with the outside, or the supply refrigerant and the recovered refrigerant exchange heat can be suppressed. The space between the fixed shaft 6 formed by the magnetic fluid seal 9 and the second rotary vacuum heat insulating pipe 3 is evacuated by a vacuum pump (not shown) connected to the evacuation port 10 and is always in a vacuum state. By being maintained at, it is possible to suppress heat from outside such as the fixed body 4 from entering the refrigerant side. In addition, the magnetic fluid seal 9 is not in contact with the refrigerant due to the presence of the seal member 8, and the inner and outer peripheries are sandwiched between the second rotary vacuum heat insulating pipe 3 and the vacuum heat insulating portion 7 to be insulated from the refrigerant. Even at extremely low temperatures, there will be no problems such as freezing.

これにより、戻り冷媒が約100K以下の温度で使用される場合であっても、磁性流体シール9やシール部材8,13が動作不能になることはなく、しかも戻り冷媒が100K以下の極低温であることにより、戻り冷媒を再冷却するために冷却装置14を大型化する必要もない。   Thus, even when the return refrigerant is used at a temperature of about 100K or less, the magnetic fluid seal 9 and the seal members 8 and 13 are not disabled, and the return refrigerant is at a very low temperature of 100K or less. As a result, it is not necessary to increase the size of the cooling device 14 in order to recool the return refrigerant.

なお、シール部材8,13を複数個設置する場合には、冷媒から遠ざかるにつれて温度が上がり、複数個のシール部材ごとに徐々に温度勾配をつけることができるので、複数個のシール部材の材質を異ならせて設置することも可能である。   When a plurality of seal members 8 and 13 are installed, the temperature increases as the distance from the refrigerant increases, and a temperature gradient can be gradually created for each of the plurality of seal members. It is possible to install differently.

図2は、本発明による第2の実施の形態に係る超電導回転電機の冷媒給排装置の主要部を示す断面図である。図2において、本実施の形態と第1の実施の形態とのおもな相違点は、冷却装置14から超電導回転電機への冷媒の給排口を固定体16に設けたところにある。   FIG. 2 is a cross-sectional view showing a main part of a refrigerant supply / discharge device for a superconducting rotating electrical machine according to a second embodiment of the present invention. In FIG. 2, the main difference between the present embodiment and the first embodiment is that the fixed body 16 is provided with a refrigerant supply / discharge port from the cooling device 14 to the superconducting rotating electrical machine.

回転子1の端部には、第1および第2の回転真空断熱配管22,23が回転子1から軸方向外側(図示左側)に向けて延びるように連結されている。この第1および第2の回転真空断熱配管22,23は、それぞれ二重管で構成され、その端部の間に栓体22a,23aが取り付けられて内部が真空引きされた断熱構成を有している。この第1および第2の回転真空断熱配管22,23は、軸方向の長さおよび径寸法が異なり、回転軸中心50のまわりに同軸的に配置されて、それぞれの内側の空間が後述する冷媒の通路となって回転子1の内部に連通されている。   First and second rotary vacuum heat insulation pipes 22 and 23 are connected to the end of the rotor 1 so as to extend from the rotor 1 toward the outside in the axial direction (the left side in the drawing). Each of the first and second rotary vacuum heat insulation pipes 22 and 23 is composed of a double pipe, and has a heat insulation structure in which plugs 22a and 23a are attached between the ends and the inside is evacuated. ing. The first and second rotary vacuum heat insulating pipes 22 and 23 have different axial lengths and diameter dimensions, are coaxially arranged around the rotary shaft center 50, and a refrigerant whose inner space is described later. And is communicated with the interior of the rotor 1.

回転真空断熱配管22.23の外周側には、回転子1の端部に連結され、図示左側に延びる真空断熱回転軸15が設けられている。この真空断熱回転軸15は、二重管で構成され、その端部の間に栓体15aが取り付けられて内部が真空引きされた断熱構成を有している。この真空断熱回転軸15には、第1および第2の冷媒流通孔15b,15cが軸方向の位置を異ならせて設けられており、また先端部の内周面にはベローズ構造部15dが設けられている。この真空断熱回転軸15の先端部は、ベローズ構造部15dを挟むように、その軸方向両側にそれぞれ端板16,17が気密に固定されて閉塞されており、これら一対の端板16,17間の空間が真空引きされた断熱構造を有している。   On the outer peripheral side of the rotary vacuum heat insulation pipe 22.23, there is provided a vacuum heat insulation rotary shaft 15 that is connected to the end of the rotor 1 and extends to the left side of the drawing. The vacuum heat insulating rotary shaft 15 is composed of a double tube, and has a heat insulating structure in which a stopper 15a is attached between the end portions and the inside is evacuated. The vacuum heat insulating rotary shaft 15 is provided with first and second refrigerant circulation holes 15b and 15c with different positions in the axial direction, and a bellows structure portion 15d is provided on the inner peripheral surface of the tip portion. It has been. The front end portion of the vacuum heat insulating rotary shaft 15 is closed by airtightly fixing end plates 16 and 17 on both sides in the axial direction so as to sandwich the bellows structure portion 15d, and the pair of end plates 16 and 17 are closed. The space between them has a heat insulating structure that is evacuated.

真空断熱回転軸15の内周には、端板17よりも回転子1側に位置する第1および第2の回転真空断熱配管22,23の開放端部の外周面との間に、それぞれ内部真空構造を有する断面箱形の第1および第2の配管支え18,19が全周にわたって気密に固定して配設されており、この各配管支え18,19により、その軸方向両側の空間が遮断され、かつ断熱されるようになっている。これにより、第1の回転真空断熱配管22の内部空間は、端板17と第1の配管支え18に囲まれた空間と連通し、さらに第1の冷媒流通孔15bと連通することになり、他方、第2の回転真空断熱配管23の内部空間は、第1および第2の配管支え18,19に囲まれた空間と連通し、第2の冷媒流通孔15cと連通することになる。   The inner periphery of the vacuum heat insulating rotary shaft 15 is respectively disposed between the outer peripheral surfaces of the open end portions of the first and second rotary vacuum heat insulating pipes 22 and 23 located closer to the rotor 1 than the end plate 17. The first and second pipe supports 18 and 19 having a cross-sectional box shape having a vacuum structure are arranged in an airtight manner over the entire circumference, and the pipe supports 18 and 19 allow a space on both sides in the axial direction to be provided. It is cut off and insulated. Thereby, the internal space of the first rotary vacuum heat insulating pipe 22 communicates with the space surrounded by the end plate 17 and the first pipe support 18, and further communicates with the first refrigerant circulation hole 15b. On the other hand, the internal space of the second rotary vacuum heat insulating pipe 23 communicates with the space surrounded by the first and second pipe supports 18 and 19 and communicates with the second refrigerant circulation hole 15c.

