WO2006077836A1 - Method of working fluoride single crystal into one with cylindrical (100) crystal face - Google Patents

Method of working fluoride single crystal into one with cylindrical (100) crystal face Download PDF

Info

Publication number
WO2006077836A1
WO2006077836A1 PCT/JP2006/300546 JP2006300546W WO2006077836A1 WO 2006077836 A1 WO2006077836 A1 WO 2006077836A1 JP 2006300546 W JP2006300546 W JP 2006300546W WO 2006077836 A1 WO2006077836 A1 WO 2006077836A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
cylindrical
fluoride
crystal
calcium fluoride
Prior art date
Application number
PCT/JP2006/300546
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Yamazaki
Daisuke Totsuka
Masao Sekiguchi
Toshihiko Yamamoto
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Nihon Kessho Kogaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd., Nihon Kessho Kogaku Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2006077836A1 publication Critical patent/WO2006077836A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced.
  • the (100) crystal plane means that the bottom and top surfaces of the cylindrical and polyhedral fluoride single crystals are the (100) orientation crystal planes.
  • An example of a cylindrical body is shown in (a) and a hexagonal columnar body is shown in Fig. 1 (b).
  • Photolithography is for exposing and transferring a fine pattern of the integrated circuit on a wafer, and an exposure apparatus called a stepper is used. Due to the demands of the above-mentioned fine processing technology, this stepper is also required to have high performance and high performance.
  • the projection lens of this stepper requires high resolution and deep depth of focus in order to obtain high imaging performance.
  • Resolution and depth of focus are determined by exposure wavelength and numerical aperture (NA).
  • NA numerical aperture
  • the numerical aperture may be increased, but the depth of focus becomes shallow. Therefore, there is a limit to increasing the numerical aperture.
  • the shorter the exposure wavelength the smaller the angle of the diffracted light in the same pattern, so the numerical aperture of the lens is reduced. For this reason, it is required to shorten the exposure wavelength.
  • a fluoride crystal As a glass material that can cope with such a short wavelength, a fluoride crystal can be cited.
  • fluoride crystals single crystals that avoid the effects of grain boundaries and crystal orientations are used, and bridge crystals are used. It is nurtured by the Mann Law.
  • the characteristics required for a fluoride single crystal used as a lens material of an exposure apparatus are birefringence (strain birefringence), light transmittance, refractive index homogeneity, and the like.
  • annealing treatment is generally performed after growing a single crystal.
  • Patent Document 1 Patent No. 3466948
  • annealing treatment is performed, and the birefringence (strain birefringence) of the fluoride crystal is reduced in a short time by controlling the cooling rate at that time. It describes what you can do.
  • Patent Document 2 Patent No. 3466950 discloses that dust and coloring are caused by annealing in a state in which a force that compensates the internal stress distribution of the fluoride crystal is stored during annealing. It is described that a fluoride crystal with reduced residual stress which is difficult to occur can be obtained.
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-34193
  • the transmittance is improved by providing a surface cleaning step or an altered layer removal step after the annealing treatment step before the annealing treatment (heat treatment) step, respectively. It is described that a fluoride single crystal can be produced in which a deteriorated layer does not exist in the surface layer where the internal turbidity is high and the strain is low.
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-99409
  • the cooling rate is continuously increased while maintaining an internal stress level that does not cause plastic deformation.
  • the quality is high and the productivity is good.
  • Patent Document 5 Japanese Patent Laid-Open No. 10-2510966
  • the homogeneity of the refractive index is obtained by annealing a fluorite single crystal that has been processed into a shape that approximates or resembles the planar contour shape of the final product.
  • Patent Document 1 Japanese Patent No. 3466948
  • Patent Document 2 Japanese Patent No. 3466950
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-34193
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-99409
  • Patent Document 5 Japanese Patent Laid-Open No. 10-251096 Patent Documents:! To 5 specify lens conditions for exposure apparatus by specifying manufacturing conditions or manufacturing processes when manufacturing fluoride single crystals such as calcium fluoride (fluorite) single crystals. It improves the properties required for the fluoride single crystal used in the film, such as strain birefringence and transmittance.
  • fluoride single crystals such as calcium fluoride (fluorite) single crystals. It improves the properties required for the fluoride single crystal used in the film, such as strain birefringence and transmittance.
  • the fluoride single crystal used in the optical system of the exposure apparatus combines (111) plane orientation and (100) plane single crystal to cancel the intrinsic birefringence, and (100) plane
  • Significantly reducing the strain birefringence inside the orientation crystal is extremely important for applications such as lens materials for exposure equipment.
  • an object of the present invention is to provide a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced. is there. Means for solving the problem
  • the present invention is characterized in that the grown single crystal ingot is cut to obtain a polyhedron, the polyhedron is annealed, and then cut further.
  • the present invention provides a method for processing a product single crystal.
  • the present invention also provides a (100) crystal plane fluoride single crystal obtained by cutting a grown single crystal ingot to obtain a polyhedron, annealing the polygon, and further cutting and processing the polyhedron.
  • the above processing is cylindrical grinding, and the surface roughness (RMS: root mean square roughness) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding is 0 .
  • the present invention provides a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, which is characterized by! -5.0 xm.
  • the cylindrical machining is performed in the direction of the cylindrical axis.
  • the cutting speed of the stone is 1 mm / min to 300 mm / min, and the rotation speed of the fluoride single crystal with respect to the grindstone is 5 rpm to 15 rpm.
  • the grindstone particle size of the cylindrical grinding is # 100 to # 240.
  • the strain birefringence inside the (100) -oriented crystal can be further reduced.
  • the strain birefringence of the (100) -oriented crystal inside of the cylindrical fluoride single crystal can be greatly reduced.
  • Fluoride single crystal ingot growing step In the processing method according to the present invention, a fluoride single crystal is first grown.
  • a fluoride single crystal calcium fluoride, barium fluoride, strontium fluoride, magnesium fluoride, etc. are used as an optical component with high power transmission, and calcium fluoride called fluorite is representative. Is.
  • Fluoride raw materials such as fluoride powder and dissolved pulverized products are put into a crucible for growth and melted, and then slowly cooled to grow crystals to produce a fluoride single crystal ingot having a diameter of about 250 mm to 350 mm.
  • the crystal growth method the Bridgman method (stock burger method, crucible descending method) or Chiyoklarsky method is adopted.
  • the crucible to be used is preferably a graphite norebo.
  • the furnace temperature is raised to a temperature above which the fluoride raw material of the crucible melts, and after the crucible is lowered, a temperature gradient of 5 ° C / hr to 25 ° C / hr. Reduce the single crystal grown to a room temperature. All during the training carried out in a vacuum atmosphere (1 X 10 "3 Pa ⁇ l X 10 _5 Pa). Growth rate (reduction rate) of the single crystal is Gyotsu at 0 ⁇ lmm / hr ⁇ 5 • OmmZhr.
  • Simple annealing treatment and cutting process of fluoride single crystal ingot The fluoride single crystal ingot grown in this way has a residual strain that is too large to cause cracks in the ingot. Occurs. Therefore, at a low temperature to prevent cracks in the ingot It is desirable that annealing be performed in a simple atmosphere, specifically 200 to 500 ° C, 7 to 21 days in an inert atmosphere to reduce residual strain.
  • An ingot having a reduced residual strain is obtained by using a diamond saw or the like, for example, from lmm / min to
  • Polygonal bodies such as hexagonal cylinders and octagonal cylinders are generally used as the polygons.
