WO2006077785A1 - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
WO2006077785A1
WO2006077785A1 PCT/JP2006/300423 JP2006300423W WO2006077785A1 WO 2006077785 A1 WO2006077785 A1 WO 2006077785A1 JP 2006300423 W JP2006300423 W JP 2006300423W WO 2006077785 A1 WO2006077785 A1 WO 2006077785A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange chamber
heat transfer
heat
plate
Prior art date
Application number
PCT/JP2006/300423
Other languages
French (fr)
Japanese (ja)
Inventor
Iwao Sawada
Hiroshi Fukada
Kazunori Morinaga
Junichi Nakamura
Kenji Kusunoki
Original Assignee
Sasakura Engineering Co., Ltd.
Hisaka Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co., Ltd., Hisaka Works, Ltd. filed Critical Sasakura Engineering Co., Ltd.
Priority to CN2006800013753A priority Critical patent/CN101137882B/en
Priority to JP2006536990A priority patent/JP4321781B2/en
Publication of WO2006077785A1 publication Critical patent/WO2006077785A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another

Definitions

  • the present invention is formed by laminating a plurality of heat transfer plates so that a first heat exchange chamber and a second heat exchange chamber are alternately formed by sandwiching a spacer body serving as a seal therebetween.
  • plate-type heat exchangers it relates to plate-type heat exchangers that are used to heat and evaporate liquids such as water or to cool and condense water vapor.
  • Patent Document 1 as a prior art describes a plate-type heat exchanger having the above-described configuration as a second type of liquid to be evaporated such as seawater or water supplied to the first heat exchange chamber among the heat exchange chambers. It is used for evaporation, which is heated and boiled by a heating fluid such as heating steam supplied to the heat exchange chamber, and the steam introduced into the first heat exchange chamber of each of the heat exchange chambers is used as the second heat. It is proposed to be used for condensation by cooling with the cooling fluid supplied to the exchange chamber.
  • the prior art plate-type heat exchange described in Patent Document 1 uses one of the corners on the upper side of each heat transfer plate when it is used as an evaporator.
  • a steam outlet from each of the first heat exchange chambers is formed at a corner of the heat transfer plate, or at a part of the upper side of the heat transfer plate.
  • each of the first heat exchange chambers is provided with an inlet for the liquid to be evaporated, while the other of the two corners on the upper side of each heat transfer plate is heated to the second heat exchange chamber.
  • the fluid inlet is configured such that a heating fluid outlet from each of the second heat exchange chambers is provided at one of the two corners on the lower side of each of the heat transfer plates.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-299927
  • the liquid to be evaporated supplied from the liquid inlet at one corner in the first heat exchange chamber is: Mainly, the pressure loss becomes the lowest, that is, in the first heat exchange chamber while boiling and evaporating, flowing in a substantially linear direction from the liquid inlet to the vapor outlet, while one of the second heat exchange chambers.
  • the heating fluid supplied from the heating fluid inlet at the corner is also substantially linear in the direction in which the pressure loss is lowest, that is, in the direction from the heating fluid inlet to the heating fluid outlet in the second heat exchange chamber.
  • the left and right or one side of the main flow in the direction facing the steam outlet in the first heat exchange chamber has a stagnation portion of the flow, while the second heat exchange chamber For heating indoors There is a stagnation part of the flow on the left or right or one side of the main flow in the direction facing the fluid outlet.
  • the liquid to be evaporated introduced into the first heat exchange chamber is heated by the heating fluid, and a part thereof flows toward the vapor outlet while boiling and evaporating.
  • the pressure of that portion rises due to the vapor evaporated from boiling, and the liquid to be evaporated becomes difficult to flow.
  • the liquid to be evaporated is originally expected and does not flow easily in the direction of the heating fluid inlet, and easily flows in the direction of the heating fluid outlet. Near the fluid inlet There is a problem that the first heat exchange chamber is prone to scale because it evaporates with a small amount of liquid to be evaporated.
  • the plate heat exchanger of the prior art when used as a steam condenser, the steam mainly condenses from the steam inlet to the condensed water outlet while condensing. While the cooling fluid flows almost linearly in the direction of the force, the cooling fluid mainly flows almost linearly in the direction of the force of the cooling fluid inlet force to the cooling fluid outlet in the second heat exchange chamber. As in the case described above, the left and right or one side portions of the first heat exchange chamber with respect to the flow in the diagonal direction, and the diagonal direction of the second heat exchange chamber in the diagonal direction.
  • claim 1 of the present invention provides:
  • Preliminary plate consisting of multiple heat transfer plates stacked so as to alternately form a first heat exchange chamber for generating steam or condensing steam and a second heat exchange chamber for heating or cooling.
  • Tunnel-like fluid passages configured to extend along the heat transfer plates are formed in the first heat exchange chamber and the second heat exchange chamber so that both ends thereof open to the heat exchange chambers.
  • Claim 2 of the present invention provides
  • the tunnel-like fluid passage is formed by a partition provided in a spacer body sandwiched between the heat transfer plates.”
  • Claim 3 of the present invention provides
  • the tunnel-like fluid passage is in contact with the ridgeline at the mountain-shaped ridges provided in the pair of heat transfer plates forming the heat exchange chamber in a linear manner. It is formed by doing.
  • Claim 4 of the present invention provides:
  • mountain-shaped ridges are formed by inflating and deforming a part of the heat transfer plate.”
  • Claim 5 of the present invention provides:
  • Preliminary plate consisting of multiple heat transfer plates stacked so as to alternately form a first heat exchange chamber for generating steam or condensing steam and a second heat exchange chamber for heating or cooling.
  • the heat transfer plates are stacked by arranging a plurality of ridges extending in a mountain range on the front and back surfaces of the heat transfer plates, the ridge lines and the back surfaces of the mountain transfer ridges on the surface of the heat transfer plate are stacked.
  • the ridgeline in each mountain-shaped ridge is in linear contact over the long part in each first heat exchange chamber and each second heat exchange chamber, and each mountain range in each first heat exchange chamber
  • a plurality of tunnel-shaped fluid passages are formed in the portion between the ridges so that both ends open into the first heat exchange chamber, while each of the second heat exchange chambers has the mountain range.
  • a plurality of tunnel-like fluid passages are formed in the part between the ridges so that both ends open into the second heat exchange chamber. It is characterized by that.
  • Claim 6 of the present invention provides: “In the description of claim 5, each mountain-shaped ridge in each heat transfer plate is formed by expanding and deforming a part of the heat transfer plate.”
  • Claim 7 of the present invention provides:
  • each mountain-shaped ridge in each heat transfer plate has a herringbone pattern arrangement as viewed from the stacking direction of the heat transfer plates.”
  • Claim 8 of the present invention provides
  • each mountain-shaped ridge in each heat transfer plate is intermittent.
  • Claim 9 of the present invention provides:
  • each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each rectangular heat transfer plate includes the corners of the upper side.
  • a steam outlet from each of the first heat exchange chambers or a steam inlet to each of the first heat exchange chambers at one corner or in the vicinity thereof or a part of the upper side is the other corner of both corners on the upper side.
  • a heating fluid inlet or a heating fluid outlet for each of the second heat exchange chambers or a cooling fluid inlet or a cooling fluid outlet for each of the second heat exchange chambers is provided in the vicinity thereof.
  • the lower side of the heat transfer plate has a liquid inlet to the first heat exchange chamber or each of the corners in the vicinity of or near the corner of the lower edge of the heat transfer plate.
  • 1st heat exchange chamber power condensation Outlet force Each of the second heat exchanges at or near the other corner that forms a diagonal with the heating fluid inlet or heating fluid outlet or the cooling fluid inlet or cooling fluid outlet of both corners on the lower side.
  • a heating fluid outlet or a heating fluid inlet to the chamber or a cooling fluid outlet or a cooling fluid inlet to each of the second heat exchange chambers is provided.
  • Claim 10 of the present invention includes
  • each rectangular heat transfer plate has a steam outlet or a steam inlet for each of the first heat exchange chambers at or near the center of the upper side.
  • a heating steam inlet to each of the second heat exchange chambers or a cooling fluid inlet to each of the second heat exchange chambers is located at or near one of the two corners.
  • a heating steam inlet to each of the second heat exchange chambers or a cooling fluid outlet to each of the second heat exchange chambers is provided, respectively.
  • a liquid supply port to be evaporated to one heat exchange chamber and a steam condensate outlet for heating to each second heat exchange chamber are provided, or a condensate outlet to each first heat exchange chamber is provided. It is characterized by that.
  • Claim 11 of the present invention provides:
  • each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each of the rectangular heat transfer plates has a substantially central portion of the upper side. Or a steam outlet or steam inlet force to each first heat exchange chamber in the vicinity thereof, or a heating fluid inlet to each second heat exchange chamber or each of the second heat exchange chambers at or near one of the corners on the upper side.
  • a cooling fluid inlet to the heat exchange chamber, a heating fluid outlet to the second heat exchange chamber or a cooling fluid outlet to the second heat exchange chamber is provided at or near the other corner
  • the evaporative liquid supply port for each first heat exchange chamber or the condensed water outlet for each first heat exchange chamber is provided at or near the lower side of each rectangular heat transfer plate.
  • a pair of heat transfer plates forming the heat exchange chamber in one or both of the first heat exchange chamber and the second heat exchange chamber
  • a pair of heat transfer plates forming the heat exchange chamber in one or both of the first heat exchange chamber and the second heat exchange chamber
  • a plurality of tunnel-like fluid passages configured to extend along the two sides so that both ends open into the heat exchange chamber, the fluid in the heat exchange chamber One end force flows into the tunnel-like fluid passage, and the other end force flows out.
  • Each of the tunnel-like fluid passages is constructed so that the fluid extends over the entire heat exchange chamber, thereby allowing the fluid to reach the entire heat exchange chamber. Can be guided over a wide range.
  • the liquid to be evaporated that has flowed into the tunnel-like fluid passage at the lower side passes through the passage without being displaced in the middle even if the pressure rises due to boiling evaporation. Since it flows in the direction toward the steam outlet, the liquid to be evaporated can be sufficiently supplied even near the heating fluid inlet.
  • each of the tunnel-like fluid passages can have the configuration described in claim 2, but by adopting the configuration described in claim 3 or claim 5, By laminating the heat plates, the tunnel-like fluid passages can be formed at the same time, so that assembly and disassembly are extremely easy and cleaning of each heat transfer plate is easy.
  • the mountain-like ridges in claim 3 and claim 5 are formed by inflating and deforming a part of the heat transfer plate.
  • the effective heat transfer area of each heat transfer plate can be increased, and the mountain-shaped ridges can be formed by pressing the metal plate, thereby reducing the manufacturing cost.
  • each tunnel-like fluid passage is formed by a ridge line in each mountain-shaped ridge provided on the surface of the heat transfer plate, and each of the tunnel-like fluid passages provided on the back surface of the heat transfer plate.
  • Form formed by linear contact with the ridgeline in the mountainous ridge Therefore, the height of each mountain-shaped ridge can be made lower than the case where a mountain-shaped ridge is provided only on one of the front and back surfaces of the heat transfer plate. Processing becomes easier and manufacturing costs can be reduced.
  • the heat transfer area can be further increased.
  • each of the mountain-shaped ridges has an intermittent configuration, so that the fluid flowing in the tunnel-shaped fluid passage formed by each of the mountain-shaped ridges is Since it enters and exits between adjacent tunnel-like fluid passages from the point of intermittent connection, it is possible to promote the spread of the fluid to the whole by interrupting as necessary within the range that does not impede the induction effect. There is an advantage that can be.
  • each of the tunnel-like fluid passages so as to extend over the entire second heat exchange chamber, the pressure loss is minimized, that is, from the heating fluid inlet to the heating fluid outlet. It can be guided over a wide range so as to prevent the pressure loss from flowing in the direction in which the pressure loss is the lowest and to reach the entire second heat exchange chamber.
  • the liquid to be evaporated that has flowed into the first heat exchange chambers from the liquid supply port to be evaporated evaporates by heating from the second heat exchange chamber, and heat transfer on both sides of the first heat exchange chamber.
  • Each of the tunnel-like fluid passages is formed at each mountain-like ridge in the plate and flows so that one end force flows into each tunnel-like fluid passage and the other end flows out.
  • the tunnel-like fluid passages flow in the direction in which the pressure loss is lowest, that is, in the direction from the liquid supply port to the vapor outlet.
  • each of the tunnel-like fluid passages is configured to extend and extend over the entire second heat exchange chamber, so that the pressure loss is minimized by each of the tunnel-like fluid passages. That is, it can be guided over a wide range so as to prevent the flow in the direction from the cooling fluid inlet to the cooling fluid outlet and to reach the entire second heat exchange chamber.
  • the steam that has flowed into the first heat exchange chambers from the steam inlet is condensed by cooling of the second heat exchange chamber force, and is placed on the heat transfer plates on both sides of the first heat exchange chamber.
  • Each tunnel-like fluid passage is formed so as to flow into one of the tunnel-like fluid passages formed in each mountain-shaped ridge, so that the other end force flows out.
  • the tunnel-like fluid passages cause the pressure loss to be lowest, that is, the steam inlet force also flows toward the condensed water outlet in the direction of the force. This can be prevented and guided over a wide range so as to reach the entire first heat exchange chamber.
  • the plate-type heat exchanger used for evaporation or condensation may be configured as described in claim 10 or as described in claim 11. Configure.
  • the ability to stagnate the flow in each of the first heat exchange chambers and each of the second heat exchange chambers can be reliably reduced, thereby greatly improving the evaporation capacity or the condensation capacity. This makes it possible to reduce the size and weight, and to greatly reduce the frequency of cleaning to remove scale.
  • FIG. 1 is a front view of a heat exchanger according to a first embodiment.
  • FIG. 2 is a side view of FIG.
  • FIG. 3 is an enlarged sectional view taken along line III-III in FIGS. 2, 5, and 6.
  • FIG. 3 is an enlarged sectional view taken along line III-III in FIGS. 2, 5, and 6.
  • FIG. 4 is an enlarged sectional view taken along line IV-IV in FIGS. 2, 5, and 6.
  • FIG. 4 is an enlarged sectional view taken along line IV-IV in FIGS. 2, 5, and 6.
  • FIG. 5 is an enlarged sectional view taken along line V-V in FIGS. 1 and 3.
  • FIG. 6 is an enlarged sectional view taken along line VI-VI in FIGS. 1 and 4.
  • FIG. 7 is a perspective view of a first heat transfer plate used in the heat exchanger.
  • FIG. 8 is a perspective view of a second heat transfer plate used in the heat exchanger.
  • FIG. 9 is a perspective view showing a modification of the first heat transfer plate.
  • FIG. 10 is a perspective view showing a modification of the second heat transfer plate.
  • FIG. 11 is a perspective view showing another modification of the first heat transfer plate.
  • FIG. 12 is a perspective view showing another modification of the second heat transfer plate.
  • FIG. 13 is a front view of a heat exchanger according to a second embodiment.
  • FIG. 14 is a side view of FIG.
  • FIG. 15 is an enlarged cross-sectional view taken along the line XV--XV in FIGS. 14, 17 and 18;
  • FIG. 16 is an enlarged sectional view taken along line XVI--XVI in FIGS. 14, 17 and 18.
  • FIG. 17 is an enlarged sectional view taken along lines XVII-XVII in FIGS. 13 and 16.
  • FIG. 18 is an enlarged sectional view taken along lines XVIII--XVIII in FIGS. 13 and 15.
  • FIG. 19 is a cross-sectional view of the same portion as FIG. 15 in a modification of the second embodiment.
  • FIG. 20 is a sectional view taken along line XX—XX in FIG.
  • FIG. 17 is a cross-sectional view of the same portion as FIG. 16 in a modification of the second embodiment.
  • FIG. 22 is a front view of heat exchange according to the third embodiment.
  • FIG. 23 is a side view of FIG.
  • FIG. 24 is an enlarged sectional view taken along the line XXIV—XXIV in FIG.
  • FIG. 25 is an enlarged sectional view taken along the line XXV—XXV in FIG.
  • FIG. 25 is a cross-sectional view of the same portion as FIG. 24 in the modification of the third embodiment.
  • FIG. 26 is a cross-sectional view of the same portion as FIG. 25 in a modification of the third embodiment.
  • ⁇ 28 A sectional view of the same portion as FIG. 24 in another modification of the third embodiment.
  • 29 A sectional view of the same portion as FIG. 25 in another modified example of the third embodiment.
  • FIGS. 1 to 12 show a relatively small plate-type heat exchanger 1 used for evaporation in the first embodiment.
  • the heat exchanger 1 includes a plurality of first heat transfer plates 2 made rectangular by a relatively thin metal plate and a plurality of second heat transfer plates 3 made rectangular by a relatively thin metal plate.
  • a spacer body 5 serving as a seal for forming the first heat exchange chamber 4 between the first heat transfer plate 2 and the second heat transfer plate 3 is sandwiched between the first heat transfer plate 2 and the second heat transfer plate 3, and the second heat transfer plate 3
  • the first heat transfer plate 2 and the first heat transfer plate 2 were alternately stacked so as to sandwich the space body 7 serving as a seal for forming the second heat exchange chamber 6, and this stacked body was disposed on one end face thereof.
  • the face plate 8 and the face plate 9 disposed on the other end face are fastened to each other with bolts 10.
  • Each of the heat transfer plates 2 and 3 has a steam outlet 11 communicating with the inside of each of the first heat exchange chambers 4 at one of the corners in the upper side or in the vicinity thereof.
  • Heating fluid inlets 12 communicating with the respective second heat exchange chambers 6 are formed in the other corners or in the vicinity of both corners, and these steam outlets 11 and heating fluid inlets 12 are provided. Is open in one or both of the double-sided plates 8 and 9.
  • the steam outlet 11 may be provided in a part of the upper side.
  • each of the heat transfer plates 2 and 3 has the first heat in each corner at or near the corner that forms a diagonal to the steam outlet 11 out of both corners on the lower side.
  • the vaporized liquid supply port 13 communicating with the inside of the exchange chamber 4 has the respective corners at or near the corner that forms a diagonal to the heating fluid inlet 12 among the two corners on the lower side thereof.
  • Heating fluid outlets (14) communicating with the heat exchange chamber (6) are respectively formed, and the liquid supply port (13) and the heating fluid outlet (14) are either one of the double-sided plates (8, 9) or Open to both Yes.
  • the liquid to be evaporated supplied from the liquid supply port 13 to be evaporated into each first heat exchange chamber 4 is heated by heat transfer from the second heat exchange chamber 6 on both sides.
  • the vapor generated by boiling and evaporating is discharged from the first heat exchange chamber 4 through the vapor outlet 11 together with a part of the liquid to be evaporated (brine) that has not evaporated.
  • the heating fluid such as heating steam supplied from the heating fluid inlet 12 into each of the second heat exchange chambers 6 is evaporated by heat transfer to the first heat exchange chamber 4 on both sides. After being heated, it is discharged as condensed water from the heating fluid outlet 14.
  • the first heat transfer plate 2 has a surface 2a, that is, the first heat transfer plate 2 attached to the first heat transfer plate 2, as shown in FIG.
  • a plurality of ridges 15 extending in a mountain range in the longitudinal direction are arranged in parallel or substantially in parallel at an appropriate interval on the surface looking into the exchange chamber 4, and the back surface 2b, that is, the first heat transfer.
  • a plurality of raised portions 16 extending in a mountain range in the lateral direction are arranged in parallel or substantially in parallel at an appropriate interval on the surface where the plate 2 looks into the second heat exchange chamber 6.
  • the second heat transfer plate 3 has a back surface 3b, that is, the second heat transfer plate 3 is connected to the first heat transfer plate 3 as shown in FIG.
  • a plurality of ridges 17 extending in a mountain shape in the vertical direction are arranged on the surface looking into the exchange chamber 4 in accordance with the arrangement of the mountain ridges 16 on the surface 2a of the first heat transfer plate 2.
  • the surface 3a thereof that is, the surface where the second heat transfer plate 3 looks into the second heat exchange chamber 6 is formed, for example, in a mountain range in the lateral direction.
  • a plurality of extending ridges 18 are arranged in parallel or substantially in parallel at appropriate intervals according to the arrangement of the mountain-shaped ridges 16 on the back surface 2b of the first heat transfer plate 2.
  • Each of the mountainous ridges 15, 16, 17, 18 is formed by bulging and deforming a part of the heat transfer plate.
  • each mountain-shaped ridge 15 on the surface 2a of the first heat transfer plate 2 and the second heat transfer plate By constructing the ridgeline of each mountain-shaped ridge 17 on the back surface 3b of the plate 3 so as to make a linear contact over its long part (preferably the entire length), the inside of each first heat exchange chamber 4 Of which In the first heat exchange chamber 4, for example, in the longitudinal direction, that is, in the direction from the vaporized liquid inlet 13 toward the vapor outlet 11, the portion between the mountainous ridges 15 and 17 that are in contact with each other.
