JPH05126478A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JPH05126478A
JPH05126478A JP22395991A JP22395991A JPH05126478A JP H05126478 A JPH05126478 A JP H05126478A JP 22395991 A JP22395991 A JP 22395991A JP 22395991 A JP22395991 A JP 22395991A JP H05126478 A JPH05126478 A JP H05126478A
Authority
JP
Japan
Prior art keywords
heat transfer
plate
transfer surface
plates
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22395991A
Other languages
Japanese (ja)
Inventor
Toshiichi Yagi
敏一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP22395991A priority Critical patent/JPH05126478A/en
Publication of JPH05126478A publication Critical patent/JPH05126478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency of a plate type heat exchanger by contriving the effective utilization of the heat transfer surface of the heat exchanger. CONSTITUTION:A plate type heat exchanger is made by laminating plates A and plates B alternately while laying respective plates horizontally while the vapor of fluorocarbon, entered from a passage hole 2a on the plates A into the heat transfer surfaces 4a of the same, is condensed and produces liquid drops. The liquid drops are grown to a liquid film while flowing down the heat transfer surfaces 4a, however, the flow down distance of the liquid drops is reduced by laying the plates horizontally whereby the drops arrive at the lower ends of the plates A before the liquid film is grown to a thick film. Accordingly, the heat transfer surface 4a will never be covered by a thick liquid film whereby the vapor is condensed efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、凝縮器や蒸発器等とし
て使用されるプレート式熱交換器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a plate heat exchanger used as a condenser, an evaporator or the like.

【0002】[0002]

【従来の技術】フロン等の冷媒を用いた冷凍サイクルシ
ステムにおいては凝縮器、蒸発器が重要な要素であり、
これら要素として小型で性能に優れたプレート式熱交換
器が使用されている。プレート式熱交換器は、4つの通
路孔と伝熱面とを形成した複数の伝熱プレート(以下、
プレートという。)を積層し、プレート間に温媒と冷媒
の流路を交互に形成することにより、プレートの伝熱面
を介して両媒体間で熱交換を行なわせるものであるが、
一般的には、図4に示すように、2種類の長方形のプレ
ート11、14を縦置きにして交互に積層している。そ
のため、例えば、温媒は左上方の通路孔12a(入口側
の通路孔)側からプレート11の伝熱面13に流入した
後、左下方の通路孔12b(出口側の通路孔)から流出
し、逆に、冷媒は右下方の通路孔12c(入口側の通路
孔)側からプレート14の伝熱面13’に流入した後、
右上方の通路孔12d(出口側の通路孔)から流出す
る。したがって、各作動媒体の入口側の通路孔および出
口側の通路孔は、プレートの一方の長辺側に整列するこ
とになる。
2. Description of the Related Art A condenser and an evaporator are important elements in a refrigeration cycle system using a refrigerant such as CFC.
As these elements, a small plate type heat exchanger with excellent performance is used. The plate heat exchanger includes a plurality of heat transfer plates (hereinafter, referred to as “heat transfer plates”) having four passage holes and heat transfer surfaces.
It is called a plate. ) Are laminated and the flow paths of the heating medium and the cooling medium are alternately formed between the plates, so that heat exchange between the two media is performed via the heat transfer surface of the plates.
Generally, as shown in FIG. 4, two types of rectangular plates 11 and 14 are vertically placed and alternately stacked. Therefore, for example, the heating medium flows into the heat transfer surface 13 of the plate 11 from the upper left passage hole 12a (inlet side passage hole) side, and then flows out from the lower left passage hole 12b (outlet side passage hole). On the contrary, after the refrigerant flows into the heat transfer surface 13 ′ of the plate 14 from the lower right passage hole 12 c (inlet side passage hole) side,
It flows out from the upper right passage hole 12d (outlet side passage hole). Therefore, the passage hole on the inlet side and the passage hole on the outlet side of each working medium are aligned with one long side of the plate.