  • the cutting size and side orientation are arbitrary.
  • Annealing process of fluoride single crystal polyhedron Next, the fluoride single crystal polyhedron is annealed in an annealing furnace.
  • the annealing conditions are generally in an inert atmosphere with a maximum temperature of 1100 ° C to 1300 ° C, a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature of 0.4 ° C Zhr or more. The temperature falls at the rate of temperature drop.
  • the annealing period is 1 to 2 months.
  • annealing the fluoride single crystal polyhedron can reduce the strain birefringence.
  • FIG. 2 (a) shows the bottom shape of the fluoride single crystal polyhedron before and after annealing, and the bottom shape is an unequal hexagon.
  • Fig. 2 (b) shows the bottom shape after cutting the fluoride single crystal polyhedron after annealing, and the bottom shape is a substantially regular hexagon. The circle inside the substantially regular hexagon is a region where a predetermined cylindrical crystal is to be obtained.
  • Fig. 2 (c) shows the bottom shape after cylindrical grinding of a fluoride single crystal polyhedron, and the bottom shape is a perfect circle conforming to product standards.
  • the fluoride single crystal polyhedron subjected to the annealing treatment is cut.
  • the cutting is performed at the same speed as described above using a diamond saw or the like as described above.
  • the shape of the fluoride to be cut and the cut size are arbitrarily determined depending on the shape and size of the final product, but in the present invention, the shape is finally cylindrical, so that the shape is a polygonal column that is close to this. It is preferable to use a hexagonal columnar body or an octagonal columnar body.
  • a low strain single crystal having a (100) orientation is achieved by cutting the annealed fluoride single crystal polyhedron. Further, in the processing method of the present invention, as will be described later, by processing under specific conditions after cutting, further production of a low strain single crystal having a (100) plane orientation can be achieved. Next, a fluoride single crystal of a polygonal columnar body whose bottom surface shape is cut as shown in FIG. 2 (b) is processed. Cylindrical grinding, that is, rounding is adopted as the processing.
  • the cutting speed of the grindstone in the direction of the cylindrical axis is preferably lm m / min to 300 mmz min, more preferably 5 mm / min to 15 mm min. (Work), that is, the rotation speed of the fluoride single crystal is preferably 5 rpm to 15 rpm, more preferably 5 rpm to 10 rpm. If the cutting speed or rotational speed is outside the above range, the strain birefringence inside the crystal with the (100) orientation cannot be significantly reduced. Further, the grindstone particle size used in this cylindrical grinding process is preferably # 100 to ⁇ 240, and more preferably # 120 to # 180.
  • the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding obtained in this way is from 0 ⁇ l / im to 5.0 / im, and even 1 ⁇ 0 / im to 2.0 / im.
  • a single crystal having such a surface roughness can reduce strain birefringence inside the (100) -oriented crystal.
  • a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment in an argon atmosphere at 250 ° C for 14 days, and then cut to obtain a calcium hexagonal columnar body.
  • the calcium fluoride hexagonal column was annealed.
  • the annealing treatment was performed at a maximum temperature of 1 100 ° C to 1300 ° C in an inert atmosphere, with a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature decrease rate of 0.4 ° C / h or more.
  • the annealing period is one month.
  • the annealed calcium fluoride hexagonal columnar body was further cut to obtain a calcium fluoride hexagonal columnar body that was slightly smaller.
  • the annealed calcium fluoride hexagonal column was further cut to obtain a calcium fluoride hexagonal column that was slightly smaller.
  • the ingot was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
  • the calcium fluoride hexagonal column was annealed.
  • the annealing treatment was performed in an inert atmosphere with a maximum temperature of 1100 ° C to 1300 ° C, a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature decrease rate of 0.4 ° CZh or more.
  • the annealing period is one month.
  • the annealed calcium fluoride hexagonal columnar body was further cut and then subjected to cylindrical grinding to produce a calcium fluoride cylinder having a diameter of 100 mm. Machining conditions were a grinding wheel cutting speed of 5mm / min in the direction of the cylinder axis, a workpiece rotation speed of 15i "pm against the grinding wheel, and a grinding wheel grain size of # 150.
  • Strain birefringence (mean, deviation, root mean square) within the 50 to 110 mm diameter in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Maximum and minimum) were measured using an automatic strain birefringence meter. The results are shown in Table 3.
  • Example 4 A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.
  • the calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3 to produce a calcium fluoride cylindrical body having a diameter of 150 mm.
  • Strain birefringence (mean, deviation, root mean square) of (100) orientation within 50 to 150 mm diameter in hexagonal columnar calcium fluoride after annealing and calcium fluoride cylinder after cylindrical grinding Maximum and minimum) were measured using an automatic strain birefringence meter. The results are shown in Table 4. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1.
  • Example 3 a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride (111) -oriented hexagonal columnar body.
  • the calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3.
  • Calcium fluoride hexagonal column after annealing, and (111) orientation birefringence (average, deviation, root mean square, maximum, minimum) within a diameter of 87mm to 240mm in cylindrical calcium fluoride after cylindrical grinding was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 5.
  • a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
  • the calcium fluoride hexagonal columnar body was subjected to cylindrical grinding under the same conditions as in Example 3 to produce a calcium fluoride cylindrical body.
  • this calcium fluoride cylinder was annealed under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 130 mm was produced.
  • the calcium fluoride cylinder produced in Comparative Example 3 was again subjected to cylindrical grinding under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 120 mm was produced.
  • a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
  • the calcium fluoride hexagonal columnar body was annealed according to Example 3, and then immersed in an etching solution (O + HCl: concentration 10%) to dissolve the surface between 0.05 mm and 0.1 mm.
  • Example 1 and Example 2 the force S obtained by cutting the calcium fluoride hexagonal column and the strain birefringence in the (100) plane orientation are reduced, so that the strain birefringence can be reduced. Yes (see Table 1 and Table 2).
  • Example 3 and 4 the calcium fluoride hexagonal columnar body was cut and then subjected to cylindrical grinding under certain conditions. However, since the strain birefringence in the (100) plane orientation was further reduced, Refraction can be further reduced (see Table 3 and Table 4). However, as in Comparative Example 1, even if the calcium hexagonal columnar body is subjected to cylindrical grinding under certain conditions, the strain birefringence in the (111) plane orientation does not change significantly before and after cylindrical processing (Table 5). reference).
  • Comparative Example 2 to Comparative Example 4 are obtained by subjecting the calcium fluoride hexagonal columnar body to cylindrical grinding before annealing, and after annealing to 0 to 2 times cylindrical grinding. Since the strain birefringence of the direction does not become small, the strain birefringence is not reduced (see Table 6 to Table 8). In Comparative Example 5, the stress birefringence of the (100) plane orientation is not reduced by force chemical grinding, which is an etching treatment of a calcium fluoride hexagonal columnar body, so the strain birefringence is not reduced (see Table 9). .
  • the cylindrical fluoride single crystal obtained by the processing method according to the present invention is suitable as a lens for an exposure apparatus because the strain birefringence inside the (100) plane crystal is greatly reduced. It can also be used as a glass material for other optical components.
  • FIG. 1 shows a (100) crystal plane
  • FIG. 1 (a) is a cylindrical body
  • FIG. 1 (b) is a hexagonal cylindrical body.
  • FIG. 2 is a view of cutting a fluoride single crystal polyhedron (hexagonal column) of the processing method according to the present invention, It is a figure which shows an example of the bottom face (top surface) shape in a process, FIG. 2 (a) is front and back, FIG. 2 (b) is after cutting