真空断熱回転軸15の外周には、筒状の固定体24が設けられている。固定体24の両端部と真空断熱回転軸15との間には、それぞれ軸受20,20が設けられており、これら軸受20,20を介して真空断熱回転軸15が固定体24に回転自在に支持されている。また固定体24には、一対の軸受20,20の間に位置する内周面に二重管構造の真空断熱部21が設けられている。さらに固定体24には、軸方向に間隔をおいて、第1および第2の冷媒流通孔24a,24bと、第1ないし第3の真空引きポート24c,24d,24eが設けられている。   A cylindrical fixed body 24 is provided on the outer periphery of the vacuum heat insulating rotary shaft 15. Bearings 20 and 20 are provided between both ends of the fixed body 24 and the vacuum heat insulating rotary shaft 15, respectively, and the vacuum heat insulating rotary shaft 15 is rotatable to the fixed body 24 via the bearings 20 and 20. It is supported. The fixed body 24 is provided with a vacuum heat insulating portion 21 having a double-pipe structure on an inner peripheral surface located between the pair of bearings 20. Further, the fixed body 24 is provided with first and second refrigerant circulation holes 24a and 24b and first to third vacuum suction ports 24c, 24d and 24e with an interval in the axial direction.

第1および第2の冷媒流通孔24a,24bは、固定体24の内周側開口部がそれぞれ真空断熱部21を貫通して真空断熱回転軸15における第1および第2の冷媒流通孔15b,15cに対向するように開口されており、外周側開口部が配管14c,14dを介して冷却装置14に連通されている。   The first and second refrigerant flow holes 24a and 24b are formed so that the inner peripheral side opening of the fixed body 24 penetrates the vacuum heat insulation part 21, respectively, and the first and second refrigerant flow holes 15b and It opens so that it may oppose 15c, and the outer peripheral side opening part is connected to the cooling device 14 via piping 14c, 14d.

さらにこれら第1および第2の冷媒流通孔24a,24bを挟むように、その両側に位置する真空断熱部21と真空断熱回転軸15との間には、耐寒性を有するフッ素樹脂などからなる第1のシール部材25,26および第2のシール部材27,28が1個または複数個設置されている。第1ないし第3の真空引きポート24cないし24eは、これら第1のシール部材25,26および第2のシール部材27,28の反冷媒流通孔24a,24b側(すなわち冷媒流通孔24a,24bから遠い側)に位置して設けられている。   Further, between the vacuum heat insulating portion 21 and the vacuum heat insulating rotating shaft 15 located on both sides of the first and second refrigerant circulation holes 24a and 24b, a first made of a fluororesin having cold resistance or the like is provided. One or more seal members 25, 26 and second seal members 27, 28 are provided. The first to third evacuation ports 24c to 24e are on the side of the anti-refrigerant circulation holes 24a and 24b of the first seal members 25 and 26 and the second seal members 27 and 28 (that is, from the refrigerant flow holes 24a and 24b). It is located on the far side.

第1の真空引きポート24cの内周側開口部は、第1のシール部材25の反冷媒流通孔24a側(すなわち冷媒流通孔24aから遠い側)に位置し、真空断熱部21を貫通して真空断熱部21と真空断熱回転軸15との間の空間に開口されている。第2の真空引きポート24dの内周側開口部は、第1のシール部材26の反冷媒流通孔24a側および第2のシール部材27の反冷媒流通孔24b側に位置し、真空断熱部21を貫通して真空断熱部21と真空断熱回転軸15との間の空間に開口されている。第3の真空引きポート24eの内周側開口部は、第2のシール部材28の反冷媒流通孔24b側に位置し、真空断熱部21を貫通して真空断熱部21と真空断熱回転軸15との間の空間に開口されている。   The inner peripheral side opening of the first evacuation port 24c is located on the side opposite to the refrigerant flow hole 24a of the first seal member 25 (that is, the side far from the refrigerant flow hole 24a) and penetrates the vacuum heat insulating part 21. An opening is formed in a space between the vacuum heat insulating portion 21 and the vacuum heat insulating rotating shaft 15. The inner peripheral side opening of the second evacuation port 24d is located on the side of the anti-refrigerant flow hole 24a of the first seal member 26 and the side of the anti-refrigerant flow hole 24b of the second seal member 27. Is opened in a space between the vacuum heat insulating portion 21 and the vacuum heat insulating rotating shaft 15. The opening part on the inner peripheral side of the third evacuation port 24e is located on the anti-refrigerant circulation hole 24b side of the second seal member 28, penetrates the vacuum heat insulating part 21, and the vacuum heat insulating part 21 and the vacuum heat insulating rotating shaft 15 It is opened in the space between.

各真空引きポート24cないし24eの内周側開口部に対応する真空断熱部21と真空断熱回転軸15との間の空間には、それぞれ真空引きポート24cないし24eを挟むように、その両側にそれぞれ一対の磁性流体シール29,30,31が設けられており、各真空引きポート24cないし24eに接続される真空ポンプにより、これらの空間が真空引きされるようになっている。   In the space between the vacuum heat insulating portion 21 and the vacuum heat insulating rotary shaft 15 corresponding to the inner peripheral side opening of each vacuum suction port 24c to 24e, the vacuum suction ports 24c to 24e are respectively sandwiched on both sides thereof. A pair of magnetic fluid seals 29, 30, and 31 are provided, and these spaces are evacuated by a vacuum pump connected to each evacuation port 24c to 24e.

このように構成された超電導回転電機の冷媒給排装置においては、固定体24に冷却装置14の冷媒給排口が構成され、冷却装置14の冷媒は、例えば実線矢印53で示すように、第1の冷媒流通孔24aから端板17と第1の配管支え18との間の空間を通り、さらに第1の回転真空断熱配管22の内部空間を通して回転子1の内部に供給され、回転子1の内部からの戻り冷媒は、第1および第2の回転真空断熱配管22,23の間の空間を通り、さらに第1および第2の配管支え18,19間の空間を通り、第2の冷媒流通孔24bを通して回収されることになる。   In the refrigerant supply / exhaust device for a superconducting rotating electrical machine thus configured, the refrigerant supply / exhaust port of the cooling device 14 is formed in the stationary body 24, and the refrigerant of the cooling device 14 is, for example, as shown by a solid line arrow 53. 1 is passed through the space between the end plate 17 and the first pipe support 18 from the refrigerant flow hole 24a, and is further supplied to the interior of the rotor 1 through the internal space of the first rotary vacuum heat insulating pipe 22. The return refrigerant from the inside of the second refrigerant passes through the space between the first and second rotary vacuum heat insulating pipes 22 and 23, and further passes through the space between the first and second pipe supports 18 and 19 to pass through the second refrigerant. It will be collected through the flow hole 24b.