【0003】[0003]

【発明が解決しようとする課題】上記構成のプレート式
熱交換器を、例えば凝縮器として用いる場合、図5に示
すように、フロン蒸気を入口側の通路孔12aから伝熱
面13に流入させると蒸気はすぐに凝縮を始め、厚い液
膜15となって伝熱面13の大部分を覆ってしまう。後
述するように、この厚い液膜15がフロン蒸気と伝熱面
13との間に介在することによって、蒸気と冷媒との間
の熱交換が妨げられ、その分、熱交換効率が低下する。
これを防止するために、例えば、プレート11を横置き
にして積層し、図6に示すように、蒸気を左下方の通路
孔12a側から流入させたのち右下方の通路孔12bか
ら流出させたり、あるいは図7に示すように、蒸気を左
上方の通路孔12aから流入させたのち右上方の通路孔
12bから流出させる等の手段が考えられる。しかしな
がら、図6に示すものでは、伝熱面13の上方側に未凝
縮ガスが溜りやすく、このガス溜り16が蒸気の流れを
阻害する。また、図7に示すものでは、凝縮液が排出さ
れずに伝熱面13の下方側に溜まり、この液溜まり17
がやはり蒸気の流れを阻害する。蒸気の流れが阻害され
る部分では熱交換が行なわれず、その分だけ伝熱面の有
効面積が実質的に減少したことになる。あるいは、図8
に示すように、入口側の通路孔12aと出口側の通路孔
12bとを対角線上に位置させ、作動媒体を対角線状に
流すようにした斜交流式のプレート11’を用いる手段
も考えられるが、図5に示すものと同様に、伝熱面13
の大部分が厚い液膜15で覆われてしまう。このよう
に、従来のプレート式熱交換器においては、液膜15、
未凝縮ガス溜り16、液溜り17によって伝熱面の有効
利用が阻害され、これが熱交換効率を低下させる一因と
なっていたのである。
When the plate type heat exchanger having the above structure is used as, for example, a condenser, as shown in FIG. 5, CFC vapor is introduced into the heat transfer surface 13 from the passage hole 12a on the inlet side. Then, the vapor immediately begins to condense, forming a thick liquid film 15 and covering most of the heat transfer surface 13. As will be described later, the thick liquid film 15 is interposed between the fluorocarbon vapor and the heat transfer surface 13, so that the heat exchange between the vapor and the refrigerant is hindered, and the heat exchange efficiency is reduced accordingly.
In order to prevent this, for example, the plates 11 are placed horizontally and stacked, and as shown in FIG. 6, steam is allowed to flow in from the lower left passage hole 12a side and then to flow out from the lower right passage hole 12b. Alternatively, as shown in FIG. 7, it is conceivable that steam is caused to flow in through the upper left passage hole 12a and then flow out through the upper right passage hole 12b. However, in the structure shown in FIG. 6, uncondensed gas is likely to accumulate on the upper side of the heat transfer surface 13, and the gas reservoir 16 impedes the flow of steam. Further, in the structure shown in FIG. 7, the condensate is not discharged and is accumulated on the lower side of the heat transfer surface 13.
But still hinders the flow of steam. Heat exchange is not performed in the portion where the flow of steam is obstructed, and the effective area of the heat transfer surface is substantially reduced accordingly. Alternatively, FIG.
As shown in FIG. 2, a means using an oblique AC type plate 11 ′ in which the inlet-side passage hole 12a and the outlet-side passage hole 12b are located on a diagonal line and the working medium is made to flow in a diagonal line can be considered. , Heat transfer surface 13 similar to that shown in FIG.
Is covered with a thick liquid film 15. Thus, in the conventional plate heat exchanger, the liquid film 15,
The uncondensed gas pool 16 and the liquid pool 17 hindered the effective use of the heat transfer surface, which was one of the causes for lowering the heat exchange efficiency.

【0004】そこで、本発明の目的は、伝熱面の有効利
用を図ることによってプレート式熱交換器の熱交換効率
を向上させることにある。
Therefore, an object of the present invention is to improve the heat exchange efficiency of the plate heat exchanger by making effective use of the heat transfer surface.

【0005】[0005]

【課題を解決するための手段】本考案では、伝熱プレー
トとして、作動媒体が伝熱面を対角線状に流れる構造を
なす斜交流式の伝熱プレートを用い、かつ、この伝熱プ
レートを横置きにして積層するようにした。
In the present invention, as the heat transfer plate, an oblique alternating current type heat transfer plate having a structure in which a working medium flows diagonally along a heat transfer surface is used, and the heat transfer plate is laterally moved. It was set aside and laminated.