Abstract

A method of working a fluoride single crystal into one with cylindrical (100) crystal face wherein the strain/birefringence within (100) face orientation crystal has substantially been reduced. There is provided a method of working a fluoride single crystal into one with (100) crystal face, characterized in that a grown single crystal ingot is cut into a polyhedron and the polyhedron is annealed and further cut. Further, for example, there is provided a method of working a fluoride single crystal into one with cylindrical (100) crystal face, characterized in that a grown single crystal ingot is cut into a polyhedron and the polyhedron is annealed, further cut and subjected to cylindrical grinding so that the surface roughness (RMS) of single crystal face having undergone the cylindrical grinding is in the range of 0.1 to 5.0 μm.

Description

明 細 書  Specification
(100)結晶面の円筒状フッ化物単結晶の加工方法  Processing method of cylindrical fluoride single crystal of (100) crystal plane
技術分野  Technical field
[0001] 本発明は、(100)面方位の結晶内部の歪複屈折を大幅に低減した(100)結晶面 の円筒状フッ化物単結晶の加工方法に関する。なお、ここでいう(100)結晶面とは、 円筒体及び多角体のフッ化物単結晶の底面及び頂面が、(100)方位の結晶面とな つている場合を意味しており、図 1 (a)に円筒体及び図 1 (b)に六角柱状体の例を示 す。  The present invention relates to a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced. Here, the (100) crystal plane means that the bottom and top surfaces of the cylindrical and polyhedral fluoride single crystals are the (100) orientation crystal planes. An example of a cylindrical body is shown in (a) and a hexagonal columnar body is shown in Fig. 1 (b).
背景技術  Background art
[0002] 近年、マイクロプロセッサー、メモリー、イメージセンサー等に用いられる半導体集 積回路は、高集積化、高機能化が著しく進行している。そのため、ウェハの形成には 微細な加工技術が要請されてきている。  In recent years, semiconductor integration circuits used for microprocessors, memories, image sensors, and the like have been remarkably advanced in integration and functionality. For this reason, fine processing techniques have been required for wafer formation.
[0003] フォトリソグラフィ一は、上記集積回路の微細パターンをウェハ上に露光、転写する もので、ステッパーと呼ばれる露光装置が用いられている。上記微細な加工技術の 要請から、このステッパーにも高レ、性能が要求されてきてレ、る。  [0003] Photolithography is for exposing and transferring a fine pattern of the integrated circuit on a wafer, and an exposure apparatus called a stepper is used. Due to the demands of the above-mentioned fine processing technology, this stepper is also required to have high performance and high performance.
[0004] このステッパーの投影レンズには、高い結像性能を得るために、高い解像度と深い 焦点深度が必要である。解像度と焦点深度は、露光波長と開口数 (NA)によって決 まる。高い解像度を得るために、開口数を大きくすればよいが、焦点深度が浅くなる。 従って、開口数を大きくすることには限度がある。露光波長は短いほど、同一パター ンにおける回折光の角度は小さくなるので、レンズの開口数は少なくすむ。このため 、露光波長を短波長化することが要求されている。  [0004] The projection lens of this stepper requires high resolution and deep depth of focus in order to obtain high imaging performance. Resolution and depth of focus are determined by exposure wavelength and numerical aperture (NA). In order to obtain a high resolution, the numerical aperture may be increased, but the depth of focus becomes shallow. Therefore, there is a limit to increasing the numerical aperture. The shorter the exposure wavelength, the smaller the angle of the diffracted light in the same pattern, so the numerical aperture of the lens is reduced. For this reason, it is required to shorten the exposure wavelength.
[0005] このような要求から露光装置の光源として、 KrF (波長 248nm)、 ArF (波長 193η m)、 F (波長 157nm)等のエキシマレーザー光を光源とするステッパーも提案され [0005] Because of these requirements, a stepper using an excimer laser beam such as KrF (wavelength 248 nm), ArF (wavelength 193 ηm), or F (wavelength 157 nm) as a light source has been proposed as a light source for an exposure apparatus.
2 2
ている。しかし、このような短波長化に対して、従来の硝材は殆ど対応することができ ない。  ing. However, conventional glass materials can hardly cope with such shortening of wavelength.
[0006] このような短波長化に対応できる硝材としてフッ化物結晶が挙げられる。フッ化物結 晶としては、結晶粒界や結晶方位の影響を回避すベぐ単結晶が用いられ、ブリッジ マン法等によって育成されている。 [0006] As a glass material that can cope with such a short wavelength, a fluoride crystal can be cited. As fluoride crystals, single crystals that avoid the effects of grain boundaries and crystal orientations are used, and bridge crystals are used. It is nurtured by the Mann Law.
[0007] 露光装置のレンズ材料等に用いられるフッ化物単結晶に要求される特性は、複屈 折性 (歪複屈折性)、光透過性、屈折率均質性等である。  [0007] The characteristics required for a fluoride single crystal used as a lens material of an exposure apparatus are birefringence (strain birefringence), light transmittance, refractive index homogeneity, and the like.
[0008] 歪複屈折等を低減するためには、単結晶を育成後にァニール処理を行うことが一 般的である。そして、特許文献 1 (特許第 3466948号公報)には、ァニール処理を行 レ、、その時の降温速度を制御することによって、フッ化物結晶の複屈折率 (歪複屈折 率)を短時間で低減できることが記載されている。 [0008] In order to reduce strain birefringence and the like, annealing treatment is generally performed after growing a single crystal. In Patent Document 1 (Patent No. 3466948), annealing treatment is performed, and the birefringence (strain birefringence) of the fluoride crystal is reduced in a short time by controlling the cooling rate at that time. It describes what you can do.
[0009] また、特許文献 2 (特許第 3466950号公報)には、ァニール処理時にフッ化物結晶 の内部応力分布を補償するような力をカ卩えた状態でァニールすることによって、にご りや着色が生じ難ぐ残留応力も低減されたフッ化物結晶が得られることが記載され ている。 [0009] Further, Patent Document 2 (Patent No. 3466950) discloses that dust and coloring are caused by annealing in a state in which a force that compensates the internal stress distribution of the fluoride crystal is stored during annealing. It is described that a fluoride crystal with reduced residual stress which is difficult to occur can be obtained.
[0010] 特許文献 3 (特開 2000— 34193号公報)には、ァニール処理 (加熱処理)工程前 に表面清浄工程又はァニール処理工程後に変質層除去工程を各々設けることによ つて、透過率が高ぐ低歪で内部濁りがなぐ表層部に変質層の存在しないフッ化物 単結晶が製造できることが記載されている。  [0010] In Patent Document 3 (Japanese Patent Laid-Open No. 2000-34193), the transmittance is improved by providing a surface cleaning step or an altered layer removal step after the annealing treatment step before the annealing treatment (heat treatment) step, respectively. It is described that a fluoride single crystal can be produced in which a deteriorated layer does not exist in the surface layer where the internal turbidity is high and the strain is low.
[0011] 特許文献 4 (特開 2004— 99409号公報)には、蛍石単結晶の製造に伴う冷却にお いて、塑性変形を生じない内部応力レベルに保ちつつ、連続的に冷却速度を増加し ながら冷却を行うことによって、歪複屈折が増大しやすい大型の蛍石単結晶であって も高品質でかつ生産性が良好である旨記載されている。  [0011] In Patent Document 4 (Japanese Patent Laid-Open No. 2004-99409), in cooling associated with the production of a fluorite single crystal, the cooling rate is continuously increased while maintaining an internal stress level that does not cause plastic deformation. However, it is described that, even if a large fluorite single crystal whose strain birefringence tends to increase by cooling is used, the quality is high and the productivity is good.
[0012] 特許文献 5 (特開平 10— 251096号公報)には、最終製品の平面輪郭形状に近似 又は相似する形状に加工した蛍石単結晶をァニール処理することにより、屈折率の 均質性がよぐ波面収差のパワー成分補正後の RMS値及び非回転対称成分の RM [0012] In Patent Document 5 (Japanese Patent Laid-Open No. 10-251096), the homogeneity of the refractive index is obtained by annealing a fluorite single crystal that has been processed into a shape that approximates or resembles the planar contour shape of the final product. RMS value after correction of power component of wavefront aberration and RM of non-rotationally symmetric component
S値が小さい蛍石単結晶が得られると記載されてレ、る。 It is described that a fluorite single crystal having a small S value is obtained.
[0013] 特許文献 1 :特許第 3466948号公報 [0013] Patent Document 1: Japanese Patent No. 3466948