変形例として、上記とは逆に、点線矢印54で示すように、冷却装置14の冷媒を、第2の冷媒流通孔24bを通し、第1および第2の配管支え18,19間の空間を通し、第1および第2の回転真空断熱配管22,23間の空間を通して回転子1の内部に供給し、回転子1の内部からの戻り冷媒を、第1の回転真空断熱配管22を通し、さらに端板17と配管支え18との間の空間を通し、第1の冷媒流通孔24aを通して回収するように構成することもできる。   As a modified example, on the contrary to the above, as indicated by a dotted arrow 54, the refrigerant of the cooling device 14 is passed through the second refrigerant flow hole 24b, and the space between the first and second pipe supports 18, 19 is provided. And supplying the interior of the rotor 1 through the space between the first and second rotary vacuum insulation pipes 22 and 23, and passing the return refrigerant from the interior of the rotor 1 through the first rotary vacuum insulation pipe 22; Furthermore, it can be configured to pass through the space between the end plate 17 and the pipe support 18 and collect through the first refrigerant circulation hole 24a.

本実施の形態によれば、冷媒の流路は、第1および第2の回転真空断熱配管22,23、真空断熱部7、端板17および第1および第2の配管支え18,19などの真空断熱層で囲まれていることになり、冷媒が外部と熱交換したり、供給冷媒と回収冷媒が熱交換したりする現象を抑制することができる。また磁性流体シール29ないし31により形成される真空断熱部21と真空断熱回転軸15との間の空間は、常時真空の状態に維持されることにより、外部からの熱が第1のシール部材25,26および第2のシール部材27,28側に侵入するのを抑制することができる。   According to the present embodiment, the refrigerant flow path includes the first and second rotary vacuum heat insulation pipes 22, 23, the vacuum heat insulation part 7, the end plate 17, the first and second pipe supports 18, 19, and the like. It is surrounded by the vacuum heat insulating layer, and the phenomenon that the refrigerant exchanges heat with the outside or the supply refrigerant and the recovered refrigerant exchange heat can be suppressed. In addition, the space between the vacuum heat insulating portion 21 and the vacuum heat insulating rotating shaft 15 formed by the magnetic fluid seals 29 to 31 is always maintained in a vacuum state, so that heat from the outside is transferred to the first seal member 25. , 26 and the second seal members 27, 28 can be prevented from entering.

さらに、一対の端板16,17間に位置する真空断熱回転軸15の内周側にベローズ構造部15dが設けられているので、熱伝導距離が長くなり、軸方向外側に位置する端板16からの熱の侵入を低減することができる。しかも磁性流体シール29ないし31は、第1のシール部材25,26および第2のシール部材27,28の存在により冷媒に接触せず、また内外周が真空断熱回転軸15および真空断熱部21に挟まれて冷媒から断熱されているので、冷媒が極低温の状態であっても凍結などの不具合を発生することはない。   Further, since the bellows structure portion 15d is provided on the inner peripheral side of the vacuum heat insulating rotary shaft 15 located between the pair of end plates 16 and 17, the heat conduction distance becomes long, and the end plate 16 located on the outer side in the axial direction. From the heat can be reduced. In addition, the magnetic fluid seals 29 to 31 do not come into contact with the refrigerant due to the presence of the first seal members 25 and 26 and the second seal members 27 and 28, and the inner and outer circumferences are connected to the vacuum heat insulating rotary shaft 15 and the vacuum heat insulating portion 21. Since it is sandwiched and insulated from the refrigerant, there is no problem such as freezing even if the refrigerant is in an extremely low temperature state.

これにより、戻り冷媒が約100K以下の温度で使用される場合であっても、磁性流体シール29ないし31や第1のシール部材25,26および第2のシール部材27,28が動作不能になることはなく、しかも戻り冷媒が100K以下の極低温であることにより、戻り冷媒を再冷却するために冷却装置14を大型化する必要もない。   Thereby, even when the return refrigerant is used at a temperature of about 100K or less, the magnetic fluid seals 29 to 31, the first seal members 25 and 26, and the second seal members 27 and 28 become inoperable. In addition, since the return refrigerant has an extremely low temperature of 100K or less, it is not necessary to increase the size of the cooling device 14 in order to recool the return refrigerant.

図3は、本発明による第3の実施の形態に係る超電導回転電機の冷媒給排装置の主要部を示す断面図である。図3において、本実施の形態と第1および第2の実施の形態とのおもな相違点は、冷却装置14から超電導回転電機への冷媒の給排口を固定体34側と端板35側に設けたところにある。   FIG. 3 is a cross-sectional view showing a main part of a refrigerant supply / discharge device for a superconducting rotating electrical machine according to a third embodiment of the present invention. In FIG. 3, the main difference between the present embodiment and the first and second embodiments is that the refrigerant supply / discharge port from the cooling device 14 to the superconducting rotating electrical machine is connected to the fixed body 34 side and the end plate 35. Located on the side.

回転子1の端部に第1および第2の回転真空断熱配管32,33が連結されている。この第1および第2の回転真空断熱配管32,33は、それぞれ二重管で構成され、その端部の間に栓体32a,33aが取り付けられて内部が真空引きされた断熱構成を有している。この第1および第2の回転真空断熱配管32,33は、軸方向の長さおよび径寸法が異なり、回転軸中心50のまわりに同軸的に配置されて、それぞれの内側の空間が後述する冷媒の通路となって回転子1の内部に連通されている。   First and second rotary vacuum insulation pipes 32 and 33 are connected to the end of the rotor 1. Each of the first and second rotary vacuum heat insulation pipes 32 and 33 is composed of a double pipe, and has a heat insulation structure in which plugs 32a and 33a are attached between the end portions and the inside is evacuated. ing. The first and second rotary vacuum heat insulating pipes 32 and 33 have different axial lengths and radial dimensions, are coaxially arranged around the rotary shaft center 50, and refrigerants whose inner spaces are described later are provided. And is communicated with the interior of the rotor 1.

回転真空断熱配管32.33の外周側には、回転子1の端部に連結された真空断熱回転軸35が設けられている。この真空断熱回転軸35は、二重管で構成され、内部が真空引きされた断熱構成を有している。この真空断熱回転軸35には、冷媒流通孔35aが設けられており、また先端部(図示左側)の内周面にはベローズ構造部35bが設けられている。この真空断熱回転軸35の先端部には、第1の回転真空断熱配管32の先端部の外周面との間に、ベローズ構造部35bを挟むように、軸方向に間隔をおいて一対の端板36,37が気密に固定されており、これら一対の端板36,37間の空間が真空引きされた断熱構造となっている。   On the outer peripheral side of the rotary vacuum insulation pipe 32.33, a vacuum insulation rotary shaft 35 connected to the end of the rotor 1 is provided. The vacuum heat insulating rotary shaft 35 is composed of a double tube and has a heat insulating structure in which the inside is evacuated. The vacuum heat insulating rotary shaft 35 is provided with a refrigerant flow hole 35a, and a bellows structure portion 35b is provided on the inner peripheral surface of the tip (left side in the figure). A pair of ends are spaced apart in the axial direction so that the bellows structure portion 35b is sandwiched between the front end portion of the vacuum heat insulation rotary shaft 35 and the outer peripheral surface of the front end portion of the first rotary vacuum heat insulation pipe 32. The plates 36 and 37 are fixed in an airtight manner, and a space between the pair of end plates 36 and 37 is a heat insulating structure in which a vacuum is drawn.