  • a plurality of tunnel-like fluid passages 19 extending in a direction crossing the opening and having both ends opened into the first heat exchange chamber 4 are formed in parallel.
  • each mountain-shaped ridge 16 on the back surface 2b of the first heat transfer plate 2 and the second heat transfer plate The ridgeline of each mountain-shaped ridge 18 on the surface 3a of 3 is configured so as to come into linear contact over the long part (preferably the entire length) thereof, so that the inside of each second heat exchange chamber 6 Of the second heat exchanging chamber 6 between the mountain-shaped ridges 16 and 18 in contact with each other, for example, in the lateral direction, that is, from the heating fluid inlet 12 to the heating fluid outlet 14.
  • a plurality of tunnel-like fluid passages 20 extending in a direction crossing the opposite direction and having both ends open into the second heat exchange chamber 6 are formed in parallel.
  • the heating fluid such as heating steam that has flowed into each second heat exchange chamber 6 from the heating fluid inlet 12 passes into both sides of the second heat exchange chamber 6.
  • the heat transfer plates 2 and 3 flow into the tunnel-like fluid passages 20 formed by the mountainous ridges 16 and 18, and the tunnel-like fluid passages 20 have the lowest pressure loss.
  • the direction crossing the direction from the heating fluid inlet 12 toward the heating fluid outlet 14 is (2) While being guided so as to spread throughout the heat exchange chamber (6), the liquid to be evaporated that has flowed into the first heat exchange chamber (4) from the liquid supply port (13) is supplied from the second heat exchange chamber (6).
  • the vertical mountainous ridges 15, 17 described above As shown in Figs. 9 and 10, the mountain-shaped ridges 16 and 18 in the opposite direction are divided in such a way that they are divided at their intersections as shown in Figs. 7 and 8.
  • the vertical mountainous ridges 15 and 17 are configured to be continuous, while the horizontal mountainous ridges 16 and 18 are divided, for example, As shown in Fig. 11 and Fig. 12, the horizontal mountainous ridges 16 and 18 are configured to be continuous, while the vertical mountainous ridges 15 and 17 are configured to be intermittent. You can do it.
  • Each of the mountainous ridges 15, 16, 17, and 18 is separated from the heat transfer plates 2 and 3, and is attached to the heat transfer plates 2 and 3 by welding or the like.
  • the mountainous ridges 15, 16, 17 and 18 may be formed by bulging and deforming a part of each of the heat transfer plates 2 and 3 as described above. With this configuration, it is possible to increase the effective heat transfer area in each of the heat transfer plates 2 and 3 and to form the mountainous ridges by pressing the metal plate.
  • each tunnel-like fluid passage 19 in each first heat exchange chamber 4 is formed on the back surface of the mountain-shaped ridge 15 provided on the surface of the first heat transfer plate 2 and the second heat transfer plate 3.
  • the mountain-shaped ridges 17 are formed in linear contact with each other, and the tunnel-shaped fluid passages 20 in the second heat exchange chambers 6 are provided on the surface of the second heat transfer plate 3.
  • the ridge-like ridges 18 and the ridge-like ridges 16 provided on the back surface of the first heat transfer plate 2 are formed in linear contact with each other.
  • the height dimension can be made lower than when the mountain-shaped ridges are provided only on the front or back surface of the heat transfer plate.
  • each of the tunnel-like fluid passages 19, 20 described above is not limited to being formed by the above-described configuration, and a part or all of the tunnel-like fluid passages 19, 20 are interposed between the heat transfer plates 2, 3. It can be configured to be formed by an extension extending inwardly from the spacer bodies 5 and 7 which are also used as seals.
  • the plate-type heat exchanger 1 is used as an evaporator, but the plate-type heat exchanger 1 is used as a steam generator as described below. It can be used as a condenser. That is, when used as a condenser, the steam outlet 11 is used as a steam inlet for steam to be condensed, the liquid supply outlet 13 is used as a condensed water outlet, the heating fluid inlet 12 and One of the heating fluid outlets 14 is configured as a cooling fluid inlet and the other is configured as a cooling fluid outlet. In this case, it goes without saying that the arrow indicating the direction of flow in FIG. Nor.
  • FIGS. 13 to 18 show a plate type heat exchange according to the second embodiment.
  • the plate heat exchanger 31 used as an evaporator is made larger than that in the first embodiment.
  • the plate-type heat exchange 31 in the second embodiment includes a plurality of first heat transfer plates 32 which are rectangular with a relatively thin metal plate, and a rectangular shape with a relatively thin metal plate.
  • a plurality of the second heat transfer plates 33 are sandwiched between the first heat transfer plate 32 and the second heat transfer plate 33, and a seal body 35 for forming the first heat exchange chamber 34 is sandwiched between the second heat transfer plate 33 and the second heat transfer plate 33.
  • the heat plate 33 and the first heat transfer plate 32 are alternately laminated so as to sandwich the sealing body 37 for forming the second heat exchange chamber 36, and this laminated body is disposed on one end face of the face plate. 38 and the face plate 39 disposed on the other end surface are fastened to each other with bolts 40.
  • Each of the heat transfer plates 32, 33 has a horizontally long steam outlet 41 communicating with the inside of each of the first heat exchange chambers 34 at the substantially central portion on the upper side or in the vicinity thereof at both corners on the upper side.
  • Heating steam inlets 42a and 42b communicating with each of the second heat exchange chambers 36 are formed in a portion near the corners or both corners, respectively, and these steam outlet 41 and both heating steam inlets 42a and 42b are
  • the double-sided plates 38 and 39 are open to one or both of them.
  • the steam outlet 41 may be provided in a part of the upper side.
  • each of the heat transfer plates 32, 33 has evaporative liquid supply ports 43a, 43b communicating with each of the first heat exchange chambers 34 at or near the corners on the lower side thereof.
  • Heating steam condensate outlets 44 communicating with the respective second heat exchange chambers 36 are formed in the central part of the lower side or in the vicinity thereof, respectively, and both the liquid to be evaporated outlets 43a, 43b and the heating outlets are provided.
  • the steam condensate outlet 44 is open to one or both of the double-sided plates 38 and 39.
  • the liquid to be evaporated supplied from the both liquid supply ports 43a and 43b into each of the first heat exchange chambers 34 is used for heat transfer from the second heat exchange chamber 36 on both sides.
  • the vapor generated by boiling and evaporating is discharged from the first heat exchange chamber 34 through the vapor outlet 41 together with a part of the liquid to be evaporated (brine) that has not evaporated.
  • the heating steam supplied from both heating steam inlets 42a and 42b into each second heat exchange chamber 36 is cooled by heat transfer to the first heat exchange chamber 34 on both sides.
  • the condensed water is discharged from the condensed water outlet 44.
  • the first heat transfer plate 32 has the first heat transfer plate 32 in the first heat exchange chamber 34 as shown in FIG.
  • a plurality of raised portions 45 extending in a mountain range in the vertical direction are arranged in parallel at appropriate intervals on the desired surface (surface), and the first heat transfer plate 2 is placed in the second heat exchange chamber 36.
  • a plurality of raised portions 46 extending in a mountain range in the lateral direction are arranged in parallel at appropriate intervals on the desired surface (back surface).
  • the second heat transfer plate 33 has the second heat transfer plate 33 placed in the first heat exchange chamber 34 as shown in FIG.
  • a plurality of ridges 47 extending in a mountain range in the vertical direction are paralleled at an appropriate interval on the surface to be viewed (surface) according to the arrangement of the mountain ridges 46 on the surface of the first heat transfer plate 32.
  • a plurality of raised portions 48 extending in a mountain range in the lateral direction are formed on the surface (back surface) of the second heat transfer plate 33 viewed in the second heat exchange chamber 36.
  • the mountain-shaped ridges 46 on the back surface of the heat plate 32 they are arranged in parallel at appropriate intervals.
  • Each of the mountainous ridges 45, 46, 47, 48 is formed by expanding and deforming a part of the heat transfer plate.
  • the ridgeline of each mountain-shaped ridge 45 on the surface of the first heat transfer plate 32 and the second heat transfer plate 33 By constructing the ridgeline of each mountain-shaped ridge 47 on the surface of the first heat exchange chamber 34 in such a way as to make a linear contact over its long part (preferably the entire length), In the first heat exchange chamber 34, the portions between the mountain-shaped ridges 45, 47 that are in contact with each other For example, the both ends open into the first heat exchange chamber 34 extending in the longitudinal direction, that is, in a direction transverse to the vapor outlet 41 from both the vaporized liquid inlets 43. A plurality of tunnel-like fluid passages 49 are formed in parallel.
  • a plurality of tunnel-like fluid passages 50 that extend in a direction transverse to the direction and open at both ends into the second heat exchange chamber 36 are formed in parallel.
  • the heating steam having both the heating steam inlets 42a, 42b force flowing into each second heat exchange chamber 36 is transferred into the second heat exchange chamber 36 on the heat transfer plates on both sides thereof. It flows into the tunnel-like fluid passages 50 formed by the mountainous ridges 46 and 48 at 32 and 33, and the tunnel-like fluid passages 50 flow in the direction in which the pressure loss becomes the lowest.
  • the second steam exchange 42a, 42b is also used for the second heat exchange, for example, in the direction of the force toward the condensate outlet 44, for example, in the direction across it.
  • the liquid to be evaporated flowing from both the liquid supply ports 43a and 43b into the first heat exchange chambers 34 is guided from the second heat exchange chamber 36. While evaporating by heating, heat transfer plates on both sides of the first heat exchange chamber 34 It flows into each tunnel-like fluid passage 49 formed at each mountain-like ridge 45, 47 at 32, 33, and flows through the tunnel-like fluid passage 49 in the direction in which the pressure loss becomes the lowest. As shown by the arrows in FIG. 15, the second liquid supply ports 43a, 43b are directed from the vapor outlet 41 to the vapor outlet 41 in the direction of the force, for example, in the direction crossing them.
  • the vertical mountainous ridges 45, 47 and the horizontal mountainous ridges 46, 48 are divided at the intersections as shown in the figure.
  • the vertical mountainous ridges 45, 47 may be configured to be continuous, or the horizontal mountainous ridges may be configured.
  • the parts 46 and 48 can be configured to be continuous.
  • the mountain-shaped ridges on both the front and back surfaces of each first heat transfer plate 32 are bent in a square shape as shown in FIG.
  • the portions 45 'and 46' as a whole
  • the herringbone pattern is arranged as a whole
  • the mountain-like ridges on both the front and back surfaces of each second heat transfer plate 33 are formed in a square shape as shown in FIG.
  • the overall herringbone pattern can be rubbed.
  • the herringbone pattern By arranging the herringbone pattern in this way, the heat transfer area can be further increased.
  • the arrangement of the herringbone pattern is the same as in the first embodiment. What can be applied to is undeniable.
  • each of the mountain-shaped ridges is separated from each heat transfer plate, and is fixed to each heat transfer plate by welding or the like.
  • it may be configured as follows.
  • the plate-type heat exchanger 31 is used as an evaporator.
  • the plate-type heat exchanger 31 is used as a steam condenser. be able to.
  • the steam outlet 41 is a steam inlet
  • the liquid supply ports 43a and 43b are condensed water outlets
  • one of the heating steam inlets 42a and 42b is used.
  • the heating steam inlet 42a is configured as a cooling fluid inlet
  • the other heating steam inlet 42b is configured as a cooling fluid inlet.
  • the arrows indicating the flow direction in FIGS. 15 and 19 are all reversed. It goes without saying that it will be oriented.
  • FIGS. 22 to 25 show a third embodiment.
  • the plate-type heat exchange in the third embodiment includes a plurality of first heat transfer plates 62 that are rectangular with a relatively thin metal plate, and a rectangular shape with a relatively thin metal plate.
  • a plurality of heat transfer plates (63) are sandwiched between a first heat transfer plate (62) and a second heat transfer plate (63), and a sealing body (65) is formed to form a first heat exchange chamber (64).
  • the seal body 67 for forming the second heat exchange chamber 66 is sandwiched between them, and this laminated body is attached to a face plate 68 disposed on one end face thereof.
  • a face plate 69 disposed on the other end face is fastened to each other with bolts 70, and is configured.
  • Each of the heat transfer plates 62, 63 has a horizontally long steam outlet 71 communicating with the inside of each of the first heat exchange chambers 64 at the substantially central portion on the upper side thereof or in the vicinity thereof.
  • a heating fluid inlet 72a such as hot water communicating with the inside of each of the second heat exchange chambers 66 is provided at one of the corners or in the vicinity thereof, and each of the second heat exchange chambers is provided at or near the other corner.
  • a heating fluid outlet 72b communicating with each other is formed, and the steam outlet 71, the heating fluid inlet 72a, and the heating fluid outlet 72b are provided on one or both of the double-sided plates 68 and 69. It is open.
  • the steam outlet 71 may be provided in a part of the upper side.
  • the heat transfer plates 62, 63 are provided with evaporative liquid inlets 73a, 73b communicating with the first heat exchange chambers 64 at or near the left and right corners of the lower side thereof.
  • the two liquid-evaporated liquid inlets 73a and 73b are also open to one or both of the double-sided plates 68 and 69.
  • the liquid to be evaporated supplied from the both liquid inlets 73a and 73b into each first heat exchange chamber 64 is transferred to the heat from the second heat exchange chamber 66 on both sides. As a result, it is heated and boiled.
  • the evaporated vapor is discharged from the first heat exchange chamber 64 through the vapor outlet 71 together with a part of the liquid to be evaporated (brine) that has not evaporated.
  • the heating fluid supplied from the heating fluid inlet 72a into each of the second heat exchange chambers 66 transfers heat to the first heat exchange chamber 64 on both sides, and then the heating fluid. It is discharged from outlet 72b.
  • the first heat transfer plate 62 of the heat transfer plates 62, 63 includes the first heat transfer plate 62, as in the second embodiment.
  • Plate 62 For example, a plurality of raised portions 75 extending in a mountain shape in the vertical direction are arranged in parallel at appropriate intervals on the surface (surface) looking into the first heat exchange chamber 64, and the first heat transfer plate 62 is For example, a plurality of ridges 76 extending in a mountain range in the lateral direction are arranged in parallel at appropriate intervals on the surface (back surface) looking into the second heat exchange chamber 66.
  • the second heat transfer plate 63 has the second heat transfer plate as shown in FIG. 25, as in the second embodiment.
  • the second heat transfer plate 63 is arranged in parallel at an appropriate interval in accordance with the arrangement of the portions 76, and the second heat transfer plate 63 is formed on the surface (back surface) that is viewed in the second heat exchange chamber 66, for example, in a mountain range in the lateral direction.
  • a plurality of extending ridges 78 are arranged in parallel at appropriate intervals according to the arrangement of the mountainous ridges 76 on the back surface of the first heat transfer plate 62.
  • Each of the mountainous ridges 75, 76, 77, 78 is formed by bulging and deforming a part of the heat transfer plate.
  • first heat exchange chamber 64 in the portion between the mountain-shaped ridges 75 and 77 that are in contact with each other, for example, in the vertical direction, that is, from both the vaporized liquid inlets 73a and 73b to the vapor outlet 71 A plurality of tunnel-like fluid passages 79 that extend in a direction crossing the opposite direction and open at both ends into the first heat exchange chamber 74 are formed in parallel.
  • the second heat exchange chamber 66 is configured such that the ridgeline of each mountain-shaped ridge 78 on the back surface of the second heat exchange chamber 66 is in contact with the long part (preferably the entire length).
  • the portion between the mountainous ridges 76 and 78 that are in contact with each other for example, in the lateral direction, that is, from the heating fluid inlet 72a to the heating fluid outlet 72b.
  • a plurality of tunnel-like fluid passages 80 extending in a direction transverse to the direction of force and having both ends open into the second heat exchange chamber 66 are formed in parallel.
  • each second heat exchange chamber 66 from the heating fluid inlet 72a is transferred into the second heat exchange chamber 66 on both sides of the heat transfer plate.
  • 62, 63 which are formed by the respective mountainous ridges 76, 78, flow into the respective tunnel-like fluid passages 80, and flow through the tunnel-like fluid passages 80 in the direction in which the pressure loss becomes the lowest.
  • the second heat is applied from the heating fluid inlet 72a to the heating fluid outlet 72b with respect to the direction of the direction of force, for example, in the direction crossing this.
  • the liquid to be evaporated flowing into the first heat exchange chambers 64 from both the vaporized liquid inlets 73 a and 73 b is transferred from the second heat exchange chamber 66. While boiling and condensing by heating, the heat transfer process on both sides of the first heat exchange chamber 64 Flows into the tunnel-like fluid passages 79 formed by the mountainous ridges 75 and 77 at the gates 62 and 63, and the tunnel-like fluid passages 79 cause the pressure loss to become the lowest. As shown by the arrows in FIG. 24, the flow from both the liquid inlets 73a, 73b to the vapor outlet 71 is directed to the direction of the force, for example, the direction across the direction, etc. By being guided so as to spread throughout the first heat exchange chamber 64, it is possible to reliably reduce the stagnation of the flow in the first heat exchange chamber 64 and the second heat exchange chamber 66.
  • the above-described vertical mountain-shaped ridges 75 and 77 on the front side and the horizontal mountain-shaped ridges 76 and 78 on the back side are shown in the figure.
  • the vertical mountainous ridges 75, 77 are the same as in the first embodiment.
  • each mountain-shaped ridge on both the front and back surfaces of each first heat transfer plate 62 and each mountain on both front and back surfaces of each second heat transfer plate 63 are also described.
  • a herringbone pattern can be formed as a whole.
  • each of the mountainous ridges is connected to each heat transfer plate.
  • it may be configured separately from the heat transfer plate and fixed to each heat transfer plate by welding or the like.
  • the plate-type heat exchanger 61 is used as an evaporator.
  • the plate-type heat exchanger 61 is used as a steam condenser. be able to.
  • the steam outlet 71 is a steam inlet
  • the liquid supply ports 73a and 73b are condensed water outlets
  • the heating fluid inlet 72a is a cooling fluid inlet
  • the heating fluid outlet 72b is configured as a cooling fluid outlet.
  • the heating fluid inlet 72a into the second heat exchange chamber 66 is connected to the evaporative liquid supply port 7 from one corner on the upper side of the rectangle to one corner on the lower side. 3a, the heating fluid outlet 72b from the second heat exchange chamber 66 is moved to one corner of the upper side of the rectangle, while the second heat exchange chamber 66 is swept.
  • a partition portion 6 that integrally extends inwardly from the spacer body 67, a folded flow passage is formed by directing force from the fluid heating fluid inlet 72a to the heating fluid outlet 72b.
  • a plurality of tunnel-like fluid passages 80 are formed in the mountain-shaped ridges 76 and 78 in the folded flow passage, as in the third embodiment. ! What is it! /.
  • the flow resistance can be lowered by extending along the upper side of the steam outlet 71 on the upper side of the rectangle to the other corner of the upper side, while the second heat exchange is performed.
  • Heat transfer in the chamber 66 is caused to spread the heating fluid throughout the second heat exchange chamber 66 by forming a folded flow path by the partition 6.
  • it can be greatly accelerated, so the processing capacity for evaporation or condensation can be increased. It is particularly suitable when non-condensable liquid is used as the heating fluid.
  • the plate heat exchanger 61 can be configured as shown in FIG. 28 and FIG.
  • a plurality of tunnel-like fluid passages 80 are formed in each of the mountain-like ridges 76 and 78 in the two flow passages as in the third embodiment. Needless to say.
  • the flow resistance is reduced along the upper side of the steam outlet 71 to the other corner of the upper side.
  • heat transfer in the second heat exchange chamber 66 can be promoted by forming two flow passages by the partition 67 ⁇ , so that the processing capacity for evaporation or condensation can be increased. It is particularly suitable when steam is used as the heating fluid.
  • a tunnel-like fluid passage 80 for the heating fluid is provided in the second heat exchange chamber 66.
  • the mountainous ridges 76 and 78 are divided by a partition section 6 and 67 mm extending integrally from the spacer body 67, so that the partition section Needless to say, 67 ⁇ and 67 "can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A plate type heat exchanger formed by stacking a plurality of heat transfer plates (2) and (3) so as to alternately form, therebetween, a first heat exchange chamber (4) generating or condensing steam and a second heat exchange chamber (6) heating or cooling the steam. Tunnel-like fluid passages (19) and (20) formed to extend along the heat transfer plates (2) and (3) are formed in the first heat exchange chamber (4) and the second heat exchange chamber (6) so that their both ends can be opened to the insides of the heat exchange chambers. Thus, since the stagnated parts of fluid flows in the heat exchange chambers (4) and (6) can be reduced to increase the capacity and reduce the size and weight of the heat exchanger and to reduce the occurrence of scale.