特許文献 2:特許第 3466950号公報  Patent Document 2: Japanese Patent No. 3466950
特許文献 3:特開 2000— 34193号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-34193
特許文献 4:特開 2004— 99409号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-99409
特許文献 5:特開平 10— 251096号公報 [0014] 特許文献:!〜 5は、フッ化カルシウム(蛍石)単結晶等のフッ化物単結晶の製造に 際し、製造条件又は製造工程等を特定することによって、露光装置のレンズ材料等 に用いられるフッ化物単結晶に要求される特性、例えば歪複屈折や透過率等を改善 するものである。 Patent Document 5: Japanese Patent Laid-Open No. 10-251096 Patent Documents:! To 5 specify lens conditions for exposure apparatus by specifying manufacturing conditions or manufacturing processes when manufacturing fluoride single crystals such as calcium fluoride (fluorite) single crystals. It improves the properties required for the fluoride single crystal used in the film, such as strain birefringence and transmittance.
[0015] 露光装置の光学系に用いられるフッ化物単結晶には、(111)面方位と(100)面方 位の単結晶を組み合わせ真性複屈折を打ち消すようにさせており、 (100)面方位の 結晶内部の歪複屈折を大幅に低減することは、露光装置のレンズ材料等の用途に は極めて重要である。  [0015] The fluoride single crystal used in the optical system of the exposure apparatus combines (111) plane orientation and (100) plane single crystal to cancel the intrinsic birefringence, and (100) plane Significantly reducing the strain birefringence inside the orientation crystal is extremely important for applications such as lens materials for exposure equipment.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 従って、本発明の目的は、(100)面方位の結晶内部の歪複屈折が大幅に低減さ れた(100)結晶面の円筒状フッ化物単結晶の加工方法を提供することにある。 課題を解決するための手段 Accordingly, an object of the present invention is to provide a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced. is there. Means for solving the problem
[0017] 本発明者らは、検討の結果、ァニール処理されたフッ化物単結晶の多角体を切断 することにより、(100)面方位の低歪単結晶の製造が達成し得ることを知見した。また 上記切断後に加工するに際しては、加工として円筒研削加工(丸目加工)を用い、か つその際の単結晶円筒研削加工面の表面粗さ(RMS)を一定範囲とすることによつ て、さらなる(100)面方位の低歪単結晶の製造が達成し得ることを見出した。  As a result of the study, the present inventors have found that production of a low strain single crystal having a (100) plane orientation can be achieved by cutting an annealed fluoride single crystal polyhedron. . In addition, when machining after the above cutting, cylindrical grinding (rounding) is used as the machining, and the surface roughness (RMS) of the single crystal cylindrical grinding surface at that time is kept within a certain range, It has been found that further (100) orientation low strain single crystal production can be achieved.
[0018] すなわち、本発明は、育成された単結晶インゴットを切断して多角体を得、該多角 体をァニール処理した後、さらに切断することを特徴とする、(100)結晶面のフツイ匕 物単結晶の加工方法を提供するものである。  [0018] That is, the present invention is characterized in that the grown single crystal ingot is cut to obtain a polyhedron, the polyhedron is annealed, and then cut further. The present invention provides a method for processing a product single crystal.
[0019] また、本発明は、育成された単結晶インゴットを切断して多角体を得、該多角体をァ ニール処理した後、さらに切断、加工する、(100)結晶面のフッ化物単結晶の加工 方法であって、上記加工が円筒研削加工であり、該円筒研削加工後の単結晶円筒 研削加工面(円筒体側面)の表面粗さ(RMS : 2乗平均粗さ)が 0.:!〜 5. 0 x mであ ることを特徴とする、(100)結晶面の円筒状フッ化物単結晶の加工方法を提供する ものである。  [0019] The present invention also provides a (100) crystal plane fluoride single crystal obtained by cutting a grown single crystal ingot to obtain a polyhedron, annealing the polygon, and further cutting and processing the polyhedron. The above processing is cylindrical grinding, and the surface roughness (RMS: root mean square roughness) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding is 0 .: The present invention provides a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, which is characterized by! -5.0 xm.
[0020] また、本発明に係る上記加工方法において、上記円筒加工が円筒軸方向への砥 石の切り込み速度 lmm/min〜 300mm/min、砥石に対するフッ化物単結晶の 回転速度 5rpm〜 15rpmで行われることが望ましレ、。このような条件を用いることによ つて、 (100)面方位の結晶内部の歪複屈折がより低減できる。 [0020] Further, in the machining method according to the present invention, the cylindrical machining is performed in the direction of the cylindrical axis. Desirably, the cutting speed of the stone is 1 mm / min to 300 mm / min, and the rotation speed of the fluoride single crystal with respect to the grindstone is 5 rpm to 15 rpm. By using such conditions, the strain birefringence inside the (100) plane crystal can be further reduced.
[0021] さらに、本発明に係る上記加工方法において上記円筒研削加工の砥石粒度が # 1 00〜# 240であることが望ましレ、。このような粒度の砥石を用いることによって、(100 )面方位の結晶内部の歪複屈折がより低減できる。 [0021] Further, in the above processing method according to the present invention, it is desirable that the grindstone particle size of the cylindrical grinding is # 100 to # 240. By using a grindstone with such a grain size, the strain birefringence inside the (100) -oriented crystal can be further reduced.
発明の効果  The invention's effect
[0022] 本発明に係る加工方法によって、円筒状フッ化物単結晶の(100)面方位の結晶内 部の歪複屈折を大幅に低減することができる。  [0022] By the processing method according to the present invention, the strain birefringence of the (100) -oriented crystal inside of the cylindrical fluoride single crystal can be greatly reduced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明を実施するための最良の形態について説明する。  Hereinafter, the best mode for carrying out the present invention will be described.
[0024] フッ化物単結晶インゴットの育成工程: 本発明に係る加工方法においては、先ずフ ッ化物単結晶を育成する。フッ化物単結晶としては、フッ化カルシウム、フッ化バリウ ム、フッ化ストロンチウム、フッ化マグネシウム等が例示される力 透過率の高い光学 部品として用いられ、蛍石と呼称されるフッ化カルシウムが代表的である。  [0024] Fluoride single crystal ingot growing step: In the processing method according to the present invention, a fluoride single crystal is first grown. As the fluoride single crystal, calcium fluoride, barium fluoride, strontium fluoride, magnesium fluoride, etc. are used as an optical component with high power transmission, and calcium fluoride called fluorite is representative. Is.
[0025] フッ化物粉末や溶解粉砕品等のフッ化物原料を育成用ルツボに入れて融解した後 、徐冷して結晶成長させて直径 250mm〜350mm程度のフッ化物単結晶インゴット を作製する。結晶育成方法としては、ブリッジマン法 (ストックバーガー法、ルツボ降 下法)やチヨクラルスキー法が採用される。また、使用するルツボは黒鉛ノレッボが好ま しく用いられる。  [0025] Fluoride raw materials such as fluoride powder and dissolved pulverized products are put into a crucible for growth and melted, and then slowly cooled to grow crystals to produce a fluoride single crystal ingot having a diameter of about 250 mm to 350 mm. As the crystal growth method, the Bridgman method (stock burger method, crucible descending method) or Chiyoklarsky method is adopted. The crucible to be used is preferably a graphite norebo.
[0026] このフッ化物単結晶の育成においては、炉内温度はルツボのフッ化物原料が融解 する温度以上にまで上げ、ルツボ引き下げ終了後、 5°C/hr〜25°C/hrの温度勾 配で育成した単結晶を室温まで下げる。育成中はすべて真空雰囲気(1 X 10"3Pa 〜l X 10_5Pa)で行う。この単結晶の育成速度(引き下げ速度)は 0· lmm/hr〜5 • OmmZhrで行つ。 [0026] In the growth of this fluoride single crystal, the furnace temperature is raised to a temperature above which the fluoride raw material of the crucible melts, and after the crucible is lowered, a temperature gradient of 5 ° C / hr to 25 ° C / hr. Reduce the single crystal grown to a room temperature. All during the training carried out in a vacuum atmosphere (1 X 10 "3 Pa ~l X 10 _5 Pa). Growth rate (reduction rate) of the single crystal is Gyotsu at 0 · lmm / hr~5 • OmmZhr.
[0027] フッ化物単結晶インゴットの簡易ァニール処理及び切断工程: このようにして育成さ れたフッ化物単結晶インゴットは、残留歪が大きすぎて、そのまま切断、加工を行うと 、インゴット中にクラックが生じる。そこで、インゴット中のクラックを防止すベぐ低温で 簡易ァニール、具体的には 200°C〜500°C、 7日〜21日、不活性雰囲気でァニー ルを行い、残留歪を低減させることが望ましい。 [0027] Simple annealing treatment and cutting process of fluoride single crystal ingot: The fluoride single crystal ingot grown in this way has a residual strain that is too large to cause cracks in the ingot. Occurs. Therefore, at a low temperature to prevent cracks in the ingot It is desirable that annealing be performed in a simple atmosphere, specifically 200 to 500 ° C, 7 to 21 days in an inert atmosphere to reduce residual strain.