真空断熱回転軸35の内周には、端板37よりも回転子1側に位置する第2の回転真空断熱配管33の開放端部の外周面との間に、それぞれ内部真空構造を有する断面箱形の配管支え38が全周にわたって気密に固定して配設されており、この配管支え38により、その軸方向両側の空間が遮断され、かつ断熱されるようになっている。これにより、第2の回転真空断熱配管33の内部空間は、端板37と配管支え38に囲まれた空間と連通し、さらに冷媒流通孔35aと連通することになる。   A cross section having an internal vacuum structure between the inner peripheral surface of the vacuum heat insulating rotary shaft 35 and the outer peripheral surface of the open end portion of the second rotary vacuum heat insulating pipe 33 positioned closer to the rotor 1 than the end plate 37. A box-shaped pipe support 38 is arranged in an airtight manner over the entire circumference, and the pipe support 38 blocks the space on both sides in the axial direction and is insulated. Thereby, the internal space of the second rotary vacuum heat insulating pipe 33 communicates with the space surrounded by the end plate 37 and the pipe support 38 and further communicates with the refrigerant circulation hole 35a.

真空断熱回転軸35の外周には、筒状の固定体34が設けられている。固定体34の両端部と真空断熱回転軸35との間には、それぞれ軸受39,39が設けられており、これら軸受39,39を介して真空断熱回転軸35が固定体34に回転自在に支持されている。また固定体34には、一対の軸受39,39の間に位置する内周面に二重管構造の真空断熱部40が設けられている。さらに固定体34には、冷媒流通孔34aと、第1および第2の真空引きポート34b,34cが設けられている。   A cylindrical fixed body 34 is provided on the outer periphery of the vacuum heat insulating rotary shaft 35. Bearings 39 and 39 are provided between both ends of the fixed body 34 and the vacuum heat insulating rotary shaft 35, respectively, and the vacuum heat insulating rotary shaft 35 is rotatable to the fixed body 34 via the bearings 39 and 39. It is supported. The fixed body 34 is provided with a vacuum heat insulating portion 40 having a double-pipe structure on the inner peripheral surface located between the pair of bearings 39. Further, the fixed body 34 is provided with a refrigerant circulation hole 34a and first and second vacuuming ports 34b and 34c.

冷媒流通孔34aは、固定体34の内周側開口部がそれぞれ真空断熱部40を貫通して真空断熱回転軸35における冷媒流通孔35aに対向するように開口されており、外周側開口部が配管14eを介して冷却装置14に連通されている。 さらに冷媒流通孔34aを挟むように、その両側に位置する真空断熱部40と真空断熱回転軸35との間には、耐寒性を有するフッ素樹脂などからなるシール部材41,42が1個または複数個設置されている。第1および第2の真空引きポート34bおよび34cは、これらシール部材41,42の反冷媒流通孔34a側に位置して設けられている。   The refrigerant circulation hole 34a is opened so that the inner peripheral side opening portion of the fixed body 34 passes through the vacuum heat insulating portion 40 and faces the refrigerant flow hole 35a in the vacuum heat insulating rotating shaft 35, and the outer peripheral side opening portion is formed. The cooling device 14 communicates with the piping 14e. Further, one or a plurality of sealing members 41, 42 made of a fluororesin having cold resistance or the like are provided between the vacuum heat insulating portion 40 and the vacuum heat insulating rotating shaft 35 located on both sides of the refrigerant flow hole 34a. Individually installed. The first and second evacuation ports 34b and 34c are provided on the side of the anti-refrigerant circulation hole 34a of the seal members 41 and 42.

第1の真空引きポート34bの内周側開口部は、シール部材41の反冷媒流通孔34a側に位置し、真空断熱部39を貫通して真空断熱部40と真空断熱回転軸35との間の空間に開口されている。第2の真空引きポート34cの内周側開口部は、シール部材42の反冷媒流通孔34a側に位置し、真空断熱部40を貫通して真空断熱部40と真空断熱回転軸35との間の空間に開口されている。   The opening on the inner peripheral side of the first evacuation port 34b is located on the side of the anti-refrigerant flow hole 34a of the seal member 41, passes through the vacuum heat insulating part 39, and between the vacuum heat insulating part 40 and the vacuum heat insulating rotating shaft 35. It is open to the space. The opening on the inner peripheral side of the second evacuation port 34c is located on the side of the anti-refrigerant flow hole 34a of the seal member 42 and penetrates the vacuum heat insulating part 40 between the vacuum heat insulating part 40 and the vacuum heat insulating rotary shaft 35. It is open to the space.

各真空引きポート34bおよび34cの内周側開口部に対向する真空断熱部40と真空断熱回転軸35との間の空間には、それぞれ真空引きポート34bおよび34cを挟むように、その両側にそれぞれ一対の磁性流体シール43,44が設けられており、各真空引きポート34bおよび34cに接続される真空ポンプにより、これらの空間が真空引きされるようになっている。   In the space between the vacuum heat insulating portion 40 and the vacuum heat insulating rotary shaft 35 facing the inner peripheral side opening of each vacuum suction port 34b and 34c, the vacuum suction ports 34b and 34c are respectively sandwiched on both sides thereof. A pair of magnetic fluid seals 43 and 44 are provided, and these spaces are evacuated by a vacuum pump connected to each of the evacuation ports 34b and 34c.

固定体34の図示左側の端部には、端板45が気密に取り付けられており、この端板45を貫通して固定真空断熱配管46が設けられている。この固定真空断熱配管46についても、二重管で構成され、内部が真空引きされた断熱構成を有している。固定真空断熱配管46は、回転軸中心50のまわりに同軸的に配設され、その先端開口部(開放端部)が回転子1側に延び、第1の回転真空断熱配管32の内部空間に位置するように配設されている。この固定真空断熱配管46は、冷却装置14に配管14fを介して連通されており、冷却装置14の冷媒を第1の回転真空断熱配管32を介して回転子1の内部に給排できるようになっている。   An end plate 45 is airtightly attached to the left end of the fixed body 34 in the figure, and a fixed vacuum heat insulating pipe 46 is provided through the end plate 45. The fixed vacuum heat insulating pipe 46 is also composed of a double pipe and has a heat insulating structure in which the inside is evacuated. The fixed vacuum heat insulation pipe 46 is coaxially arranged around the rotation axis center 50, and a tip opening (open end) thereof extends toward the rotor 1, and enters the internal space of the first rotary vacuum heat insulation pipe 32. It arrange | positions so that it may be located. The fixed vacuum heat insulation pipe 46 communicates with the cooling device 14 via a pipe 14 f so that the refrigerant of the cooling device 14 can be supplied to and discharged from the rotor 1 via the first rotary vacuum heat insulation pipe 32. It has become.