Description

明 細 書  Specification
プレート型熱交換器 技術分野  Technical Field of Plate Type Heat Exchanger
[0001] 本発明は,伝熱プレートの複数枚をその間にシール兼用のスぺーサ体を挟むこと によって第 1熱交換室と第 2熱交換室とを交互に形成するように積層して成るプレート 型熱交換器のうち,水等の液体の加熱蒸発に使用するか,或いは,水蒸気の冷却凝 縮に使用するようにしたプレート型熱交^^に関するものである。  [0001] The present invention is formed by laminating a plurality of heat transfer plates so that a first heat exchange chamber and a second heat exchange chamber are alternately formed by sandwiching a spacer body serving as a seal therebetween. Among plate-type heat exchangers, it relates to plate-type heat exchangers that are used to heat and evaporate liquids such as water or to cool and condense water vapor.
背景技術  Background art
[0002] 先行技術としての特許文献 1は,前記した構成のプレート型熱交換器を,その各熱 交換室のうち第 1熱交換室に供給した海水又は水等の被蒸発液体を,第 2熱交換室 に供給した加熱用蒸気等の加熱用流体にて加熱して沸騰するという蒸発に使用する ことと,その各熱交換室のうち第 1熱交換室に導入した水蒸気を,第 2熱交換室に供 給した冷却流体にて冷却するという凝縮に使用することを提案している。  [0002] Patent Document 1 as a prior art describes a plate-type heat exchanger having the above-described configuration as a second type of liquid to be evaporated such as seawater or water supplied to the first heat exchange chamber among the heat exchange chambers. It is used for evaporation, which is heated and boiled by a heating fluid such as heating steam supplied to the heat exchange chamber, and the steam introduced into the first heat exchange chamber of each of the heat exchange chambers is used as the second heat. It is proposed to be used for condensation by cooling with the cooling fluid supplied to the exchange chamber.
[0003] この場合,前記特許文献 1に記載されている先行技術のプレート型熱交 は,こ れを蒸発器として使用する場合には,前記各伝熱プレートの上辺における両隅部の うち一方の隅部又は前記上辺の一部に,前記各第 1熱交換室内からの蒸気出口を, 前記各伝熱プレートの下辺における両隅部のうち前記蒸気出口と対角を成す他方の 隅部に,前記各第 1熱交換室内への被蒸発液体の入口を各々設ける一方,前記各 伝熱プレートの上辺における両隅部のうち他方の隅部に,前記各第 2熱交換室内へ の加熱用流体の入口を,前記各伝熱プレートの下辺における両隅部のうち一方の隅 部に,前記各第 2熱交換室内からの加熱用流体の出口を各々設けると 、う構成にし ている。  [0003] In this case, the prior art plate-type heat exchange described in Patent Document 1 uses one of the corners on the upper side of each heat transfer plate when it is used as an evaporator. A steam outlet from each of the first heat exchange chambers is formed at a corner of the heat transfer plate, or at a part of the upper side of the heat transfer plate. In addition, each of the first heat exchange chambers is provided with an inlet for the liquid to be evaporated, while the other of the two corners on the upper side of each heat transfer plate is heated to the second heat exchange chamber. The fluid inlet is configured such that a heating fluid outlet from each of the second heat exchange chambers is provided at one of the two corners on the lower side of each of the heat transfer plates.
[0004] また,前記特許文献 1に記載されている先行技術のプレート型熱交換器は,これを 凝縮器として使用する場合には,前記各伝熱プレートの上辺における両隅部のうち 一方の隅部又は前記上辺の一部に,前記各第 1熱交換室内への蒸気入口を,前記 各伝熱プレートの下辺における両隅部のうち前記蒸発入口と対角を成す他方の隅部 に,前記各第 1熱交換室内からの凝縮水出口を各々設ける一方,前記各伝熱プレー トの下辺における両隅部のうち一方の隅部に,前記各第 2熱交換室内への冷却用流 体の入口を,前記各伝熱プレートの上辺における両隅部のうち前記冷却用流体入口 と対角を成す他方の隅部に,前記各第 2熱交換室内からの冷却用流体の出口を各 々設けると 、う構成にして 、る。 [0004] Further, in the prior art plate heat exchanger described in Patent Document 1, when this is used as a condenser, one of the two corners on the upper side of each heat transfer plate is used. A steam inlet into each of the first heat exchange chambers at a corner or a part of the upper side, and a corner at the other corner of the lower side of each heat transfer plate that forms a diagonal with the evaporation inlet, Condensate outlets from the first heat exchange chambers are respectively provided, while the heat transfer plates are provided. The inlet of the cooling fluid into each of the second heat exchange chambers is provided at one of the two corners on the lower side of the heat transfer plate, and the cooling fluid inlet of the two corners on the upper side of each heat transfer plate. If the cooling fluid outlets from the second heat exchange chambers are respectively provided at the other corners that are diagonal to each other, a configuration is adopted.
特許文献 1:特開平 9 - 299927号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-299927
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし,前記先行技術のプレート型熱交換器は,これを蒸発器として使用する場合 ,第 1熱交換室内のうち一つの隅部における被蒸発液体入口より供給した被蒸発液 体は,主として,圧力損失が最も低くなる方向,つまり,第 1熱交換室内を沸騰蒸発し ながら被蒸発液体入口から蒸気出口に向かう方向に略直線的に流れる一方,前記 第 2熱交換室内のうち一つの隅部における加熱用流体入口より供給された加熱用流 体も,主として,圧力損失が最も低くなる方向,つまり,第 2熱交換室内を加熱用流体 入口から加熱用流体出口に向かう方向に略直線的に流れることにより,前記第 1熱 交換室内のうち前記蒸気出口に向力う方向の主流に対して左右両側又は片側の部 分には,流れの淀み部分ができる一方,前記第 2熱交換室内のうち加熱用流体出口 に向力う方向の主流に対して左右両側又は片側の部分に,流れの淀み部分ができ る。 However, when the plate type heat exchanger of the prior art is used as an evaporator, the liquid to be evaporated supplied from the liquid inlet at one corner in the first heat exchange chamber is: Mainly, the pressure loss becomes the lowest, that is, in the first heat exchange chamber while boiling and evaporating, flowing in a substantially linear direction from the liquid inlet to the vapor outlet, while one of the second heat exchange chambers. The heating fluid supplied from the heating fluid inlet at the corner is also substantially linear in the direction in which the pressure loss is lowest, that is, in the direction from the heating fluid inlet to the heating fluid outlet in the second heat exchange chamber. In the first heat exchange chamber, the left and right or one side of the main flow in the direction facing the steam outlet in the first heat exchange chamber has a stagnation portion of the flow, while the second heat exchange chamber For heating indoors There is a stagnation part of the flow on the left or right or one side of the main flow in the direction facing the fluid outlet.
[0006] そして,前記第 1熱交換室及び第 2熱交換室内に前記のような流れの淀み部分が 存在することは,伝熱プレートにおける表面の全体を熱交換に有効に利用することが できないから,単位伝熱面積当たりの蒸発能力の低下,ひいては,大型化及び重量 のアップを招来するという問題がある。  [0006] The presence of the stagnation portion of the flow as described above in the first heat exchange chamber and the second heat exchange chamber cannot effectively use the entire surface of the heat transfer plate for heat exchange. Therefore, there is a problem in that the evaporation capacity per unit heat transfer area is reduced, which leads to an increase in size and weight.
[0007] 特に,蒸発器として使用する場合,第 1熱交換室内に導入された被蒸発液体は,加 熱用流体によって加熱されてその一部が沸騰蒸発しながら蒸気出口に向かって流 れるが,沸騰蒸発が比較的激しい部分では,沸騰蒸発した蒸気によってその部分の 圧力が上昇するため被蒸発液体が流れ難くなる。このため,被蒸発液体は本来期待 されて 、る加熱用流体入口の方向には流れ難く,加熱用流体出口の方向に流れ易 くなるから,蒸発装置としての効率が著しく阻害され,また,加熱用流体入口近傍の 第 1熱交換室内には,少ない被蒸発液体で蒸発させるためスケールが生じ易いとい う問題がある。 [0007] In particular, when used as an evaporator, the liquid to be evaporated introduced into the first heat exchange chamber is heated by the heating fluid, and a part thereof flows toward the vapor outlet while boiling and evaporating. In a portion where boiling evaporation is relatively intense, the pressure of that portion rises due to the vapor evaporated from boiling, and the liquid to be evaporated becomes difficult to flow. For this reason, the liquid to be evaporated is originally expected and does not flow easily in the direction of the heating fluid inlet, and easily flows in the direction of the heating fluid outlet. Near the fluid inlet There is a problem that the first heat exchange chamber is prone to scale because it evaporates with a small amount of liquid to be evaporated.
[0008] また,前記先行技術のプレート型熱交換器を,蒸気の凝縮器として使用する場合 においても,水蒸気は,主として,凝縮しながら第 1熱交換室内を蒸気入口カゝら凝縮 水出口に向力う方向に略直線的に流れる一方,冷却用流体は,主として,第 2熱交 換室内を冷却用流体入口力 冷却用流体出口に向力う方向に略直線的に流れるこ とにより,前記の場合と同様に,前記第 1熱交換室内のうちその対角の方向への流れ に対して左右両側又は片側の部分,及び前記第 2熱交換室内のうちその対角の方 向への流れに対して左右両側又は片側の部分に流れの淀み部分ができて,伝熱プ レートにおける表面の全体を熱交換に有効に利用することができないから,単位伝熱 面積当たりの凝縮能力の低下,ひいては,大型化及び重量のアップを招来するとい う問題がある。  [0008] Also, when the plate heat exchanger of the prior art is used as a steam condenser, the steam mainly condenses from the steam inlet to the condensed water outlet while condensing. While the cooling fluid flows almost linearly in the direction of the force, the cooling fluid mainly flows almost linearly in the direction of the force of the cooling fluid inlet force to the cooling fluid outlet in the second heat exchange chamber. As in the case described above, the left and right or one side portions of the first heat exchange chamber with respect to the flow in the diagonal direction, and the diagonal direction of the second heat exchange chamber in the diagonal direction. Since the stagnation part of the flow is formed on both the left and right sides or one side of the flow and the entire surface of the heat transfer plate cannot be used effectively for heat exchange, the condensation capacity per unit heat transfer area is reduced. , And eventually, increase the size and weight Leave you there is a problem.
[0009] し力も,前記のように両熱交換室内に流れの淀みができることは,この部分にスケー ルの発生.付着が旺盛になるから,このスケールを除去するための清掃メンテナンス を頻繁に行わなければならないことも問題であった。  [0009] As described above, the flow of stagnation in the two heat exchange chambers as described above is caused by the generation of scale in this part. The adhesion is vigorous, so frequent cleaning maintenance is performed to remove this scale. It was also a problem to have.
[0010] 特に,この単位伝熱面積当たりの蒸発能力或いは凝縮能力が低下する傾向は,大 型化を図るために,前記各伝熱プレートを横長の長方形にした場合にぉ 、てより顕 著になるのであった。 [0010] In particular, the tendency for the evaporation capacity or the condensation capacity per unit heat transfer area to decrease is more prominent when each heat transfer plate is made into a horizontally long rectangle in order to increase the size. It became.
[0011] 本発明は,この問題を解消したプレート型の熱交 を提供することを技術的課題 とするちのである。  [0011] It is a technical object of the present invention to provide plate-type heat exchange that solves this problem.
課題を解決するための手段  Means for solving the problem
[0012] この技術的課題を達成するため本発明の請求項 1は,  In order to achieve this technical problem, claim 1 of the present invention provides:
「伝熱プレートの複数枚を,その間に蒸気の発生又は蒸気の凝縮を行う第 1熱交換 室と,加熱又は冷却を行う第 2熱交換室とを交互に形成するように積層して成るプレ ート型熱交換器において,  “Preliminary plate consisting of multiple heat transfer plates stacked so as to alternately form a first heat exchange chamber for generating steam or condensing steam and a second heat exchange chamber for heating or cooling. In a heat exchanger
前記第 1熱交換室及び第 2熱交換室内に,各伝熱プレートに沿って延びるように構 成したトンネル状の流体通路を,その両端が各熱交換室内に開口するように形成す る。」 ことを特徴としている。 Tunnel-like fluid passages configured to extend along the heat transfer plates are formed in the first heat exchange chamber and the second heat exchange chamber so that both ends thereof open to the heat exchange chambers. " It is characterized by that.
[0013] 本発明の請求項 2は,  [0013] Claim 2 of the present invention provides
「前記請求項 1の記載において,前記トンネル状流体通路が,前記各伝熱プレートの 間に挟まれるスぺーサ体に設けた仕切り部にて形成されている。」  “In the description of claim 1, the tunnel-like fluid passage is formed by a partition provided in a spacer body sandwiched between the heat transfer plates.”
ことを特徴としている。  It is characterized by that.
[0014] 本発明の請求項 3は,  [0014] Claim 3 of the present invention provides
「前記請求項 1の記載において,前記トンネル状流体通路が,当該熱交換室を形成 する一対の伝熱プレートに設けた山脈状隆起部における稜線を当該熱交換室内に ぉ 、て線状に接触することによって形成されて 、る。」  “In the first aspect of the present invention, the tunnel-like fluid passage is in contact with the ridgeline at the mountain-shaped ridges provided in the pair of heat transfer plates forming the heat exchange chamber in a linear manner. It is formed by doing. "
ことを特徴としている。  It is characterized by that.
[0015] 本発明の請求項 4は,  [0015] Claim 4 of the present invention provides:
「前記請求項 3の記載において,前記山脈状隆起部が,前記伝熱プレートの一部を 膨らませ変形して形成した構成である。」  “In the description of claim 3, the mountain-shaped ridges are formed by inflating and deforming a part of the heat transfer plate.”
ことを特徴としている。  It is characterized by that.
[0016] 本発明の請求項 5は,  [0016] Claim 5 of the present invention provides:
「伝熱プレートの複数枚を,その間に蒸気の発生又は蒸気の凝縮を行う第 1熱交換 室と,加熱又は冷却を行う第 2熱交換室とを交互に形成するように積層して成るプレ ート型熱交換器において,  “Preliminary plate consisting of multiple heat transfer plates stacked so as to alternately form a first heat exchange chamber for generating steam or condensing steam and a second heat exchange chamber for heating or cooling. In a heat exchanger
前記各伝熱プレートにおける表面及び裏面に,山脈状に延びる隆起部の複数本を 並べて設けて,前記伝熱プレートを積層したとき,前記伝熱プレートの表面の各山脈 状隆起部における稜線と裏面の各山脈状隆起部における稜線とが前記各第 1熱交 換室内及び前記各第 2熱交換室内においてその長い部分にわたって線状に接触し て,前記各第 1熱交換室内のうち前記各山脈状隆起部の間の部分に,複数個のトン ネル状の流体通路を,その両端が第 1熱交換室内に開口するように形成する一方, 前記各第 2熱交換室内のうち前記各山脈状隆起部の間の部分に,複数個のトンネル 状の流体通路を,その両端が第 2熱交換室内に開口するように形成する。」 ことを特徴としている。  When the heat transfer plates are stacked by arranging a plurality of ridges extending in a mountain range on the front and back surfaces of the heat transfer plates, the ridge lines and the back surfaces of the mountain transfer ridges on the surface of the heat transfer plate are stacked. The ridgeline in each mountain-shaped ridge is in linear contact over the long part in each first heat exchange chamber and each second heat exchange chamber, and each mountain range in each first heat exchange chamber A plurality of tunnel-shaped fluid passages are formed in the portion between the ridges so that both ends open into the first heat exchange chamber, while each of the second heat exchange chambers has the mountain range. A plurality of tunnel-like fluid passages are formed in the part between the ridges so that both ends open into the second heat exchange chamber. It is characterized by that.
[0017] 本発明の請求項 6は, 「前記請求項 5の記載において,前記各伝熱プレートにおける各山脈状隆起部が, 前記伝熱プレートの一部を膨らませ変形して形成した構成である。」 [0017] Claim 6 of the present invention provides: “In the description of claim 5, each mountain-shaped ridge in each heat transfer plate is formed by expanding and deforming a part of the heat transfer plate.”
ことを特徴としている。  It is characterized by that.
[0018] 本発明の請求項 7は,  [0018] Claim 7 of the present invention provides:
「前記請求項 5又は 6の記載において,前記各伝熱プレートにおける各山脈状隆起 部が,前記伝熱プレートの積層方向から見てヘリンボン模様の配列である。」 ことを特徴としている。  “In the description of claim 5 or 6, each mountain-shaped ridge in each heat transfer plate has a herringbone pattern arrangement as viewed from the stacking direction of the heat transfer plates.”
[0019] 本発明の請求項 8は,  [0019] Claim 8 of the present invention provides
「前記請求項 5又は 6の記載において,前記各伝熱プレートにおける各山脈状隆起 部が,断続する構成である。」  “In the description of claim 5 or 6, each mountain-shaped ridge in each heat transfer plate is intermittent.”
ことを特徴としている。  It is characterized by that.
[0020] 本発明の請求項 9は,  [0020] Claim 9 of the present invention provides:
「前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から見 て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺における 両隅部のうち一方の隅部又はその近傍或いは前記上辺の一部に前記各第 1熱交換 室からの蒸気出口或いは各第 1熱交換室への蒸気入口が,当該上辺における両隅 部のうち他方の隅部又はその近傍に前記各第 2熱交換室内に対する加熱用流体入 口又は加熱用流体出口或いは前記各第 2熱交換室に対する冷却用流体入口又は 冷却用流体出口が各々設けられ,前記矩形状の各伝熱プレートにおける下辺には, 当該下辺における両隅部のうち前記蒸気出口或いは蒸気入口と対角を成す隅部又 はその近傍に前記各第 1熱交換室への被蒸発液体入口或いは前記各第 1熱交換室 力 の凝縮水出口力 当該下辺における両隅部のうち前記加熱用流体入口又は加 熱用流体出口或いは冷却用流体入口又は冷却用流体出口と対角を成す他方の隅 部又はその近傍に前記各第 2熱交換室に対する加熱用流体出口又は加熱用流体 入口或いは前記各第 2熱交換室に対する冷却用流体出口又は冷却用流体入口が 各々設けられている。」ことを特徴としている。  “In the description of claim 5 or 6, each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each rectangular heat transfer plate includes the corners of the upper side. A steam outlet from each of the first heat exchange chambers or a steam inlet to each of the first heat exchange chambers at one corner or in the vicinity thereof or a part of the upper side is the other corner of both corners on the upper side. Alternatively, a heating fluid inlet or a heating fluid outlet for each of the second heat exchange chambers or a cooling fluid inlet or a cooling fluid outlet for each of the second heat exchange chambers is provided in the vicinity thereof. The lower side of the heat transfer plate has a liquid inlet to the first heat exchange chamber or each of the corners in the vicinity of or near the corner of the lower edge of the heat transfer plate. 1st heat exchange chamber power condensation Outlet force Each of the second heat exchanges at or near the other corner that forms a diagonal with the heating fluid inlet or heating fluid outlet or the cooling fluid inlet or cooling fluid outlet of both corners on the lower side. A heating fluid outlet or a heating fluid inlet to the chamber or a cooling fluid outlet or a cooling fluid inlet to each of the second heat exchange chambers is provided. "
[0021] 本発明の請求項 10は,  [0021] Claim 10 of the present invention includes
「前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から見 て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺のうち略 中央の部分又はその近傍に前記各第 1熱交換室に対する蒸気出口或いは蒸気入 口が,当該上辺における両隅部のうち一方の隅部又はその近傍に前記各第 2熱交 換室に対する加熱用蒸気入口或いは前記各第 2熱交換室に対する冷却用流体入 口が,他方の隅部又はその近傍に前記各第 2熱交換室に対する加熱用蒸気入口或 いは前記各第 2熱交換室に対する冷却用流体出口が各々設けられ,前記矩形状各 伝熱プレートにおける下辺又はその近傍には,前記各第 1熱交換室に対する被蒸発 液体供給口及び前記各第 2熱交換室に対する加熱用蒸気凝縮水出口が設けられて いるか,或いは前記各第 1熱交換室に対する凝縮水出口が設けられている。」 ことを特徴としている。 “In the claim 5 or 6, the heat transfer plates are viewed from the stacking direction. The upper side of each rectangular heat transfer plate has a steam outlet or a steam inlet for each of the first heat exchange chambers at or near the center of the upper side. A heating steam inlet to each of the second heat exchange chambers or a cooling fluid inlet to each of the second heat exchange chambers is located at or near one of the two corners. A heating steam inlet to each of the second heat exchange chambers or a cooling fluid outlet to each of the second heat exchange chambers is provided, respectively. A liquid supply port to be evaporated to one heat exchange chamber and a steam condensate outlet for heating to each second heat exchange chamber are provided, or a condensate outlet to each first heat exchange chamber is provided. It is characterized by that.