【0006】[0006]

【作用】入口側の通路孔からプレートの伝熱面に流れ込
んだフロン蒸気は、熱量を放出して凝縮する。そして、
凝縮により生じた液滴は伝熱面を流下し、出口側の通路
孔から流出する。蒸気がプレートを対角線状に流れるの
で、伝熱面に未凝縮ガス溜り、液溜りが生じにくい。ま
た、プレートを横置きにして使用するので、蒸気の凝縮
が効率よく行なわれる。図3を参照しながら説明する
と、蒸気が伝熱面上で凝縮熱を放出して凝縮すると液滴
を生じ、この液滴が流下をはじめ成長すると液膜とな
る。液膜は冷却されて凝縮熱を受容できる状態になる
と、蒸気がその上に凝縮する。こうして、液膜は流下し
ながら次第に厚くなってゆく。ところが、液膜が厚くな
った部分は凝縮熱を受容できる状態になるまでかなりの
時間がかかるため、この部分では凝縮が行なわれにくく
なる。つまり、伝熱面上で液膜の厚くなった部分は熱交
換に寄与する割合が少なく、熱交換は主に液膜の薄い部
分で行なわれるのである。換言すれば、伝熱面の全面積
中で液膜の厚くなった部分は有効に利用されていないと
言える。本発明でプレートを横置きにした理由は、この
有効に利用されていない部分を減少させることにある。
つまり、液膜は流下するにしたがって成長しその厚さを
増すのであるから、プレートを横置きにして液膜が流下
しうる距離を小さくすることによって、液膜が厚く成長
する以前に伝熱面から流出させることができるのであ
る。したがって、伝熱面の全面積中で熱交換に寄与しな
い部分が減少する結果、伝熱面が有効利用され、もって
全体の熱交換効率が向上する。
The function of the Freon vapor flowing into the heat transfer surface of the plate through the passage hole on the inlet side releases heat and condenses. And
The droplets generated by the condensation flow down the heat transfer surface and flow out from the passage hole on the outlet side. Since vapor flows diagonally through the plate, uncondensed gas pools and liquid pools do not easily form on the heat transfer surface. In addition, since the plate is used horizontally, the vapor can be efficiently condensed. Explaining with reference to FIG. 3, when vapor releases heat of condensation on the heat transfer surface and condenses, droplets are generated, and when the droplets start to flow down and grow, they become a liquid film. When the liquid film cools and is ready to accept the heat of condensation, the vapor condenses on it. In this way, the liquid film gradually thickens as it flows down. However, since it takes a considerable amount of time for the portion where the liquid film is thick to be able to receive the heat of condensation, it is difficult to condense at this portion. That is, the thickened portion of the liquid film on the heat transfer surface contributes little to the heat exchange, and the heat exchange is mainly performed in the thin portion of the liquid film. In other words, it can be said that the thickened portion of the liquid film in the entire area of the heat transfer surface is not effectively used. The reason for laterally placing the plate in the present invention is to reduce this unused portion.
In other words, the liquid film grows as it flows down and its thickness increases, so by placing the plate horizontally to reduce the distance that the liquid film can flow down, the heat transfer surface before the liquid film grows thick Can be drained from. Therefore, as a result of reducing the portion that does not contribute to heat exchange in the entire area of the heat transfer surface, the heat transfer surface is effectively used, and thus the overall heat exchange efficiency is improved.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0008】図1は、プレートAを示す。プレートAに
は、入口側の通路孔2aと出口側の通路孔3aとが比較
的横長方形のプレートAの対角線上に設けられている。
通路孔2a側から伝熱面4aに流入したフロン蒸気等の
媒体が、伝熱面4aを流れて凝縮したのち、通路孔3a
から流出する構造になっている。尚、2b、3bは他方
の媒体の通路孔である。
FIG. 1 shows plate A. The plate A is provided with a passage hole 2a on the inlet side and a passage hole 3a on the outlet side on a diagonal line of the plate A having a relatively horizontal rectangle.
A medium such as CFC vapor flowing into the heat transfer surface 4a from the passage hole 2a side flows through the heat transfer surface 4a and is condensed, and then the passage hole 3a.
It is structured to flow out from. Incidentally, 2b and 3b are passage holes for the other medium.

【0009】図2は、プレートBを示す。プレートBに
は、入口側の通路孔2bと出口側の通路孔3bとが比較
的横長方形のプレートBの対角線上に設けられている。
通路孔2b側から伝熱面4bに流入した他方の媒体が、
プレートAの伝熱面4a上を流れるフロン蒸気と熱交換
を行ない、温度上昇したのち通路孔3bから流出する構
造になっている。尚、2a、3aはフロン蒸気の通路孔
である。
FIG. 2 shows plate B. The plate B is provided with a passage hole 2b on the inlet side and a passage hole 3b on the outlet side on a diagonal line of the plate B having a relatively horizontal rectangle.
The other medium flowing into the heat transfer surface 4b from the passage hole 2b side is
The structure is such that heat is exchanged with the CFC vapor flowing on the heat transfer surface 4a of the plate A, the temperature rises, and then the gas flows out from the passage hole 3b. Incidentally, 2a and 3a are passage holes for Freon vapor.

【0010】プレートAとプレートBとは交互に積層さ
れて熱交換器を構成する。積層された各プレートは、媒
体の外部洩れおよび流路を確保するために、接合または
ろう付けされる。
Plates A and B are alternately laminated to form a heat exchanger. The stacked plates are joined or brazed to ensure external leakage and channels of media.

【0011】このようにして構成された熱交換器を凝縮
器として使用する場合は、プレートAの流路にフロン蒸
気を流入させ、プレートBの流路に他の媒体を流入させ
る。フロン蒸気は通路孔2aを通って伝熱面4aに流入
する。フロン蒸気は伝熱面4aに触れると熱量を放出し
て凝縮を始め、液適を生じる。この液適は伝熱面4a上
を流下しながら成長して液膜となるが、この熱交換器は
各プレートA、Bを横置きにして流下距離を小さくして
いるため、液膜は成長する以前にプレートAの下端に達
し通路孔3aから流出する。したがって、この熱交換器
は伝熱面4aが厚い液膜によって覆われることがないた
め、伝熱性に優れ、しかも伝熱面積の小さいコンパクト
な構造にすることが可能である。
When the heat exchanger thus constructed is used as a condenser, CFC vapor is caused to flow into the flow path of plate A and another medium is caused to flow into the flow path of plate B. Freon vapor flows into the heat transfer surface 4a through the passage hole 2a. When the chlorofluorocarbon touches the heat transfer surface 4a, it releases the amount of heat and begins to condense, thereby producing a suitable liquid. This liquid suit grows while flowing down on the heat transfer surface 4a and becomes a liquid film, but since the plates A and B are placed horizontally in this heat exchanger to reduce the downflow distance, the liquid film grows. Before reaching the bottom, it reaches the lower end of the plate A and flows out from the passage hole 3a. Therefore, in this heat exchanger, the heat transfer surface 4a is not covered with a thick liquid film, so that it is possible to have a compact structure having excellent heat transfer properties and a small heat transfer area.

【0012】一方、プレートBの流路は他の媒体の流路
となるが、他の媒体として一般的には水を用いる。水は
通路孔2bを通ってプレートBの伝熱面4bに流入す
る。水は伝熱面4bに触れるとフロン蒸気から熱量を吸
収して温度が上昇し、通路孔3bから流出する。
On the other hand, the flow path of the plate B becomes a flow path of another medium, but water is generally used as the other medium. Water flows into the heat transfer surface 4b of the plate B through the passage hole 2b. When the water comes into contact with the heat transfer surface 4b, the amount of heat absorbed from the fluorocarbon vapor increases the temperature, and the water flows out from the passage hole 3b.

【0013】尚、この熱交換器を蒸発器として使用する
場合には、上記とは逆に、プレートAの通路孔3aから
蒸発すべき媒体を伝熱面4aに流入させ、通路孔2aか
ら流出させる。一方、他の媒体はプレートBの通路孔3
bから伝熱面4bに流入させ、通路孔2bから流出させ
るようにする。
When this heat exchanger is used as an evaporator, contrary to the above, the medium to be evaporated is made to flow into the heat transfer surface 4a from the passage hole 3a of the plate A and is discharged from the passage hole 2a. Let On the other hand, the other medium is the passage hole 3 of the plate B.
It is made to flow into the heat transfer surface 4b from b and to flow out from the passage hole 2b.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
斜交流式の伝熱プレートを用い、かつ、このプレートを
横置きにして積層するようにしたため、伝熱面に厚い液
膜、未凝縮ガス溜り、液溜りが生じにくく、伝熱面の有
効利用が図られる結果、熱交換効率が向上する。
As described above, according to the present invention,
Since a diagonal AC heat transfer plate is used and the plates are stacked horizontally, a thick liquid film, uncondensed gas pool, and liquid pool hardly occur on the heat transfer surface, and the heat transfer surface can be effectively used. As a result, the heat exchange efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】斜交流式の伝熱プレートAを示す平面図であ
る。
FIG. 1 is a plan view showing a heat transfer plate A of an oblique AC type.

【図2】斜交流式の伝熱プレートBを示す平面図であ
る。
FIG. 2 is a plan view showing a heat transfer plate B of an oblique AC type.

【図3】蒸気の凝縮サイクルを説明するための図であ
る。
FIG. 3 is a diagram for explaining a vapor condensation cycle.

【図4】従来のプレート式熱交換器を示す斜視図であ
る。
FIG. 4 is a perspective view showing a conventional plate heat exchanger.

【図5】従来のプレート式熱交換器の伝熱プレートを示
す平面図である。
FIG. 5 is a plan view showing a heat transfer plate of a conventional plate heat exchanger.

【図6】従来のプレート式熱交換器の伝熱プレートを示
す平面図である。
FIG. 6 is a plan view showing a heat transfer plate of a conventional plate heat exchanger.

【図7】従来のプレート式熱交換器の伝熱プレートを示
す平面図である。
FIG. 7 is a plan view showing a heat transfer plate of a conventional plate heat exchanger.

【図8】従来のプレート式熱交換器の伝熱プレートを示
す平面図である。
FIG. 8 is a plan view showing a heat transfer plate of a conventional plate heat exchanger.

【符号の説明】[Explanation of symbols]

A 伝熱プレート B 伝熱プレート 2a 通路孔 3a 通路孔 2b 通路孔 3b 通路孔 4a 伝熱面 4b 伝熱面 A heat transfer plate B heat transfer plate 2a passage hole 3a passage hole 2b passage hole 3b passage hole 4a heat transfer surface 4b heat transfer surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通路孔と伝熱面とが形成された複数の長
方形の伝熱プレートを積層し、隣り合った伝熱プレート
間に異種作動媒体の流路を交互に形成したプレート式熱
交換器において、 作動媒体が伝熱面を対角線状に流れる構造をなす斜交流
式の伝熱プレートを用い、かつ、この伝熱プレートを横
置きにして積層したことを特徴とするプレート式熱交換
器。
1. A plate-type heat exchange in which a plurality of rectangular heat transfer plates having passage holes and heat transfer surfaces are laminated, and flow paths of different working media are alternately formed between adjacent heat transfer plates. Plate-type heat exchanger characterized by using an oblique alternating-current type heat transfer plate having a structure in which the working medium flows diagonally on the heat transfer surface, and stacking the heat transfer plates horizontally ..
JP22395991A 1991-09-04 1991-09-04 Plate type heat exchanger Pending JPH05126478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22395991A JPH05126478A (en) 1991-09-04 1991-09-04 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22395991A JPH05126478A (en) 1991-09-04 1991-09-04 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JPH05126478A true JPH05126478A (en) 1993-05-21

Family

ID=16806380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22395991A Pending JPH05126478A (en) 1991-09-04 1991-09-04 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JPH05126478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103883A (en) * 1996-09-26 1998-04-24 Hisaka Works Ltd Plate type heat exchanger
CN103808189A (en) * 2012-11-13 2014-05-21 浙江鸿远制冷设备有限公司 Heat exchange corrugated plate for plate heat exchanger and for distributing evaporated liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103883A (en) * 1996-09-26 1998-04-24 Hisaka Works Ltd Plate type heat exchanger
CN103808189A (en) * 2012-11-13 2014-05-21 浙江鸿远制冷设备有限公司 Heat exchange corrugated plate for plate heat exchanger and for distributing evaporated liquid

Similar Documents

Publication Publication Date Title
EP1054225A1 (en) Plate type heat exchanger for three fluids and method of manufacturing the heat exchanger
WO2000052411A1 (en) Plate type heat exchanger
US4699209A (en) Heat exchanger design for cryogenic reboiler or condenser service
JP2023512425A (en) Brazed plate heat exchanger and its use
JPWO2006077785A1 (en) Plate heat exchanger
JP2005007230A (en) Plate type water making apparatus
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
WO2014061105A1 (en) Plate heat exchanger and refrigeration cycle device provided with plate heat exchanger
JPH05126478A (en) Plate type heat exchanger
JPH05215482A (en) Heat exchanger
JP3501911B2 (en) Boiling cooling device
JPH05157402A (en) Heat exchanger
SU1035398A1 (en) Plate-type heat exchanger
JP2003254683A (en) Heat exchanger and absorption refrigerating machine using it
JPH02293595A (en) Refrigerant condenser
JPS63143486A (en) Condensation evaporator
JPH0539351Y2 (en)
JPS5922441Y2 (en) Heat exchanger
JPS6314058A (en) Condenser
JPS60185095A (en) Heat exchanger of layer type
JP2945972B1 (en) Absorption chiller / heater
JP3969556B2 (en) Plate heat exchanger
JP2008304081A (en) Absorption type refrigerating device
JP2000241087A (en) Plate heat exchanger
JP2003254681A (en) Heat exchanger and absorption refrigerating machine using it