このように構成された超電導回転電機の冷媒給排装置においては、固定体34および端板45のそれぞれに冷却装置14の冷媒給排口が構成され、冷却装置14の冷媒は、例えば実線矢印55で示すように、冷媒流通孔34aから端板37と配管支え38との間の空間を通り、さらに第2の回転真空断熱配管33の内部空間を通して回転子1の内部に供給され、回転子1の内部からの戻り冷媒は、第1の回転真空断熱配管32の内部を通り、さらに固定真空断熱配管46の内部を通して回収されることになる。   In the refrigerant supply / discharge device of the superconducting rotating electrical machine configured as described above, the refrigerant supply / discharge port of the cooling device 14 is formed in each of the fixed body 34 and the end plate 45, and the refrigerant of the cooling device 14 is, for example, a solid line arrow 55. As shown in FIG. 2, the refrigerant passes through the space between the end plate 37 and the pipe support 38 from the refrigerant circulation hole 34a, and is further supplied into the rotor 1 through the internal space of the second rotary vacuum heat insulating pipe 33. The return refrigerant from the inside passes through the inside of the first rotary vacuum insulation pipe 32 and is further collected through the inside of the fixed vacuum insulation pipe 46.

変形例として、上記とは逆に、点線矢印56で示すように、冷却装置14の冷媒を、固定真空断熱配管46の内部を通し、さらに第1の回転真空断熱配管32の内部を通して回転子1の内部に供給し、回転子1の内部からの戻り冷媒を、第2の回転真空断熱配管33の内部を通し、さらに端板37と配管支え38との間の空間を通し、冷媒流通孔34aを通して回収するように構成することもできる。   As a modification, on the contrary to the above, as indicated by a dotted arrow 56, the refrigerant of the cooling device 14 passes through the inside of the fixed vacuum insulation pipe 46 and further through the inside of the first rotary vacuum insulation pipe 32. The refrigerant returned from the inside of the rotor 1 is passed through the inside of the second rotary vacuum heat insulating pipe 33 and further through the space between the end plate 37 and the pipe support 38, and the refrigerant circulation hole 34a. It can also be configured to collect through.

したがって本実施の形態によれば、冷媒の流路は、第1および第2の回転真空断熱配管32,33、真空断熱回転軸35、端板37および配管支え38などの真空断熱層で囲まれていることになり、冷媒が外部と熱交換したり、供給冷媒と回収冷媒が熱交換したりする現象を抑制することができる。また磁性流体シール43,44により形成される真空断熱部40と真空断熱回転軸35との間の空間は、常時真空の状態に維持されることにより、外部からの熱がシール部材41,42側に侵入するのを抑制することができる。しかも磁性流体シール43,44は、シール部材41,42の存在により冷媒に接触せず、また内外周が真空断熱回転軸35および真空断熱部40に挟まれて冷媒から断熱されているので、冷媒が極低温の状態であっても凍結などの不具合を発生することはない。   Therefore, according to the present embodiment, the refrigerant flow path is surrounded by the vacuum heat insulation layers such as the first and second rotary vacuum heat insulation pipes 32 and 33, the vacuum heat insulation rotary shaft 35, the end plate 37 and the pipe support 38. Thus, it is possible to suppress the phenomenon that the refrigerant exchanges heat with the outside, and the supply refrigerant and the recovered refrigerant exchange heat. In addition, the space between the vacuum heat insulating portion 40 and the vacuum heat insulating rotating shaft 35 formed by the magnetic fluid seals 43 and 44 is always maintained in a vacuum state, so that heat from the outside is on the seal member 41 and 42 side. Can be prevented from entering. In addition, the magnetic fluid seals 43 and 44 are not in contact with the refrigerant due to the presence of the seal members 41 and 42, and the inner and outer peripheries are sandwiched between the vacuum heat insulating rotary shaft 35 and the vacuum heat insulating portion 40 to be insulated from the refrigerant. Even if the temperature is extremely low, there will be no problems such as freezing.

これにより、戻り冷媒が約100K以下の温度で使用される場合であっても、磁性流体シール43,44やシール部材41.42が動作不能になることはなく、しかも戻り冷媒が100K以下の極低温であることにより、戻り冷媒を再冷却するために冷却装置14を大型化する必要もない。   Thus, even when the return refrigerant is used at a temperature of about 100K or less, the magnetic fluid seals 43 and 44 and the seal member 41.42 are not inoperable, and the return refrigerant is not more than 100K. Due to the low temperature, there is no need to increase the size of the cooling device 14 in order to recool the return refrigerant.

本発明による第1の実施の形態に係る超電導回転電機の冷媒給排装置の上半主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the upper half main part of the refrigerant | coolant supply / discharge apparatus of the superconducting rotary electric machine which concerns on 1st Embodiment by this invention. 本発明による第2の実施の形態に係る超電導回転電機の冷媒給排装置の上半主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the upper half main part of the refrigerant | coolant supply / discharge apparatus of the superconducting rotary electric machine which concerns on 2nd Embodiment by this invention. 本発明による第3の実施の形態に係る超電導回転電機の冷媒給排装置の上半主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the upper half main part of the refrigerant | coolant supply / discharge apparatus of the superconducting rotary electric machine which concerns on 3rd Embodiment by this invention.

符号の説明Explanation of symbols

1…回転子
2,22,32…第1の回転真空断熱配管
3,23,33…第2の回転真空断熱配管
2a,3a,12a,15a,22a,23a,32a,33a…栓体
4,24,34…固定体
5,20,39…軸受
6…固定軸
7,21,40…真空断熱部
8…シール部材(第2のシール部材)
9,29ないし31,43,44…磁性流体シール
10,24c,24d,24e,34b,34c…真空引きポート
11…永久磁石
12,46…固定真空断熱配管
13…シール部材(第1のシール部材)
14…冷却装置
14aないし14f…配管
15,35…真空断熱回転軸
15b,24a…第1の冷媒流通孔
15c,24b…第2の冷媒流通孔
15d,35b…ベローズ構造部
16,17,36,37,45…端板
18…第1の配管支え
19…第2の配管支え
25,26…第1のシール部材
27,28…第2のシール部材
35a…冷媒流通孔
38…配管支え
41,42…シール部材
DESCRIPTION OF SYMBOLS 1 ... Rotor 2, 22, 32 ... 1st rotation vacuum heat insulation piping 3, 23, 33 ... 2nd rotation vacuum heat insulation piping 2a, 3a, 12a, 15a, 22a, 23a, 32a, 33a ... Plug body 4, 24, 34 ... fixed bodies 5, 20, 39 ... bearing 6 ... fixed shafts 7, 21, 40 ... vacuum heat insulating part 8 ... seal member (second seal member)
9, 29 to 31, 43, 44 ... Magnetic fluid seals 10, 24c, 24d, 24e, 34b, 34c ... Vacuum suction port 11 ... Permanent magnet 12, 46 ... Fixed vacuum insulation pipe 13 ... Seal member (first seal member) )
14 ... Cooling devices 14a to 14f ... Pipings 15, 35 ... Vacuum heat insulating rotary shafts 15b, 24a ... First refrigerant circulation holes 15c, 24b ... Second refrigerant circulation holes 15d, 35b ... Bellows structures 16, 17, 36, 37, 45 ... end plate 18 ... first pipe support 19 ... second pipe support 25, 26 ... first seal member 27, 28 ... second seal member 35a ... refrigerant flow hole 38 ... pipe support 41, 42 ... Seal member