[0022] 本発明の請求項 11は, [0022] Claim 11 of the present invention provides:
「前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から 見て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺のうち 略中央の部分又はその近傍に前記各第 1熱交換室に対する蒸気出口或いは蒸気 入口力 当該上辺における両隅部のうち一方の隅部又はその近傍に前記各第 2熱 交換室に対する加熱用流体入口或いは前記各第 2熱交換室に対する冷却用流体 入口が,他方の隅部又はその近傍に前記各第 2熱交換室に対する加熱用流体出口 或いは前記各第 2熱交換室に対する冷却用流体出口が各々設けられ,前記矩形状 の各伝熱プレートにおける下辺又はその近傍には,前記各第 1熱交換室に対する被 蒸発液体供給口或いは前記各第 1熱交換室に対する凝縮水出口が設けられて 、る o J  “In the description of claim 5 or 6, each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each of the rectangular heat transfer plates has a substantially central portion of the upper side. Or a steam outlet or steam inlet force to each first heat exchange chamber in the vicinity thereof, or a heating fluid inlet to each second heat exchange chamber or each of the second heat exchange chambers at or near one of the corners on the upper side. 2 a cooling fluid inlet to the heat exchange chamber, a heating fluid outlet to the second heat exchange chamber or a cooling fluid outlet to the second heat exchange chamber is provided at or near the other corner, The evaporative liquid supply port for each first heat exchange chamber or the condensed water outlet for each first heat exchange chamber is provided at or near the lower side of each rectangular heat transfer plate.
ことを特徴としている。  It is characterized by that.
発明の効果  The invention's effect
[0023] 前記請求項 1に記載したように,前記第 1熱交換室及び第 2熱交換室のうちいずれ か一方又は両方の熱交換室内に,当該熱交換室を形成する一対の伝熱プレートに 沿って延びるように構成した複数本のトンネル状の流体通路を,その両端が前記熱 交換室内に開口するように形成することにより,前記熱交換室内における流体は,そ の内部に形成した各トンネル状の流体通路内にその一端力 流入して他端力 流出 するように流れることになるから,この各トンネル状流体通路を,前記流体を前記熱交 換室の全体にわたって延びるように構成することにより,前記流体を,前記熱交換室 の全体に行きわたらせるように広い範囲にわたって誘導することができる。 [0023] As described in claim 1, a pair of heat transfer plates forming the heat exchange chamber in one or both of the first heat exchange chamber and the second heat exchange chamber By forming a plurality of tunnel-like fluid passages configured to extend along the two sides so that both ends open into the heat exchange chamber, the fluid in the heat exchange chamber One end force flows into the tunnel-like fluid passage, and the other end force flows out. Each of the tunnel-like fluid passages is constructed so that the fluid extends over the entire heat exchange chamber, thereby allowing the fluid to reach the entire heat exchange chamber. Can be guided over a wide range.
[0024] また,第 1熱交換室内においては,下辺部でー且トンネル状流体通路に流れ込ん だ被蒸発液体は,沸騰蒸発による圧力上昇があっても途中で逸れることなくその通 路を通って蒸気出口に向力つて流れることになるから,加熱用流体入口の近傍にお いても,被蒸発液体を十分供給することができる。  [0024] In addition, in the first heat exchange chamber, the liquid to be evaporated that has flowed into the tunnel-like fluid passage at the lower side passes through the passage without being displaced in the middle even if the pressure rises due to boiling evaporation. Since it flows in the direction toward the steam outlet, the liquid to be evaporated can be sufficiently supplied even near the heating fluid inlet.
[0025] これらにより,前記熱交換室内に流れの淀みができることを確実に低減できるから, 単位伝熱面積当たりの蒸発能力又は凝縮能力を,確実に向上することができて,小 型 ·軽量ィ匕を図ることができるとともに,両熱交換室内における伝熱面にスケールが 発生することを低減できるから,スケールを除去するための清掃メンテナンスを行う頻 度を大幅に少なくできる。  [0025] By these, since it is possible to reliably reduce the occurrence of stagnation of flow in the heat exchange chamber, it is possible to reliably improve the evaporation capacity or condensation capacity per unit heat transfer area. In addition to reducing drought, it is possible to reduce the occurrence of scale on the heat transfer surfaces in both heat exchange chambers, so the frequency of cleaning maintenance to remove the scale can be greatly reduced.
[0026] この場合において,前記各トンネル状流体通路は,請求項 2に記載した構成にする ことができるが,これを,請求項 3又は請求項 5に記載した構成にすることにより,各伝 熱プレートを積層することで,前記トンネル状流体通路を同時に形成することができる から,組み立て及び分解が至極容易にできるとともに,各伝熱プレートの清掃が容易 にできる利点がある。  [0026] In this case, each of the tunnel-like fluid passages can have the configuration described in claim 2, but by adopting the configuration described in claim 3 or claim 5, By laminating the heat plates, the tunnel-like fluid passages can be formed at the same time, so that assembly and disassembly are extremely easy and cleaning of each heat transfer plate is easy.
[0027] 特に,請求項 5に記載した構成によると,第 1熱交換室内と,第 2熱交換室内との両 方に,流れの淀みができることを確実に低減できるから,単位伝熱面積当たりの蒸発 能力又は凝縮能力を,大幅に向上することができる。  [0027] In particular, according to the configuration described in claim 5, since it is possible to reliably reduce the occurrence of stagnation of flow in both the first heat exchange chamber and the second heat exchange chamber, it is possible to reduce per unit heat transfer area. The evaporation capacity or condensation capacity of can be greatly improved.
[0028] 前記請求項 3及び請求項 5における山脈状隆起部を,請求項 4及び請求項 6に記 載したように,前記伝熱プレートの一部を膨らませ変形して形成することにより,前記 各伝熱プレートにおける有効な伝熱面積の増大を図ることができるとともに,前記各 山脈状隆起部を,金属板に対するプレス加工によって形成することができるから,製 造コストを低減できる。  [0028] As described in claim 4 and claim 6, the mountain-like ridges in claim 3 and claim 5 are formed by inflating and deforming a part of the heat transfer plate. The effective heat transfer area of each heat transfer plate can be increased, and the mountain-shaped ridges can be formed by pressing the metal plate, thereby reducing the manufacturing cost.
[0029] しかも,前記請求項 4及び請求項 6において各トンネル状流体通路は,前記伝熱プ レートの表面に設けた各山脈状隆起部における稜線と,前記伝熱プレートの裏面に 設けた各山脈状隆起部における稜線とを線状に接触することで形成するという形態 であることにより,前記各山脈状隆起部の高さを,前記伝熱プレートの表面及び裏面 のうちいずれか一方にのみ山脈状隆起部を設ける場合よりも低くできるから,前記金 属板に対するプレス加工がより容易になり,製造コストをより低減できる。 [0029] In addition, in each of the fourth and sixth aspects, each tunnel-like fluid passage is formed by a ridge line in each mountain-shaped ridge provided on the surface of the heat transfer plate, and each of the tunnel-like fluid passages provided on the back surface of the heat transfer plate. Form formed by linear contact with the ridgeline in the mountainous ridge Therefore, the height of each mountain-shaped ridge can be made lower than the case where a mountain-shaped ridge is provided only on one of the front and back surfaces of the heat transfer plate. Processing becomes easier and manufacturing costs can be reduced.
[0030] また,前記各山脈状隆起部を,請求項 7に記載したように,ヘリンボン模様の配列 にすることにより,伝熱面積の一層の増大を図ることができる。  [0030] Further, by arranging the mountainous ridges in a herringbone pattern as described in claim 7, the heat transfer area can be further increased.
[0031] 前記各山脈状隆起部を,請求項 8に記載したように,断続の構成にすることにより, この各山脈状隆起部によって形成されるトンネル状流体通路内を流れる流体は,前 記断続の間の箇所から隣接のトンネル状流体通路との間を出入りすることになるから ,誘導の作用を阻害しない範囲において必要に応じて断続させることにより,流体の 全体への広がりを助長することができる利点がある。  [0031] As described in claim 8, each of the mountain-shaped ridges has an intermittent configuration, so that the fluid flowing in the tunnel-shaped fluid passage formed by each of the mountain-shaped ridges is Since it enters and exits between adjacent tunnel-like fluid passages from the point of intermittent connection, it is possible to promote the spread of the fluid to the whole by interrupting as necessary within the range that does not impede the induction effect. There is an advantage that can be.
[0032] 一方,前記請求項 9に記載した構成のプレート型熱交換器を,蒸発器として使用す る場合,各第 2熱交換室内に加熱用流体入口力も流入した加熱用流体は,当該第 2 熱交換室内にその両側の伝熱プレートにおける各山脈状隆起部にて形成されてい る各トンネル状流体通路内にその一端力 流入して他端力 流出するように流れるこ とになるから,この各トンネル状流体通路を,前記第 2熱交換室の全体にわたって広 力 て延びるように構成することにより,圧力損失が最も低くなる方向,つまり,前記 加熱用流体入口から加熱用流体出口に向かうと!、う圧力損失が最も低くなる方向に 流れることを阻止して、前記第 2熱交換室の全体に行きわたらせるように広い範囲に わたって誘導することができる。  [0032] On the other hand, when the plate-type heat exchanger having the configuration described in claim 9 is used as an evaporator, the heating fluid that has also entered the heating fluid inlet force into each second heat exchange chamber is 2 Because one end of the heat flows into each tunnel-like fluid passage formed at each mountain-like ridge on the heat transfer plate on both sides of the heat exchange chamber, the other end flows out. By configuring each of the tunnel-like fluid passages so as to extend over the entire second heat exchange chamber, the pressure loss is minimized, that is, from the heating fluid inlet to the heating fluid outlet. It can be guided over a wide range so as to prevent the pressure loss from flowing in the direction in which the pressure loss is the lowest and to reach the entire second heat exchange chamber.
[0033] 前記各第 1熱交換室内に被蒸発液体供給口から流入した被蒸発液体は,前記第 2 熱交換室からの加熱によって蒸発しながら,当該第 1熱交換室内にその両側の伝熱 プレートにおける各山脈状隆起部にて形成されて 、る各トンネル状流体通路内にそ の一端力 流入して他端力 流出するように流れることになるから,この各トンネル状 流体通路を,前記第 1熱交換室の全体にわたって広がって延びるように構成すること により,この各トンネル状流体通路によって,圧力損失が最も低くなる方向,つまり, 前記被蒸発液体供給口から蒸気出口に向かう方向に流れることを阻止して、前記第 1熱交換室の全体に行きわたらせるように広い範囲にわたって誘導することができる [0034] これにより,前記第 1熱交換室及び前記第 2熱交換室内に流れの淀みができること を確実に低減できるから,単位伝熱面積当たりの蒸発能力を,前記各伝熱プレートを 横長の矩形にした場合においても,大幅に向上することができて,小型'軽量ィ匕を図 ることがでさる。 [0033] The liquid to be evaporated that has flowed into the first heat exchange chambers from the liquid supply port to be evaporated evaporates by heating from the second heat exchange chamber, and heat transfer on both sides of the first heat exchange chamber. Each of the tunnel-like fluid passages is formed at each mountain-like ridge in the plate and flows so that one end force flows into each tunnel-like fluid passage and the other end flows out. By configuring the first heat exchange chamber so as to extend over the whole, the tunnel-like fluid passages flow in the direction in which the pressure loss is lowest, that is, in the direction from the liquid supply port to the vapor outlet. Can be guided over a wide range to prevent this and spread throughout the first heat exchange chamber [0034] Thereby, since it is possible to reliably reduce the stagnation of the flow in the first heat exchange chamber and the second heat exchange chamber, it is possible to reduce the evaporation capacity per unit heat transfer area to each of the heat transfer plates. Even in the case of a rectangular shape, it can be greatly improved and a small and light weight can be achieved.
[0035] また,前記請求項 9に記載した構成のプレート型熱交換器を,凝縮器として使用す る場合,各第 2熱交換室内に冷却用流体入口から流入した冷却用流体は,当該第 2 熱交換室内にその両側の伝熱プレートにおける各山脈状隆起部にて形成されてい る各トンネル状流体通路内にその一端力 流入して他端力 流出するように流れるこ とになるから,この各トンネル状流体通路を,前記と同様に、前記第 2熱交換室の全 体にわたって広がって延びるように構成することにより,この各トンネル状流体通路に よって,圧力損失が最も低くなる方向,つまり,前記冷却用流体入口から冷却用流体 出口に向力う方向に流れることを阻止して、前記第 2熱交換室の全体に行きわたらせ るように広 、範囲にわたって誘導することができる。  [0035] When the plate heat exchanger having the structure described in claim 9 is used as a condenser, the cooling fluid flowing from the cooling fluid inlet into each second heat exchange chamber is 2 Because one end of the heat flows into each tunnel-like fluid passage formed at each mountain-like ridge on the heat transfer plate on both sides of the heat exchange chamber, the other end flows out. In the same manner as described above, each of the tunnel-like fluid passages is configured to extend and extend over the entire second heat exchange chamber, so that the pressure loss is minimized by each of the tunnel-like fluid passages. That is, it can be guided over a wide range so as to prevent the flow in the direction from the cooling fluid inlet to the cooling fluid outlet and to reach the entire second heat exchange chamber.
[0036] 一方,前記各第 1熱交換室内に蒸気入口から流入した蒸気は,前記第 2熱交換室 力 の冷却によって凝縮しながら,当該第 1熱交換室内にその両側の伝熱プレートに おける各山脈状隆起部にて形成されている各トンネル状流体通路内にその一端から 流入して他端力 流出するように流れることになるから,この各トンネル状流体通路を ,前記と同様に、前記第 1熱交換室の全体にわたって広がって延びるように構成する ことにより,この各トンネル状流体通路によって,圧力損失が最も低くなる方向,つまり ,前記蒸気入口力も凝縮水出口に向力 方向に流れることを阻止して,前記第 1熱交 換室の全体に行きわたらせるように広い範囲にわたって誘導することができる。  [0036] On the other hand, the steam that has flowed into the first heat exchange chambers from the steam inlet is condensed by cooling of the second heat exchange chamber force, and is placed on the heat transfer plates on both sides of the first heat exchange chamber. Each tunnel-like fluid passage is formed so as to flow into one of the tunnel-like fluid passages formed in each mountain-shaped ridge, so that the other end force flows out. By configuring the first heat exchange chamber so as to extend over the whole, the tunnel-like fluid passages cause the pressure loss to be lowest, that is, the steam inlet force also flows toward the condensed water outlet in the direction of the force. This can be prevented and guided over a wide range so as to reach the entire first heat exchange chamber.
[0037] これにより,前記第 1熱交換室及び前記第 2熱交換室内に流れの淀みができること を確実に低減できるから,単位伝熱面積当たりの凝縮能力を,前記各伝熱プレートを 横長の矩形にした場合においても,大幅に向上することができて,小型'軽量ィ匕を図 ることがでさる。  [0037] Thereby, since it is possible to reliably reduce the stagnation of the flow in the first heat exchange chamber and the second heat exchange chamber, the condensing capacity per unit heat transfer area can be reduced by making each heat transfer plate horizontally long. Even in the case of a rectangular shape, it can be greatly improved and a small and light weight can be achieved.
[0038] し力も,前記したように,両熱交換室内に流れの淀み部ができることを確実に低減 できることにより,両熱交換室内における伝熱面にスケールが発生することを低減で きる力ら,スケールを除去するための清掃メンテナンスを行う頻度を大幅に少なくでき る。 [0038] As described above, since the stagnation of the flow in the two heat exchange chambers can be reliably reduced as described above, the force that can reduce the generation of scale on the heat transfer surfaces in the two heat exchange chambers, The frequency of cleaning maintenance to remove scale can be greatly reduced. The
[0039] ところで,蒸発或いは凝縮に使用するプレート型熱交^^において,これを大型化 する場合には,請求項 10に記載したように構成するか,或いは,請求項 11に記載し たように構成する。  [0039] By the way, if the plate-type heat exchanger used for evaporation or condensation is to be enlarged, it may be configured as described in claim 10 or as described in claim 11. Configure.
[0040] この場合においても,前記と同様に,前記各第 1熱交換室及び前記各第 2熱交換 室内に流れの淀みができることを確実に低減できることにより,蒸発能力或いは凝縮 能力を大幅に向上することができて,小型 ·軽量ィ匕を図ることができるとともに,スケー ルを除去するための清掃を行う頻度を大幅に少なくできる。  [0040] In this case as well, as described above, the ability to stagnate the flow in each of the first heat exchange chambers and each of the second heat exchange chambers can be reliably reduced, thereby greatly improving the evaporation capacity or the condensation capacity. This makes it possible to reduce the size and weight, and to greatly reduce the frequency of cleaning to remove scale.
[0041] なお,前記トンネル状流体通路は,前記第 1熱交換室及び第 2熱交換室のうちいず れか一方のみに設ける場合においても,前記した各種の効果を得ることができること はいうまでもない。  [0041] It should be noted that the above-described various effects can be obtained even when the tunnel-like fluid passage is provided only in one of the first heat exchange chamber and the second heat exchange chamber. Not too long.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]第 1の実施の形態による熱交換器の正面図である。 FIG. 1 is a front view of a heat exchanger according to a first embodiment.
[図 2]図 1の側面図である。  FIG. 2 is a side view of FIG.
[図 3]図 2,図 5及び図 6の III III視拡大断面図である。  FIG. 3 is an enlarged sectional view taken along line III-III in FIGS. 2, 5, and 6. FIG.
[図 4]図 2,図 5及び図 6の IV— IV視拡大断面図である。  4 is an enlarged sectional view taken along line IV-IV in FIGS. 2, 5, and 6. FIG.
[図 5]図 1及び図 3の V— V視拡大断面図である。  FIG. 5 is an enlarged sectional view taken along line V-V in FIGS. 1 and 3.
[図 6]図 1及び図 4の VI— VI視拡大断面図である。  FIG. 6 is an enlarged sectional view taken along line VI-VI in FIGS. 1 and 4.
[図 7]前記熱交換器に使用する第 1伝熱プレートの斜視図である。  FIG. 7 is a perspective view of a first heat transfer plate used in the heat exchanger.
[図 8]前記熱交換器に使用する第 2伝熱プレートの斜視図である。  FIG. 8 is a perspective view of a second heat transfer plate used in the heat exchanger.
[図 9]前記第 1伝熱プレートの変形例を示す斜視図である。  FIG. 9 is a perspective view showing a modification of the first heat transfer plate.
[図 10]前記第 2伝熱プレートの変形例を示す斜視図である。  FIG. 10 is a perspective view showing a modification of the second heat transfer plate.
[図 11]前記第 1伝熱プレートの別の変形例を示す斜視図である。  FIG. 11 is a perspective view showing another modification of the first heat transfer plate.
[図 12]前記第 2伝熱プレートの別の変形例を示す斜視図である。  FIG. 12 is a perspective view showing another modification of the second heat transfer plate.
[図 13]第 2の実施の形態による熱交換器の正面図である。  FIG. 13 is a front view of a heat exchanger according to a second embodiment.
[図 14]図 13の側面図である。  FIG. 14 is a side view of FIG.
[図 15]図 14,図 17及び図 18の XV— XV視拡大断面図である。  FIG. 15 is an enlarged cross-sectional view taken along the line XV--XV in FIGS. 14, 17 and 18;
[図 16]図 14,図 17及び図 18の XVI— XVI視拡大断面図である。 [図 17]図 13及び図 16の XVII— XVII視拡大断面図である。 FIG. 16 is an enlarged sectional view taken along line XVI--XVI in FIGS. 14, 17 and 18. FIG. 17 is an enlarged sectional view taken along lines XVII-XVII in FIGS. 13 and 16.
[図 18]図 13及び図 15の XVIII— XVIII視拡大断面図である。  FIG. 18 is an enlarged sectional view taken along lines XVIII--XVIII in FIGS. 13 and 15.
圆 19]第 2の実施の形態の変形例において図 15と同じ箇所の断面図である。 FIG. 19 is a cross-sectional view of the same portion as FIG. 15 in a modification of the second embodiment.
[図 20]図 19の XX— XX視断面図である。  FIG. 20 is a sectional view taken along line XX—XX in FIG.
圆 21]第 2の実施の形態の変形例において図 16と同じ箇所の断面図である。 圆 22]第 3の実施の形態による熱交翻の正面図である。 21] FIG. 17 is a cross-sectional view of the same portion as FIG. 16 in a modification of the second embodiment. [22] FIG. 22 is a front view of heat exchange according to the third embodiment.
[図 23]図 22の側面図である。  FIG. 23 is a side view of FIG.