[0028] 残留歪を低減したインゴットは、ダイヤモンドソー等を用いて、例えば lmm/min〜  [0028] An ingot having a reduced residual strain is obtained by using a diamond saw or the like, for example, from lmm / min to
15mmZminの速度で切断され、多角体とされる。多角体としては六角柱状体や八 角柱状体等の多角柱状体が一般的である。切断サイズ、側面方位は任意である。  It is cut at a speed of 15mmZmin to make a polygon. Polygonal bodies such as hexagonal cylinders and octagonal cylinders are generally used as the polygons. The cutting size and side orientation are arbitrary.
[0029] フッ化物単結晶多角体のァニール処理工程: 次に、フッ化物単結晶多角体をァニ ール炉中でァニール処理する。ァニール処理の条件は、一般的には不活性雰囲気 中で最高温度 1100°C〜1300°C、ァニール炉内の温度勾配 0. 4°C/cm以下であ り、 0. 4°CZhr以上の降温速度で降温する。ァニール処理期間は 1ヶ月〜 2ヶ月であ る。このようにフッ化物単結晶多角体をァニール処理することにより、歪複屈折を低下 させること力できる。  [0029] Annealing process of fluoride single crystal polyhedron: Next, the fluoride single crystal polyhedron is annealed in an annealing furnace. The annealing conditions are generally in an inert atmosphere with a maximum temperature of 1100 ° C to 1300 ° C, a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature of 0.4 ° C Zhr or more. The temperature falls at the rate of temperature drop. The annealing period is 1 to 2 months. Thus, annealing the fluoride single crystal polyhedron can reduce the strain birefringence.
[0030] フッ化物単結晶多角体の切断、加工工程: フッ化物単結晶多角体 (六角柱状体)の 切断、加工工程における底面(頂面)形状の一例をそれぞれ図 2 (a)〜(c)に示す。 図 2 (a)はフッ化物単結晶多角体のァニール処理前後の底面形状を示し、底面形状 は不等辺六角形である。図 2 (b)はァニール処理後のフッ化物単結晶多角体の切断 後の底面形状を示し、底面形状は略正六角形である。なお、略正六角形内部の円 は所定の円筒形状結晶を得る予定領域である。図 2 (c)はフッ化物単結晶多角体を 円筒研削加工後の底面形状を示し、底面形状は製品規格に適合させた真円である  [0030] Cutting and processing of fluoride single crystal polyhedrons: Examples of bottom (top) shapes in cutting and processing steps of fluoride single crystal polyhedrons (hexagonal prisms) are shown in Figs. 2 (a) to (c), respectively. ). Figure 2 (a) shows the bottom shape of the fluoride single crystal polyhedron before and after annealing, and the bottom shape is an unequal hexagon. Fig. 2 (b) shows the bottom shape after cutting the fluoride single crystal polyhedron after annealing, and the bottom shape is a substantially regular hexagon. The circle inside the substantially regular hexagon is a region where a predetermined cylindrical crystal is to be obtained. Fig. 2 (c) shows the bottom shape after cylindrical grinding of a fluoride single crystal polyhedron, and the bottom shape is a perfect circle conforming to product standards.
[0031] この工程では、先ずァニール処理が施されたフッ化物単結晶多角体を切断する。 In this step, first, the fluoride single crystal polyhedron subjected to the annealing treatment is cut.
切断は上記と同様にダイヤモンドソー等を用いて上記と同様の速度で切断される。 切断されるフッ化物の形状、切断サイズは、最終製品の形状、サイズにより任意に決 定されるが、本発明では、最終的に円筒状とするのであるから、形状としてはこれに 近い多角柱状体、例えば六角柱状体や八角柱状体とするのが好ましい。  The cutting is performed at the same speed as described above using a diamond saw or the like as described above. The shape of the fluoride to be cut and the cut size are arbitrarily determined depending on the shape and size of the final product, but in the present invention, the shape is finally cylindrical, so that the shape is a polygonal column that is close to this. It is preferable to use a hexagonal columnar body or an octagonal columnar body.
[0032] 本発明の加工方法では、このようにァニール処理されたフッ化物単結晶の多角体 を切断することにより、 (100)面方位の低歪単結晶の製造が達成される。また、本発 明の加工方法では、後述するように、切断後に特定条件で加工することにより、さらな る(100)面方位の低歪単結晶の製造が達成される。 [0033] 次に、底面形状が図 2 (b)に示されるような切断された多角柱状体のフッ化物単結 晶を加工する。加工は円筒研削加工、すなわち丸目加工が採用される。本発明では 、この円筒研削加工において、円筒軸方向への砥石の切り込み速度を好ましくは lm m/ min〜300mmz min、さらに好よし ほ 5mm/ min〜15mm min、砥 にメす する被研削加工物(ワーク)、すなわちフッ化物単結晶の回転速度を好ましくは 5rpm 〜15rpm、さらに好ましくは 5rpm〜10rpmで行われることが望ましレ、。切り込み速 度や回転速度が上記範囲外であると、(100)面方位の結晶内部の歪複屈折が大幅 に低減することができない。また、この円筒研削加工に用いられる砥石粒度は # 100 〜ヰ 240、さらには # 120〜# 180であることが望ましい。このような粒度の砥石を用 レ、ることによって、(100)面方位の結晶内部の歪複屈折がより低減される。円筒研削 加工によって、図 2 (c)に示されるような底面が真円の円筒体が得られる。底面の直 径は製品規格によって決定される。 In the processing method of the present invention, a low strain single crystal having a (100) orientation is achieved by cutting the annealed fluoride single crystal polyhedron. Further, in the processing method of the present invention, as will be described later, by processing under specific conditions after cutting, further production of a low strain single crystal having a (100) plane orientation can be achieved. Next, a fluoride single crystal of a polygonal columnar body whose bottom surface shape is cut as shown in FIG. 2 (b) is processed. Cylindrical grinding, that is, rounding is adopted as the processing. In the present invention, in this cylindrical grinding process, the cutting speed of the grindstone in the direction of the cylindrical axis is preferably lm m / min to 300 mmz min, more preferably 5 mm / min to 15 mm min. (Work), that is, the rotation speed of the fluoride single crystal is preferably 5 rpm to 15 rpm, more preferably 5 rpm to 10 rpm. If the cutting speed or rotational speed is outside the above range, the strain birefringence inside the crystal with the (100) orientation cannot be significantly reduced. Further, the grindstone particle size used in this cylindrical grinding process is preferably # 100 to ヰ 240, and more preferably # 120 to # 180. By using a grindstone with such a grain size, the strain birefringence inside the (100) -oriented crystal is further reduced. By cylindrical grinding, a cylindrical body with a perfect bottom as shown in Fig. 2 (c) is obtained. The diameter of the bottom is determined by product standards.
[0034] このようにして得られた円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の 表面粗さ(RMS)は 0· l /i m〜5. 0 /i m、さらには 1 · 0 /i m〜2. 0 /i mである。この ような表面粗さを有する単結晶は、 ( 100)面方位の結晶内部の歪複屈折を低減でき る。  [0034] The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding obtained in this way is from 0 · l / im to 5.0 / im, and even 1 · 0 / im to 2.0 / im. A single crystal having such a surface roughness can reduce strain birefringence inside the (100) -oriented crystal.
[0035] 最後に、単結晶の対向する 2面を平行にし、製品厚みとするために平面研削を行う 。このときの切り込み速度は通常 0· 05mm/min〜0. 2mm/minで行われる。  [0035] Finally, surface grinding is performed to make the two opposing faces of the single crystal parallel to obtain a product thickness. The cutting speed at this time is normally 0 · 05 mm / min to 0.2 mm / min.
[0036] このようにして製造された (100)面方位の結晶内部の歪複屈折が大幅に低減され たフッ化物単結晶が製品とされる。  [0036] A product of the fluoride single crystal produced in this manner and having a significantly reduced strain birefringence inside the (100) -oriented crystal.
[0037] 以下、本発明を実施例等に基づき具体的に説明する。  Hereinafter, the present invention will be specifically described based on examples and the like.
実施例 1  Example 1
[0038] ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴッ トを 250°C、 14日、アルゴン雰囲気で簡易ァニール処理した後、切断してフッ化カル シゥム六角柱状体を得た。このフッ化カルシウム六角柱状体にァニール処理を施した 。ァニール処理は不活性雰囲気中で最高温度 1 100°C〜1300°C、ァニール炉内の 温度勾配 0. 4°C/cm以下、 0. 4°C/h以上の降温速度で降温した。ァニール処理 期間は 1ヶ月である。 [0039] ァニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ 化カルシウム六角柱状体を得た。 [0038] A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment in an argon atmosphere at 250 ° C for 14 days, and then cut to obtain a calcium hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed at a maximum temperature of 1 100 ° C to 1300 ° C in an inert atmosphere, with a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature decrease rate of 0.4 ° C / h or more. The annealing period is one month. The annealed calcium fluoride hexagonal columnar body was further cut to obtain a calcium fluoride hexagonal columnar body that was slightly smaller.