Claims (9)

回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、
前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、
前記第2の回転真空断熱配管の外周側に設けられ、軸受を介して前記第2の回転真空断熱配管を回転自在に支持する固定体と、
この固定体の側方に連結されるとともに前記第2の回転真空断熱配管の端部の外周側に位置して設けられ、内周面に真空断熱部が形成された固定軸と、
前記第1の回転真空断熱配管の内周側に設けられ、開放端部が前記第1の回転真空断熱配管内に位置する固定真空断熱配管と、
この固定真空断熱配管と前記第1の回転真空断熱配管との間をシールする耐寒性の材料よりなる第1のシール部材と、
前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間をシールする耐寒性の材料よりなる第2のシール部材と、
前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間にあって、前記第2のシール部材よりも前記軸受側に位置し、前記固定軸に設けられた真空引きポートを挟むように、その両側に設けられた磁性流体シールと、
前記固定軸の外部に設けられ、前記第2の回転真空断熱配管と前記固定軸の真空断熱部との間および前記固定真空断熱配管の内部空間にそれぞれ連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、
を備えてなる超電導回転電機の冷媒給排装置。
A first rotary vacuum heat insulating pipe provided at an end of the rotor, coaxially disposed at the center of the rotation axis, and having an inner space communicating with the interior of the rotor;
A second rotary vacuum heat insulation pipe disposed coaxially on the outer peripheral side of the first rotary vacuum heat insulation pipe and having an inner space communicating with the interior of the rotor;
A fixed body that is provided on the outer peripheral side of the second rotary vacuum heat insulation pipe and rotatably supports the second rotary vacuum heat insulation pipe via a bearing;
A fixed shaft connected to the side of the fixed body and provided on the outer peripheral side of the end of the second rotary vacuum heat insulating pipe, and having a vacuum heat insulating part formed on the inner peripheral surface;
A fixed vacuum heat insulation pipe provided on the inner peripheral side of the first rotary vacuum heat insulation pipe and having an open end positioned in the first rotary vacuum heat insulation pipe;
A first seal member made of a cold-resistant material that seals between the fixed vacuum heat insulation pipe and the first rotary vacuum heat insulation pipe;
A second seal member made of a cold-resistant material that seals between the second rotary vacuum heat insulation pipe and the vacuum heat insulation portion of the fixed shaft;
Between the second rotary vacuum heat insulating pipe and the vacuum heat insulating portion of the fixed shaft, located on the bearing side of the second seal member and sandwiching a vacuum suction port provided on the fixed shaft A magnetic fluid seal provided on both sides thereof;
A refrigerant that is provided outside the fixed shaft and communicates between the second rotary vacuum heat insulating pipe and the vacuum heat insulating portion of the fixed shaft and to the internal space of the fixed vacuum heat insulating pipe to cool the rotor. A cooling device to supply and recover;
A refrigerant supply / discharge device for a superconducting rotating electrical machine.
前記冷媒は、前記固定真空断熱配管と前記固定軸の真空断熱部との間を通り、さらに前記第1および第2の回転真空断熱配管の間を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1の回転真空断熱配管を通り、さらに前記固定真空断熱配管を通して回収されることを特徴とする請求項1に記載の超電導回転電機の冷媒給排装置。   The refrigerant passes between the fixed vacuum heat insulating pipe and the vacuum heat insulating portion of the fixed shaft, and is further supplied to the rotor through the first and second rotary vacuum heat insulating pipes. The refrigerant supply / exhaust device for a superconducting rotary electric machine according to claim 1, wherein the return refrigerant from the inside of the superconducting rotary electric machine is collected through the first rotary vacuum insulation pipe and further through the fixed vacuum insulation pipe. 前記冷媒は、前記固定真空断熱配管を通り、さらに前記第1の回転真空断熱配管を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1および第2の回転真空断熱配管の間を通り、さらに前記固定真空断熱配管と前記固定軸の真空断熱部との間を通して回収されることを特徴とする請求項1に記載の超伝導回転電機の冷媒給排装置。   The refrigerant passes through the fixed vacuum heat insulation pipe and is further supplied to the rotor through the first rotary vacuum heat insulation pipe, and the return refrigerant from the rotor passes through the first and second rotations. The refrigerant supply / discharge device for a superconducting rotating electrical machine according to claim 1, wherein the refrigerant is recovered through the vacuum heat insulating pipe and further between the fixed vacuum heat insulating pipe and the vacuum heat insulating portion of the fixed shaft. 回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、
前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、
前記第2の回転真空断熱配管の外周側に前記第2の回転真空断熱配管と同軸的に配置されて、その内側の空間が前記回転子の内部に連通されるとともに、先端部に間隔をおいて一対の端板が固定され、この一対の端板間の空間が真空引きされ、かつ前記先端部の内周面にベローズ構造部が形成された真空断熱回転軸と、
前記第1の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する第1の配管支えと、
前記第2の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する第2の配管支えと、
一対の軸受を介して前記真空断熱回転軸を回転自在に支持し、かつ前記一対の軸受の間に位置する内周面に真空断熱部が設けられた固定体と、
この固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記端板と前記第1の配管支えとの間の空間に連通される第1の冷媒流通孔と、
前記固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記第1および第2の配管支え間の空間に連通される第2の冷媒流通孔と、
前記第1の冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなる第1のシール部材と、
前記第2の冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなる第2のシール部材と、
これら第1および第2のシール部材の反冷媒流通孔側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間にそれぞれ設置された一対の磁性流体シールと、
各一対の磁性流体シール間の空間に連通するように前記固定体および前記真空断熱部を貫通して形成された真空引きポートと、
前記第1および第2の冷媒流通孔に配管を介して連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、
を備えてなる超電導回転電機の冷媒給排装置。
A first rotary vacuum heat insulating pipe provided at an end of the rotor, coaxially disposed at the center of the rotation axis, and having an inner space communicating with the interior of the rotor;
A second rotary vacuum heat insulation pipe disposed coaxially on the outer peripheral side of the first rotary vacuum heat insulation pipe and having an inner space communicating with the interior of the rotor;
The second rotary vacuum heat insulation pipe is coaxially arranged on the outer peripheral side of the second rotary vacuum heat insulation pipe, and the inner space communicates with the inside of the rotor and has a space at the tip. A pair of end plates is fixed, a space between the pair of end plates is evacuated, and a vacuum heat insulating rotary shaft having a bellows structure portion formed on the inner peripheral surface of the tip portion;
A first pipe support disposed between the first rotary vacuum heat insulation pipe and the vacuum heat insulation rotary shaft to block and insulate the space on both axial sides;
A second pipe support disposed between the second rotary vacuum heat insulation pipe and the vacuum heat insulation rotary shaft to block and insulate the space on both axial sides;
A fixed body that rotatably supports the vacuum heat insulating rotary shaft via a pair of bearings, and is provided with a vacuum heat insulating portion on an inner peripheral surface located between the pair of bearings;
A first coolant circulation hole formed through the fixed body, the vacuum heat insulating portion and the vacuum heat insulating rotating shaft, and communicated with a space between the end plate and the first pipe support;
A second refrigerant flow hole formed through the fixed body, the vacuum heat insulating portion and the vacuum heat insulating rotating shaft, and communicated with a space between the first and second pipe supports;
A first seal member made of a cold-resistant material installed in a space between the vacuum heat insulation rotating shaft located on both sides of the first refrigerant circulation hole and the vacuum heat insulation portion of the fixed body. When,
A second seal member made of a cold-resistant material installed in a space between the vacuum heat insulation rotary shaft located on both sides of the second refrigerant circulation hole and the vacuum heat insulation portion of the fixed body. When,