[図 24]図 23の XXIV— XXIV視拡大断面図である。  FIG. 24 is an enlarged sectional view taken along the line XXIV—XXIV in FIG.
[図 25]図 23の XXV— XXV視拡大断面図である。  FIG. 25 is an enlarged sectional view taken along the line XXV—XXV in FIG.
圆 26]第 3の実施の形態の変形例において図 24と同じ箇所の断面図である。 圆 27]第 3の実施の形態の変形例において図 25と同じ箇所の断面図である。 圆 28]第 3の実施の形態の別の変形例において図 24と同じ箇所の断面図である。 圆 29]第 3の実施の形態の別の変形例において図 25と同じ箇所の断面図である。 符号の説明 [26] FIG. 25 is a cross-sectional view of the same portion as FIG. 24 in the modification of the third embodiment. 27] FIG. 26 is a cross-sectional view of the same portion as FIG. 25 in a modification of the third embodiment.圆 28] A sectional view of the same portion as FIG. 24 in another modification of the third embodiment. 29] A sectional view of the same portion as FIG. 25 in another modified example of the third embodiment. Explanation of symbols
1, 31, 61 プレート型熱交換器  1, 31, 61 Plate heat exchanger
2, 32, 62 第 1伝熱プレート  2, 32, 62 1st heat transfer plate
3, 33, 63 第 2伝熱プレート  3, 33, 63 2nd heat transfer plate
4, 34, 64 第 1熱交換室  4, 34, 64 1st heat exchange chamber
5, 35, 65 第 1シール体  5, 35, 65 1st seal body
6, 36, 6Ό 第 2熱交換室  6, 36, 6Ό Second heat exchange chamber
7, 37, 67 第 2シール体  7, 37, 67 Second seal
11, 41, 71 蒸気出口  11, 41, 71 Steam outlet
12, 72a 加熱用流体入口  12, 72a Heating fluid inlet
42a, 42b 加熱用蒸気入口  42a, 42b Steam inlet for heating
13, 43, 73a, 73b 被蒸発液体供給口  13, 43, 73a, 73b Evaporated liquid supply port
14, 72b 加熱用流体出口  14, 72b Heating fluid outlet
第 1伝熱プレートの表面の山脈状隆起部  Mountainous ridges on the surface of the first heat transfer plate
第 1伝熱プレートの裏面の山脈状隆起部 17, 47, 77 第 2伝熱プレートの表面の山脈状隆起部 Mountainous ridge on the back of the first heat transfer plate 17, 47, 77 Mountainous ridges on the surface of the second heat transfer plate
18, 48, 78 第 2伝熱プレートの裏面の山脈状隆起部  18, 48, 78 Mountainous uplift on the back of the second heat transfer plate
19, 49, 79 第 1熱交換室内のトンネル状流体通路  19, 49, 79 Tunnel-like fluid passage in the first heat exchange chamber
20, 50, 80 第 2熱交換室内のトンネル状流体通路  20, 50, 80 Tunnel-like fluid passage in the second heat exchange chamber
81 不凝縮性ガス出口  81 Noncondensable gas outlet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下,本発明の実施の形態を図面について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0045] 図 1〜図 12は,第 1の実施の形態で,蒸発に使用する比較的小型にしたプレート 型熱交 1を示す。  [0045] FIGS. 1 to 12 show a relatively small plate-type heat exchanger 1 used for evaporation in the first embodiment.
[0046] この熱交換器 1は,比較的薄い金属板にて矩形にした第 1伝熱プレート 2の複数枚 と,同じく比較的薄い金属板にて矩形にした第 2伝熱プレート 3の複数枚とを,第 1伝 熱プレート 2と第 2伝熱プレート 3との間に第 1熱交換室 4を形成するためのシール兼 用のスぺーサ体 5を挟み,第 2伝熱プレート 3と第 1伝熱プレート 2との間に第 2熱交 換室 6を形成するためのシール兼用のスペース体 7を挟むように交互に積層し,この 積層体を,その一端面に配設した面板 8と他端面に配設した面板 9とを互いにボルト 10にて締結することによって構成している。  [0046] The heat exchanger 1 includes a plurality of first heat transfer plates 2 made rectangular by a relatively thin metal plate and a plurality of second heat transfer plates 3 made rectangular by a relatively thin metal plate. A spacer body 5 serving as a seal for forming the first heat exchange chamber 4 between the first heat transfer plate 2 and the second heat transfer plate 3 is sandwiched between the first heat transfer plate 2 and the second heat transfer plate 3, and the second heat transfer plate 3 The first heat transfer plate 2 and the first heat transfer plate 2 were alternately stacked so as to sandwich the space body 7 serving as a seal for forming the second heat exchange chamber 6, and this stacked body was disposed on one end face thereof. The face plate 8 and the face plate 9 disposed on the other end face are fastened to each other with bolts 10.
[0047] 前記各伝熱プレート 2, 3には,その上辺における両隅部のうち一方の隅部又はそ の近傍において前記各第 1熱交換室 4内に連通する蒸気出口 11が,その上辺にお ける両隅部のうち他方の隅部又はその近傍において前記各第 2熱交換室 6内に連通 する加熱用流体入口 12が各々穿設され,これら蒸気出口 11及び加熱用流体入口 1 2は,前記両面板 8, 9のうちいずれか一方又は両方に開口している。  [0047] Each of the heat transfer plates 2 and 3 has a steam outlet 11 communicating with the inside of each of the first heat exchange chambers 4 at one of the corners in the upper side or in the vicinity thereof. Heating fluid inlets 12 communicating with the respective second heat exchange chambers 6 are formed in the other corners or in the vicinity of both corners, and these steam outlets 11 and heating fluid inlets 12 are provided. Is open in one or both of the double-sided plates 8 and 9.
[0048] なお,前記蒸気出口 11は,上辺の一部に設けるという構成にすることができる。  [0048] The steam outlet 11 may be provided in a part of the upper side.
[0049] 更に,前記各伝熱プレート 2, 3には,その下辺における両隅部のうち前記蒸気出 口 11に対して対角を成す隅部又はその近傍にぉ 、て前記各第 1熱交換室 4内に連 通する被蒸発液体供給口 13が,その下辺における両隅部のうち前記加熱用流体入 口 12に対して対角を成す隅部又はその近傍にぉ 、て前記各第 2熱交換室 6内に連 通する加熱用流体出口 14が各々穿設され,これら被蒸発液体供給口 13及び加熱 用流体出口 14は,同じく,前記両面板 8, 9のうちいずれか一方又は両方に開口して いる。 [0049] Further, each of the heat transfer plates 2 and 3 has the first heat in each corner at or near the corner that forms a diagonal to the steam outlet 11 out of both corners on the lower side. The vaporized liquid supply port 13 communicating with the inside of the exchange chamber 4 has the respective corners at or near the corner that forms a diagonal to the heating fluid inlet 12 among the two corners on the lower side thereof. (2) Heating fluid outlets (14) communicating with the heat exchange chamber (6) are respectively formed, and the liquid supply port (13) and the heating fluid outlet (14) are either one of the double-sided plates (8, 9) or Open to both Yes.
[0050] この構成において,前記各第 1熱交換室 4内に,被蒸発液体供給口 13から供給さ れた被蒸発液体は,両側における前記第 2熱交換室 6からの熱伝達によって加熱さ れて沸騰蒸発し,発生した蒸気が,蒸発しなかった一部の被蒸発液体 (ブライン)と 一緒に,前記各第 1熱交換室 4内から蒸気出口 11より排出される。  [0050] In this configuration, the liquid to be evaporated supplied from the liquid supply port 13 to be evaporated into each first heat exchange chamber 4 is heated by heat transfer from the second heat exchange chamber 6 on both sides. The vapor generated by boiling and evaporating is discharged from the first heat exchange chamber 4 through the vapor outlet 11 together with a part of the liquid to be evaporated (brine) that has not evaporated.
[0051] 一方,前記各第 2熱交換室 6内に,加熱用流体入口 12から供給された加熱蒸気等 の加熱用流体は,両側における前記第 1熱交換室 4に対する熱伝達によって被蒸発 流体を加熱したのち,加熱用流体出口 14から凝縮水等になって排出される。  [0051] On the other hand, the heating fluid such as heating steam supplied from the heating fluid inlet 12 into each of the second heat exchange chambers 6 is evaporated by heat transfer to the first heat exchange chamber 4 on both sides. After being heated, it is discharged as condensed water from the heating fluid outlet 14.
[0052] そして,前記各伝熱プレート 2, 3のうち前記第 1伝熱プレート 2には,図 7に示すよう に,その表面 2a,つまり,当該第 1伝熱プレート 2が前記第 1熱交換室 4内にのぞむ 面に,例えば,縦方向に山脈状に延びる隆起部 15の複数個を,適宜間隔で平行又 は略平行に並べて設けるとともに,その裏面 2b,つまり,当該第 1伝熱プレート 2が前 記第 2熱交換室 6内にのぞむ面に,例えば,横方向に山脈状に延びる隆起部 16の 複数個を,適宜間隔で平行又は略平行に並べて設ける。  [0052] Of the heat transfer plates 2 and 3, the first heat transfer plate 2 has a surface 2a, that is, the first heat transfer plate 2 attached to the first heat transfer plate 2, as shown in FIG. For example, a plurality of ridges 15 extending in a mountain range in the longitudinal direction are arranged in parallel or substantially in parallel at an appropriate interval on the surface looking into the exchange chamber 4, and the back surface 2b, that is, the first heat transfer. For example, a plurality of raised portions 16 extending in a mountain range in the lateral direction are arranged in parallel or substantially in parallel at an appropriate interval on the surface where the plate 2 looks into the second heat exchange chamber 6.
[0053] 一方,前記各伝熱プレート 2, 3のうち前記第 2伝熱プレート 3には,図 8に示すよう に,その裏面 3b,つまり,当該第 2伝熱プレート 3が前記第 1熱交換室 4内にのぞむ 面に,例えば,縦方向に山脈状に延びる隆起部 17の複数個を,前記第 1伝熱プレ ート 2の表面 2aにおける各山脈状隆起部 16の配列に合わせて,適宜間隔で平行又 は略平行に並べて設けるとともに,その表面 3a,つまり,当該第 2伝熱プレート 3が前 記第 2熱交換室 6内にのぞむ面に,例えば,横方向に山脈状に延びる隆起部 18の 複数個を,前記第 1伝熱プレート 2の裏面 2bにおける各山脈状隆起部 16の配列に 合わせて,適宜間隔で平行又は略平行に並べて設ける。  [0053] On the other hand, of the heat transfer plates 2 and 3, the second heat transfer plate 3 has a back surface 3b, that is, the second heat transfer plate 3 is connected to the first heat transfer plate 3 as shown in FIG. For example, a plurality of ridges 17 extending in a mountain shape in the vertical direction are arranged on the surface looking into the exchange chamber 4 in accordance with the arrangement of the mountain ridges 16 on the surface 2a of the first heat transfer plate 2. Are arranged in parallel or substantially in parallel at appropriate intervals, and the surface 3a thereof, that is, the surface where the second heat transfer plate 3 looks into the second heat exchange chamber 6 is formed, for example, in a mountain range in the lateral direction. A plurality of extending ridges 18 are arranged in parallel or substantially in parallel at appropriate intervals according to the arrangement of the mountain-shaped ridges 16 on the back surface 2b of the first heat transfer plate 2.
[0054] 前記各山脈状隆起部 15, 16, 17, 18は,伝熱プレートの一部を膨らみ変形するこ とによって形成している。  [0054] Each of the mountainous ridges 15, 16, 17, 18 is formed by bulging and deforming a part of the heat transfer plate.
[0055] そして,前記各伝熱プレート 2, 3を前記したように積層したとき,前記第 1伝熱プレ ート 2の表面 2aにおける各山脈状隆起部 15の稜線と,前記第 2伝熱プレート 3の裏 面 3bにおける各山脈状隆起部 17の稜線とを,その長い部分 (好ましくは全長)にわ たって線状に接触するように構成することにより,前記各第 1熱交換室 4内のうち,当 該第 1熱交換室 4内において互いに接触する前記各山脈状隆起部 15, 17間の部分 に,例えば,縦方向,つまり,前記被蒸発液体入口 13から前記蒸気出口 11に向かう 方向に対してこれを横切る方向に延びて両端が第 1熱交換室 4内に開口するトンネ ル状流体通路 19を複数個並列に形成する。 [0055] Then, when the heat transfer plates 2 and 3 are laminated as described above, the ridgeline of each mountain-shaped ridge 15 on the surface 2a of the first heat transfer plate 2 and the second heat transfer plate By constructing the ridgeline of each mountain-shaped ridge 17 on the back surface 3b of the plate 3 so as to make a linear contact over its long part (preferably the entire length), the inside of each first heat exchange chamber 4 Of which In the first heat exchange chamber 4, for example, in the longitudinal direction, that is, in the direction from the vaporized liquid inlet 13 toward the vapor outlet 11, the portion between the mountainous ridges 15 and 17 that are in contact with each other. A plurality of tunnel-like fluid passages 19 extending in a direction crossing the opening and having both ends opened into the first heat exchange chamber 4 are formed in parallel.
[0056] 一方,前記各伝熱プレート 2, 3を前記したように積層したとき,前記第 1伝熱プレー ト 2の裏面 2bにおける各山脈状隆起部 16の稜線と,前記第 2伝熱プレート 3の表面 3 aにおける各山脈状隆起部 18の稜線とを,その長い部分 (好ましくは全長)にわたつ て線状に接触するように構成することにより,前記各第 2熱交換室 6内のうち,当該第 2熱交換室 6内において互いに接触する前記各山脈状隆起部 16, 18間の部分に, 例えば,横方向,つまり,前記加熱用流体入口 12から前記加熱用流体出口 14に向 力う方向に対してこれを横切る方向に延びて両端が第 2熱交換室 6内に開口するトン ネル状流体通路 20を複数個並列に形成する。  On the other hand, when the heat transfer plates 2 and 3 are laminated as described above, the ridgeline of each mountain-shaped ridge 16 on the back surface 2b of the first heat transfer plate 2 and the second heat transfer plate The ridgeline of each mountain-shaped ridge 18 on the surface 3a of 3 is configured so as to come into linear contact over the long part (preferably the entire length) thereof, so that the inside of each second heat exchange chamber 6 Of the second heat exchanging chamber 6 between the mountain-shaped ridges 16 and 18 in contact with each other, for example, in the lateral direction, that is, from the heating fluid inlet 12 to the heating fluid outlet 14. A plurality of tunnel-like fluid passages 20 extending in a direction crossing the opposite direction and having both ends open into the second heat exchange chamber 6 are formed in parallel.
[0057] このように構成することにより,各第 2熱交換室 6内に加熱用流体入口 12から流入し た加熱用蒸気等の加熱用流体は,当該第 2熱交換室 6内にその両側の伝熱プレート 2, 3における各山脈状隆起部 16, 18にて形成されている各トンネル状流体通路 20 内に流入して,この各トンネル状流体通路 20によって,圧力損失が最も低くなる方向 に流れることを阻止して,図 4に矢印で示すように,前記加熱用流体入口 12から加熱 用流体出口 14に向力う方向に対して,例えば,これを横切る方向等のように,第 2熱 交換室 6内の全体にわたって広がるように誘導される一方,前記各第 1熱交換室 4内 に被蒸発液体供給口 13から流入した被蒸発液体は,前記第 2熱交換室 6からの加 熱によって蒸発しながら,当該第 1熱交換室 4内にその両側の伝熱プレート 2, 3にお ける各山脈状隆起部 15, 17にて形成されて 、る各トンネル状流体通路 19内に流入 して,この各トンネル状流体通路 19によって,圧力損失が最も低くなる方向に流れる ことを阻止して,図 3に矢印で示すように,前記被蒸発液体供給口 13から蒸気出口 1 1に向力う方向に対して,例えば,これを横切る方向等のように,第 1熱交換室 4内の 全体にわたって広がるように誘導されることにより,前記第 1熱交換室 4及び前記第 2 熱交換室 6内に流れの淀みができることを確実に低減できる。  With this configuration, the heating fluid such as heating steam that has flowed into each second heat exchange chamber 6 from the heating fluid inlet 12 passes into both sides of the second heat exchange chamber 6. The heat transfer plates 2 and 3 flow into the tunnel-like fluid passages 20 formed by the mountainous ridges 16 and 18, and the tunnel-like fluid passages 20 have the lowest pressure loss. As shown by the arrows in FIG. 4, for example, the direction crossing the direction from the heating fluid inlet 12 toward the heating fluid outlet 14 is (2) While being guided so as to spread throughout the heat exchange chamber (6), the liquid to be evaporated that has flowed into the first heat exchange chamber (4) from the liquid supply port (13) is supplied from the second heat exchange chamber (6). While evaporating by heating, heat transfer plates 2 on both sides of the first heat exchange chamber 4 3 formed in each mountain-like ridge 15, 17, and flows into each tunnel-like fluid passage 19, and flows through the tunnel-like fluid passage 19 in the direction in which the pressure loss becomes the lowest. As shown by an arrow in FIG. 3, the first heat exchange is performed in a direction, for example, a direction crossing the vapor outlet 11 from the liquid supply port 13 to be evaporated. By being guided so as to spread throughout the chamber 4, it is possible to reliably reduce the stagnation of the flow in the first heat exchange chamber 4 and the second heat exchange chamber 6.
[0058] この第 1の実施の形態において,前記した縦方向の山脈状隆起部 15, 17と,横方 向の山脈状隆起部 16, 18とを,図 7及び図 8に示すように,その交差箇所において 分断するというように断続状に構成した場合であつたが,図 9及び図 10に示すように ,例えば,縦方向の山脈状隆起部 15, 17を連続する構成にする一方,例えば,横方 向の山脈状隆起部 16, 18を分断するというように断続状に構成したり,或いは,図 1 1及び図 12に示すように,横方向の山脈状隆起部 16, 18を連続する構成にする一 方,縦方向の山脈状隆起部 15, 17を分断するというように断続状に構成したりするこ とがでさる。 [0058] In the first embodiment, the vertical mountainous ridges 15, 17 described above, As shown in Figs. 9 and 10, the mountain-shaped ridges 16 and 18 in the opposite direction are divided in such a way that they are divided at their intersections as shown in Figs. 7 and 8. For example, the vertical mountainous ridges 15 and 17 are configured to be continuous, while the horizontal mountainous ridges 16 and 18 are divided, for example, As shown in Fig. 11 and Fig. 12, the horizontal mountainous ridges 16 and 18 are configured to be continuous, while the vertical mountainous ridges 15 and 17 are configured to be intermittent. You can do it.
[0059] また,前記各山脈状隆起部 15, 16, 17, 18は,各伝熱プレート 2, 3とは別体にし て,これを各伝熱プレート 2, 3に対して溶接等にて固着するように構成しても良いが ,この各山脈状隆起部 15, 16, 17, 18を,前記したように,各伝熱プレート 2 , 3における一部を膨らみ変形することで形成するという構成にすることにより,前記 各伝熱プレート 2, 3における有効な伝熱面積の増大を図ることができるとともに,前 記各山脈状隆起部を,金属板に対するプレス加工によって形成することができる。  [0059] Each of the mountainous ridges 15, 16, 17, and 18 is separated from the heat transfer plates 2 and 3, and is attached to the heat transfer plates 2 and 3 by welding or the like. The mountainous ridges 15, 16, 17 and 18 may be formed by bulging and deforming a part of each of the heat transfer plates 2 and 3 as described above. With this configuration, it is possible to increase the effective heat transfer area in each of the heat transfer plates 2 and 3 and to form the mountainous ridges by pressing the metal plate.
[0060] しかも,前記各第 1熱交換室 4内における各トンネル状流体通路 19を,第 1伝熱プ レート 2の表面に設けた山脈状隆起部 15と第 2伝熱プレート 3の裏面に設けた山脈 状隆起部 17とを線状に接触することで形成し,前記各第 2熱交換室 6内における各ト ンネル状流体通路 20を,第 2伝熱プレート 3の表面に設けた山脈状隆起部 18と第 1 伝熱プレート 2の裏面に設けた山脈状隆起部 16とを線状に接触することで形成した ことにより,前記各山脈状隆起部 15, 16, 17, 18の高さ寸法を,当該各山脈状隆起 部を伝熱プレートにおける表面又は裏面のみに設ける場合よりも低くすることができ る。  [0060] Moreover, each tunnel-like fluid passage 19 in each first heat exchange chamber 4 is formed on the back surface of the mountain-shaped ridge 15 provided on the surface of the first heat transfer plate 2 and the second heat transfer plate 3. The mountain-shaped ridges 17 are formed in linear contact with each other, and the tunnel-shaped fluid passages 20 in the second heat exchange chambers 6 are provided on the surface of the second heat transfer plate 3. The ridge-like ridges 18 and the ridge-like ridges 16 provided on the back surface of the first heat transfer plate 2 are formed in linear contact with each other. The height dimension can be made lower than when the mountain-shaped ridges are provided only on the front or back surface of the heat transfer plate.
[0061] 更にまた,前記した各トンネル状流体通路 19, 20は,前記した構成によって形成 することに限らず,その一部又は全部を,前記各伝熱プレート 2, 3の間に介挿される シール兼用のスぺーサ体 5, 7から内向きに延びる延長部によって形成するように構 成することができる。  [0061] Furthermore, each of the tunnel-like fluid passages 19, 20 described above is not limited to being formed by the above-described configuration, and a part or all of the tunnel-like fluid passages 19, 20 are interposed between the heat transfer plates 2, 3. It can be configured to be formed by an extension extending inwardly from the spacer bodies 5 and 7 which are also used as seals.