[0040] ァニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム 六角柱状体における 150mm径内の(100)面方位の歪複屈折 (平均、偏差、二乗平 均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表 1に示 す。なお、歪複屈折の単位はいずれも nmZcmである。 [0040] Calcium fluoride hexagonal column before and after annealing and calcium fluoride after cutting Hexagonal columnar (100) orientation birefringence (average, deviation, mean square root, maximum, minimum) ) Was measured using an automatic strain birefringence meter. The results are shown in Table 1. Note that the unit of strain birefringence is nmZcm.
[0041] [表 1] [0041] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
実施例 2  Example 2
[0042] 実施例 1と同様に、ブリッジマンストックバーガー法によって育成されたフッ化カルシ ゥム単結晶インゴットを簡易ァニール処理した後、切断してフッ化カルシウム六角柱 状体を得、さらにァニール処理を施した。  [0042] In the same manner as in Example 1, a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body, followed by an annealing treatment. Was given.
[0043] ァニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ 化カルシウム六角柱状体を得た。 The annealed calcium fluoride hexagonal column was further cut to obtain a calcium fluoride hexagonal column that was slightly smaller.
[0044] ァニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム 六角柱状体における 110mm径内の(100)面方位の歪複屈折 (平均、偏差、二乗平 均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表 2に示 す。 [0044] Calcium fluoride hexagonal column before and after annealing and calcium fluoride after cutting Hexagonal columnar (100) orientation birefringence (average, deviation, mean square root, maximum, minimum) ) Was measured using an automatic strain birefringence meter. The results are shown in Table 2.
[0045] [表 2] 実施例 2 ァニール処理前 ァニ-ル処理後 ァニ-ル処理後、切断加工のみ 直径(mm) 1 1 0 1 10 1 10 [0045] [Table 2] Example 2 Before annealing treatment After annealing treatment After annealing treatment, only cutting process Diameter (mm) 1 1 0 1 10 1 10
平均(m) 1 .53 1 .68 0.85  Average (m) 1 .53 1 .68 0.85
偏差(σ ) 0.95 0.84 0.54  Deviation (σ) 0.95 0.84 0.54
二乗平均平方根 (rms) 1.80 1 .87 1.01  Root mean square (rms) 1.80 1.87 1.01
最大 (max) 4.52 4.77 2.82  Maximum (max) 4.52 4.77 2.82
最小 (min) 0.35 0.37 0.04  Minimum (min) 0.35 0.37 0.04
実施例 3  Example 3
[0046] ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶  [0046] Calcium fluoride single crystal grown by Bridgeman Stock Burger method
インゴットを簡易ァニール処理した後、切断してフッ化カルシウム六角柱状体を得た。 このフッ化カルシウム六角柱状体にァニール処理を施した。ァニール処理は不活性 雰囲気中で最高温度 1100°C〜1300°C、ァニール炉内の温度勾配 0. 4°C/cm以 下、 0. 4°CZh以上の降温速度で降温した。ァニール処理期間は 1ヶ月である。  The ingot was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed in an inert atmosphere with a maximum temperature of 1100 ° C to 1300 ° C, a temperature gradient in the annealing furnace of 0.4 ° C / cm or less, and a temperature decrease rate of 0.4 ° CZh or more. The annealing period is one month.
[0047] ァニール処理されたフッ化カルシウム六角柱状体をさらに切断した後、円筒研削加 ェを行い、直径 100mmのフッ化カルシウム円筒体を作製した。加工条件は円筒軸 方向への砥石の切り込み速度 5mm/min、砥石に対するワークの回転速度 15i"pm であり、砥石粒度は # 150である。  [0047] The annealed calcium fluoride hexagonal columnar body was further cut and then subjected to cylindrical grinding to produce a calcium fluoride cylinder having a diameter of 100 mm. Machining conditions were a grinding wheel cutting speed of 5mm / min in the direction of the cylinder axis, a workpiece rotation speed of 15i "pm against the grinding wheel, and a grinding wheel grain size of # 150.
[0048] ァニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カル シゥム円筒体における 50から 110mm径内の (100)面方位の歪複屈折 (平均、偏差、 二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表 3に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗 さ(RMS)は 1 · 1 /i mであった。  [0048] Strain birefringence (mean, deviation, root mean square) within the 50 to 110 mm diameter in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Maximum and minimum) were measured using an automatic strain birefringence meter. The results are shown in Table 3. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1 · 1 / im.
[0049] [表 3]  [0049] [Table 3]
Figure imgf000010_0001
Figure imgf000010_0001
実施例 4 [0050] ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴッ トを簡易ァニール処理した後、切断してフッ化カルシウム六角柱状体を得た。 Example 4 [0050] A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.
[0051] このフッ化カルシウム六角柱状体を実施例 3に準じてァニール処理、切断及び円筒 研削加工を行い、直径 150mmのフッ化カルシウム円筒体を作製した。  [0051] The calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3 to produce a calcium fluoride cylindrical body having a diameter of 150 mm.
[0052] ァニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カル シゥム円筒体における 50から 150mm径内の (100)面方位の歪複屈折 (平均、偏差、 二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表 4に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗 さ(RMS)は 1. であった。  [0052] Strain birefringence (mean, deviation, root mean square) of (100) orientation within 50 to 150 mm diameter in hexagonal columnar calcium fluoride after annealing and calcium fluoride cylinder after cylindrical grinding Maximum and minimum) were measured using an automatic strain birefringence meter. The results are shown in Table 4. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1.
[0053] [表 4]  [0053] [Table 4]
Figure imgf000011_0001
Figure imgf000011_0001
比較例  Comparative example
[0054] [比較例 1]  [0054] [Comparative Example 1]
実施例 3と同様に、ブリッジマンストツクバーガ一法によって育成されたフッ化カルシ ゥム単結晶インゴットを簡易ァニール処理した後、切断してフッ化カルシウム (111)面 方位六角柱状体を得、このフッ化カルシウム六角柱状体を実施例 3に準じてァニー ル処理、切断及び円筒研削加工を行った。ァニール処理後のフッ化カルシウム六角 柱状体及び円筒研削加工後のフッ化カルシウム円筒体における 87mmから 240mm 径内の (111)面方位の歪複屈折 (平均、偏差、二乗平均平方根、最大、最小)を自動 歪複屈折測定器を用いて測定した。結果を表 5に示す。  As in Example 3, a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride (111) -oriented hexagonal columnar body. The calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3. Calcium fluoride hexagonal column after annealing, and (111) orientation birefringence (average, deviation, root mean square, maximum, minimum) within a diameter of 87mm to 240mm in cylindrical calcium fluoride after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 5.
[0055] [表 5] [0055] [Table 5]
比較例"! ァ 処理後 ァ 処理後、円筒研削加工後 直径(mm) 87 101 145 179 240 87 101 145 179 240 平均(m) 0.13 0.14 0.16 0.19 0.25 0.14 0.15 0.18 0.21 0.26 偏差(σ ) 0.07 0.07 0.1 1 0.12 0.18 0.08 0.09 0.12 0.14 0.1 9 二乗平均平方根 (rms) 0.15 0.16 0.20 0.22 0.31 0.16 0.18 0.22 0.25 0.32 敢大(max) 0.34 0.65 1.71 1.71 1.71 0.42 0.65 0.65 1.02 1.38 最小(min) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 [0056] [比較例 2] Comparison example "! After processing a After processing and after cylindrical grinding Diameter (mm) 87 101 145 179 240 87 101 145 179 240 Average (m) 0.13 0.14 0.16 0.19 0.25 0.14 0.15 0.18 0.21 0.26 Deviation (σ) 0.07 0.07 0.1 1 0.12 0.18 0.08 0.09 0.12 0.14 0.1 9 root mean square (rms) 0.15 0.16 0.20 0.22 0.31 0.16 0.18 0.22 0.25 0.32 bold (max) 0.34 0.65 1.71 1.71 1.71 0.42 0.65 0.65 1.02 1.38 minimum (min) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 [0056] [Comparative Example 2]
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴッ トを簡易ァニール処理した後、切断してフッ化カルシウム六角柱状体を得た。  A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
[0057] このフッ化カルシウム六角柱状体を実施例 3と同様の条件で円筒研削加工を行レ、、 フッ化カルシウム円筒体を作製した。次いで、このフッ化カルシウム円筒体に実施例 3と同様の条件でァニール処理を施し、最終的に直径 130mmのフッ化カルシウム円 筒体を作製した。 The calcium fluoride hexagonal columnar body was subjected to cylindrical grinding under the same conditions as in Example 3 to produce a calcium fluoride cylindrical body. Next, this calcium fluoride cylinder was annealed under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 130 mm was produced.
[0058] 最終的に得られたフッ化カルシウム円筒体における 50mmから 120mm径内の (10 0)面方位の歪複屈折 (平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折 測定器を用いて測定した。結果を表 6に示す。また、円筒研削加工後の単結晶円筒 研削加工面(円筒体側面)の表面粗さ(RMS)は 1. 7 μ mであった。  [0058] Automatic strain birefringence measurement (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within 50mm to 120mm diameter in the finally obtained calcium fluoride cylinder Measured using a vessel. The results are shown in Table 6. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1.7 μm.
[0059] [表 6]  [0059] [Table 6]
Figure imgf000012_0001
Figure imgf000012_0001
[0060] [比較例 3]  [0060] [Comparative Example 3]
比較例 2で作製したフッ化カルシウム円筒体について、再度、実施例 3と同様の条 件で円筒研削加工を行レ、、最終的に直径 129mmのフッ化カルシウム円筒体を作製 した。  The calcium fluoride cylinder produced in Comparative Example 2 was again subjected to cylindrical grinding under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 129 mm was produced.
[0061] 最終的に得られたフッ化カルシウム円筒体における 50mmから 120mm径内の (10 0)面方位の歪複屈折 (平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折 測定器を用いて測定した。結果を表 7に示す。また、円筒研削加工後の単結晶円筒 研削加工面(円筒体側面)の表面粗さ(RMS)は 1. 8 μ mであった。  [0061] Automatic strain birefringence measurement (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within 50mm to 120mm diameter in the finally obtained calcium fluoride cylinder Measured using a vessel. The results are shown in Table 7. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1.8 μm.
[0062] [表 7] 比較例 3 円筒研削加工後、ァニ-ル処理後、円鲔研削加工後 直径(mm) 50 75 100 120 平均 (m) 2.01 2.24 2.52 2.41 偏差(σ ) 0.77 1 .02 1.16 1 .1 0 二乗平均平方根 (rms) 2.1 5 2.46 2.77 2.65 最 (max) 3.68 4.97 6.34 6.34 最小、 min) 0.09 0.09 0.09 0.09 [0062] [Table 7] Comparative Example 3 After cylindrical grinding, annealing, and circular grinding Diameter (mm) 50 75 100 120 Average (m) 2.01 2.24 2.52 2.41 Deviation (σ) 0.77 1.02 1.16 1.1 Average square root (rms) 2.1 5 2.46 2.77 2.65 Maximum (max) 3.68 4.97 6.34 6.34 Minimum, min) 0.09 0.09 0.09 0.09
[0063] [比較例 4] [0063] [Comparative Example 4]
比較例 3で作製した、フッ化カルシウム円筒体について、再度、実施例 3と同様の 条件で円筒研削加工を行い、最終的に直径 120mmのフッ化カルシウム円筒体を作 製した。  The calcium fluoride cylinder produced in Comparative Example 3 was again subjected to cylindrical grinding under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 120 mm was produced.
[0064] 最終的に得られたフッ化カルシウム円筒体における 50mmから 120mm径内の (10 0)面方位の歪複屈折 (平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折 測定器を用いて測定した。結果を表 8に示す。また、円筒研削加工後の単結晶円筒 研削加工面(円筒体側面)の表面粗さ(RMS)は 1. 8 μ mであった。  [0064] Automatic strain birefringence measurement (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within 50mm to 120mm diameter in the finally obtained calcium fluoride cylinder Measured using a vessel. The results are shown in Table 8. The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after cylindrical grinding was 1.8 μm.
[0065] [表 8]  [0065] [Table 8]
Figure imgf000013_0001
Figure imgf000013_0001
[0066] [比較例 5]  [0066] [Comparative Example 5]
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴッ トを簡易ァニール処理した後、切断してフッ化カルシウム六角柱状体を得た。  A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
[0067] このフッ化カルシウム六角柱状体を実施例 3に準じてァニール処理後、エッチング 液お O + HCl :濃度 10%)に浸漬し、表面を 0. 05mm〜0. 1mm溶解した。 The calcium fluoride hexagonal columnar body was annealed according to Example 3, and then immersed in an etching solution (O + HCl: concentration 10%) to dissolve the surface between 0.05 mm and 0.1 mm.
2  2
[0068] エッチング処理前後のフッ化カルシウム六角柱状体の (100)面方位における 50か ら 120mm径内の歪複屈折 (平均、偏差、二乗平均平方根、最大、最小)を自動歪複 屈折測定器を用いて測定した。結果を表 9に示す。 [0068] Automatic birefringence (average, deviation, root mean square, maximum, minimum) within 50 to 120 mm diameter of (100) plane orientation of calcium fluoride hexagonal column before and after etching treatment Measured using a refractometer. The results are shown in Table 9.
[0069] [表 9] [0069] [Table 9]
Figure imgf000014_0001
Figure imgf000014_0001
[0070] 表 1〜表 9の結果から次のことが判る。すなわち、実施例 1及び実施例 2は、フッ化 カルシウム六角柱状体を切断したものである力 S、(100)面方位の歪複屈折が小さくな ることから、歪複屈折を低減することができる (表 1及び表 2参照)。また、実施例 3及び 実施例 4はフッ化カルシウム六角柱状体を切断後、一定条件で円筒研削加工したも のであるが、(100)面方位の歪複屈折がさらに小さくなることから、歪複屈折をさらに 低減することができる (表 3及び表 4参照)。しかし、比較例 1のように、フッ化カルシゥ ム六角柱状体を一定条件で円筒研削加工しても、(111)面方位の歪複屈折は円筒 加工前後で大きな変化は見られない (表 5参照)。  [0070] From the results in Tables 1 to 9, the following can be seen. That is, in Example 1 and Example 2, the force S obtained by cutting the calcium fluoride hexagonal column and the strain birefringence in the (100) plane orientation are reduced, so that the strain birefringence can be reduced. Yes (see Table 1 and Table 2). In Examples 3 and 4, the calcium fluoride hexagonal columnar body was cut and then subjected to cylindrical grinding under certain conditions. However, since the strain birefringence in the (100) plane orientation was further reduced, Refraction can be further reduced (see Table 3 and Table 4). However, as in Comparative Example 1, even if the calcium hexagonal columnar body is subjected to cylindrical grinding under certain conditions, the strain birefringence in the (111) plane orientation does not change significantly before and after cylindrical processing (Table 5). reference).
[0071] 比較例 2〜比較例 4は、フッ化カルシウム六角柱状体をァニール処理する前に円筒 研削加工し、ァニール処理後、 0〜2回円筒研削加工したものであるが、 (100)面方 位の歪複屈折は小さくならないことから、歪複屈折は低減されない (表 6〜表 8参照)。 比較例 5は、フッ化カルシウム六角柱状体をエッチング処理したものである力 化学 的研削では (100)面方位の歪複屈折は小さくならないことから、歪複屈折は低減され ない(表 9参照)。  Comparative Example 2 to Comparative Example 4 are obtained by subjecting the calcium fluoride hexagonal columnar body to cylindrical grinding before annealing, and after annealing to 0 to 2 times cylindrical grinding. Since the strain birefringence of the direction does not become small, the strain birefringence is not reduced (see Table 6 to Table 8). In Comparative Example 5, the stress birefringence of the (100) plane orientation is not reduced by force chemical grinding, which is an etching treatment of a calcium fluoride hexagonal columnar body, so the strain birefringence is not reduced (see Table 9). .
産業上の利用可能性  Industrial applicability
[0072] 本発明に係る加工方法により得られた円筒状フッ化物単結晶は、(100)面方位の 結晶内部の歪複屈折が大幅に低減されていることから、露光装置のレンズとして好 適に用いられるほか、他の光学部品の硝材としても用いることができる。 The cylindrical fluoride single crystal obtained by the processing method according to the present invention is suitable as a lens for an exposure apparatus because the strain birefringence inside the (100) plane crystal is greatly reduced. It can also be used as a glass material for other optical components.
図面の簡単な説明  Brief Description of Drawings
[0073] [図 1]図 1は、(100)結晶面を示す図であり、図 1 (a)は円柱体、図 1 (b)は六角柱状 体である。  [FIG. 1] FIG. 1 shows a (100) crystal plane, FIG. 1 (a) is a cylindrical body, and FIG. 1 (b) is a hexagonal cylindrical body.
[図 2]図 2は、本発明に係る加工方法のフッ化物単結晶多角体 (六角柱状体)の切断、 加工工程における底面(頂面)形状の一例を示す図であり、図 2 (a)はァ 前後、図 2(b)は切断後、図 2(c)は円筒研削加工後である。 [FIG. 2] FIG. 2 is a view of cutting a fluoride single crystal polyhedron (hexagonal column) of the processing method according to the present invention, It is a figure which shows an example of the bottom face (top surface) shape in a process, FIG. 2 (a) is front and back, FIG. 2 (b) is after cutting | disconnection, FIG.2 (c) is after cylindrical grinding.

Claims

請求の範囲 The scope of the claims
[1] 育成された単結晶インゴットを切断して多角体を得、該多角体をァニール処理した後 、さらに切断することを特徴とする(100)結晶面のフッ化物単結晶の加工方法。  [1] A method for processing a fluoride single crystal on a (100) crystal plane, comprising cutting a grown single crystal ingot to obtain a polygon, annealing the polygon, and further cutting the polygon.
[2] 育成された単結晶インゴットを切断して多角体を得、該多角体をァニール処理した後 、さらに切断、加工する、(100)結晶面のフッ化物単結晶の加工方法において、 上記加工が円筒研削加工であり、該円筒研削加工後の単結晶円筒研削加工面の 表面粗さ(RMS)が 0· l /i m〜5. 0 /i mであることを特徴とする(100)結晶面の円筒 状フッ化物単結晶の加工方法。  [2] In the method for processing a fluoride single crystal on a (100) crystal plane, the grown single crystal ingot is cut to obtain a polygon, and the polygon is annealed and then cut and processed. (100) crystal face, wherein the surface roughness (RMS) of the single crystal cylindrical grinding surface after cylindrical grinding is 0 · l / im to 5.0 / im Method of processing cylindrical fluoride single crystal.
[3] 上記円筒研削加工が円筒軸方向への砥石の切り込み速度 lmm/min〜300mm[3] The grinding speed of the grinding wheel in the cylindrical axis direction is lmm / min to 300mm.
/min、砥石に対するフッ化物単結晶の回転速度 5rpm〜: 15rpmで行われる請求 項 2に記載の円筒状フッ化物単結晶の加工方法。 The processing method of the cylindrical fluoride single crystal according to claim 2, wherein the rotational speed of the fluoride single crystal with respect to the grindstone is 5 rpm to 15 rpm.
[4] 上記円筒研削加工の砥石粒度が # 100〜 # 240である請求項 2又は請求項 3に記 載の円筒状フッ化物単結晶の加工方法。 [4] The method for processing a cylindrical fluoride single crystal according to claim 2 or 3, wherein the grindstone particle size of the cylindrical grinding is # 100 to # 240.
PCT/JP2006/300546 2005-01-19 2006-01-17 Method of working fluoride single crystal into one with cylindrical (100) crystal face WO2006077836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005011758A JP4756630B2 (en) 2005-01-19 2005-01-19 (100) Crystal surface cylindrical fluoride single crystal processing method
JP2005-011758 2005-01-19

Publications (1)

Publication Number Publication Date
WO2006077836A1 true WO2006077836A1 (en) 2006-07-27

Family

ID=36692225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300546 WO2006077836A1 (en) 2005-01-19 2006-01-17 Method of working fluoride single crystal into one with cylindrical (100) crystal face

Country Status (2)

Country Link
JP (1) JP4756630B2 (en)
WO (1) WO2006077836A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839204B2 (en) * 2006-12-25 2011-12-21 三井金属鉱業株式会社 Fluorite
JP4839205B2 (en) * 2006-12-25 2011-12-21 三井金属鉱業株式会社 Fluorite manufacturing method
JP4199296B1 (en) 2007-01-31 2008-12-17 アイカ工業株式会社 Melamine decorative board
JP6045633B2 (en) * 2015-05-25 2016-12-14 住友化学株式会社 Manufacturing method of nitride semiconductor substrate
JP2020179474A (en) * 2019-04-26 2020-11-05 株式会社ディスコ Method for working plate-like object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251096A (en) * 1997-03-10 1998-09-22 Nikon Corp Method for annealing fluorite single crystal
WO2003009017A1 (en) * 2001-07-17 2003-01-30 Nikon Corporation Method for producing optical member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251096A (en) * 1997-03-10 1998-09-22 Nikon Corp Method for annealing fluorite single crystal
WO2003009017A1 (en) * 2001-07-17 2003-01-30 Nikon Corporation Method for producing optical member

Also Published As

Publication number Publication date
JP2006199528A (en) 2006-08-03
JP4756630B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
EP0939147B1 (en) A manufacturing method for calcium fluoride and calcium fluoride for photolithography
US7754011B2 (en) Method of manufacturing a calcium fluoride single crystal
WO2006077836A1 (en) Method of working fluoride single crystal into one with cylindrical (100) crystal face
US7837969B2 (en) Method of making large-volume CaF2 single crystals for optical elements with an optic axis parallel to the (100)-or (110)-crystal axis and CaF2 single crystal made thereby
JP2003161708A (en) Optical member for photolithography and method of evaluating it
US20040005266A1 (en) Optical member, process for producing the same, and projection aligner
JP2000128696A (en) Fluoride single crystal-made raw material for making optical element and production of the same raw material
JP3686204B2 (en) Annealing method of fluorite single crystal
JP4092515B2 (en) Fluorite manufacturing method
JP4892192B2 (en) Method for producing low stress large volume non- (111) oriented crystals with reduced stress birefringence and more homogeneous refractive index and crystals produced by the same method
JP4723525B2 (en) Method for producing BaLiF3 single crystal
JP2007290950A (en) Material suitable for optical device used for microlithography, and method of fabricating blank from the material
JP2005239540A (en) Method for producing low stress, large volume crystal with reduced stress birefringence and homogeneous refractive index, and crystal produced by the same
US7014703B2 (en) Method for annealing group IIA metal fluoride crystals
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JP6035584B2 (en) Method for producing fluorite crystals
JP2004315247A (en) METHOD OF MANUFACTURING SiO2-TiO2 BASED GLASS, SiO2-TiO2 BASED GLASS AND EXPOSURE DEVICE
JP4797447B2 (en) Optical workpiece, optical member, optical system, and light exposure apparatus
JP2004284850A (en) Method of producing calcium fluoride crystal
JP2009073682A (en) MANUFACTURE PROCESS OF BaLiF3 SINGLE CRYSTAL
JP3780532B2 (en) Method for modifying synthetic quartz glass optical body and synthetic quartz glass optical body
JP2002160999A (en) Method for growing crystal, method for forming fluoride crystal, method for forming optical member, and seed crystal for growing crystal
JP4419291B2 (en) Inspection method of fluoride single crystal
JP2006078565A (en) Optical member and optical apparatus
JP2004145309A (en) Method for manufacturing optical member formed of fluoride crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711826

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711826

Country of ref document: EP