A pair of magnetic fluid seals respectively installed in a space between the vacuum heat insulation rotary shaft and the vacuum heat insulation portion of the fixed body located on the side of the first and second seal members on the side opposite to the refrigerant flow hole;
A vacuuming port formed through the fixed body and the vacuum heat insulating portion so as to communicate with a space between each pair of magnetic fluid seals;
A cooling device that communicates with the first and second refrigerant flow holes via a pipe to supply and recover the refrigerant that cools the rotor;
A refrigerant supply / discharge device for a superconducting rotating electrical machine.
前記冷媒は、前記第1の冷媒流通孔から前記端板と前記第1の配管支えとの間を通り、さらに前記第1の回転真空断熱配管を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1および第2の回転真空断熱配管の間を通り、さらに前記第1および第2の配管支えの間を通り、前記第2の冷媒流通孔を通して回収されることを特徴とする請求項4に記載の超電導回転電機の冷媒給排装置。   The refrigerant passes between the end plate and the first pipe support through the first refrigerant circulation hole, and is further supplied to the inside of the rotor through the first rotary vacuum heat insulating pipe. The return refrigerant from the inside passes through between the first and second rotary vacuum insulation pipes, passes between the first and second pipe supports, and is recovered through the second refrigerant circulation hole. The refrigerant supply / discharge device for a superconducting rotating electrical machine according to claim 4. 前記冷媒は、前記第2の冷媒流通孔から前記第1および第2の配管支えの間を通り、さらに前記第1および第2の回転真空断熱配管の間を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1の回転真空断熱配管を通り、さらに前記端板と前記第1の配管支えとの間を通り、前記第1の冷媒流通孔を通して回収されることを特徴とする請求項4に記載の超電導回転電機の冷媒給排装置。   The refrigerant passes between the first and second pipe supports from the second refrigerant circulation hole, and is further supplied to the inside of the rotor through the first and second rotary vacuum heat insulating pipes. The return refrigerant from the inside of the rotor passes through the first rotary vacuum insulation pipe, passes between the end plate and the first pipe support, and is collected through the first refrigerant circulation hole. The refrigerant supply / discharge device for a superconducting rotating electrical machine according to claim 4. 回転子の端部に設けられ、回転軸中心に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第1の回転真空断熱配管と、
前記第1の回転真空断熱配管の外周側に同軸的に配置されて、内側の空間が前記回転子の内部に連通されている第2の回転真空断熱配管と、
回転子の端部に設けられ、前記第2の回転真空断熱配管の外周側に前記第2の回転真空断熱配管と同軸的に配置されて、その先端部の内周面と前記第1の回転真空断熱配管との間に、軸方向に間隔をおいて一対の端板が固定され、この一対の端板間の空間が真空引きされ、かつ前記先端部の内周面にベローズ構造部が形成された真空断熱回転軸と、
前記第2の回転真空断熱配管と前記真空断熱回転軸との間に配設され、軸方向両側の空間を遮断しかつ断熱する配管支えと、
一対の軸受を介して前記真空断熱回転軸を回転自在に支持し、かつ前記一対の軸受の間に位置する内周面に真空断熱部が設けられた固定体と、
この固定体および前記真空断熱部ならびに前記真空断熱回転軸を貫通して形成され、前記端板と前記配管支えとの間の空間に連通される冷媒流通孔と、
この冷媒流通孔を挟むように、その両側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間に設置された耐寒性の材料よりなるシール部材と、
これらシール部材の反冷媒流通孔側に位置する前記真空断熱回転軸と前記固定体の真空断熱部との間の空間にそれぞれ設置された一対の磁性流体シールと、
各一対の磁性流体シール間の空間に連通するように前記固定体および前記真空断熱部を貫通して形成された真空引きポートと、
前記第1の回転真空断熱配管の内周側に設けられ、前記固定体の端部に取り付けられた端板を貫通して設けられ、その開放端部が前記第1の回転真空断熱配管内に位置する固定真空断熱配管と、
この固定真空断熱配管および前記冷媒流通孔に配管を介して連通されて前記回転子を冷却する冷媒を供給し、かつ回収する冷却装置と、
を備えてなる超電導回転電機の冷媒給排装置。
A first rotary vacuum heat insulating pipe provided at an end of the rotor, coaxially disposed at the center of the rotation axis, and having an inner space communicating with the interior of the rotor;
A second rotary vacuum heat insulation pipe disposed coaxially on the outer peripheral side of the first rotary vacuum heat insulation pipe and having an inner space communicating with the interior of the rotor;
Provided at the end of the rotor, and arranged coaxially with the second rotary vacuum heat insulation pipe on the outer peripheral side of the second rotary vacuum heat insulation pipe, the inner peripheral surface of the tip and the first rotation A pair of end plates are fixed between the vacuum insulation pipes with an interval in the axial direction, a space between the pair of end plates is evacuated, and a bellows structure portion is formed on the inner peripheral surface of the tip portion. A vacuum insulated rotating shaft,
A pipe support that is disposed between the second rotary vacuum heat insulation pipe and the vacuum heat insulation rotary shaft and blocks and insulates the space on both axial sides;
A fixed body that rotatably supports the vacuum heat insulating rotary shaft via a pair of bearings, and is provided with a vacuum heat insulating portion on an inner peripheral surface located between the pair of bearings;
Refrigerant flow holes formed through the fixed body and the vacuum heat insulating portion and the vacuum heat insulating rotating shaft, and communicated with a space between the end plate and the pipe support;
A seal member made of a cold-resistant material installed in a space between the vacuum heat insulation rotary shaft located on both sides of the refrigerant flow hole and the vacuum heat insulation portion of the fixed body;
A pair of magnetic fluid seals respectively installed in a space between the vacuum heat insulating rotating shaft and the vacuum heat insulating portion of the fixed body located on the anti-refrigerant circulation hole side of these seal members;
A vacuuming port formed through the fixed body and the vacuum heat insulating portion so as to communicate with a space between each pair of magnetic fluid seals;
Provided on the inner peripheral side of the first rotary vacuum heat insulation pipe, provided through an end plate attached to the end of the fixed body, and an open end thereof in the first rotary vacuum heat insulation pipe Fixed vacuum insulation piping located,
A cooling device that supplies the refrigerant that cools the rotor by communicating with the fixed vacuum heat insulating pipe and the refrigerant circulation hole via the pipe, and collects the refrigerant;
A refrigerant supply / discharge device for a superconducting rotating electrical machine.
前記冷媒は、前記冷媒流通孔から前記端板と前記配管支えとの間を通り、さらに前記第1および第2の回転真空断熱配管の間を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1の回転真空断熱配管を通り、さらに前記固定真空断熱配管を通して回収されることを特徴とする請求項7に記載の超電導回転電機の冷媒給排装置。   The refrigerant passes between the end plate and the pipe support from the refrigerant flow hole, and is further supplied to the inside of the rotor through the first and second rotary vacuum heat insulating pipes. The refrigerant supply / discharge device for a superconducting rotating electrical machine according to claim 7, wherein the return refrigerant from the inside passes through the first rotary vacuum heat insulation pipe and is further collected through the fixed vacuum heat insulation pipe. 前記冷媒は、前記固定真空断熱配管を通り、さらに前記第1の回転真空断熱配管間を通して前記回転子の内部に供給され、前記回転子の内部からの戻り冷媒は、前記第1および第2の回転真空断熱配管の間を通り、さらに前記端板と前記配管支えとの間を通り、前記冷媒流通孔を通して回収されることを特徴とする請求項7に記載の超電導回転電機の冷媒給排装置。   The refrigerant passes through the fixed vacuum heat insulation pipe and is further supplied between the first rotary vacuum heat insulation pipes and into the rotor, and the return refrigerant from the rotor includes the first and second refrigerants. The refrigerant supply / discharge device for a superconducting rotating electrical machine according to claim 7, wherein the refrigerant is recovered through the refrigerant flow hole through the rotary vacuum insulation pipe, further between the end plate and the pipe support. .
JP2005275325A 2005-09-22 2005-09-22 Superconducting rotating electrical machine refrigerant supply / discharge device Expired - Fee Related JP4704869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275325A JP4704869B2 (en) 2005-09-22 2005-09-22 Superconducting rotating electrical machine refrigerant supply / discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275325A JP4704869B2 (en) 2005-09-22 2005-09-22 Superconducting rotating electrical machine refrigerant supply / discharge device