[0062] そして,前記第 1の実施の形態は,プレート型熱交翻1は,蒸発器として使用する 場合であつたが,このプレート型熱交換器 1を,以下に述べるように,蒸気の凝縮器と して使用することができる。 [0063] すなわち,凝縮器として使用する場合には,前記蒸気出口 11を,凝縮しょうとする 蒸気の蒸気入口に,前記被蒸発液体供給口 13を凝縮水出口に,前記加熱用流体 入口 12及び前記加熱用流体出口 14のうち一方を冷却流体入口に,他方を冷却流 体出口に各々構成するのであり,この場合,図 3において流れの方向を示す矢印は ,逆向きになることはいうまでもない。 [0062] In the first embodiment, the plate-type heat exchanger 1 is used as an evaporator, but the plate-type heat exchanger 1 is used as a steam generator as described below. It can be used as a condenser. That is, when used as a condenser, the steam outlet 11 is used as a steam inlet for steam to be condensed, the liquid supply outlet 13 is used as a condensed water outlet, the heating fluid inlet 12 and One of the heating fluid outlets 14 is configured as a cooling fluid inlet and the other is configured as a cooling fluid outlet. In this case, it goes without saying that the arrow indicating the direction of flow in FIG. Nor.
[0064] 次に,図 13〜図 18は,第 2の実施の形態によるプレート型熱交 を示す。  Next, FIGS. 13 to 18 show a plate type heat exchange according to the second embodiment.
[0065] この第 2の実施の形態は,蒸発器として使用するプレート型熱交換器 31を,前記第 1の実施の形態の場合よりも大型にした場合である。  In the second embodiment, the plate heat exchanger 31 used as an evaporator is made larger than that in the first embodiment.
[0066] この第 2の実施の形態におけるプレート型熱交翻31は,比較的薄い金属板にて 矩形にした第 1伝熱プレート 32の複数枚と,同じく比較的薄い金属板にて矩形にし た第 2伝熱プレート 33の複数枚とを,第 1伝熱プレート 32と第 2伝熱プレート 33との 間に第 1熱交換室 34を形成するためのシール体 35を挟み,第 2伝熱プレート 33と第 1伝熱プレート 32との間に第 2熱交換室 36を形成するためのシール体 37を挟むよう に交互に積層し,この積層体を,その一端面に配設した面板 38と他端面に配設した 面板 39とを互いにボルト 40にて締結することによって構成して 、る。  [0066] The plate-type heat exchange 31 in the second embodiment includes a plurality of first heat transfer plates 32 which are rectangular with a relatively thin metal plate, and a rectangular shape with a relatively thin metal plate. A plurality of the second heat transfer plates 33 are sandwiched between the first heat transfer plate 32 and the second heat transfer plate 33, and a seal body 35 for forming the first heat exchange chamber 34 is sandwiched between the second heat transfer plate 33 and the second heat transfer plate 33. The heat plate 33 and the first heat transfer plate 32 are alternately laminated so as to sandwich the sealing body 37 for forming the second heat exchange chamber 36, and this laminated body is disposed on one end face of the face plate. 38 and the face plate 39 disposed on the other end surface are fastened to each other with bolts 40.
[0067] 前記各伝熱プレート 32, 33には,その上辺における略中央の部分又はその近傍 において前記各第 1熱交換室 34内に連通する横長の蒸気出口 41が,その上辺に おける両隅部又はこの両隅部に近い部分において前記各第 2熱交換室 36内に連通 する加熱用蒸気入口 42a, 42bが各々穿設され,これら蒸気出口 41及び両加熱用 蒸気入口 42a, 42bは,前記両面板 38, 39のうちいずれか一方又は両方に開口し ている。  [0067] Each of the heat transfer plates 32, 33 has a horizontally long steam outlet 41 communicating with the inside of each of the first heat exchange chambers 34 at the substantially central portion on the upper side or in the vicinity thereof at both corners on the upper side. Heating steam inlets 42a and 42b communicating with each of the second heat exchange chambers 36 are formed in a portion near the corners or both corners, respectively, and these steam outlet 41 and both heating steam inlets 42a and 42b are The double-sided plates 38 and 39 are open to one or both of them.
[0068] なお,前記蒸気出口 41は,上辺の一部に設けるという構成にすることができる。  [0068] The steam outlet 41 may be provided in a part of the upper side.
[0069] 更に,前記各伝熱プレート 32, 33には,その下辺における両隅部又はその近傍に おいて前記各第 1熱交換室 34内に連通する被蒸発液体供給口 43a, 43bが,その 下辺における略中央の部分又はその近傍において前記各第 2熱交換室 36内に連 通する加熱用蒸気凝縮水出口 44が各々穿設され,これら両被蒸発液体入口 43a, 4 3b及び加熱用蒸気凝縮水出口 44は,同じく,前記両面板 38, 39のうちいずれか一 方又は両方に開口している。 [0070] この構成において,前記各第 1熱交換室 34内に,両被蒸発液体供給口 43a, 43b から供給された被蒸発液体は,両側における前記第 2熱交換室 36からの熱伝達によ つて加熱されて沸騰蒸発し,発生した蒸気が,蒸発しなかった一部の被蒸発液体 (ブ ライン)と一緒に,前記各第 1熱交換室 34内から蒸気出口 41より排出される。 [0069] Furthermore, each of the heat transfer plates 32, 33 has evaporative liquid supply ports 43a, 43b communicating with each of the first heat exchange chambers 34 at or near the corners on the lower side thereof. Heating steam condensate outlets 44 communicating with the respective second heat exchange chambers 36 are formed in the central part of the lower side or in the vicinity thereof, respectively, and both the liquid to be evaporated outlets 43a, 43b and the heating outlets are provided. Similarly, the steam condensate outlet 44 is open to one or both of the double-sided plates 38 and 39. [0070] In this configuration, the liquid to be evaporated supplied from the both liquid supply ports 43a and 43b into each of the first heat exchange chambers 34 is used for heat transfer from the second heat exchange chamber 36 on both sides. Thus, the vapor generated by boiling and evaporating is discharged from the first heat exchange chamber 34 through the vapor outlet 41 together with a part of the liquid to be evaporated (brine) that has not evaporated.
[0071] 一方,前記各第 2熱交換室 36内に,両加熱用蒸気入口 42a, 42bから供給された 加熱用蒸気は,両側における前記第 1熱交換室 34への熱伝達によって冷却されて 凝縮し,その凝縮水が凝縮水出口 44から排出される。  On the other hand, the heating steam supplied from both heating steam inlets 42a and 42b into each second heat exchange chamber 36 is cooled by heat transfer to the first heat exchange chamber 34 on both sides. The condensed water is discharged from the condensed water outlet 44.
[0072] そして,前記各伝熱プレート 32, 33のうち前記第 1伝熱プレート 32には,図 15に示 すように,当該第 1伝熱プレート 32が前記第 1熱交換室 34内にのぞむ面 (表面)に, 例えば,縦方向に山脈状に延びる隆起部 45の複数個を,適宜間隔で平行に並べて 設けるとともに,当該第 1伝熱プレート 2が前記第 2熱交換室 36内にのぞむ面 (裏面) に,例えば,横方向に山脈状に延びる隆起部 46の複数個を,適宜間隔で平行に並 ベて設ける。  [0072] Of the heat transfer plates 32, 33, the first heat transfer plate 32 has the first heat transfer plate 32 in the first heat exchange chamber 34 as shown in FIG. For example, a plurality of raised portions 45 extending in a mountain range in the vertical direction are arranged in parallel at appropriate intervals on the desired surface (surface), and the first heat transfer plate 2 is placed in the second heat exchange chamber 36. For example, a plurality of raised portions 46 extending in a mountain range in the lateral direction are arranged in parallel at appropriate intervals on the desired surface (back surface).
[0073] 一方,前記各伝熱プレート 32, 33のうち前記第 2伝熱プレート 33には,図 16に示 すように,当該第 2伝熱プレート 33が前記第 1熱交換室 34内にのぞむ面 (表面)に, 例えば,縦方向に山脈状に延びる隆起部 47の複数個を,前記第 1伝熱プレート 32 の表面における各山脈状隆起部 46の配列に合わせて,適宜間隔で平行に並べて 設けるとともに,当該第 2伝熱プレート 33が前記第 2熱交換室 36内にのぞむ面 (裏面 )に,例えば,横方向に山脈状に延びる隆起部 48の複数個を,前記第 1伝熱プレー ト 32の裏面における各山脈状隆起部 46の配列に合わせて,適宜間隔で平行に並 ベて設ける。  On the other hand, among the heat transfer plates 32 and 33, the second heat transfer plate 33 has the second heat transfer plate 33 placed in the first heat exchange chamber 34 as shown in FIG. For example, a plurality of ridges 47 extending in a mountain range in the vertical direction are paralleled at an appropriate interval on the surface to be viewed (surface) according to the arrangement of the mountain ridges 46 on the surface of the first heat transfer plate 32. Are arranged side by side, and a plurality of raised portions 48 extending in a mountain range in the lateral direction, for example, are formed on the surface (back surface) of the second heat transfer plate 33 viewed in the second heat exchange chamber 36. In parallel to the arrangement of the mountain-shaped ridges 46 on the back surface of the heat plate 32, they are arranged in parallel at appropriate intervals.
[0074] 前記各山脈状隆起部 45, 46, 47, 48は,伝熱プレートの一部を膨らみ変形するこ とによって形成している。  [0074] Each of the mountainous ridges 45, 46, 47, 48 is formed by expanding and deforming a part of the heat transfer plate.
[0075] そして,前記各伝熱プレート 32, 33を前記したように積層したとき,前記第 1伝熱プ レート 32の表面における各山脈状隆起部 45の稜線と,前記第 2伝熱プレート 33の 表面における各山脈状隆起部 47の稜線とを,その長い部分 (好ましくは全長)にわた つて線状に接触するように構成することにより,前記各第 1熱交換室 34内のうち,当 該第 1熱交換室 34内において互いに接触する前記各山脈状隆起部 45, 47間の部 分に,例えば,縦方向,つまり,前記両被蒸発液体入口 43から前記蒸気出口 41に 向力う方向に対してこれを横切る方向に延びて両端が第 1熱交換室 34内に開口す るトンネル状の流体通路 49を複数個並列に形成する。 [0075] Then, when the heat transfer plates 32, 33 are stacked as described above, the ridgeline of each mountain-shaped ridge 45 on the surface of the first heat transfer plate 32 and the second heat transfer plate 33 By constructing the ridgeline of each mountain-shaped ridge 47 on the surface of the first heat exchange chamber 34 in such a way as to make a linear contact over its long part (preferably the entire length), In the first heat exchange chamber 34, the portions between the mountain-shaped ridges 45, 47 that are in contact with each other For example, the both ends open into the first heat exchange chamber 34 extending in the longitudinal direction, that is, in a direction transverse to the vapor outlet 41 from both the vaporized liquid inlets 43. A plurality of tunnel-like fluid passages 49 are formed in parallel.
[0076] 一方,前記各伝熱プレート 32, 33を前記したように積層したとき,前記第 1伝熱プ レート 32の裏面における各山脈状隆起部 46の稜線と,前記第 2伝熱プレート 33の 裏面における各山脈状隆起部 48の稜線とを,その長い部分 (好ましくは全長)にわた つて線状に接触するように構成することにより,前記各第 2熱交換室 36内のうち,当 該第 2熱交換室 36内において互いに接触する前記各山脈状隆起部 46, 48間の部 分に,例えば,横方向,つまり,前記両加熱蒸気入口 42から前記凝縮水出口 44に 向力う方向に対してこれを横切る方向に延びて両端が第 2熱交換室 36内に開口す るトンネル状の流体通路 50を複数個並列に形成する。  On the other hand, when the heat transfer plates 32, 33 are stacked as described above, the ridgeline of each mountain-shaped ridge 46 on the back surface of the first heat transfer plate 32 and the second heat transfer plate 33 In the second heat exchange chamber 36, the ridgeline of each mountain-shaped ridge 48 on the back surface of the second heat exchange chamber 36 is configured to come into linear contact with the long part (preferably the entire length). In the second heat exchange chamber 36, the portion between the mountain-shaped ridges 46 and 48 that are in contact with each other, for example, in the lateral direction, that is, from both the heated steam inlets 42 to the condensed water outlet 44. A plurality of tunnel-like fluid passages 50 that extend in a direction transverse to the direction and open at both ends into the second heat exchange chamber 36 are formed in parallel.
[0077] このように構成することにより,各第 2熱交換室 36内に両加熱蒸気入口 42a, 42b 力も流入した加熱用蒸気は,当該第 2熱交換室 36内にその両側の伝熱プレート 32, 33における各山脈状隆起部 46, 48にて形成されている各トンネル状流体通路 50内 に流入して,この各トンネル状流体通路 50によって,圧力損失が最も低くなる方向に 流れることを阻止して,図 16に矢印で示すように,前記両加熱用蒸気入口 42a, 42b 力も凝縮水出口 44に向力 方向に対して,例えば,これを横切る方向等のように,第 2熱交換室 36内の全体にわたって広がるように誘導される一方,前記各第 1熱交換 室 34内に両被蒸発液体供給口 43a, 43bから流入した被蒸発液体は,前記第 2熱 交換室 36からの加熱によって蒸発しながら,当該第 1熱交換室 34内にその両側の 伝熱プレート 32, 33における各山脈状隆起部 45, 47にて形成されている各トンネル 状流体通路 49内に流入して,この各トンネル状流体通路 49によって,圧力損失が最 も低くなる方向に流れることを阻止して,図 15に矢印で示すように,前記両被蒸発液 体供給口 43a, 43bから蒸気出口 41に向力 方向に対して,例えば,これを横切る方 向等のように,第 1熱交換室 34内の全体にわたって広がるように誘導されることにより ,前記第 1熱交換室 34及び前記第 2熱交換室 36内に流れの淀みができることを確 実に低減できる。 [0078] この第 2の実施の形態において,前記した縦方向の山脈状隆起部 45, 47と,横方 向の山脈状隆起部 46, 48とを,図示するように,その交差箇所において分断すると いうように断続状に構成することに代えて,前記第 1の実施の形態の場合と同様に, 縦方向の山脈状隆起部 45, 47を連続する構成にしたり,横方向の山脈状隆起部 46 , 48を連続する構成にしたりすることができる。 [0077] With such a configuration, the heating steam having both the heating steam inlets 42a, 42b force flowing into each second heat exchange chamber 36 is transferred into the second heat exchange chamber 36 on the heat transfer plates on both sides thereof. It flows into the tunnel-like fluid passages 50 formed by the mountainous ridges 46 and 48 at 32 and 33, and the tunnel-like fluid passages 50 flow in the direction in which the pressure loss becomes the lowest. As shown by the arrows in FIG. 16, the second steam exchange 42a, 42b is also used for the second heat exchange, for example, in the direction of the force toward the condensate outlet 44, for example, in the direction across it. On the other hand, the liquid to be evaporated flowing from both the liquid supply ports 43a and 43b into the first heat exchange chambers 34 is guided from the second heat exchange chamber 36. While evaporating by heating, heat transfer plates on both sides of the first heat exchange chamber 34 It flows into each tunnel-like fluid passage 49 formed at each mountain-like ridge 45, 47 at 32, 33, and flows through the tunnel-like fluid passage 49 in the direction in which the pressure loss becomes the lowest. As shown by the arrows in FIG. 15, the second liquid supply ports 43a, 43b are directed from the vapor outlet 41 to the vapor outlet 41 in the direction of the force, for example, in the direction crossing them. By being guided so as to spread over the entire inside of the first heat exchange chamber 34, it is possible to reliably reduce the occurrence of stagnation in the first heat exchange chamber 34 and the second heat exchange chamber 36. [0078] In the second embodiment, the vertical mountainous ridges 45, 47 and the horizontal mountainous ridges 46, 48 are divided at the intersections as shown in the figure. Thus, instead of being configured in an intermittent manner, as in the case of the first embodiment, the vertical mountainous ridges 45, 47 may be configured to be continuous, or the horizontal mountainous ridges may be configured. The parts 46 and 48 can be configured to be continuous.
[0079] なお,この第 2の実施の形態においては,前記各第 1伝熱プレート 32の表裏両面 における各山脈状隆起部を,図 19に示すように,く字状に屈曲した山脈状隆起部 45 ' , 46' にすることにより,全体としてヘリンボン模様の配列にする一方,前記各第 2 伝熱プレート 33の表裏両面における各山脈状隆起部を,図 21に示すように,く字状 に屈曲した山脈状隆起部 4 , 48' にすることにより,全体としてヘリンボン模様の 酉己歹 IJ〖こすることができる。  [0079] In the second embodiment, the mountain-shaped ridges on both the front and back surfaces of each first heat transfer plate 32 are bent in a square shape as shown in FIG. By forming the portions 45 'and 46' as a whole, the herringbone pattern is arranged as a whole, while the mountain-like ridges on both the front and back surfaces of each second heat transfer plate 33 are formed in a square shape as shown in FIG. By making the mountainous ridges 4, 48 'bent in a straight line, the overall herringbone pattern can be rubbed.
[0080] このようにヘリンボン模様の配列にすることで,伝熱面積を一層に増大できるのであ り,このへリンボン模様の配列にすることは,前記第 1の実施の形態に対しても同様に 適用できることは 、うまでもな 、。  [0080] By arranging the herringbone pattern in this way, the heat transfer area can be further increased. The arrangement of the herringbone pattern is the same as in the first embodiment. What can be applied to is undeniable.
[0081] また,この第 2の実施の形態においても,前記各山脈状隆起部を,各伝熱プレート とは別体にして,これを各伝熱プレートに対して溶接等にて固着するように構成して も良いことは勿論である。  [0081] Also in this second embodiment, each of the mountain-shaped ridges is separated from each heat transfer plate, and is fixed to each heat transfer plate by welding or the like. Of course, it may be configured as follows.
[0082] そして,前記第 2の実施の形態は,プレート型熱交翻31は,蒸発器として使用す る場合であつたが,このプレート型熱交翻31を,蒸気の凝縮器として使用すること ができる。  In the second embodiment, the plate-type heat exchanger 31 is used as an evaporator. However, the plate-type heat exchanger 31 is used as a steam condenser. be able to.
[0083] 凝縮器として使用する場合には,前記蒸気出口 41を蒸気入口に,前記被蒸発液 体供給口 43a, 43bを凝縮水出口に,前記両加熱用蒸気入口 42a, 42bのうち一方 の加熱用蒸気入口 42aを冷却流体入口に,他方の加熱用蒸気入口 42bを冷却流体 入口に各々構成するのであり,この場合,図 15及び図 19において,流れの方向を示 す矢印は,全て逆向きになることはいうまでもない。  [0083] When used as a condenser, the steam outlet 41 is a steam inlet, the liquid supply ports 43a and 43b are condensed water outlets, and one of the heating steam inlets 42a and 42b is used. The heating steam inlet 42a is configured as a cooling fluid inlet, and the other heating steam inlet 42b is configured as a cooling fluid inlet. In this case, the arrows indicating the flow direction in FIGS. 15 and 19 are all reversed. It goes without saying that it will be oriented.
[0084] 次に,図 22〜図 25は,第 3の実施の形態を示す。  Next, FIGS. 22 to 25 show a third embodiment.
[0085] この第 3の実施の形態は,蒸発器として使用するプレート型熱交換器の変形例であ り,前記第 2の実施の形態の場合と同様に,大型にした場合である。 [0086] この第 3の実施の形態におけるプレート型熱交 は,比較的薄い金属板にて 矩形にした第 1伝熱プレート 62の複数枚と,同じく比較的薄い金属板にて矩形にし た第 2伝熱プレート 63の複数枚とを,第 1伝熱プレート 62と第 2伝熱プレート 63との 間に第 1熱交換室 64を形成するためのシール体 65を挟み,第 2伝熱プレート 63と第 1伝熱プレート 62との間に第 2熱交換室 66を形成するためのシール体 67を挟むよう に交互に積層し,この積層体を,その一端面に配設した面板 68と他端面に配設した 面板 69とを互いにボルト 70にて締結することによって構成して 、る。 This third embodiment is a modification of the plate type heat exchanger used as an evaporator, and is a case where it is made large as in the case of the second embodiment. [0086] The plate-type heat exchange in the third embodiment includes a plurality of first heat transfer plates 62 that are rectangular with a relatively thin metal plate, and a rectangular shape with a relatively thin metal plate. (2) A plurality of heat transfer plates (63) are sandwiched between a first heat transfer plate (62) and a second heat transfer plate (63), and a sealing body (65) is formed to form a first heat exchange chamber (64). 63 and the first heat transfer plate 62 are alternately laminated so that the seal body 67 for forming the second heat exchange chamber 66 is sandwiched between them, and this laminated body is attached to a face plate 68 disposed on one end face thereof. A face plate 69 disposed on the other end face is fastened to each other with bolts 70, and is configured.
[0087] 前記各伝熱プレート 62, 63には,その上辺における略中央の部分又はその近傍 において前記各第 1熱交換室 64内に連通する横長の蒸気出口 71が,その上辺に おける左右両隅部のうち一方の隅部又はその近傍に,前記各第 2熱交換室 66内に 連通する温水等の加熱用流体入口 72aが,他方の隅部又はその近傍に前記各第 2 熱交換室 66内に連通する加熱用流体出口 72bが各々穿設され,これら蒸気出口 71 ,加熱用流体入口 72a及び加熱用流体出口 72bは,前記両面板 68, 69のうちいず れか一方又は両方に開口している。  [0087] Each of the heat transfer plates 62, 63 has a horizontally long steam outlet 71 communicating with the inside of each of the first heat exchange chambers 64 at the substantially central portion on the upper side thereof or in the vicinity thereof. A heating fluid inlet 72a such as hot water communicating with the inside of each of the second heat exchange chambers 66 is provided at one of the corners or in the vicinity thereof, and each of the second heat exchange chambers is provided at or near the other corner. 66, a heating fluid outlet 72b communicating with each other is formed, and the steam outlet 71, the heating fluid inlet 72a, and the heating fluid outlet 72b are provided on one or both of the double-sided plates 68 and 69. It is open.
[0088] なお,前記蒸気出口 71は,上辺の一部に設ける構成にすることができる。  [0088] The steam outlet 71 may be provided in a part of the upper side.
[0089] 更に,前記各伝熱プレート 62, 63には,その下辺における左右両隅部又はその近 傍において前記各第 1熱交換室 64内に連通する被蒸発液体入口 73a, 73bが穿設 され,これら両被蒸発液体入口 73a, 73bは,同じく,前記両面板 68, 69のうちいず れか一方又は両方に開口している。  [0089] Furthermore, the heat transfer plates 62, 63 are provided with evaporative liquid inlets 73a, 73b communicating with the first heat exchange chambers 64 at or near the left and right corners of the lower side thereof. The two liquid-evaporated liquid inlets 73a and 73b are also open to one or both of the double-sided plates 68 and 69.
[0090] この構成において,前記各第 1熱交換室 64内に,両被蒸発液体入口 73a, 73bか ら供給された被蒸発液体は,両側における前記第 2熱交換室 66からの熱伝達によつ て加熱されて沸騰 '蒸発し,発生した蒸気が,蒸発しなかった一部の被蒸発液体 (ブ ライン)と一緒に,前記各第 1熱交換室 64内から蒸気出口 71より排出される。  In this configuration, the liquid to be evaporated supplied from the both liquid inlets 73a and 73b into each first heat exchange chamber 64 is transferred to the heat from the second heat exchange chamber 66 on both sides. As a result, it is heated and boiled. The evaporated vapor is discharged from the first heat exchange chamber 64 through the vapor outlet 71 together with a part of the liquid to be evaporated (brine) that has not evaporated. The
[0091] 一方,前記各第 2熱交換室 66内に,加熱用流体入口 72aから供給された加熱用流 体は,両側における前記第 1熱交換室 64への熱伝達したのち,加熱用流体出口 72 bから排出される。  On the other hand, the heating fluid supplied from the heating fluid inlet 72a into each of the second heat exchange chambers 66 transfers heat to the first heat exchange chamber 64 on both sides, and then the heating fluid. It is discharged from outlet 72b.
[0092] そして,前記各伝熱プレート 62, 63のうち前記第 1伝熱プレート 62には,前記第 2 の実施の形態の場合と同様に,図 24に示すように,当該第 1伝熱プレート 62が前記 第 1熱交換室 64内にのぞむ面 (表面)に,例えば,縦方向に山脈状に延びる隆起部 75の複数個を,適宜間隔で平行に並べて設けるとともに,当該第 1伝熱プレート 62 が前記第 2熱交換室 66内にのぞむ面 (裏面)に,例えば,横方向に山脈状に延びる 隆起部 76の複数個を,適宜間隔で平行に並べて設ける。 [0092] As shown in Fig. 24, the first heat transfer plate 62 of the heat transfer plates 62, 63 includes the first heat transfer plate 62, as in the second embodiment. Plate 62 For example, a plurality of raised portions 75 extending in a mountain shape in the vertical direction are arranged in parallel at appropriate intervals on the surface (surface) looking into the first heat exchange chamber 64, and the first heat transfer plate 62 is For example, a plurality of ridges 76 extending in a mountain range in the lateral direction are arranged in parallel at appropriate intervals on the surface (back surface) looking into the second heat exchange chamber 66.
[0093] 一方,前記各伝熱プレート 62, 63のうち前記第 2伝熱プレート 63には,前記第 2の 実施の形態の場合と同様に,図 25に示すように,当該第 2伝熱プレート 63が前記第 1熱交換室 64内にのぞむ面 (表面)に,例えば,縦方向に山脈状に延びる隆起部 77 の複数個を,前記第 1伝熱プレート 62の表面における各山脈状隆起部 76の配列に 合わせて,適宜間隔で平行に並べて設けるとともに,当該第 2伝熱プレート 63が前 記第 2熱交換室 66内にのぞむ面 (裏面)に,例えば,横方向に山脈状に延びる隆起 部 78の複数個を,前記第 1伝熱プレート 62の裏面における各山脈状隆起部 76の配 列に合わせて,適宜間隔で平行に並べて設ける。  On the other hand, among the heat transfer plates 62 and 63, the second heat transfer plate 63 has the second heat transfer plate as shown in FIG. 25, as in the second embodiment. On the surface (surface) of the plate 63 looking into the first heat exchange chamber 64, for example, a plurality of ridges 77 extending in a mountain shape in the vertical direction are provided on the surface of the first heat transfer plate 62. The second heat transfer plate 63 is arranged in parallel at an appropriate interval in accordance with the arrangement of the portions 76, and the second heat transfer plate 63 is formed on the surface (back surface) that is viewed in the second heat exchange chamber 66, for example, in a mountain range in the lateral direction. A plurality of extending ridges 78 are arranged in parallel at appropriate intervals according to the arrangement of the mountainous ridges 76 on the back surface of the first heat transfer plate 62.
[0094] 前記各山脈状隆起部 75, 76, 77, 78は,伝熱プレートの一部を膨らみ変形するこ とによって形成している。  [0094] Each of the mountainous ridges 75, 76, 77, 78 is formed by bulging and deforming a part of the heat transfer plate.
[0095] そして,前記各伝熱プレート 62, 63を前記したように積層したとき,前記第 1伝熱プ レート 62の表面における各山脈状隆起部 75の稜線と,前記第 2伝熱プレート 63の 表面における各山脈状隆起部 77の稜線とを,その長い部分 (好ましくは全長)にわた つて線状に接触するように構成することにより,前記各第 1熱交換室 64内のうち,当 該第 1熱交換室 64内において互いに接触する前記各山脈状隆起部 75, 77間の部 分に,例えば,縦方向,つまり,前記両被蒸発液体入口 73a, 73bから蒸気出口 71 に向力う方向に対してこれを横切る方向に延びて両端が第 1熱交換室 74内に開口 するトンネル状の流体通路 79を複数個並列に形成する。  [0095] Then, when the heat transfer plates 62, 63 are stacked as described above, the ridgeline of each mountain-shaped ridge 75 on the surface of the first heat transfer plate 62, and the second heat transfer plate 63 In the first heat exchange chamber 64, the ridgeline of each mountain-shaped ridge 77 on the surface of each of the first heat exchange chambers 64 is configured to come into linear contact with the long part (preferably the entire length). In the first heat exchange chamber 64, in the portion between the mountain-shaped ridges 75 and 77 that are in contact with each other, for example, in the vertical direction, that is, from both the vaporized liquid inlets 73a and 73b to the vapor outlet 71 A plurality of tunnel-like fluid passages 79 that extend in a direction crossing the opposite direction and open at both ends into the first heat exchange chamber 74 are formed in parallel.
[0096] 一方,前記各伝熱プレート 62, 63を前記したように積層したとき,前記第 1伝熱プ レート 62の裏面における各山脈状隆起部 76の稜線と,前記第 2伝熱プレート 63の 裏面における各山脈状隆起部 78の稜線とを,その長い部分 (好ましくは全長)にわた つて接触するように構成することにより,前記各第 2熱交換室 66内のうち,当該第 2熱 交換室 66内において互いに接触する前記各山脈状隆起部 76, 78間の部分に,例 えば,横方向,つまり,前記加熱用流体入口 72aから前記加熱用流体出口 72bに向 力う方向に対してこれを横切る方向に延びて両端が第 2熱交換室 66内に開口するト ンネル状流体通路 80を複数個並列に形成する。 On the other hand, when the heat transfer plates 62 and 63 are stacked as described above, the ridgeline of each mountain-shaped ridge 76 on the back surface of the first heat transfer plate 62 and the second heat transfer plate 63 In the second heat exchange chamber 66, the second heat exchange chamber 66 is configured such that the ridgeline of each mountain-shaped ridge 78 on the back surface of the second heat exchange chamber 66 is in contact with the long part (preferably the entire length). In the exchange chamber 66, the portion between the mountainous ridges 76 and 78 that are in contact with each other, for example, in the lateral direction, that is, from the heating fluid inlet 72a to the heating fluid outlet 72b. A plurality of tunnel-like fluid passages 80 extending in a direction transverse to the direction of force and having both ends open into the second heat exchange chamber 66 are formed in parallel.
[0097] このように構成することにより,各第 2熱交換室 66内に前記加熱用流体入口 72aか ら流入した加熱用流体は,当該第 2熱交換室 66内にその両側の伝熱プレート 62, 6 3における各山脈状隆起部 76, 78にて形成されて 、る各トンネル状流体通路 80内 に流入して,この各トンネル状流体通路 80によって,圧力損失が最も低くなる方向に 流れることを阻止して,図 25に矢印で示すように,前記加熱用流体入口 72aから加 熱用流体出口 72bに向力 方向に対して,例えば,これを横切る方向等のように,第 2熱交換室 66内の全体にわたって広がるように誘導される一方,前記各第 1熱交換 室 64内に両被蒸発液体入口 73a, 73bから流入した被蒸発液体は,前記第 2熱交 換室 66からの加熱によって沸騰'凝縮しながら,当該第 1熱交換室 64内にその両側 の伝熱プレート 62, 63における各山脈状隆起部 75, 77にて形成されている各トンネ ル状流体通路 79内に流入して,この各トンネル状流体通路 79によって,圧力損失が 最も低くなる方向に流れることを阻止して,図 24に矢印で示すように,前記両被蒸発 液体入口 73a, 73bから前記蒸気出口 71に向力 方向に対して,例えば,これを横 切る方向等のように,第 1熱交換室 64内の全体にわたって広がるように誘導されるこ とにより,前記第 1熱交換室 64及び前記第 2熱交換室 66内に流れの淀みができるこ とを確実に低減できる。 With this configuration, the heating fluid that has flowed into each second heat exchange chamber 66 from the heating fluid inlet 72a is transferred into the second heat exchange chamber 66 on both sides of the heat transfer plate. 62, 63, which are formed by the respective mountainous ridges 76, 78, flow into the respective tunnel-like fluid passages 80, and flow through the tunnel-like fluid passages 80 in the direction in which the pressure loss becomes the lowest. As shown by the arrow in FIG. 25, the second heat is applied from the heating fluid inlet 72a to the heating fluid outlet 72b with respect to the direction of the direction of force, for example, in the direction crossing this. While being guided so as to spread throughout the entire exchange chamber 66, the liquid to be evaporated flowing into the first heat exchange chambers 64 from both the vaporized liquid inlets 73 a and 73 b is transferred from the second heat exchange chamber 66. While boiling and condensing by heating, the heat transfer process on both sides of the first heat exchange chamber 64 Flows into the tunnel-like fluid passages 79 formed by the mountainous ridges 75 and 77 at the gates 62 and 63, and the tunnel-like fluid passages 79 cause the pressure loss to become the lowest. As shown by the arrows in FIG. 24, the flow from both the liquid inlets 73a, 73b to the vapor outlet 71 is directed to the direction of the force, for example, the direction across the direction, etc. By being guided so as to spread throughout the first heat exchange chamber 64, it is possible to reliably reduce the stagnation of the flow in the first heat exchange chamber 64 and the second heat exchange chamber 66.
[0098] この第 3の実施の形態においても,前記した表面側への縦方向の山脈状隆起部 75 , 77と,裏面側への横方向の山脈状隆起部 76, 78とを,図示のように,その交差箇 所にぉ ヽて分断すると ヽうように断続状に構成することに代えて,前記第 1の実施の 形態の場合と同様に,縦方向の山脈状隆起部 75, 77を連続する構成にしたり,横方 向の山脈状隆起部 76, 78を連続する構成にしたりすることができる。  Also in the third embodiment, the above-described vertical mountain-shaped ridges 75 and 77 on the front side and the horizontal mountain-shaped ridges 76 and 78 on the back side are shown in the figure. As described above, instead of being configured in an intermittent manner so as to divide at the intersection, the vertical mountainous ridges 75, 77 are the same as in the first embodiment. Can be configured to be continuous, or the mountainous ridges 76, 78 in the lateral direction can be configured to be continuous.
[0099] なお,この第 3の実施の形態においても,前記各第 1伝熱プレート 62の表裏両面に おける各山脈状隆起部,及び,前記各第 2伝熱プレート 63の表裏両面における各山 脈状隆起部を,く字状に屈曲した山脈状隆起部にすることにより,全体としてヘリンボ ン模様の配列にしたりすることができる。  [0099] In this third embodiment, each mountain-shaped ridge on both the front and back surfaces of each first heat transfer plate 62 and each mountain on both front and back surfaces of each second heat transfer plate 63 are also described. By making the vein-like ridges into mountain-like ridges that are bent in a square shape, a herringbone pattern can be formed as a whole.
[0100] また,この第 3の実施の形態においても,前記各山脈状隆起部を,各伝熱プレート とは別体にして,これを各伝熱プレートに対して溶接等にて固着するように構成して も良いことは勿論である。 [0100] Also in this third embodiment, each of the mountainous ridges is connected to each heat transfer plate. Of course, it may be configured separately from the heat transfer plate and fixed to each heat transfer plate by welding or the like.
[0101] そして,前記第 3の実施の形態は,プレート型熱交翻61は,蒸発器として使用す る場合であつたが,このプレート型熱交換器 61を,蒸気の凝縮器として使用すること ができる。  [0101] In the third embodiment, the plate-type heat exchanger 61 is used as an evaporator. However, the plate-type heat exchanger 61 is used as a steam condenser. be able to.
[0102] 凝縮器として使用する場合には,前記蒸気出口 71を蒸気入口に,前記被蒸発液 体供給口 73a, 73bを凝縮水出口に,前記加熱用流体入口 72aを冷却用流体入口 に,前記加熱用流体出口 72bを冷却用流体出口に各々構成するのである。  [0102] When used as a condenser, the steam outlet 71 is a steam inlet, the liquid supply ports 73a and 73b are condensed water outlets, and the heating fluid inlet 72a is a cooling fluid inlet. The heating fluid outlet 72b is configured as a cooling fluid outlet.
[0103] この場合,図 24において,流れの方向を示す矢印は,全て逆向きになることはいう までもなく,また,この場合には,前記各第 1熱交換室 64における下辺の中央の部分 に,凝縮水出口 81を設ける一方,下辺の左右両隅部における被蒸発液体供給口 73 a, 73bを不凝縮性ガスの抽出口に構成するようにしても良い。  [0103] In this case, in FIG. 24, it is needless to say that the arrows indicating the direction of flow are all reversed, and in this case, the center of the lower side in each of the first heat exchange chambers 64 is also shown. While the condensate outlet 81 is provided in the part, the liquid supply ports 73a and 73b at the left and right corners of the lower side may be configured as the non-condensable gas extraction ports.
[0104] この第 3の実施の形態によるプレート型熱交 における変形例として,図 26 及び図 27に示すように構成することができる。  [0104] As a modification of the plate-type heat exchange according to the third embodiment, it can be configured as shown in Figs.
[0105] すなわち,この変形例は,前記第 2熱交換室 66内への加熱用流体入口 72aを,矩 形の上辺における一方の隅部から下辺の一方の隅部における被蒸発液体供給口 7 3aに隣接する部位に,前記第 2熱交換室 66内からの加熱用流体出口 72bを,前記 矩形の上辺における一方の隅部に各々移動する一方,前記第 2熱交換室 66内に, スぺーサ体 67から内向きに一体に延びる仕切り部 6 を設けることにより,前記カロ 熱用流体入口 72aから加熱用流体出口 72bに向力つて折り返し状流れ通路に構成 したものである。  That is, in this modification, the heating fluid inlet 72a into the second heat exchange chamber 66 is connected to the evaporative liquid supply port 7 from one corner on the upper side of the rectangle to one corner on the lower side. 3a, the heating fluid outlet 72b from the second heat exchange chamber 66 is moved to one corner of the upper side of the rectangle, while the second heat exchange chamber 66 is swept. By providing a partition portion 6 that integrally extends inwardly from the spacer body 67, a folded flow passage is formed by directing force from the fluid heating fluid inlet 72a to the heating fluid outlet 72b.
[0106] この場合においても,前記折り返し状流れ通路の内部には,前記第 3の実施の形 態と同様に,各山脈状隆起部 76, 78にて複数のトンネル状流体通路 80が形成され て!、ることは!、うまでもな!/、。  [0106] Also in this case, a plurality of tunnel-like fluid passages 80 are formed in the mountain-shaped ridges 76 and 78 in the folded flow passage, as in the third embodiment. ! What is it! /.
[0107] この構成にすると,矩形の上辺における蒸気出口 71における上辺に沿って当該上 辺における他方の隅部にまで延長して,その流れ抵抗を低くすることができる一方, 前記第 2熱交換室 66内における熱伝達を,仕切り部 6 による折り返し状の流れ通 路の形成によって加熱用流体を前記第 2熱交換室 66内の全体にいきわたらせること と,加熱用流体の流れ速度を上昇させることとで,大幅に促進できるから,蒸発又は 凝縮の処理能力のアップを図ることができる。特に,加熱用流体として非凝縮性の液 体を用いる場合に適して 、る。 With this configuration, the flow resistance can be lowered by extending along the upper side of the steam outlet 71 on the upper side of the rectangle to the other corner of the upper side, while the second heat exchange is performed. Heat transfer in the chamber 66 is caused to spread the heating fluid throughout the second heat exchange chamber 66 by forming a folded flow path by the partition 6. And by increasing the flow rate of the heating fluid, it can be greatly accelerated, so the processing capacity for evaporation or condensation can be increased. It is particularly suitable when non-condensable liquid is used as the heating fluid.
[0108] また,前記第 3の実施の形態によるプレート型熱交換器 61における別の変形例とし て,図 28及び図 29に示すように構成することができる。  Further, as another modification of the plate heat exchanger 61 according to the third embodiment, it can be configured as shown in FIG. 28 and FIG.
[0109] すなわち,この別の変形例は,前記加熱用流体入口 72aを二つにして,矩形の一 端部の上下に設ける一方,前記加熱用流体出口 72bを,矩形の他端部の下隅部に 設けて,更に,前記第 2熱交換室 66内に,スぺーサ体 67から内向きに一体に延びる 仕切り部 67"を設けることにより,前記両加熱用流体入口 72aから加熱用流体出口 72bに向力つて二つの流れ通路を形成するという構成にしたものである。  [0109] That is, in this other modified example, two heating fluid inlets 72a are provided above and below one end of the rectangle, while the heating fluid outlet 72b is provided at the lower corner of the other end of the rectangle. In addition, a partitioning portion 67 "that extends integrally inward from the spacer body 67 is provided in the second heat exchange chamber 66, so that the heating fluid outlet 72a is connected to the both heating fluid inlets 72a. The structure is such that two flow passages are formed by applying force to 72b.
[0110] この場合においても,前記二つの流れ通路の内部には,前記第 3の実施の形態と 同様に,各山脈状隆起部 76, 78にて複数のトンネル状流体通路 80が形成されてい ることはいうまでもない。  [0110] Also in this case, a plurality of tunnel-like fluid passages 80 are formed in each of the mountain-like ridges 76 and 78 in the two flow passages as in the third embodiment. Needless to say.
[0111] この構成によると,前記図 26及び図 27に示す変形例と同様に,蒸気出口 71にお ける上辺に沿って当該上辺における他方の隅部にまで延長して,その流れ抵抗を低 くできることにカ卩えて,前記第 2熱交換室 66内における熱伝達を仕切り部 67〃 による 二つの流れ通路の形成によって促進できるから,蒸発又は凝縮の処理能力のアップ を図ることができる。特に,加熱用流体として水蒸気を用いる場合に適している。  [0111] According to this configuration, as in the modification shown in Figs. 26 and 27, the flow resistance is reduced along the upper side of the steam outlet 71 to the other corner of the upper side. In addition to this, heat transfer in the second heat exchange chamber 66 can be promoted by forming two flow passages by the partition 67〃, so that the processing capacity for evaporation or condensation can be increased. It is particularly suitable when steam is used as the heating fluid.
[0112] なお,前記図 26及び図 27に示す変形例,並びに,前記図 28及び図 29に示す別 の変形例において,第 2熱交換室 66内に加熱用流体に対するトンネル状流体通路 8 0をするための各山脈状隆起部 76, 78は,図に示すように,スぺーサ体 67から一体 に延びる仕切り部 6 , 67〃 にて通路断面が区分されていることにより,前記仕切り 部 67^ , 67"を設ける分だけ少なくできることはいうまでもない。  [0112] In the modification shown in Figs. 26 and 27 and the other modification shown in Figs. 28 and 29, a tunnel-like fluid passage 80 for the heating fluid is provided in the second heat exchange chamber 66. As shown in the figure, the mountainous ridges 76 and 78 are divided by a partition section 6 and 67 mm extending integrally from the spacer body 67, so that the partition section Needless to say, 67 ^ and 67 "can be reduced.
[0113] また,前記図 26及び図 27に示す変形例においては,一回だけの折り返し通路に する場合を示したが,二回又は三回の折り返し通路に構成することができる。  [0113] In the modification shown in Fig. 26 and Fig. 27, the case where the return path is made only once is shown, but it can be constituted by the return path twice or three times.

Claims

請求の範囲 The scope of the claims
[1] 伝熱プレートの複数枚を,その間に蒸気の発生又は蒸気の凝縮を行う第 1熱交換 室と,加熱又は冷却を行う第 2熱交換室とを交互に形成するように積層して成るプレ ート型熱交換器において,  [1] A plurality of heat transfer plates are laminated so that a first heat exchange chamber for generating or condensing steam and a second heat exchange chamber for heating or cooling are alternately formed between them. In the plate type heat exchanger consisting of
前記第 1熱交換室及び第 2熱交換室のうちいずれか一方又は両方の熱交換室内 に,当該熱交換室を形成する一対の伝熱プレートに沿って延びるように構成したトン ネル状の流体通路を,その両端が前記熱交換室内に開口するように形成することを 特徴とするプレート型熱交換器。  A tunnel-shaped fluid configured to extend in one or both of the first heat exchange chamber and the second heat exchange chamber along a pair of heat transfer plates forming the heat exchange chamber. A plate-type heat exchanger characterized in that the passage is formed so that both ends thereof open into the heat exchange chamber.
[2] 前記請求項 1の記載において,前記トンネル状流体通路が,当該熱交換室を形成 する一対の伝熱プレートの間に挟まれるスぺーサ体に設けた仕切り部にて形成され て 、ることを特徴とするプレート型熱交^^。 [2] In the description of claim 1, the tunnel-like fluid passage is formed by a partition portion provided in a spacer body sandwiched between a pair of heat transfer plates forming the heat exchange chamber. Plate-type heat exchange ^^
[3] 前記請求項 1の記載において,前記トンネル状流体通路が,当該熱交換室を形成 する一対の伝熱プレートに設けた山脈状隆起部における稜線を当該熱交換室内に ぉ 、て線状に接触することによって形成されて 、ることを特徴とするプレート型熱交 概 [3] In the first aspect of the present invention, the tunnel-like fluid passage is formed in a linear shape by connecting a ridge line at a mountain-shaped ridge provided in a pair of heat transfer plates forming the heat exchange chamber into the heat exchange chamber. A plate-type heat exchanger characterized by being formed by contact with
[4] 前記請求項 3の記載において,前記山脈状隆起部が,前記伝熱プレートの一部を 膨らませ変形して形成した構成であることを特徴とするプレート型熱交^^。  [4] The plate-type heat exchanger according to claim 3, wherein the mountain-shaped ridge is formed by expanding and deforming a part of the heat transfer plate.
[5] 伝熱プレートの複数枚を,その間に蒸気の発生又は蒸気の凝縮を行う第 1熱交換 室と,加熱又は冷却を行う第 2熱交換室とを交互に形成するように積層して成るプレ ート型熱交換器において,  [5] Laminate multiple heat transfer plates so that the first heat exchange chamber for generating or condensing steam and the second heat exchange chamber for heating or cooling are alternately formed between them. In the plate type heat exchanger consisting of
前記各伝熱プレートにおける表面及び裏面に,山脈状に延びる隆起部の複数本を 並べて設けて,前記伝熱プレートを積層したとき,前記伝熱プレートの表面の各山脈 状隆起部における稜線と裏面の各山脈状隆起部における稜線とが前記各第 1熱交 換室内及び前記各第 2熱交換室内においてその長い部分にわたって線状に接触し て,前記各第 1熱交換室内のうち前記各山脈状隆起部の間の部分に,複数個のトン ネル状の流体通路を,その両端が第 1熱交換室内に開口するように形成する一方, 前記各第 2熱交換室内のうち前記各山脈状隆起部の間の部分に,複数個のトンネル 状の流体通路を,その両端が第 2熱交換室内に開口するように形成することを特徴と するプレート型熱交換器。 When the heat transfer plates are stacked by arranging a plurality of ridges extending in a mountain range on the front and back surfaces of each heat transfer plate, the ridge lines and the back surfaces of the mountain ridges on the surface of the heat transfer plate are stacked. The ridgeline in each mountain-shaped ridge is in linear contact over the long part in each first heat exchange chamber and each second heat exchange chamber, and each mountain range in each first heat exchange chamber A plurality of tunnel-shaped fluid passages are formed in the portion between the ridges so that both ends open into the first heat exchange chamber, while each of the second heat exchange chambers has the mountain range. A plurality of tunnel-like fluid passages are formed in the part between the ridges so that both ends open into the second heat exchange chamber. Plate type heat exchanger.
[6] 前記請求項 5の記載において,前記各伝熱プレートにおける各山脈状隆起部が, 前記伝熱プレートの一部を膨らませ変形して形成した構成であることを特徴とするプ レート型熱交換器。  [6] The plate-type heat according to claim 5, wherein each of the mountain-shaped ridges in each heat transfer plate is formed by expanding and deforming a part of the heat transfer plate. Exchanger.
[7] 前記請求項 5又は 6の記載において,前記各伝熱プレートにおける各山脈状隆起 部が,前記伝熱プレートの積層方向から見てヘリンボン模様の配列であることを特徴 とするプレート型熱交^^。  [7] The plate-type heat according to claim 5 or 6, wherein each mountain-shaped ridge in each heat transfer plate has a herringbone pattern as viewed from the stacking direction of the heat transfer plates. Exchange ^^.
[8] 前記請求項 5又は 6の記載において,前記各伝熱プレートにおける各山脈状隆起 部が,断続する構成であることを特徴とするプレート型熱交^^。  [8] The plate-type heat exchanger according to claim 5 or 6, wherein each mountain-like ridge in each heat transfer plate is intermittent.
[9] 前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から見 て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺における 両隅部のうち一方の隅部又はその近傍或いは前記上辺の一部に前記各第 1熱交換 室からの蒸気出口或いは各第 1熱交換室への蒸気入口が,当該上辺における両隅 部のうち他方の隅部又はその近傍に前記各第 2熱交換室内に対する加熱用流体入 口又は加熱用流体出口或いは前記各第 2熱交換室に対する冷却用流体入口又は 冷却用流体出口が各々設けられ,前記矩形状の各伝熱プレートにおける下辺には, 当該下辺における両隅部のうち前記蒸気出口或いは蒸気入口と対角を成す隅部又 はその近傍に前記各第 1熱交換室への被蒸発液体入口或いは前記各第 1熱交換室 力 の凝縮水出口力 当該下辺における両隅部のうち前記加熱用流体入口又は加 熱用流体出口或いは冷却用流体入口又は冷却用流体出口と対角を成す他方の隅 部又はその近傍に前記各第 2熱交換室に対する加熱用流体出口又は加熱用流体 入口或いは前記各第 2熱交換室に対する冷却用流体出口又は冷却用流体入口が 各々設けられて ヽることを特徴とするプレート型熱交^^。  [9] In claim 5 or 6, each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each rectangular heat transfer plate has both corners on the upper side. The steam outlet from each of the first heat exchange chambers or the steam inlet to each of the first heat exchange chambers is located at one corner of the corner, in the vicinity thereof, or at a part of the upper side. A heating fluid inlet or a heating fluid outlet for each of the second heat exchange chambers or a cooling fluid inlet or a cooling fluid outlet for each of the second heat exchange chambers is provided at a corner or in the vicinity thereof. The lower side of each of the heat transfer plates includes a liquid inlet to the first heat exchange chamber or a corner at or near a corner of the lower side opposite to the vapor outlet or the vapor inlet. Condensation of each first heat exchange chamber force Outlet force Each of the second heat exchanges at or near the other corner that forms a diagonal with the heating fluid inlet or heating fluid outlet or the cooling fluid inlet or cooling fluid outlet of both corners on the lower side. A plate-type heat exchanger having a heating fluid outlet or a heating fluid inlet to the chamber or a cooling fluid outlet or a cooling fluid inlet to each of the second heat exchange chambers.
[10] 前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から見 て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺のうち略 中央の部分又はその近傍に前記各第 1熱交換室に対する蒸気出口或いは蒸気入 口が,当該上辺における両隅部のうち一方の隅部又はその近傍に前記各第 2熱交 換室に対する加熱用蒸気入口或いは前記各第 2熱交換室に対する冷却用流体入 口が,他方の隅部又はその近傍に前記各第 2熱交換室に対する加熱用蒸気入口或 いは前記各第 2熱交換室に対する冷却用流体出口が各々設けられ,前記矩形状各 伝熱プレートにおける下辺又はその近傍には,前記各第 1熱交換室に対する被蒸発 液体供給口及び前記各第 2熱交換室に対する加熱用蒸気凝縮水出口が設けられて いるか,或いは前記各第 1熱交換室に対する凝縮水出口が設けられていることを特 徴とするプレート型熱交^^。 [10] In the above description of claim 5 or 6, each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each of the rectangular heat transfer plates has a substantially central portion of the upper side. The steam outlet or steam inlet for each of the first heat exchange chambers is at or near the portion, and the steam for heating the respective second heat exchange chambers at or near one of the corners on the upper side. Cooling fluid input to the inlet or each second heat exchange chamber Each of the rectangular heat transfer plates is provided with a heating steam inlet for each of the second heat exchange chambers or a cooling fluid outlet for each of the second heat exchange chambers at the other corner or in the vicinity thereof. In the lower side or the vicinity thereof, there are provided a liquid supply port to be evaporated to each first heat exchange chamber and a steam condensate outlet for heating to each second heat exchange chamber, or each first heat exchange chamber. A plate-type heat exchanger characterized by the presence of a condensate outlet.
前記請求項 5又は 6の記載において,前記各伝熱プレートは,その積層方向から見 て矩形状であり,この矩形状の各伝熱プレートにおける上辺には,当該上辺のうち略 中央の部分又はその近傍に前記各第 1熱交換室に対する蒸気出口或いは蒸気入 口が,当該上辺における両隅部のうち一方の隅部又はその近傍に前記各第 2熱交 換室に対する加熱用流体入口或いは前記各第 2熱交換室に対する冷却用流体入 口が,他方の隅部又はその近傍に前記各第 2熱交換室に対する加熱用流体出口或 いは前記各第 2熱交換室に対する冷却用流体出口が各々設けられ,前記矩形状の 各伝熱プレートにおける下辺又はその近傍には,前記各第 1熱交換室に対する被蒸 発液体供給口或いは前記各第 1熱交換室に対する凝縮水出口が設けられて 、るこ とを特徴とするプレート型熱交換器。  In each of claims 5 and 6, each of the heat transfer plates has a rectangular shape when viewed from the stacking direction, and the upper side of each rectangular heat transfer plate has a substantially central portion or upper portion of the upper side. A steam outlet or steam inlet for each of the first heat exchange chambers is in the vicinity thereof, and one of the corners on the upper side or the vicinity thereof is a heating fluid inlet for the second heat exchange chambers or the vicinity. A cooling fluid inlet for each second heat exchange chamber has a heating fluid outlet for each second heat exchange chamber or a cooling fluid outlet for each second heat exchange chamber at or near the other corner. A vaporized liquid supply port for each of the first heat exchange chambers or a condensed water outlet for each of the first heat exchange chambers is provided at or near the lower side of each of the rectangular heat transfer plates. Characterized by Ruko Plate type heat exchanger.
PCT/JP2006/300423 2005-01-18 2006-01-16 Plate type heat exchanger WO2006077785A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800013753A CN101137882B (en) 2005-01-18 2006-01-16 Plate type heat exchanger
JP2006536990A JP4321781B2 (en) 2005-01-18 2006-01-16 Plate type heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005010833 2005-01-18
JP2005-010833 2005-12-21

Publications (1)

Publication Number Publication Date
WO2006077785A1 true WO2006077785A1 (en) 2006-07-27

Family

ID=36692175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300423 WO2006077785A1 (en) 2005-01-18 2006-01-16 Plate type heat exchanger

Country Status (5)

Country Link
JP (1) JP4321781B2 (en)
KR (1) KR20070100705A (en)
CN (1) CN101137882B (en)
TW (1) TWI371568B (en)
WO (1) WO2006077785A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013608A1 (en) * 2008-07-29 2010-02-04 株式会社ササクラ Plate heat exchanger used as evaporator or condenser
JP2011149667A (en) * 2010-01-25 2011-08-04 Mitsubishi Electric Corp Plate type heat exchanger
JP2012154594A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Plate heat exchanger and method for manufacturing the same
JP2013142485A (en) * 2012-01-10 2013-07-22 Hisaka Works Ltd Plate type heat exchanger
CN105339753A (en) * 2013-06-26 2016-02-17 三电控股株式会社 Cold storage material container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12048U1 (en) * 2010-03-23 2011-09-15 Stefan Ing Petters DEVICE FOR TRANSFERRING HEAT
CN105403083B (en) * 2015-12-30 2017-08-29 北京瑞宝利热能科技有限公司 A kind of seawater source heat pump system for possessing cellular seawater heat exchanger
CN106288886A (en) * 2016-10-14 2017-01-04 陈琛 Monolithic gas heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137972U (en) * 1981-02-20 1982-08-28
JPH09299927A (en) * 1996-05-14 1997-11-25 Sasakura Eng Co Ltd Plate type fresh water generator
JP2000193390A (en) * 1998-12-25 2000-07-14 Daikin Ind Ltd Plate-type heat exchanger
JP2004517292A (en) * 2001-01-04 2004-06-10 アルファ・ラバル・コーポレイト・エービー Heat transfer plates, plate packs and plate heat exchangers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505225C2 (en) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plate heat exchanger and plate for this

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137972U (en) * 1981-02-20 1982-08-28
JPH09299927A (en) * 1996-05-14 1997-11-25 Sasakura Eng Co Ltd Plate type fresh water generator
JP2000193390A (en) * 1998-12-25 2000-07-14 Daikin Ind Ltd Plate-type heat exchanger
JP2004517292A (en) * 2001-01-04 2004-06-10 アルファ・ラバル・コーポレイト・エービー Heat transfer plates, plate packs and plate heat exchangers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013608A1 (en) * 2008-07-29 2010-02-04 株式会社ササクラ Plate heat exchanger used as evaporator or condenser
JP2011149667A (en) * 2010-01-25 2011-08-04 Mitsubishi Electric Corp Plate type heat exchanger
JP2012154594A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Plate heat exchanger and method for manufacturing the same
JP2013142485A (en) * 2012-01-10 2013-07-22 Hisaka Works Ltd Plate type heat exchanger
CN105339753A (en) * 2013-06-26 2016-02-17 三电控股株式会社 Cold storage material container
CN105339753B (en) * 2013-06-26 2017-06-30 三电控股株式会社 Cool storage material container

Also Published As

Publication number Publication date
CN101137882B (en) 2011-05-11
TWI371568B (en) 2012-09-01
CN101137882A (en) 2008-03-05
KR20070100705A (en) 2007-10-11
TW200630582A (en) 2006-09-01
JP4321781B2 (en) 2009-08-26
JPWO2006077785A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
WO2006077785A1 (en) Plate type heat exchanger
RU2457416C1 (en) Heat exchanger
JP5155446B2 (en) Heat exchanger
CN109863360B (en) Heat exchanger
WO2010013608A1 (en) Plate heat exchanger used as evaporator or condenser
JP4400857B2 (en) Plate type fresh water generator
CN105066729B (en) A kind of plate-type condenser with point liquid function
JP4194938B2 (en) Heat transfer plate, plate pack and plate heat exchanger
CN113167551B (en) Plate heat exchanger and heat exchanger plate for treating a feed such as seawater
KR20130016586A (en) Heat exchanger for exhaust-heat recovery
JP7334340B2 (en) Plate heat exchanger for treatment of liquid feed
WO2024204281A1 (en) Heat exchanger and refrigeration device
JPWO2021234824A5 (en)
JP6354868B1 (en) Water heat exchanger
JP2018132298A (en) Water heat exchanger
CN205619783U (en) Plate type condenser
WO2018131596A1 (en) Water heat exchanger
KR20100074436A (en) A plate heat exchanger
JPH05126478A (en) Plate type heat exchanger
JP3641949B2 (en) Plate heat exchanger
KR19990065367A (en) Absorption heating and heating system with hot water supply
JPH04138553U (en) plate condenser
JP2003222496A (en) Heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536990

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020077012370

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001375.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711704

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711704

Country of ref document: EP