Publications (2)

Publication Number Publication Date
JP2007089314A JP2007089314A (en) 2007-04-05
JP4704869B2 true JP4704869B2 (en) 2011-06-22

Family

ID=37975714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275325A Expired - Fee Related JP4704869B2 (en) 2005-09-22 2005-09-22 Superconducting rotating electrical machine refrigerant supply / discharge device

Country Status (1)

Country Link
JP (1) JP4704869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178486A (en) * 2009-01-29 2010-08-12 Toshiba Mitsubishi-Electric Industrial System Corp Superconducting rotating electric machine
KR101062599B1 (en) 2009-10-21 2011-09-06 두산중공업 주식회사 Cooling flow path structure of superconducting rotary machine
KR101528424B1 (en) * 2014-04-15 2015-06-12 두산중공업 주식회사 Extremely low temperature refrigerant transfer coupling device for superconductive rotary machine
JP2023112466A (en) * 2022-02-01 2023-08-14 株式会社東芝 Cooling medium supplying/discharging mechanism for superconducting rotary electric machine, and superconducting rotary electric machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644788B2 (en) * 1987-12-18 1997-08-25 株式会社日立製作所 Refrigerant supply device
JPH0288472A (en) * 1989-07-29 1990-03-28 Ngk Insulators Ltd Junction structure connection ceramic part with metallic part
JPH09322523A (en) * 1996-06-03 1997-12-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Continuous vacuum exhaust device of superconducting rotary electric machine
JP2001108113A (en) * 1999-10-08 2001-04-20 Nok Corp Shaft seal

Also Published As

Publication number Publication date
JP2007089314A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
TWI449858B (en) Rotate the connector
TWI426687B (en) Rotate the connector
JP3840182B2 (en) Magnetic bearing that supports rotating shaft using high Tc superconducting material
JP4602397B2 (en) Cryogenic fluid supply / discharge device and superconducting device
US8384255B2 (en) Superconducting rotating electrical machine
JP4018981B2 (en) Apparatus comprising a rotor and a magnetic bearing for supporting the rotor without contact
JP4704869B2 (en) Superconducting rotating electrical machine refrigerant supply / discharge device
MXPA02004840A (en) Synchronous machine having cryogenic gas transfer coupling to rotor with super-conducting coils.
JP2005287287A (en) System and method for cooling superconducting device
JP2008051409A (en) Magnetic refrigerating device
US7548000B2 (en) Multilayer radiation shield
JPS62230352A (en) Cryosorption pump for rotary electric machine
JP7261139B2 (en) vacuum pump equipment
KR100465024B1 (en) Conduction Cooling System for High Temperature Superconducting Rotor
JP6323641B2 (en) Seal structure in power storage device
JP2008051410A (en) Magnetic refrigerating device
JP2010178486A (en) Superconducting rotating electric machine
KR101946079B1 (en) Super conducting synchronous machine comprising a rotor which can rotate in relation to a stator and which has at least one super conducting winding
JPH02273068A (en) Coolant supply and exhaust apparatus of superconductive electric rotating machine
JP3938572B2 (en) Superconducting synchronous machine
JPH09322523A (en) Continuous vacuum exhaust device of superconducting rotary electric machine
RU2539971C2 (en) Superconductive rotating machine with cooler for superconductive rotor winding
JP2014202457A (en) Cooling means and cooling system each provided with heat medium circulating function
JPH0851767A (en) Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit
JP2022102679A (en) Rotating machine cooling system, and cooling system for superconducting devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees