WO2006075742A1 - Heat pump application device and power recovering device using expander - Google Patents

Heat pump application device and power recovering device using expander Download PDF

Info

Publication number
WO2006075742A1
WO2006075742A1 PCT/JP2006/300454 JP2006300454W WO2006075742A1 WO 2006075742 A1 WO2006075742 A1 WO 2006075742A1 JP 2006300454 W JP2006300454 W JP 2006300454W WO 2006075742 A1 WO2006075742 A1 WO 2006075742A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
generator
voltage
heat pump
expander
Prior art date
Application number
PCT/JP2006/300454
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Matsui
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006553012A priority Critical patent/JP3943124B2/en
Publication of WO2006075742A1 publication Critical patent/WO2006075742A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump application device having a function of recovering expansion energy of a refrigerant in the form of electric energy, and a power recovery device suitable for the heat pump application device.
  • a vapor compression refrigeration apparatus which is a representative example of heat pump application equipment, has a configuration shown in FIG.
  • the refrigeration apparatus shown in FIG. 16 includes a compressor 101, a radiator 102, an expansion valve 103, and an evaporator 104. These elements are connected by piping, and the refrigerant moves as indicated by the white arrows in the figure.
  • the operation principle of the refrigeration apparatus is as follows.
  • the pressure and temperature of the refrigerant vapor is increased by the compressor 101.
  • the refrigerant vapor then enters the radiator 102 where it is cooled.
  • the high-pressure refrigerant is reduced to the evaporation pressure by the expansion valve 103, vaporizes in the evaporator 104, and absorbs heat from the surroundings of the evaporator 104.
  • the refrigerant vapor returns to the compressor 101 through the outlet of the evaporator 104.
  • this refrigerant for example, carbon dioxide with a low global warming coefficient without destroying the ozone layer may be used.
  • COP Coefficient Of Performance
  • FIG. 1 As an example of the above proposal, there is a refrigeration apparatus (see Japanese Patent Application Laid-Open No. 2000-241033) shown in FIG.
  • the refrigerant is compressed by a compressor 201 driven by a motor 205, cooled by a radiator 202, and sucked into an expander 203.
  • Expander 203 The refrigerant expanded in the evaporator 206 absorbs heat from the outside in the evaporator 206 and vaporizes, and then returns to the compressor 201 again.
  • the generator 204 attached to the expander 203 rotates with the expansion energy of the refrigerant to generate power.
  • the rotation speed control means 212 is based on the outputs of the pressure sensor 210 and the temperature sensor 211 so that the outlet pressure of the radiator 202 becomes the optimum high pressure value calculated by the calculation means 209, that is, the power generation amount of the generator 204, that is, the expansion Controls the speed of the machine 203.
  • An oil separator 207 and an accumulator 208 are installed before and after the compressor 201 to improve performance and reliability.
  • FIG. 18 is a block diagram showing a conventional power recovery device using an expander.
  • the AC voltage from the AC power supply 301 is converted into a DC voltage by the rectifier circuit 302.
  • the direct voltage is smoothed by the smoothing capacitor 303 and then converted into a three-phase AC voltage by the motor driving device 304.
  • the motor 306 is driven by the three-phase AC voltage.
  • the compressor 307 performs a compression function by driving the motor 306.
  • the motor driving device 304 includes a switching element group 305 for converting a DC voltage into an AC voltage.
  • Arbitrary alternating current can be output by turning on and off the switching element group 305 by a PWM (Pulse Width Modulation) method so as to realize a predetermined alternating frequency.
  • PWM Pulse Width Modulation
  • the generator 310 installed for recovering power by the expander 311 has a variable speed comparator 308 for converting the three-phase AC power generated by the generator 310 into DC power. It is connected.
  • the variable speed converter 308 converts the AC power generated by the generator 310 into DC power and switches the switching element group 309 by the PWM method to rotate the generator 310 at a given target rotational speed. By controlling the rotational speed of the generator 310, the rotational speed of the expander 311 can be controlled.
  • the DC power line from the variable speed converter 308 is connected in parallel to the DC power line for supplying power to the motor 306.
  • the electric power regenerated from the variable speed converter 308 is consumed by the motor 306 on the compressor 307 side via the motor driving device 304.
  • the power supplied from AC power supply 301 via rectifier circuit 302 is Win
  • the power consumed by motor 306 is Wm
  • the power regenerated by variable speed converter 308 If Wg is Wg, the following (Equation 1) holds.
  • the power consumption Wm is larger than the regenerative power Wg, so the power supplied Win from the AC power supply 301 is a positive value.
  • the rectifier circuit 302 is usually a full-wave rectifier circuit configured by a diode bridge, and does not have a function of regenerating power in the AC power supply 301. Therefore, if a situation occurs where the regenerative power Wg exceeds the power consumption Wm, the smoothing capacitor 303 alone cannot absorb the excess power immediately, and the voltage of the DC power line rises abnormally. There is a risk of damaging electrical components such as.
  • an object of the present invention is to improve the reliability of a heat pump application device by preventing an excessive voltage increase in a direct current power line when regenerative power exceeds power consumption. To do. Another object of the present invention is to improve the reliability of a power recovery device suitable for such heat pump application equipment.
  • a radiator that cools the refrigerant compressed by the compressor
  • An expander that expands the refrigerant that has passed through the radiator
  • An evaporator for evaporating the refrigerant expanded by the expander A generator that is connected to the expander and generates power using the expansion energy of the refrigerant; and a DC power output means that converts AC power generated by the generator into DC power and regenerates it to the motor side;
  • Voltage suppression means for suppressing the voltage of the DC power line, where the DC power output means regenerates power, to less than a predetermined value
  • the heat pump application equipment provided with is provided.
  • the heat pump application device of the present invention is provided with voltage suppression means for suppressing the voltage of the DC power line below a predetermined value. In this way, it is possible to prevent excessive voltage rise in the DC power line regardless of the operating state of the compressor or the expander. As a result, it is possible to prevent electrical components such as capacitors and diodes arranged in the direct current voltage line from being destroyed, thereby realizing a highly reliable heat pump application device.
  • the predetermined value may be a threshold voltage set slightly higher than the power supply voltage for supplying power to the motor.
  • the present invention provides:
  • a generator that is connected to the expander and generates power with the expansion energy of the working fluid; a DC power output means that converts the AC power generated by the generator into DC power and outputs the output voltage; and the output voltage of the DC power output means exceeds a predetermined value
  • a power recovery device having generator control means for executing control to reduce the power generation efficiency of the generator
  • the generator control means performs control to reduce the power generation efficiency of the generator. In this way, it is possible to prevent the output voltage of the DC power output means from rising excessively, and to prevent the parts of the electric circuit (for example, capacitors and diodes) connected to the power recovery device from being destroyed. Can do. That is, according to the present invention, the reliability of the power recovery device using the expander is increased.
  • the power recovery apparatus instead of the generator control means or the power generation thereof
  • voltage suppression means for starting the storage or power consumption upon receiving the power supply from the DC power output means power when the output voltage of the DC power output means becomes a predetermined value or more.
  • the generator control means may be configured to execute a control for reducing the power generation efficiency when the output voltage of the DC power output means exceeds a predetermined value. May be configured to perform control to reduce the rotational speed.
  • FIG. 1 is a block diagram showing a heat pump application device according to a first embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view of a typical SPMSM (Surface Permanent Magnet Synchronous Motor).
  • SPMSM Surface Permanent Magnet Synchronous Motor
  • FIG. 2B is a schematic cross-sectional view of a typical IPMSM (Interior Permanent Magnet Synchronous Motor).
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • FIG. 3 is a diagram for explaining a correlation among a radiator outlet pressure, a radiator outlet temperature, and a refrigeration cycle efficiency.
  • FIG. 4 is a flowchart of a process for determining the rotation speed of the expander.
  • FIG. 5 is a block diagram showing a detailed configuration of a variable speed converter.
  • FIG. 6 is a characteristic diagram illustrating the relationship between current phase angle and torque in IPMSM.
  • FIG. 7A is a diagram showing a relationship between three-phase AC coordinates and two-phase AC coordinates.
  • FIG. 7B is a diagram showing the relationship between the two-phase AC coordinate and the dq coordinate.
  • FIG. 8 is a diagram showing a current phase angle ⁇ on dq coordinates.
  • FIG. 9 is a characteristic diagram showing loss characteristics of the permanent magnet type synchronous generator.
  • FIG. 10 is a flowchart of processing for determining a current phase angle.
  • FIG. 11 is a characteristic diagram showing the principle of setting the current phase angle.
  • FIG. 12 is a block diagram showing a heat pump application device of a second embodiment.
  • FIG. 13 is a characteristic diagram showing a change in voltage of a DC power line in the heat pump application device of the second embodiment.
  • FIG. 14 is a block diagram showing a heat pump application device of a third embodiment.
  • FIG. 15 is a characteristic diagram showing a change in voltage of a DC power line in the heat pump applied device of the third embodiment.
  • FIG. 16 is a block diagram showing a conventional vapor compression refrigeration apparatus.
  • FIG. 17 is a block diagram showing a conventional refrigeration air conditioner using an expander.
  • FIG. 18 is a block diagram showing a conventional power recovery apparatus using an expander. BEST MODE FOR CARRYING OUT THE INVENTION
  • the voltage suppression means can also be used as a generator control means for controlling the drive of the generator.
  • the generator control means executes control for reducing the power generation efficiency of the generator when the voltage of the DC power line becomes equal to or higher than a predetermined value.
  • a permanent magnet type synchronous generator is adopted as the generator.
  • the heat pump application device of the present invention can be provided with a variable speed converter including DC power output means and generator control means.
  • the variable speed converter changes the current phase angle of the permanent magnet type synchronous generator so that the permanent magnet type synchronous generator moves from a high efficiency state to a low efficiency state. Execute control.
  • the voltage increase of the DC power line can also be prevented by applying the same control as the generator to the motor connected to the compressor. That is, the voltage suppression means in the heat pump application device of the present invention can also be used as a motor control means for controlling the driving of the motor.
  • the motor control means executes control for reducing the driving efficiency of the motor when the voltage of the DC power line becomes equal to or higher than a predetermined value.
  • the motor control means can be composed of an inverter that executes PWM control.
  • the inverter executes control to change the current phase angle of the permanent magnet type synchronous motor, and changes the permanent magnet type synchronous motor from the high efficiency driving state to the low efficiency driving state.
  • the voltage suppression means described above may be a DC power supply.
  • the Kaline voltage exceeds the specified value, storage or consumption of the power supplied to the DC power line is started.
  • the voltage suppression means is composed of a load and a switch for turning on and off the power supply to the load.
  • the voltage of the DC power line exceeds a predetermined value, Power supply from the power output means to the load is started.
  • FIG. 1 is a block diagram showing a heat pump application device according to a first embodiment of the present invention.
  • the heat pump application device 500 includes a compressor 501 that compresses refrigerant, a radiator 502 that cools the refrigerant compressed by the compressor 501, an expander 503 that expands the refrigerant that has passed through the radiator 502, and an expander An evaporator 504 for evaporating the refrigerant expanded by 503 and a refrigerant pipe 518 for circulating the refrigerant between the above elements are provided.
  • the compressor 501 and the expander 503 are, for example, a rotary type or a scroll type.
  • the heat pump application device 500 includes a motor 505 that drives the compressor 501, and an inverter 506 that serves as a motor control unit that converts direct current into alternating current having a predetermined frequency and controls driving of the motor 505. I have.
  • the inverter 506 is a so-called three-phase voltage type inverter.
  • the motor 505 is, for example, a permanent magnet type synchronous motor (so-called DC brushless' motor). is there.
  • Permanent magnet synchronous motors are surface permanent magnet synchronous motor (SPMSM) with magnets attached to the rotor surface, and embedded permanent magnet synchronous motors with a permanent magnet embedded in the inner rotor
  • SPMSM surface permanent magnet synchronous motor
  • 5 IPMSM: Interior Permanent Magnet Synchronous Motor
  • Figure 2A shows the cross-sectional structure of a typical SPMSM rotor.
  • Figure 2B shows the cross-sectional structure of a typical IPMSM rotor. In the SPMSM of Fig.
  • the part where the permanent magnet exists can be regarded as magnetically equivalent to the air gap, so the magnetic resistance becomes independent of the rotor position, and the d-axis inductance Ld and q-axis of the armature winding A non-salient pole machine with the same inductance Lq.
  • the IPMSM in Fig. 2B has the same magnetic flux as the air gap in the magnetic path of the magnetic flux in the d-axis direction created by the armature winding. This magnetic flux can pass through the steel sheet, so the reluctance in this direction is small. This results in a salient pole machine with (d-axis inductance Ld) ⁇ (q-axis inductance Lq).
  • IPMSM has the advantage that it can be driven with extremely high efficiency because reluctance torque can be used in addition to magnet torque. Therefore, IPMSM is recommended for motor 505.
  • the IPMSM is also preferable for the generator 507.
  • the inverter 506 drives the motor 505 by sine wave PWM control in which a current having a waveform close to a sine wave is passed through each phase.
  • a current having a waveform close to a sine wave is passed through each phase.
  • torque irregularities are likely to occur when the current is switched due to the inductance of the armature winding.
  • a 180 ° energization type sinusoidal current drive is suitable.
  • K (3/2) ⁇
  • I the armature current (maximum phase value)
  • the rotor position (rotation angle).
  • a so-called vector control method which uses a rotational coordinate transformation (dq transformation) to control the current flowing through each phase. Further, according to the vector control method, the current flowing through the motor 505 can be controlled separately for the d-axis and the q-axis, so that the motor capacity can be maximized.
  • dq transformation rotational coordinate transformation
  • the heat pump application device 500 further includes a temperature sensor 516 that detects the outlet temperature of the radiator 502, a pressure sensor 517 that detects the outlet pressure of the radiator 502, and a microcomputer 509.
  • the detection signals of the temperature sensor 516 and the pressure sensor 517 are binarized by AZD conversion (not shown) and input to the microcomputer 509.
  • the microcomputer 509 plays the role of an expander rotation speed determination means for determining the rotation speed of the expander 503 based on inputs from the sensors 516 and 517.
  • the microcomputer 509 that sets the target rotational speed of the expander 503 may also be used as the microcomputer that constitutes the control system of the variable speed converter 508.
  • the heat pump application device 500 functions as a generator 507 connected to the expander 503 and generating electricity with the expansion energy of the refrigerant, and a generator control means for controlling the drive of the generator 507. And a variable speed converter 508.
  • a permanent magnet synchronous motor such as SPMSM or IPMSM can be used for the generator 507.
  • the variable speed converter 508 also serves as a DC power output means that converts AC power generated by the generator 507 into DC power and regenerates it to the motor 505 side.
  • the variable speed converter 508 is a three-phase voltage type similar to the inverter 506, and controls the generator 507 by sinusoidal PWM control.
  • the expander 503, the generator 507, and the variable speed converter 508 constitute a power recovery device 601 in the heat pump application device 500.
  • inverter and “converter” include an “inverted” converter including a control system such as a microcomputer that controls driving of the motor 505 and the generator 507, respectively. -Used to mean 'do'. In general, regenerative This means that the electric power is returned to the power source.
  • the motor that drives the compressor 501 by recovering the expansion energy of the refrigerant by the expander 503 and the variable speed converter 508 and converting it into electric energy. It means to supply to the 505 side.
  • the heat pump application device 500 includes a rectifier circuit 511 and a smoothing capacitor 512 that convert AC power of the AC power supply 510 into DC power.
  • the rectifier circuit 511 is a general full-wave rectifier circuit using a diode bridge. There is no circuit for returning power to AC power supply 510.
  • Variable speed converter 508 power DC power line DL, rectified circuit
  • Power is supplied to the inverter 506, and the energy recovered by the expander 503 is used as part of the driving force of the compressor 501.
  • the DC power lines DL and DL detect the voltages of the DC power lines DL and DL.
  • a first voltage detection sensor 520 and a second voltage detection sensor 521 are arranged.
  • the first voltage detection sensor 520 may be included in the variable speed converter 508, and the second voltage detection sensor 521 may be included in the inverter 506.
  • each of the voltage detection sensors 520 and 521 may be configured as a voltage detection unit including an AZD change. Normally, one sensor is sufficient to detect the voltage of the DC power lines DL and DL.
  • a compressor 501 is driven by a motor 505 controlled by an inverter 506, and the refrigerant is compressed by the compressor 501.
  • the compressed refrigerant is cooled by the radiator 502 and then passes through the expander 503 connected to the generator 507 controlled by the variable speed converter 508.
  • the refrigerant expands in the expander 503, absorbs heat from the outside in the evaporator 504 and vaporizes, and then returns to the compressor 501 again.
  • the DC power obtained by rectifying the AC power from the AC power source 510 by the rectifier circuit 511 is smoothed by the smoothing capacitor 512, and then 3% by the inverter 50 6 It is converted into phase AC power and supplied to the motor 505. Thereby, the motor 505 is driven and the compressor 501 performs the compression function.
  • the torque of the expander 503 generated by the expansion force of the refrigerant is transmitted to the generator 507 through the shaft.
  • the rotor fixed to the shaft rotates to generate power.
  • the AC power generated by the generator 507 is converted to DC power by the variable speed converter 508 and then supplied to both ends of the smoothing capacitor 512.
  • the electric power generated by the expander 503 and the generator 507 is consumed by the motor 505 that drives the compressor 501.
  • the rotational speeds of the expander 503 and the generator 507 are controlled by a variable speed converter 508.
  • the target speed is given to the variable speed converter 508 from the microcomputer 509.
  • the microcomputer 509 determines the target rotational speed of the expander 503 based on the radiator outlet temperature obtained from the temperature sensor 516 and the radiator outlet pressure obtained from the pressure sensor 517 so that the refrigeration cycle efficiency is maximized. Then, control the high-pressure side pressure (radiator outlet pressure) of the refrigeration cycle.
  • FIG. 3 is a diagram illustrating the interrelationship between the radiator outlet pressure, the radiator outlet temperature, and the refrigeration cycle efficiency.
  • the maximum efficiency of the refrigeration cycle of the heat pump application device 500 depends on the radiator outlet pressure and the radiator outlet temperature.
  • the line connecting the maximum points is the optimum efficiency pressure line in the figure.
  • FIG. 4 is a flowchart of a process for determining the rotation speed of the expander.
  • Microcomputer 509 first samples the sensor signals from temperature sensor 516 and pressure sensor 517. These sensor signals are signals that have been binarized by AZD variation (not shown). Further, the microcomputer 509 calculates a radiator outlet pressure and a radiator outlet temperature from the acquired sensor signal (S101). Next, the optimum pressure that maximizes the refrigeration cycle efficiency is calculated according to the data shown in FIG. 3 (S102). Specifically, a database for specifying the correspondence relationship between the radiator outlet pressure, radiator outlet temperature, and refrigeration cycle efficiency, that is, the graph of FIG. . In the process of S102 in the flowchart, the optimum pressure that maximizes the refrigeration cycle efficiency is found by referring to the database.
  • the quantization width when creating the database in Figure 3 as the database is as follows: temperature sensor 516 and pressure sensor 517. It should be determined by the resolution. Note that an approximate function F (p, t) of the optimum efficiency pressure line shown in FIG. 3 is found in advance and is given to the microcomputer 509.
  • the approximate function F (p, t) includes the radiator outlet pressure and the radiator. By substituting the outlet temperature, the optimum pressure that maximizes the refrigeration cycle efficiency may be calculated.
  • the deviation between the current radiator outlet pressure and the optimum pressure is examined (S103). If the current radiator outlet pressure is larger than the optimum pressure, the target rotational speed of the expander 503 is set larger than the current target rotational speed so that the radiator outlet pressure is reduced (S104). Then, the set target rotational speed is output to variable speed converter 508 (S105). On the other hand, if the current radiator outlet pressure is lower than the optimum pressure, the target rotational speed of the expander 503 is set smaller than the current target rotational speed so that the radiator outlet pressure increases, and the target The number of revolutions is output to variable speed converter 508 (S 106, S 105). Although not shown in the flowchart, when the current radiator outlet pressure matches the optimum pressure, the current target rotational speed may be maintained. With these controls, the pressure at the radiator outlet is controlled to maximize refrigeration cycle efficiency.
  • FIG. 5 is a detailed block diagram of the variable speed converter 508 of the heat pump application device 500 shown in FIG.
  • the variable speed converter 508 includes a conversion circuit unit 508a as a DC power output means that converts AC power generated by the generator 507 into DC power and regenerates the motor 505, and a control circuit that generates a PWM signal. Part 508b.
  • the conversion circuit section 508a includes a u-phase current sensor 805a, a V-th current sensor 805b, switching elements 803a, 803b, 803c, 803d, 803e, 803f and freewheeling diodes 804a, 804b, 804c, 804d, 804e, 804f. Including.
  • the current sensor only needs to be able to measure the current value of any two of the three phases u, V, and w.
  • the switching elements 803a to 803f are power MOSFETs or IGBTs (Insulated Gate Bipolar Transistors).
  • the control circuit unit 508b can also be configured by an analog circuit centered on a force operational amplifier generally configured by a microcomputer.
  • Control circuit The microcomputer 508b as the unit 508b includes a biaxial current conversion means 806, a rotor position rotation speed estimation means 807, a base driver 808, a sine wave voltage output means 809, a current control means 810, a current command creation means 811, and a rotation speed. It includes a control means 812 and a current phase angle determination means 815, and applies the created PWM signal to the switching elements 803a to 803f.
  • each of these means means a program module that can be executed by the microcomputer 508b (control circuit unit 508b).
  • the three-phase AC output from the generator 507 is supplied to, for example, the DC power source 801 side via the variable speed converter 508.
  • the DC power source 801 corresponds to the output of the rectifier circuit 51 1 in FIG.
  • the three-phase AC output is converted to DC by the variable speed converter 508.
  • control is performed so that the rotational speed of the generator 507 becomes the target rotational speed based on the target rotational speed given from the outside (the microcomputer 509 in the present embodiment).
  • variable-speed converter 508 has switching patterns of switching elements 803a to 803f, a magnetic pole position (rotor position ⁇ ) of generator 507, an estimated rotational speed ⁇ m of generator 507, a microcomputer 509 It is determined based on the target rotational speed given by the force and the detection results of the phase currents iu, iv by the current sensors 805a, 805b. Further, a switching pattern signal corresponding to the determined switching pattern is sent to the base driver 808. The switching pattern signal is converted into a drive signal (PWM signal) for electrically driving the switching elements 803a to 803f by the base dryer 808, and each switching element 803a to 803f operates according to these drive signals. To do.
  • PWM signal drive signal
  • control is performed when the voltage of the DC power lines DL and DL does not exceed the predetermined threshold voltage.
  • the deviation force from the current rotational speed ⁇ (estimated rotational speed co m described later) is also determined by Based on 2), it is calculated by the rotational speed control means 812 (rotational speed control program). Calculation method The method is based on the general PI control method.
  • Gp ⁇ is the speed control proportional gain
  • Gico is the integral gain
  • is the current rotational speed
  • ⁇ * is the target rotational speed
  • I * is the current command.
  • the current command creation means 811 acquires the current command value I * calculated by the rotation speed control means 812, and the d-axis current command Id for realizing the current phase angle.
  • Id * and Iq * are obtained by substituting the optimal current phase angle ⁇ into (Equation 3) and (Equation 4).
  • is the current phase angle
  • Reluctance torque Tr is maximum at
  • 8 45 ° and –135 °. As a result, the total generated torque T becomes maximum when the current phase angle is in the range of 0 ° ⁇
  • 8 0 ° for SPMSM so that the power generation efficiency is the highest.
  • the current phase angle determination means 815 passes
  • 8 0 ° to the current command creation means 811.
  • the power generation efficiency means the ratio between the input and output of the generator 507.
  • the input of generator 507 is the product of rotational speed and torque, and the output is the product of voltage and current.
  • the input and output are the opposite of the case of the generator 507.
  • IPMSM it is necessary to operate at an optimal current phase angle ⁇ that is determined according to device constants (number of pole pairs, flux linkage, d-axis inductance, q-axis inductance, etc.) and current value.
  • the current phase angle determining means 815 obtains the optimum current phase angle j8 according to the device constant and the current value.
  • the calculation is performed to find the current phase angle ⁇ that minimizes the loss of IPMSM.
  • the calculation is complicated, and a processor with high processing capability is required to perform the calculation within a given time. Therefore, for example, the optimal current phase angle j8 corresponding to the current value is obtained in advance by simulation or experiment, and an approximation function or lookup table for obtaining the optimal current phase angle ⁇ based on the results is prepared.
  • the inverter 506 and the variable speed converter 508 can actually control the u-phase, V-phase, and w-phase voltages of the motor 505 and the generator 507, and can detect the u-phase and ⁇ -phase voltages.
  • Current and rotor position ⁇ Therefore, the current flowing in the d-axis and q-axis is calculated based on the current values of the u-phase and V-phase, and then the u-phase, V-phase, and w-phase voltages are derived, and the u-phase, V-phase, and w-phase voltages are derived.
  • the method of controlling the sine wave current is adopted. Such a method is called a vector control method because the current flowing through the motor is regarded as a current vector on the dq coordinate, and is widely used for brushless motor control.
  • phase currents iu, iv of the generator 507 detected by the current sensors 805a, 805b are contributed to the magnet torque of the generator 507 by the biaxial current conversion means 806.
  • q-axis current Iq and d-axis current Id orthogonal to it are converted into 2-axis current.
  • the d-axis is usually in the direction of the magnetic flux generated by the field.
  • FIG. 8 is a diagram showing the current phase angle 13 on the dq coordinate.
  • the current phase angle j8 is represented by the angle formed by the current vector I and the q-axis current Iq.
  • the current vector I is the d-axis current Id and the q-axis current This is a composite vector with the flow Iq.
  • Id 0 (
  • 8 0 °).
  • IPMSM by flowing a negative d-axis current, the magnetic flux in the d-axis direction can be reduced using the demagnetization effect due to the d-axis armature reaction, and equivalent field-weakening control can be realized.
  • the current control means 810 uses the current commands Id * and Iq * given from the current command creation means 811 and the current values Id and Iq given from the two-axis current conversion means 806 as follows ( Equation 8) Output voltages Vd and Vq are created by (Equation 9).
  • Vd Gpd X (Id * -Id) + Gid X ⁇ (Id * —Id)
  • Vq Gpq X (Iq * — Iq) + Giq X ⁇ (Iq * — Iq)... (Equation 9)
  • Vd is d-axis voltage
  • Vq is q-axis voltage
  • Gpd is d-axis current control proportional gain
  • Gid is integral gain
  • Gpq is q-axis current control proportional gain
  • Giq is integral gain
  • the sine wave voltage output means 809 obtains three-phase output voltages Vu, Vv, Vw so that the output waveform becomes a sine wave based on Vd, Vq on the d-q coordinate and the rotor position ⁇ . Specifically, by the rotation transformation and the two-phase three-phase transformation of (Equation 10) and (Equation 11) below, the voltage on the 1-coordinate ⁇ (1, Vq is changed to the three-phase output voltage Vu, Vv, Vw. Convert.
  • the rotor position rotational speed estimation means 807 (rotor position rotational speed estimation program) will be described.
  • the rotor position 0 magnetic pole position
  • the motor 505 and the generator 507 are arranged in the housing of the compressor 501 and the expander 503. This is because the problem of refrigerant leakage caused by exposing the shaft to the outside does not occur, reliability can be improved, and miniaturization and low cost are easy to achieve.
  • the housings of the compressor 501 and the expander 503 are usually at high temperatures and pressures, and it is difficult for detectors such as Hall elements and resolvers to demonstrate their original performance. In addition, there is a problem that space constraints are large. Therefore, it is preferable to employ a so-called sensorless method in which the rotor position ⁇ of the motor 505 or the generator 507 is estimated from the induced voltage of the winding of each phase in the heat pump applied device 500.
  • phase currents (iu, iv, iw) flowing in the shoreline of each phase are obtained from the currents, detected by the current sensors 805a, 805b.
  • the phase applied to the winding of each phase from the three-phase duty values Du, Dv, Dw output by the sine wave voltage output means 809 and the power supply voltage Vdc obtained from the voltage dividing resistors 813a, 813b.
  • the voltage (vu, vv, vw) is obtained from the following equation.
  • R is the resistance of the winding
  • L is the inductance of the winding
  • / dt and d (iw) Zdt are time derivatives of iu, iv and iw, respectively.
  • the rotor position ⁇ and the estimated rotational speed com are estimated from the obtained induced voltage values eu, ev, and ew.
  • This is a method of estimating the rotor position ⁇ by converging it to a true value by correcting the estimated angle ⁇ m recognized by the variable speed converter 508 using the error of the induced voltage.
  • the estimated rotational speed com is also estimated from the estimated angle ⁇ m.
  • an induced voltage reference value (eum, evm, ewm) of each phase is obtained by the following formula.
  • the induced voltage amplitude value em is obtained by matching the amplitude values of the induced voltage values eu, ev, and ew.
  • a deviation ⁇ between the induced voltage value thus obtained and the induced voltage reference value is created.
  • the deviation ⁇ is obtained by subtracting the induced voltage reference value es m of each phase from the estimated induced value es of each phase as shown in (Equation 21) below.
  • the estimated angle ⁇ m becomes a true value. Therefore, the true value of the estimated angle ⁇ m is obtained as the rotor position ⁇ (estimated magnetic pole position) by, for example, a method of converging the deviation ⁇ by the ⁇ operation so that the deviation ⁇ converges to zero. Further, the estimated rotational speed com can be estimated by calculating the fluctuation value of the estimated angle ⁇ m.
  • the rotor element ⁇ may be detected by a resolver to obtain the rotational speed ⁇ . Of course it is good.
  • the power consumption Wm of the motor 505 is larger than the regenerative power Wg from the generator 507.
  • (power consumption Wm) ⁇ (regenerative power Wg) may occur. If this situation continues, the DC power lines DL and DL
  • permanent magnet synchronous motors such as SPMSM and IPMSM have a current phase angle j8 that can maximize the generated torque for the same current. Conversely, by avoiding the current phase angle ⁇ where the generated torque is maximized, it is possible to perform an intentionally inefficient operation without changing the rotational speed.
  • FIG. 9 is a characteristic diagram showing loss characteristics of a permanent magnet synchronous generator (IPMSM) of a certain design.
  • IPMSM permanent magnet synchronous generator
  • FIG. 9 is a characteristic diagram showing the loss characteristic of the generator with respect to the magnitude of the d-axis current that is the excitation direction of the permanent magnet synchronous generator.
  • the loss of the generator varies with the d-axis current, and there is a d-axis current value Id that minimizes the loss.
  • the d-axis current Id should be controlled opt to minimize the generator loss.
  • the generator efficiency decreases.
  • the induced voltage value may be lowered by the field weakening effect.
  • DC power line
  • the DL and DL voltages are the reference values (for example, when full-wave rectification is applied to a 200V AC power input)
  • variable speed converter 508 detects the voltage of the DC power lines DL and DL by the first voltage detection sensor 520, and when the voltage value exceeds a predetermined value, the electric power of the generator 507 is detected.
  • Control is performed to shift the flow phase angle ⁇ from the optimum value Id.
  • Figure 10 shows the microcomputer 508b opt
  • the microcomputer 508b samples the voltage V of the DC power lines DL and DL from the first voltage detection sensor 520 (ST1). Next, DC power line DL, DL
  • 8 should be proportional to (V -V).
  • the current phase angle j8 ′ can be determined in the range of 0 ° to 90 ° so that the generator 507 can be appropriately controlled. Also, the current phase angle ⁇ with respect to (V -V)
  • the generator 507 changes from a high efficiency state with high power generation efficiency to a low efficiency state with low power generation efficiency.
  • the current phase angle / 3 passed to the current command creation means 811 may be one.
  • the generator 507 is controlled in the first mode that adopts a current phase angle j8, and (V ⁇ V)
  • the generator 507 is controlled in the second mode that employs the current phase angle ⁇ ′, in which the power generation efficiency is lower than that in the first mode.
  • the generator 507 can be fixed at an arbitrary value of j8, ⁇ 0 °.
  • FIG. 11 is a characteristic diagram showing the setting principle of the current phase angle of the variable speed converter 508 in the heat pump application device 500 of the present embodiment.
  • the current phase angle is set to the optimum value j8 that maximizes the power generation efficiency.
  • variable speed converter 508 allows the generator 507 and the expander to
  • the voltage V of the DC power lines DL and DL is adjusted to the threshold voltage.
  • variable speed converter 508 1 2 DL Pressure can be kept below V. That is, the variable speed converter 508
  • a voltage suppressor that suppresses the voltage V of Karin DL and DL to less than the specified value (threshold voltage V).
  • the inverter 506 detects the voltage V of the DC power lines D L and DL by the second voltage detection sensor 521, and if the voltage value exceeds a predetermined value, the current of the motor 505
  • the motor 505 current phase angle is the maximum drive efficiency.
  • the current phase angle is set larger or smaller than the optimum value.
  • the inverter 506 sets the voltage V of the DC power lines DL and DL to a predetermined value (threshold voltage).
  • control for reducing the power generation efficiency of the generator 507 and the control for reducing the driving efficiency of the motor 505 may be executed in parallel.
  • the DC power line DL the DC power line DL
  • FIG. 12 is a block diagram showing a heat pump application device according to the second embodiment of the present invention.
  • the same reference numerals are used for parts common to the first embodiment.
  • the configuration of the heat pump application device 550 of the second embodiment is the same as the configuration of the heat pump application device 500 of the first embodiment in that a set of the switch 513 and the load 514 is connected in parallel to the DC power line DL.
  • the heat pump application device 550 also detects the microcomputer 519 as a control means for controlling on / off of the switch 513 and the voltage V of the DC power lines DL and DL.
  • the detection result by the third voltage detection sensor 522 is input to the microcomputer 519.
  • the switch 513 may be a semiconductor switch such as a transistor or a machine such as a relay. It may be a typical switch.
  • the type of load 514 is not limited as long as it is a resistive load that can consume DC power, but a simple resistance is desirable from the viewpoint of cost. Note that the switch 513 and the load 514 may be arranged in the DC power line DL on the variable speed converter 508 side.
  • the combination of the switch 513 and the load 514 connected in series is the voltage of the DC power lines DL and DL.
  • the power consumption starts and the voltage V of the DC power lines DL and DL is set to the predetermined value (threshold voltage V).
  • Switch 513 and load 514 operate as follows.
  • FIG. 13 is a characteristic diagram showing the transition of the voltage V of the DC power lines DL and DL. 3rd electric
  • the voltage V of the DC power lines DL and DL detected by the pressure detection sensor 522 is a predetermined value.
  • the microcomputer 519 turns on the switch 513 when the DL control start voltage, for example, 320 V or more is reached. From this, the DC power line DL and DL force also flows through the load 514.
  • the voltage V of the DC power lines DL and DL is low.
  • the microcomputer 519 turns off the switch 513.
  • the third voltage detection sensor 522, the microcomputer 519, the switch 513, and the load 514 perform control to keep the voltage V of the DC power lines DL and DL within a predetermined range.
  • the voltage V of 1 stabilizes at a steady value. In this way, the voltage of the DC power lines DL and DL
  • switch 513, the load 514, the third voltage detection sensor 522, and the microcomputer 519 may be configured as a part of the power recovery apparatus 601 described in the first embodiment.
  • the load 514 can be replaced with a capacitor such as a capacitor having a power storage function. Noh. That is, the voltage V of the DC power lines DL and DL is not less than the threshold voltage V.
  • switch 513 When DL TH is connected, switch 513 is turned on to start storing power in the battery. Even with such a configuration, it is possible to suppress the voltage increase of the DC power lines DL and DL.
  • control (first embodiment) for reducing the power generation efficiency of the generator 507 and the drive efficiency of the motor 505 by controlling the current phase angle ⁇ is executed in parallel with the control of the second embodiment. May be. Then, the voltage V of the DC power lines DL and DL rises rapidly.
  • FIG. 14 is a block diagram showing a heat pump application device according to a third embodiment of the present invention.
  • the heat pump application device 560 includes a power recovery device 602 including an expander 503, a generator 507, and a variable speed converter 528. These points are the same as in the first embodiment. The difference from the first embodiment is that the voltage V of the DC power lines DL and DL is the threshold value.
  • Variable speed converter 528 and inverter 526 execute when DL voltage becomes V or higher.
  • variable speed control When the voltage V of the DC power lines DL and DL exceeds the threshold voltage V, the variable speed control
  • the barter 528 performs control to reduce the rotational speed of the generator 507 and the expander 503, and suppresses the voltage V of the DC power lines DL and DL to be less than the threshold voltage V.
  • Imba Imba
  • the data 526 executes control to increase the rotational speeds of the motor 505 and the compressor 501 and suppress the voltage V of the DC power lines DL and DL to be less than the threshold voltage V.
  • FIG. 15 is a characteristic diagram showing the transition of the voltage V of the DC power lines DL and DL. Normal condition
  • the voltage V of the DC power lines DL and DL is a predetermined control start voltage (threshold voltage V).
  • variable speed converter 528 executes control to reduce the rotational speeds of generator 507 and expander 5003. As a result, the amount of power generated by the expander 503 decreases, and the voltage V of the DC power lines DL and DL decreases. Then, DC power line DL
  • variable speed co When the DL voltage V drops below a certain control end voltage, e.g. 310V, the variable speed co
  • the inverter 528 again sets the rotation speeds of the generator 507 and the expander 503 to a predetermined rotation speed that maximizes the refrigeration cycle efficiency. After such control is repeated, if the operating status of the heat pump application device 550 changes and the power consumption Wm of the motor 505 is greater than the regenerative power Wg from the variable speed converter 528, the DC power line DL, DL voltage V
  • the target rotational speed of the generator 507 has the maximum refrigeration cycle efficiency based on the outputs of the temperature sensor 516 and the pressure sensor 517 arranged at the outlet of the radiator.
  • the microcomputer 509 decides so that Therefore, the microcomputer 509 can acquire the output of the first voltage detection sensor 520, and the microcomputer 509 determines whether or not the voltage V of the DC power lines DL and DL is excessive.
  • Microcomputer 509 is a DC power line DL, DL
  • the key may be determined by the variable speed converter 528.
  • the variable speed converter 528 performs the calculation of (Equation 2) at a lower rotational speed than the target rotational speed passed from the microcomputer 509.
  • the barter 526 executes control for increasing the rotational speeds of the motor 505 and the compressor 501. As a result, the power consumption of the motor 505 increases and the voltage V of the DC power lines DL and DL is reduced.
  • the voltage V of the DC power lines DL and DL is the predetermined control end voltage, eg
  • inverter 526 resets the rotation speeds of motor 505 and compressor 501 to a predetermined rotation speed that maximizes the refrigeration cycle efficiency.
  • the heat pump application device and the power recovery device of the present invention have the effect of improving reliability without destruction of the component parts, and are useful for heat pump refrigeration devices such as air conditioning and heating devices and water heaters. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A heat pump application device (500) comprises a compressor (501) for compressing a cooling medium, a motor (505) for operating the compressor (501), a radiator (502) for cooling the cooling medium compressed by the compressor (501), an expander (503) for expanding the cooling medium passing through the radiator (502), an evaporator (504) for evaporating the cooling medium expanded by the expander (503), a generator (507) connected to the expander (503) to generate power with the expansion energy of the cooling medium, and a variable speed converter (508) for converting the AC power generated by the generator (507) into DC power to regenerate power supplied to the motor (505). The variable speed converter (508) conduct a control to reduce the voltage on the PC power line (DL1, DL2) for regenerated power below a threshold.

Description

ヒートポンプ応用機器および膨張機を用いた動力回収装置  Power recovery device using heat pump application equipment and expander
技術分野  Technical field
[0001] 本発明は、冷媒の膨張エネルギーを電気エネルギーの形で回収する機能を持った ヒートポンプ応用機器、およびそのヒートポンプ応用機器に好適な動力回収装置に 関する。  TECHNICAL FIELD [0001] The present invention relates to a heat pump application device having a function of recovering expansion energy of a refrigerant in the form of electric energy, and a power recovery device suitable for the heat pump application device.
背景技術  Background art
[0002] ヒートポンプ応用機器の代表例である蒸気圧縮式冷凍装置として、図 16に示す構 成のものがある。図 16の冷凍装置は、圧縮機 101、放熱器 102、膨張弁 103、およ び蒸発器 104から構成される。それらの要素は配管により連結され、冷媒が図示の 白抜き矢印のように移動する。  [0002] A vapor compression refrigeration apparatus, which is a representative example of heat pump application equipment, has a configuration shown in FIG. The refrigeration apparatus shown in FIG. 16 includes a compressor 101, a radiator 102, an expansion valve 103, and an evaporator 104. These elements are connected by piping, and the refrigerant moves as indicated by the white arrows in the figure.
[0003] 上記冷凍装置の運転原理は次のとおりである。冷媒蒸気の圧力および温度は圧縮 機 101によって増大される。次いで、その冷媒蒸気が放熱器 102に入り、そこで冷却 される。この後、高圧冷媒は膨張弁 103により蒸発圧力に絞られ、蒸発器 104におい て気化し、蒸発器 104の周囲から熱を吸収する。そして、蒸発器 104の出口を通って 冷媒蒸気は圧縮機 101に戻る。この冷媒には、例えば、オゾン層を破壊せず地球温 暖化係数の小さ 、二酸ィ匕炭素が用いられることがある。  [0003] The operation principle of the refrigeration apparatus is as follows. The pressure and temperature of the refrigerant vapor is increased by the compressor 101. The refrigerant vapor then enters the radiator 102 where it is cooled. Thereafter, the high-pressure refrigerant is reduced to the evaporation pressure by the expansion valve 103, vaporizes in the evaporator 104, and absorbs heat from the surroundings of the evaporator 104. Then, the refrigerant vapor returns to the compressor 101 through the outlet of the evaporator 104. As this refrigerant, for example, carbon dioxide with a low global warming coefficient without destroying the ozone layer may be used.
[0004] し力しながら、二酸ィ匕炭素を冷媒とする冷凍装置は、フロンを冷媒とする冷凍装置 に比べ、エネルギー効率を示す成績係数(COP : Coefficient Of Performance)が低く 、同等の冷凍能力を考えた場合、フロンを冷媒とする冷凍装置より多くの電力が必要 になる。そのため、多くの化石燃料がエネルギーとして必要になり、冷媒自体の地球 温暖化係数が小さくても、結果的に多くの二酸ィ匕炭素が排出される。そこで、二酸ィ匕 炭素を冷媒とする冷凍装置の COPを向上させるために、いくつかの提案がなされて いる。  [0004] However, a refrigeration system using carbon dioxide as a refrigerant has a lower coefficient of performance (COP: Coefficient Of Performance) indicating energy efficiency than a refrigeration system using chlorofluorocarbon as a refrigerant. Considering capacity, more power is required than refrigeration equipment using chlorofluorocarbon as a refrigerant. Therefore, a lot of fossil fuel is required as energy, and even if the global warming potential of the refrigerant itself is small, a lot of carbon dioxide is discharged as a result. Thus, several proposals have been made to improve the COP of a refrigeration system using carbon dioxide and carbon dioxide as a refrigerant.
[0005] 上記提案の一例として、図 17に示す冷凍装置 (特開 2000— 241033号公報を参 照)がある。この冷凍装置において、冷媒は、モータ 205により駆動される圧縮機 201 により圧縮された後、放熱器 202で冷却され、膨張機 203に吸入される。膨張機 203 内で膨張した冷媒は、蒸発器 206内で外部より吸熱して気化した後、再び圧縮機 20 1へ戻る。膨張機 203に取り付けられた発電機 204は、冷媒の膨張エネルギーで回 転して発電する。回転数制御手段 212は、圧力センサ 210および温度センサ 211の 出力に基づき、放熱器 202の出口圧力が演算手段 209により演算した最適高圧値 になるように、発電機 204の発電量、すなわち、膨張機 203の回転数を制御する。な お、圧縮機 201の前後には、性能、信頼性向上のためオイルセパレータ 207および アキュムレータ 208が設置されて!、る。 [0005] As an example of the above proposal, there is a refrigeration apparatus (see Japanese Patent Application Laid-Open No. 2000-241033) shown in FIG. In this refrigeration apparatus, the refrigerant is compressed by a compressor 201 driven by a motor 205, cooled by a radiator 202, and sucked into an expander 203. Expander 203 The refrigerant expanded in the evaporator 206 absorbs heat from the outside in the evaporator 206 and vaporizes, and then returns to the compressor 201 again. The generator 204 attached to the expander 203 rotates with the expansion energy of the refrigerant to generate power. The rotation speed control means 212 is based on the outputs of the pressure sensor 210 and the temperature sensor 211 so that the outlet pressure of the radiator 202 becomes the optimum high pressure value calculated by the calculation means 209, that is, the power generation amount of the generator 204, that is, the expansion Controls the speed of the machine 203. An oil separator 207 and an accumulator 208 are installed before and after the compressor 201 to improve performance and reliability.
[0006] 冷媒の膨張エネルギーで発電機を駆動して電力を生成し、その電力を有効利用す ることにより、総合的に使用されるエネルギー量を低減できる。結果として、冷凍装置 の COPが向上する。 [0006] By generating a power by driving a generator with the expansion energy of the refrigerant and effectively using the power, the amount of energy used can be reduced comprehensively. As a result, COP of refrigeration equipment is improved.
[0007] 図 18は、膨張機を用いた従来の動力回収装置を示すブロック図である。図 18にお いて、交流電源 301からの交流電圧は、整流回路 302で直流電圧に変換される。直 流電圧は、平滑コンデンサ 303により平滑ィ匕されたあと、モータ駆動装置 304により 3 相交流電圧に変換される。この 3相交流電圧によってモータ 306が駆動される。そし て、モータ 306の駆動により圧縮機 307が圧縮機能を果たす。  FIG. 18 is a block diagram showing a conventional power recovery device using an expander. In FIG. 18, the AC voltage from the AC power supply 301 is converted into a DC voltage by the rectifier circuit 302. The direct voltage is smoothed by the smoothing capacitor 303 and then converted into a three-phase AC voltage by the motor driving device 304. The motor 306 is driven by the three-phase AC voltage. Then, the compressor 307 performs a compression function by driving the motor 306.
[0008] モータ駆動装置 304は、直流電圧を交流に変換するためのスイッチング素子群 30 5などカゝら構成されている。所定の交流周波数を実現するように、 PWM (Pulse Width Modulation)方式でスイッチング素子群 305をオンオフすることにより、任意の交流を 出力することができる。  [0008] The motor driving device 304 includes a switching element group 305 for converting a DC voltage into an AC voltage. Arbitrary alternating current can be output by turning on and off the switching element group 305 by a PWM (Pulse Width Modulation) method so as to realize a predetermined alternating frequency.
[0009] 一方、膨張機 311により動力を回収するために設置された発電機 310には、その 発電機 310が生成する 3相交流電力を直流電力に変換するための可変速コンパ一 タ 308が接続されている。この可変速コンバータ 308は、発電機 310が生成する交流 電力を直流電力に変換するとともに、スイッチング素子群 309を PWM方式でスイツ チングすることにより、与えられる目標回転数で発電機 310を回転させる。発電機 31 0の回転数を制御することにより、膨張機 311の回転数を制御することが可能となる。 また、可変速コンバータ 308からの直流電力ラインは、モータ 306に給電を行うため の直流電力ラインに並列接続される。可変速コンバータ 308から回生された電力は、 モータ駆動装置 304を介して圧縮機 307側のモータ 306で消費される。 [0010] なお、特開 2002— 354896号公報に開示されているように、風力発電の分野にお いては、発電機力もの出力電圧を一定に保つ技術が公知である。 On the other hand, the generator 310 installed for recovering power by the expander 311 has a variable speed comparator 308 for converting the three-phase AC power generated by the generator 310 into DC power. It is connected. The variable speed converter 308 converts the AC power generated by the generator 310 into DC power and switches the switching element group 309 by the PWM method to rotate the generator 310 at a given target rotational speed. By controlling the rotational speed of the generator 310, the rotational speed of the expander 311 can be controlled. Further, the DC power line from the variable speed converter 308 is connected in parallel to the DC power line for supplying power to the motor 306. The electric power regenerated from the variable speed converter 308 is consumed by the motor 306 on the compressor 307 side via the motor driving device 304. [0010] As disclosed in Japanese Patent Application Laid-Open No. 2002-354896, in the field of wind power generation, a technique for keeping the output voltage of a generator constant is known.
発明の開示  Disclosure of the invention
[0011] ところで、図 18の動力回収装置において、交流電源 301から整流回路 302を経て 供給される電力を Win、モータ 306にて消費される電力を Wm、可変速コンバータ 30 8により回生される電力を Wgとすると、下記 (式 1)が成り立つ。通常は、消費電力 W mの方が回生電力 Wgよりも大であるため、交流電源 301からの供給電力 Winは正の 値である。  By the way, in the power recovery apparatus of FIG. 18, the power supplied from AC power supply 301 via rectifier circuit 302 is Win, the power consumed by motor 306 is Wm, and the power regenerated by variable speed converter 308 If Wg is Wg, the following (Equation 1) holds. Normally, the power consumption Wm is larger than the regenerative power Wg, so the power supplied Win from the AC power supply 301 is a positive value.
Win+Wg=Wm- . . (式 1)  Win + Wg = Wm-.. (Formula 1)
[0012] ところが、(消費電力 Wm) > (回生電力 Wg)という関係が常に成立するかといえば 、そうとは限らない。例えば、システムの起動時、停止時、圧縮機の減速時、熱交換 器の状態の急変時などでは、短時間ではあるが、消費電力 Wmよりも回生電力 Wgの 方が大となる期間が生じる場合がある。整流回路 302は、通常、ダイオードブリッジで 構成された全波整流回路であり、交流電源 301に電力を回生する機能を備えていな い。したがって、回生電力 Wgが消費電力 Wmを上回る状況が発生すると、平滑コン デンサ 303だけでは余分な電力をたちまち吸収しきれなくなり、直流電力ラインの電 圧が異常に上昇し、最終的に平滑コンデンサ 303などの電気部品を破壊するおそれ がある。  [0012] However, if the relationship of (power consumption Wm)> (regenerative power Wg) always holds, this is not always the case. For example, when the system is started, stopped, when the compressor decelerates, or when the state of the heat exchanger changes suddenly, there is a period in which the regenerative power Wg is greater than the power consumption Wm, although it is a short time. There is a case. The rectifier circuit 302 is usually a full-wave rectifier circuit configured by a diode bridge, and does not have a function of regenerating power in the AC power supply 301. Therefore, if a situation occurs where the regenerative power Wg exceeds the power consumption Wm, the smoothing capacitor 303 alone cannot absorb the excess power immediately, and the voltage of the DC power line rises abnormally. There is a risk of damaging electrical components such as.
[0013] 上記の事情に鑑み、本発明は、回生電力が消費電力を上回った場合における直 流電力ラインの電圧過昇を防止することにより、ヒートポンプ応用機器の信頼性向上 を図ることを目的とする。また、そうしたヒートポンプ応用機器に好適な動力回収装置 の信頼性向上を図ることを目的とする。  In view of the above circumstances, an object of the present invention is to improve the reliability of a heat pump application device by preventing an excessive voltage increase in a direct current power line when regenerative power exceeds power consumption. To do. Another object of the present invention is to improve the reliability of a power recovery device suitable for such heat pump application equipment.
[0014] すなわち、本発明は、 [0014] That is, the present invention provides
冷媒を圧縮する圧縮機と、  A compressor for compressing the refrigerant;
圧縮機を作動させるモータと、  A motor for operating the compressor;
圧縮機により圧縮された冷媒を冷却する放熱器と、  A radiator that cools the refrigerant compressed by the compressor;
放熱器を通過した冷媒を膨張させる膨張機と、  An expander that expands the refrigerant that has passed through the radiator;
膨張機により膨張した冷媒を蒸発させる蒸発器と、 膨張機に接続され、冷媒の膨張エネルギーで発電する発電機と、 発電機が生成する交流電力を直流電力に変換してモータ側に回生出力する直流 電力出力手段と、 An evaporator for evaporating the refrigerant expanded by the expander; A generator that is connected to the expander and generates power using the expansion energy of the refrigerant; and a DC power output means that converts AC power generated by the generator into DC power and regenerates it to the motor side;
直流電力出力手段が電力を回生する直流電力ラインの電圧を所定値未満に抑制 する電圧抑制手段と、  Voltage suppression means for suppressing the voltage of the DC power line, where the DC power output means regenerates power, to less than a predetermined value;
を備えた、ヒートポンプ応用機器を提供する。  The heat pump application equipment provided with is provided.
[0015] 上記本発明のヒートポンプ応用機器は、直流電力ラインの電圧を所定値未満に抑 制する電圧抑制手段を設けたものである。このようにすれば、圧縮機や膨張機の運 転状態によらず、直流電力ラインの電圧過昇を防止することができる。この結果、直 流電圧ラインに配置されているコンデンサやダイオードなどの電気部品の破壊防止 を図ることができ、ひいては信頼性の高いヒートポンプ応用機器を実現できる。なお、 上記所定値は、モータに給電を行う電源電圧よりもやや高めに設定された閾値電圧 とすることができる。  [0015] The heat pump application device of the present invention is provided with voltage suppression means for suppressing the voltage of the DC power line below a predetermined value. In this way, it is possible to prevent excessive voltage rise in the DC power line regardless of the operating state of the compressor or the expander. As a result, it is possible to prevent electrical components such as capacitors and diodes arranged in the direct current voltage line from being destroyed, thereby realizing a highly reliable heat pump application device. The predetermined value may be a threshold voltage set slightly higher than the power supply voltage for supplying power to the motor.
[0016] 他の一つの側面において、本発明は、  [0016] In another aspect, the present invention provides:
作動流体を膨張させる膨張機と、  An expander for expanding the working fluid;
膨張機に接続され、作動流体の膨張エネルギーで発電する発電機と、 発電機が生成する交流電力を直流電力に変換して出力する直流電力出力手段と 直流電力出力手段の出力電圧が所定値以上となった場合に、発電機の発電効率 を低下させる制御を実行する発電機制御手段とを備えた、動力回収装置を提供する  A generator that is connected to the expander and generates power with the expansion energy of the working fluid; a DC power output means that converts the AC power generated by the generator into DC power and outputs the output voltage; and the output voltage of the DC power output means exceeds a predetermined value A power recovery device having generator control means for executing control to reduce the power generation efficiency of the generator
[0017] 上記本発明の動力回収装置において、直流電力出力手段の出力電圧が所定値 以上となった場合に、発電機制御手段は、発電機の発電効率を低下させる制御を行 う。このようにすれば、直流電力出力手段の出力電圧が過昇することを防止でき、こ の動力回収装置に接続される電気回路の部品(例えばコンデンサやダイオード)が 破壊に至ることを防止することができる。すなわち、本発明によれば、膨張機を用いた 動力回収装置の信頼性が高まる。 [0017] In the power recovery apparatus of the present invention, when the output voltage of the DC power output means becomes a predetermined value or more, the generator control means performs control to reduce the power generation efficiency of the generator. In this way, it is possible to prevent the output voltage of the DC power output means from rising excessively, and to prevent the parts of the electric circuit (for example, capacitors and diodes) connected to the power recovery device from being destroyed. Can do. That is, according to the present invention, the reliability of the power recovery device using the expander is increased.
[0018] また、上記動力回収装置において、発電機制御手段に代えて、あるいはその発電 機制御手段とともに、直流電力出力手段の出力電圧が所定値以上となった場合に、 直流電力出力手段力 電力供給を受けて蓄電または電力消費を開始する電圧抑制 手段を備えていてもよい。 [0018] Further, in the power recovery apparatus, instead of the generator control means or the power generation thereof In addition to the machine control means, there may be provided voltage suppression means for starting the storage or power consumption upon receiving the power supply from the DC power output means power when the output voltage of the DC power output means becomes a predetermined value or more.
[0019] また、上記動力回収装置において、発電機制御手段は、直流電力出力手段の出 力電圧が所定値以上となった場合に、発電効率を低下させる制御を実行する代わり に、発電機の回転数を低減する制御を実行するように構成されて 、てもよ 、。 [0019] Further, in the power recovery apparatus, the generator control means may be configured to execute a control for reducing the power generation efficiency when the output voltage of the DC power output means exceeds a predetermined value. May be configured to perform control to reduce the rotational speed.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明による第 1実施形態のヒートポンプ応用機器を示すブロック図で ある。  FIG. 1 is a block diagram showing a heat pump application device according to a first embodiment of the present invention.
[図 2A]図 2Aは、代表的な SPMSM (Surface Permanent Magnet Synchronous Motor )の断面模式図である。  FIG. 2A is a schematic cross-sectional view of a typical SPMSM (Surface Permanent Magnet Synchronous Motor).
[図 2B]図 2Bは、代表的な IPMSM (Interior Permanent Magnet Synchronous Motor) の断面模式図である。  FIG. 2B is a schematic cross-sectional view of a typical IPMSM (Interior Permanent Magnet Synchronous Motor).
[図 3]図 3は、放熱器出口圧力、放熱器出口温度および冷凍サイクル効率の相互関 係を説明する図である。  [FIG. 3] FIG. 3 is a diagram for explaining a correlation among a radiator outlet pressure, a radiator outlet temperature, and a refrigeration cycle efficiency.
[図 4]図 4は、膨張機の回転数を決定する処理のフローチャートである。  FIG. 4 is a flowchart of a process for determining the rotation speed of the expander.
[図 5]図 5は、可変速コンバータの詳細構成を示すブロック図である。  FIG. 5 is a block diagram showing a detailed configuration of a variable speed converter.
[図 6]図 6は、 IPMSMにおける電流位相角とトルクとの関係を例示する特性図である  FIG. 6 is a characteristic diagram illustrating the relationship between current phase angle and torque in IPMSM.
[図 7A]図 7Aは、 3相交流座標と 2相交流座標との関係を示す図である。 [FIG. 7A] FIG. 7A is a diagram showing a relationship between three-phase AC coordinates and two-phase AC coordinates.
[図 7B]図 7Bは、 2相交流座標と d— q座標との関係を示す図である。  FIG. 7B is a diagram showing the relationship between the two-phase AC coordinate and the dq coordinate.
[図 8]図 8は、 d— q座標上の電流位相角 βを示す図である。  FIG. 8 is a diagram showing a current phase angle β on dq coordinates.
[図 9]図 9は、永久磁石型同期発電機の損失特性を表す特性図である。  FIG. 9 is a characteristic diagram showing loss characteristics of the permanent magnet type synchronous generator.
[図 10]図 10は、電流位相角を決定する処理のフローチャートである。  FIG. 10 is a flowchart of processing for determining a current phase angle.
[図 11]図 11は、電流位相角の設定原理を表す特性図である。  FIG. 11 is a characteristic diagram showing the principle of setting the current phase angle.
[図 12]図 12は、第 2実施形態のヒートポンプ応用機器を示すブロック図である。  FIG. 12 is a block diagram showing a heat pump application device of a second embodiment.
[図 13]図 13は、第 2実施形態のヒートポンプ応用機器における直流電力ラインの電 圧の推移を表す特性図である。 [図 14]図 14は、第 3実施形態のヒートポンプ応用機器を示すブロック図である。 FIG. 13 is a characteristic diagram showing a change in voltage of a DC power line in the heat pump application device of the second embodiment. FIG. 14 is a block diagram showing a heat pump application device of a third embodiment.
[図 15]図 15は、第 3実施形態のヒートポンプ応用機器における直流電力ラインの電 圧の推移を表す特性図である。  FIG. 15 is a characteristic diagram showing a change in voltage of a DC power line in the heat pump applied device of the third embodiment.
[図 16]図 16は、従来の蒸気圧縮式冷凍装置を示すブロック図である。  FIG. 16 is a block diagram showing a conventional vapor compression refrigeration apparatus.
[図 17]図 17は、膨張機を用いた従来の冷凍空調装置を示すブロック図である。  FIG. 17 is a block diagram showing a conventional refrigeration air conditioner using an expander.
[図 18]図 18は、膨張機を用いた従来の動力回収装置を示すブロック図である。 発明を実施するための最良の形態  FIG. 18 is a block diagram showing a conventional power recovery apparatus using an expander. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明のヒートポンプ応用機器において、下記の好ましい実施形態を採用できる。 In the heat pump application device of the present invention, the following preferred embodiments can be adopted.
[0022] すなわち、上述した本発明ヒートポンプ応用機器において、電圧抑制手段は、発電 機の駆動を制御する発電機制御手段に兼用することができる。 [0022] That is, in the heat pump application device of the present invention described above, the voltage suppression means can also be used as a generator control means for controlling the drive of the generator.
[0023] 具体的に、発電機制御手段は、直流電力ラインの電圧が所定値以上となった場合 に、発電機の発電効率を低下させる制御を実行する。 [0023] Specifically, the generator control means executes control for reducing the power generation efficiency of the generator when the voltage of the DC power line becomes equal to or higher than a predetermined value.
[0024] さらに好ましくは、発電機に永久磁石型同期発電機を採用することである。さらに、 本発明のヒートポンプ応用機器には、直流電力出力手段および発電機制御手段を 含む可変速コンバータを設けることができる。可変速コンバータは、永久磁石型同期 発電機が発電効率の高!、高効率状態から発電効率の低!、低効率状態に移るように 、当該永久磁石型同期発電機の電流位相角を変更する制御を実行する。 More preferably, a permanent magnet type synchronous generator is adopted as the generator. Furthermore, the heat pump application device of the present invention can be provided with a variable speed converter including DC power output means and generator control means. The variable speed converter changes the current phase angle of the permanent magnet type synchronous generator so that the permanent magnet type synchronous generator moves from a high efficiency state to a low efficiency state. Execute control.
[0025] また、発電機と同様の制御を、圧縮機に接続されたモータに適用することによって も、直流電力ラインの電圧過昇を防止することができる。すなわち、本発明のヒートポ ンプ応用機器における電圧抑制手段は、モータの駆動を制御するモータ制御手段 に兼用することができる。  [0025] The voltage increase of the DC power line can also be prevented by applying the same control as the generator to the motor connected to the compressor. That is, the voltage suppression means in the heat pump application device of the present invention can also be used as a motor control means for controlling the driving of the motor.
[0026] 具体的に、モータ制御手段は、直流電力ラインの電圧が所定値以上となった場合 に、モータの駆動効率を低下させる制御を実行する。  [0026] Specifically, the motor control means executes control for reducing the driving efficiency of the motor when the voltage of the DC power line becomes equal to or higher than a predetermined value.
[0027] さらに好ましくは、モータに永久磁石型同期モータを採用することである。この場合 にお 、て、モータ制御手段は PWM制御を実行するインバータで構成することができ る。インバータは、永久磁石型同期モータの電流位相角を変更する制御を実行して 、当該永久磁石型同期モータを高効率駆動状態から低効率駆動状態に変更する。  More preferably, a permanent magnet type synchronous motor is employed as the motor. In this case, the motor control means can be composed of an inverter that executes PWM control. The inverter executes control to change the current phase angle of the permanent magnet type synchronous motor, and changes the permanent magnet type synchronous motor from the high efficiency driving state to the low efficiency driving state.
[0028] また、本発明のヒートポンプ応用機器において、前述の電圧抑制手段は、直流電 カラインの電圧が所定値以上になった場合に、直流電力ラインに供給される電力の 蓄電または消費を開始する。 [0028] Further, in the heat pump application device of the present invention, the voltage suppression means described above may be a DC power supply. When the Kaline voltage exceeds the specified value, storage or consumption of the power supplied to the DC power line is started.
[0029] 具体的に、上記電圧抑制手段は、負荷と、負荷への給電をオンオフするスィッチと から構成され、直流電力ラインの電圧が所定値以上になった場合に、スィッチをオン して直流電力出力手段から負荷への給電を開始する。  [0029] Specifically, the voltage suppression means is composed of a load and a switch for turning on and off the power supply to the load. When the voltage of the DC power line exceeds a predetermined value, Power supply from the power output means to the load is started.
[0030] (第 1実施形態)  [0030] (First embodiment)
以下、添付の図面を参照しつつ本発明の実施形態について詳しく説明する。第 1 実施形態の主要な説明項目と説明順序は、次の通りである。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The main explanation items and the explanation order of the first embodiment are as follows.
1.ヒートポンプ応用機器の構成  1. Configuration of heat pump application equipment
2.ヒートポンプ応用機器の動作 (冷凍サイクル)  2. Operation of heat pump application equipment (refrigeration cycle)
3.ヒートポンプ応用機器の動作 (電力回生)  3. Operation of heat pump application equipment (power regeneration)
4.膨張機回転数の決定手順  4.Expansion machine rotation speed determination procedure
5.可変速コンバータの詳細構成  5. Detailed configuration of variable speed converter
6.可変速コンバータの動作  6.Operation of variable speed converter
7.回転子位置 Θの推定  7. Estimation of rotor position Θ
8.回生電力が消費電力を上回った場合の制御  8.Control when regenerative power exceeds power consumption
[0031] 1.ヒートポンプ応用機器の構成 [0031] 1. Configuration of heat pump application equipment
図 1は、本発明による第 1実施形態のヒートポンプ応用機器を示すブロック図である 。ヒートポンプ応用機器 500は、冷媒を圧縮する圧縮機 501と、圧縮機 501により圧 縮された冷媒を冷却する放熱器 502と、放熱器 502を通過した冷媒を膨張させる膨 張機 503と、膨張機 503により膨張した冷媒を蒸発させる蒸発器 504と、以上の各要 素間に冷媒を循環させる冷媒配管 518とを備えている。圧縮機 501および膨張機 50 3は、例えば、ロータリ型やスクロール型である。  FIG. 1 is a block diagram showing a heat pump application device according to a first embodiment of the present invention. The heat pump application device 500 includes a compressor 501 that compresses refrigerant, a radiator 502 that cools the refrigerant compressed by the compressor 501, an expander 503 that expands the refrigerant that has passed through the radiator 502, and an expander An evaporator 504 for evaporating the refrigerant expanded by 503 and a refrigerant pipe 518 for circulating the refrigerant between the above elements are provided. The compressor 501 and the expander 503 are, for example, a rotary type or a scroll type.
[0032] また、ヒートポンプ応用機器 500は、圧縮機 501を駆動するモータ 505と、直流を所 定の周波数の交流に変換するとともにモータ 505の駆動を制御するモータ制御手段 の役割を担うインバータ 506を備えている。インバータ 506は、いわゆる 3相電圧型ィ ンバータである。 [0032] In addition, the heat pump application device 500 includes a motor 505 that drives the compressor 501, and an inverter 506 that serves as a motor control unit that converts direct current into alternating current having a predetermined frequency and controls driving of the motor 505. I have. The inverter 506 is a so-called three-phase voltage type inverter.
[0033] モータ 505は、例えば、永久磁石型同期モータ(いわゆる DCブラシレス 'モータ)で ある。永久磁石型同期モータは、回転子表面に磁石を貼り付けた表面永久磁石同期 モータ (SPMSM : Surface Permanent Magnet Synchronous Motor)と、回転子内咅 |5 に永久磁石を埋め込んだ埋込永久磁石同期モータ(IPMSM: Interior Permanent Magnet Synchronous Motor)に大別できる。図 2Aは、代表的な SPMSMの回転子の 断面構造を示している。図 2Bは、代表的な IPMSMの回転子の断面構造を示してい る。図 2Aの SPMSMは、永久磁石の存在する部分は磁気的にエアギャップと等価と みなすことができるため、磁気抵抗が回転子の位置に無関係となり、電機子卷線の d 軸インダクタンス Ldと q軸インダクタンス Lqが等しい非突極機となる。これに対し、図 2 Bの IPMSMは、電機子卷線が作る d軸方向の磁束の磁路にはエアギャップと同じ、 磁気抵抗の大きな磁石が存在し、磁束は通りにくいが、 q軸方向の磁束はケィ素鋼板 を通ることができるため、この方向の磁気抵抗は小さくなる。この結果、(d軸インダク タンス Ld) < (q軸インダクタンス Lq)の突極機となる。 IPMSMは、マグネットトルクの 他にリラクタンストルクを併用できるため、極めて高効率にて駆動できるという利点を 持つ。したがって、モータ 505には IPMSMが推奨される。 IPMSMが好ましいのは、 発電機 507についても同様である。 [0033] The motor 505 is, for example, a permanent magnet type synchronous motor (so-called DC brushless' motor). is there. Permanent magnet synchronous motors are surface permanent magnet synchronous motor (SPMSM) with magnets attached to the rotor surface, and embedded permanent magnet synchronous motors with a permanent magnet embedded in the inner rotor | 5 (IPMSM: Interior Permanent Magnet Synchronous Motor) Figure 2A shows the cross-sectional structure of a typical SPMSM rotor. Figure 2B shows the cross-sectional structure of a typical IPMSM rotor. In the SPMSM of Fig. 2A, the part where the permanent magnet exists can be regarded as magnetically equivalent to the air gap, so the magnetic resistance becomes independent of the rotor position, and the d-axis inductance Ld and q-axis of the armature winding A non-salient pole machine with the same inductance Lq. On the other hand, the IPMSM in Fig. 2B has the same magnetic flux as the air gap in the magnetic path of the magnetic flux in the d-axis direction created by the armature winding. This magnetic flux can pass through the steel sheet, so the reluctance in this direction is small. This results in a salient pole machine with (d-axis inductance Ld) <(q-axis inductance Lq). IPMSM has the advantage that it can be driven with extremely high efficiency because reluctance torque can be used in addition to magnet torque. Therefore, IPMSM is recommended for motor 505. The IPMSM is also preferable for the generator 507.
[0034] 一方、インバータ 506は、正弦波に近い波形の電流を各相に流す正弦波 PWM制 御にてモータ 505を駆動する。磁極位置にあわせて 120° おきに電流を流す相を切 り替える 120° 通電方式では、電機子卷線のインダクタンスの影響で、電流の切り替 え時にトルクむらが発生しやすい。こうしたトルクむらを抑え、低騒音かつ高効率にて モータ 505 (永久磁石同期モータ)を駆動するには、 180° 通電方式の正弦波電流 駆動が好適である。 On the other hand, the inverter 506 drives the motor 505 by sine wave PWM control in which a current having a waveform close to a sine wave is passed through each phase. In the 120 ° energization method that switches the phase through which the current flows every 120 ° according to the magnetic pole position, torque irregularities are likely to occur when the current is switched due to the inductance of the armature winding. In order to suppress such torque unevenness and drive the motor 505 (permanent magnet synchronous motor) with low noise and high efficiency, a 180 ° energization type sinusoidal current drive is suitable.
[0035] トルクむらを減らすために界磁を正弦波磁束とすると、各相のトルク定数が正弦波と なる。そこで、各相に正弦波電流を流すと、下式のように、モータの発生トルク Tが回 転子の回転角に依存しな 、ようになる。  [0035] If the field is a sine wave magnetic flux to reduce torque unevenness, the torque constant of each phase becomes a sine wave. Therefore, when a sinusoidal current is passed through each phase, the generated torque T of the motor does not depend on the rotation angle of the rotor, as shown in the following equation.
T=Ksin Θ -Isin Q  T = Ksin Θ -Isin Q
+Ksin ( θ - 2 π /3) -Isin ( θ—2 π /3)  + Ksin (θ-2 π / 3) -Isin (θ—2 π / 3)
+Ksin ( θ 4 π /3) -Isin ( θ—4 π /3)  + Ksin (θ 4 π / 3) -Isin (θ—4 π / 3)
= (3/2) ΚΙ ただし、 K:トルク定数 (相の最大値)、 I:電機子電流 (相の最大値)、 Θ:回転子位 置 (回転角)。 = (3/2) ΚΙ Where K is the torque constant (maximum phase value), I is the armature current (maximum phase value), and Θ is the rotor position (rotation angle).
[0036] ここで、回転子位置 Θ [° ]と回転角速度 Ω [radZs]、時間 t[s]との間には、 Θ =  [0036] Here, between the rotor position Θ [°], the rotational angular velocity Ω [radZs], and the time t [s], Θ =
の関係があるので、時々刻々と変化する 3相交流量の演算が必要となり、非常に 取り扱いにくい。そこで、演算を簡単にするため、回転座標変換 (d— q変換)を用い て各相に流す電流を制御する方法、いわゆるベクトル制御法が広く採用されている。 また、ベクトル制御法によれば、モータ 505に流れる電流を d軸と q軸に分けて制御で きるので、モータの能力を最大限引き出すことが可能になる。  Therefore, it is necessary to calculate the amount of 3-phase alternating current that changes from moment to moment, which is very difficult to handle. Therefore, in order to simplify the calculation, a so-called vector control method is widely used, which uses a rotational coordinate transformation (dq transformation) to control the current flowing through each phase. Further, according to the vector control method, the current flowing through the motor 505 can be controlled separately for the d-axis and the q-axis, so that the motor capacity can be maximized.
[0037] 図 1に戻って説明を続ける。ヒートポンプ応用機器 500は、さらに、放熱器 502の出 口温度を検出する温度センサ 516と、放熱器 502の出口圧力を検出する圧力センサ 517と、マイクロコンピュータ 509とを備えている。温度センサ 516および圧力センサ 5 17の検出信号は、 AZD変翻(図示省略)で 2値ィ匕されてマイクロコンピュータ 509 に入力される。マイクロコンピュータ 509は、それらのセンサ 516, 517からの入力に 基づいて、膨張機 503の回転数を決定する膨張機回転数決定手段の役割を担う。 ただし、膨張機 503の目標回転数を設定するマイクロコンピュータ 509は、可変速コ ンバータ 508の制御系を構成するマイクロコンピュータに兼用させてもよい。  [0037] Returning to FIG. The heat pump application device 500 further includes a temperature sensor 516 that detects the outlet temperature of the radiator 502, a pressure sensor 517 that detects the outlet pressure of the radiator 502, and a microcomputer 509. The detection signals of the temperature sensor 516 and the pressure sensor 517 are binarized by AZD conversion (not shown) and input to the microcomputer 509. The microcomputer 509 plays the role of an expander rotation speed determination means for determining the rotation speed of the expander 503 based on inputs from the sensors 516 and 517. However, the microcomputer 509 that sets the target rotational speed of the expander 503 may also be used as the microcomputer that constitutes the control system of the variable speed converter 508.
[0038] ヒートポンプ応用機器 500は、さら〖こ、膨張機 503に接続されて冷媒の膨張エネル ギ一で発電する発電機 507と、発電機 507の駆動を制御する発電機制御手段の役 割を担う可変速コンバータ 508とを備えている。発電機 507には、モータ 505と同様 に、 SPMSMや IPMSMなどの永久磁石同期モータを用いることができる。可変速コ ンバータ 508は、発電機 507が生成する交流電力を直流電力に変換してモータ 505 側に回生出力する直流電力出力手段の役割も担う。また、可変速コンバータ 508は 、インバータ 506と同様の 3相電圧型であり、正弦波 PWM制御にて発電機 507を制 御する。これら膨張機 503、発電機 507および可変速コンバータ 508は、ヒートポン プ応用機器 500にお 、て、動力回収装置 601を構成して 、る。  [0038] The heat pump application device 500 functions as a generator 507 connected to the expander 503 and generating electricity with the expansion energy of the refrigerant, and a generator control means for controlling the drive of the generator 507. And a variable speed converter 508. As with the motor 505, a permanent magnet synchronous motor such as SPMSM or IPMSM can be used for the generator 507. The variable speed converter 508 also serves as a DC power output means that converts AC power generated by the generator 507 into DC power and regenerates it to the motor 505 side. The variable speed converter 508 is a three-phase voltage type similar to the inverter 506, and controls the generator 507 by sinusoidal PWM control. The expander 503, the generator 507, and the variable speed converter 508 constitute a power recovery device 601 in the heat pump application device 500.
[0039] なお、本明細書において、 "インバータ""コンバータ"という用語は、それぞれモー タ 505や発電機 507の駆動を制御するマイクロコンピュータ等の制御系を含む"イン バータュ -ッド '"コンバータュ-ッド'の意味で用いることとする。また、一般に、回生 というと、電源に電力を戻すことを意味するが、本明細書では、冷媒の膨張エネルギ 一を膨張機 503および可変速コンバータ 508で回収して電気エネルギーに変換し、 圧縮機 501を駆動するモータ 505側に供給することを意味する。 In the present specification, the terms “inverter” and “converter” include an “inverted” converter including a control system such as a microcomputer that controls driving of the motor 505 and the generator 507, respectively. -Used to mean 'do'. In general, regenerative This means that the electric power is returned to the power source. In this specification, the motor that drives the compressor 501 by recovering the expansion energy of the refrigerant by the expander 503 and the variable speed converter 508 and converting it into electric energy. It means to supply to the 505 side.
[0040] また、ヒートポンプ応用機器 500は、交流電源 510の交流電力を直流電力に変換 する整流回路 511および平滑コンデンサ 512を備えている。整流回路 511は、ダイ オードブリッジによる一般的な全波整流回路である。交流電源 510に電力を戻すた めの回路は設けていない。可変速コンバータ 508力 直流電力ライン DLを、整流回 [0040] The heat pump application device 500 includes a rectifier circuit 511 and a smoothing capacitor 512 that convert AC power of the AC power supply 510 into DC power. The rectifier circuit 511 is a general full-wave rectifier circuit using a diode bridge. There is no circuit for returning power to AC power supply 510. Variable speed converter 508 power DC power line DL, rectified circuit
2 路 511とインバータ 506との間の直流電力ライン DLに並列接続し、発電機 507から  Connected in parallel to the DC power line DL between 2-way 511 and inverter 506, from generator 507
1  1
の電力をインバータ 506に供給して、膨張機 503で回収したエネルギーを圧縮機 50 1の駆動力の一部として利用する構成となっている。  Power is supplied to the inverter 506, and the energy recovered by the expander 503 is used as part of the driving force of the compressor 501.
[0041] また、直流電力ライン DL , DLには、当該直流電力ライン DL , DLの電圧を検出 [0041] Further, the DC power lines DL and DL detect the voltages of the DC power lines DL and DL.
1 2 1 2  1 2 1 2
するための、第 1電圧検出センサ 520と第 2電圧検出センサ 521とが配置されている 。ただし、第 1電圧検出センサ 520は可変速コンバータ 508に、第 2電圧検出センサ 521はインバータ 506に含まれる構成であってもよい。また、各電圧検出センサ 520 , 521は、 AZD変 を含む電圧検出部として構成されていてもよい。通常、直流 電力ライン DL , DLの電圧を検出するセンサは 1つで足りる力 制御基板が複数に  For this purpose, a first voltage detection sensor 520 and a second voltage detection sensor 521 are arranged. However, the first voltage detection sensor 520 may be included in the variable speed converter 508, and the second voltage detection sensor 521 may be included in the inverter 506. Further, each of the voltage detection sensors 520 and 521 may be configured as a voltage detection unit including an AZD change. Normally, one sensor is sufficient to detect the voltage of the DC power lines DL and DL.
1 2  1 2
分かれるような場合には、各基板上に 1つずつ設けることが望ましい。  In such cases, it is desirable to provide one on each substrate.
[0042] 2.ヒートポンプ応用機器の動作 (冷凍サイクル)  [0042] 2. Operation of heat pump application equipment (refrigeration cycle)
図 1において、インバータ 506により制御されるモータ 505によって圧縮機 501が駆 動され、圧縮機 501により冷媒が圧縮される。圧縮された冷媒は、放熱器 502で冷却 され、その後、可変速コンバータ 508により制御される発電機 507に連結している、 膨張機 503を通過する。このとき冷媒は、膨張機 503内で膨張し、蒸発器 504内で 外部より吸熱して気化した後、再び圧縮機 501へ戻る。  In FIG. 1, a compressor 501 is driven by a motor 505 controlled by an inverter 506, and the refrigerant is compressed by the compressor 501. The compressed refrigerant is cooled by the radiator 502 and then passes through the expander 503 connected to the generator 507 controlled by the variable speed converter 508. At this time, the refrigerant expands in the expander 503, absorbs heat from the outside in the evaporator 504 and vaporizes, and then returns to the compressor 501 again.
[0043] 3.ヒートポンプ応用機器の動作 (電力回生)  [0043] 3. Operation of heat pump equipment (power regeneration)
図 1にお!/、て、交流電源 510からの交流電力を整流回路 511で整流して得られた 直流電力は、平滑コンデンサ 512によりその電圧が平滑ィ匕されたあと、インバータ 50 6により 3相交流電力に変換されて、モータ 505に供給される。それによりモータ 505 が駆動されて圧縮機 501が圧縮機能を果たす。 [0044] また、冷媒の膨張力により発生した膨張機 503のトルクは、シャフトを介して発電機 507〖こ伝達される。発電機 507では、シャフトに固定された回転子が回転して発電が 行われる。発電機 507により生成された交流電力は、可変速コンバータ 508により直 流電力に変換された後、平滑コンデンサ 512の両端に供給される。これにより、膨張 機 503および発電機 507により生成された電力は、圧縮機 501を駆動するモータ 50 5で消費される。 In Fig. 1, the DC power obtained by rectifying the AC power from the AC power source 510 by the rectifier circuit 511 is smoothed by the smoothing capacitor 512, and then 3% by the inverter 50 6 It is converted into phase AC power and supplied to the motor 505. Thereby, the motor 505 is driven and the compressor 501 performs the compression function. [0044] The torque of the expander 503 generated by the expansion force of the refrigerant is transmitted to the generator 507 through the shaft. In the generator 507, the rotor fixed to the shaft rotates to generate power. The AC power generated by the generator 507 is converted to DC power by the variable speed converter 508 and then supplied to both ends of the smoothing capacitor 512. As a result, the electric power generated by the expander 503 and the generator 507 is consumed by the motor 505 that drives the compressor 501.
[0045] 4.膨張機回転数の決定手順  [0045] 4. Procedure for determining the rotational speed of the expander
膨張機 503および発電機 507の回転数は、可変速コンバータ 508により制御される 。可変速コンバータ 508には、マイクロコンピュータ 509より目標回転数が与えられる 。マイクロコンピュータ 509は、温度センサ 516から得られる放熱器出口温度、および 圧力センサ 517から得られる放熱器出口圧力に基づき、冷凍サイクル効率が最も高 くなるように膨張機 503の目標回転数を決定して、冷凍サイクルの高圧側圧力(放熱 器出口圧力)を制御する。  The rotational speeds of the expander 503 and the generator 507 are controlled by a variable speed converter 508. The target speed is given to the variable speed converter 508 from the microcomputer 509. The microcomputer 509 determines the target rotational speed of the expander 503 based on the radiator outlet temperature obtained from the temperature sensor 516 and the radiator outlet pressure obtained from the pressure sensor 517 so that the refrigeration cycle efficiency is maximized. Then, control the high-pressure side pressure (radiator outlet pressure) of the refrigeration cycle.
[0046] 図 3は、放熱器出口圧力、放熱器出口温度および冷凍サイクル効率の相互関係を 説明する図である。ヒートポンプ応用機器 500の冷凍サイクル効率は、放熱器出口圧 力および放熱器出口温度により最大となる点が異なり、その最大点を結んだ線が図 中の最適効率圧力線である。  [0046] FIG. 3 is a diagram illustrating the interrelationship between the radiator outlet pressure, the radiator outlet temperature, and the refrigeration cycle efficiency. The maximum efficiency of the refrigeration cycle of the heat pump application device 500 depends on the radiator outlet pressure and the radiator outlet temperature. The line connecting the maximum points is the optimum efficiency pressure line in the figure.
[0047] 図 4は、膨張機の回転数を決定する処理のフローチャートである。マイクロコンピュ ータ 509は、まず、温度センサ 516および圧力センサ 517からのセンサ信号をサンプ リングする。これらのセンサ信号は、図示しない AZD変 で 2値ィ匕された信号であ る。さらに、マイクロコンピュータ 509は、取得したセンサ信号より、放熱器出口圧力お よび放熱器出口温度を算出する(S101)。次に、図 3に示すデータにしたがって、冷 凍サイクル効率を最大にする最適圧力を演算する(S102)。具体的には、放熱器出 口圧力、放熱器出口温度および冷凍サイクル効率の対応関係を特定するためのデ ータベース、すなわち、図 3のグラフをデータベース化して予めマイクロコンピュータ 5 09に持たせておく。そして、フローチャートの S 102の処理では、上記データベース を参照することにより、冷凍サイクル効率を最大にする最適圧力を見出す。図 3のダラ フをデータベース化する際の量子化幅は、温度センサ 516および圧力センサ 517の 分解能によって定めるとよい。なお、図 3中に示す最適効率圧力線の近似関数 F (p, t)を予め見出してマイクロコンピュータ 509に持たせておき、この近似関数 F (p, t)に 放熱器出口圧力と放熱器出口温度とを代入することで、冷凍サイクル効率を最大に する最適圧力を算出するようにしてもよい。 FIG. 4 is a flowchart of a process for determining the rotation speed of the expander. Microcomputer 509 first samples the sensor signals from temperature sensor 516 and pressure sensor 517. These sensor signals are signals that have been binarized by AZD variation (not shown). Further, the microcomputer 509 calculates a radiator outlet pressure and a radiator outlet temperature from the acquired sensor signal (S101). Next, the optimum pressure that maximizes the refrigeration cycle efficiency is calculated according to the data shown in FIG. 3 (S102). Specifically, a database for specifying the correspondence relationship between the radiator outlet pressure, radiator outlet temperature, and refrigeration cycle efficiency, that is, the graph of FIG. . In the process of S102 in the flowchart, the optimum pressure that maximizes the refrigeration cycle efficiency is found by referring to the database. The quantization width when creating the database in Figure 3 as the database is as follows: temperature sensor 516 and pressure sensor 517. It should be determined by the resolution. Note that an approximate function F (p, t) of the optimum efficiency pressure line shown in FIG. 3 is found in advance and is given to the microcomputer 509. The approximate function F (p, t) includes the radiator outlet pressure and the radiator. By substituting the outlet temperature, the optimum pressure that maximizes the refrigeration cycle efficiency may be calculated.
[0048] 次に、現在の放熱器出口圧力と最適圧力との偏差を調べる(S 103)。現在の放熱 器出口圧力が最適圧力よりも大の場合には、放熱器出口圧力が低下するように膨張 機 503の目標回転数を現在の目標回転数よりも大きく設定する(S104)。そして、設 定した目標回転数を可変速コンバータ 508に出力する(S105)。他方、現在の放熱 器出口圧力が最適圧力よりも小の場合には、放熱器出口圧力が上昇するように膨張 機 503の目標回転数を現在の目標回転数よりも小さく設定し、設定した目標回転数 を可変速コンバータ 508に出力する(S 106, S 105)。なお、フローチャート中には示 していないが、現在の放熱器出口圧力が最適圧力に一致する場合には、現在の目 標回転数を維持するようにしてもよい。これらの制御により、放熱器出口の圧力は、冷 凍サイクル効率を最大にするように制御される。  [0048] Next, the deviation between the current radiator outlet pressure and the optimum pressure is examined (S103). If the current radiator outlet pressure is larger than the optimum pressure, the target rotational speed of the expander 503 is set larger than the current target rotational speed so that the radiator outlet pressure is reduced (S104). Then, the set target rotational speed is output to variable speed converter 508 (S105). On the other hand, if the current radiator outlet pressure is lower than the optimum pressure, the target rotational speed of the expander 503 is set smaller than the current target rotational speed so that the radiator outlet pressure increases, and the target The number of revolutions is output to variable speed converter 508 (S 106, S 105). Although not shown in the flowchart, when the current radiator outlet pressure matches the optimum pressure, the current target rotational speed may be maintained. With these controls, the pressure at the radiator outlet is controlled to maximize refrigeration cycle efficiency.
[0049] なお、上記のような回転数決定手順は、圧縮機 501の目標回転数を決定する場合 にも採用することができる。  It should be noted that the rotational speed determination procedure as described above can also be adopted when determining the target rotational speed of the compressor 501.
[0050] 5.可変速コンバータの詳細構成  [0050] 5. Detailed configuration of variable speed converter
可変速コンバータ 508の構成および動作を詳細に説明する。図 5は、図 1に示すヒ ートポンプ応用機器 500の可変速コンバータ 508の詳細ブロック図である。  The configuration and operation of variable speed converter 508 will be described in detail. FIG. 5 is a detailed block diagram of the variable speed converter 508 of the heat pump application device 500 shown in FIG.
[0051] 可変速コンバータ 508は、発電機 507が生成する交流電力を直流電力に変換して モータ 505側に回生する直流電力出力手段としての変換回路部 508aと、 PWM信 号を作成する制御回路部 508bとを含む。変換回路部 508aは、 u相電流センサ 805 aと、 Vネ目電流センサ 805bと、スイッチング素子 803a, 803b, 803c, 803d, 803e, 803fおよび還流ダイオード 804a, 804b, 804c, 804d, 804e, 804fを含む。電流 センサは、 u相、 V相、 w相の 3相のうち、任意の 2相の電流値を計測できればよい。ス イッチング素子 803a〜803fは、パワー MOSFETや IGBT (Insulated Gate Bipolar Transistor)である。制御回路部 508bは、一般的にはマイクロコンピュータで構成す る力 オペアンプを中心としたアナログ回路で構成することも可能である。制御回路 部 508bとしてのマイクロコンピュータ 508bは、 2軸電流変換手段 806、回転子位置 回転数推定手段 807、ベースドライバ 808、正弦波電圧出力手段 809、電流制御手 段 810、電流指令作成手段 811、回転数制御手段 812、および電流位相角決定手 段 815を含み、作成した PWM信号をスイッチング素子 803a〜803fに与える。本実 施形態において、これらの各手段は、マイクロコンピュータ 508b (制御回路部 508b) が実行可能なプログラムモジュールを意味する。 [0051] The variable speed converter 508 includes a conversion circuit unit 508a as a DC power output means that converts AC power generated by the generator 507 into DC power and regenerates the motor 505, and a control circuit that generates a PWM signal. Part 508b. The conversion circuit section 508a includes a u-phase current sensor 805a, a V-th current sensor 805b, switching elements 803a, 803b, 803c, 803d, 803e, 803f and freewheeling diodes 804a, 804b, 804c, 804d, 804e, 804f. Including. The current sensor only needs to be able to measure the current value of any two of the three phases u, V, and w. The switching elements 803a to 803f are power MOSFETs or IGBTs (Insulated Gate Bipolar Transistors). The control circuit unit 508b can also be configured by an analog circuit centered on a force operational amplifier generally configured by a microcomputer. Control circuit The microcomputer 508b as the unit 508b includes a biaxial current conversion means 806, a rotor position rotation speed estimation means 807, a base driver 808, a sine wave voltage output means 809, a current control means 810, a current command creation means 811, and a rotation speed. It includes a control means 812 and a current phase angle determination means 815, and applies the created PWM signal to the switching elements 803a to 803f. In the present embodiment, each of these means means a program module that can be executed by the microcomputer 508b (control circuit unit 508b).
[0052] 発電機 507からの 3相交流出力は、可変速コンバータ 508を介して、例えば直流電 源 801側に供給されるようになっている。直流電源 801は、図 1における整流回路 51 1の出力に相当する。さらに、 3相交流出力は、可変速コンバータ 508により直流に 変換される。その際、外部 (本実施形態ではマイクロコンピュータ 509)より与えられる 目標回転数に基づいて発電機 507の回転数が目標回転数となるように制御が行わ れる。 [0052] The three-phase AC output from the generator 507 is supplied to, for example, the DC power source 801 side via the variable speed converter 508. The DC power source 801 corresponds to the output of the rectifier circuit 51 1 in FIG. Further, the three-phase AC output is converted to DC by the variable speed converter 508. At that time, control is performed so that the rotational speed of the generator 507 becomes the target rotational speed based on the target rotational speed given from the outside (the microcomputer 509 in the present embodiment).
[0053] つまり、可変速コンバータ 508は、スイッチング素子 803a〜803fのスイッチングパ ターンを、発電機 507の磁極位置(回転子位置 Θ )と、発電機 507の推定回転数 ω mと、マイクロコンピュータ 509力ら与えられる目標回転数と、電流センサ 805a, 805 bによる相電流 iu, ivの検出結果とに基づいて決定する。さらに、決定したスィッチン グパターンに応じたスイッチングパターン信号をベースドライバ 808に送る。スィッチ ングパターン信号は、ベースドライノく 808によってスイッチング素子 803a〜803fを電 気的に駆動するためのドライブ信号 (PWM信号)に変換され、これらのドライブ信号 にしたがって各スイッチング素子 803a〜803fが動作する。  That is, variable-speed converter 508 has switching patterns of switching elements 803a to 803f, a magnetic pole position (rotor position Θ) of generator 507, an estimated rotational speed ω m of generator 507, a microcomputer 509 It is determined based on the target rotational speed given by the force and the detection results of the phase currents iu, iv by the current sensors 805a, 805b. Further, a switching pattern signal corresponding to the determined switching pattern is sent to the base driver 808. The switching pattern signal is converted into a drive signal (PWM signal) for electrically driving the switching elements 803a to 803f by the base dryer 808, and each switching element 803a to 803f operates according to these drive signals. To do.
[0054] 6.可変速コンバータの動作  [0054] 6. Operation of Variable Speed Converter
次に、可変速コンバータ 708の動作について説明する。ただし、この項目 6.では、 直流電力ライン DL , DLの電圧が、予め定めた閾値電圧を超えていないときの制御  Next, the operation of the variable speed converter 708 will be described. However, in this item 6, control is performed when the voltage of the DC power lines DL and DL does not exceed the predetermined threshold voltage.
1 2  1 2
を説明している。直流電力ライン DL , DLの電圧が上記閾値電圧以上となったとき  Is explained. When the voltage of the DC power lines DL and DL exceeds the above threshold voltage
1 2  1 2
の制御は、項目 8.で説明する。  This control is described in item 8.
[0055] まず、マイクロコンピュータ 509より与えられる目標回転数 ω *を実現するように、現 在の回転数 ω (後述する推定回転数 co m)との偏差力も電流指令 I *が、下記 (式 2) に基づいて回転数制御手段 812 (回転数制御プログラム)により演算される。演算方 法としては、一般的な PI制御方式による。 [0055] First, in order to realize the target rotational speed ω * given by the microcomputer 509, the deviation force from the current rotational speed ω (estimated rotational speed co m described later) is also determined by Based on 2), it is calculated by the rotational speed control means 812 (rotational speed control program). Calculation method The method is based on the general PI control method.
I*=Gpco X (ω *i)+Gico X∑ (ω *— ω)…(式 2)  I * = Gpco X (ω * i) + Gico X∑ (ω * — ω)… (Formula 2)
ここで、 Gp ωは速度制御比例ゲイン、 Gicoは積分ゲイン、 ωは現在の回転数、 ω *は目標回転数、 I *は電流指令である。  Where Gp ω is the speed control proportional gain, Gico is the integral gain, ω is the current rotational speed, ω * is the target rotational speed, and I * is the current command.
[0056] さらに、電流指令作成手段 811 (電流指令作成プログラム)は、回転数制御手段 81 2で演算された電流指令値 I *を取得し、電流位相角を実現するための d軸電流指令 Id *、 q軸電流指令 Iq*を以下の式により演算する。具体的には、最適な電流位相 角 βを (式 3)および(式 4)に代入して Id *および Iq *を求める。  [0056] Further, the current command creation means 811 (current command creation program) acquires the current command value I * calculated by the rotation speed control means 812, and the d-axis current command Id for realizing the current phase angle. *, Q-axis current command Iq * is calculated using the following formula. Specifically, Id * and Iq * are obtained by substituting the optimal current phase angle β into (Equation 3) and (Equation 4).
Id*=I* Xsin(jS)…(式 3)  Id * = I * Xsin (jS) ... (Formula 3)
Iq*=I* X cos ( j8 )…(式 4)  Iq * = I * X cos (j8)… (Formula 4)
ここで、 βは電流位相角である。  Where β is the current phase angle.
[0057] 例えば、モータ 505や発電機 507が SPMSMの場合には、 d軸電流 Idがトルクに寄 与しないので、 d軸電流 ld=0(つまり β =0。 )で最大効率運転となる。他方、 IPMS Μの場合には、 ld = 0としてしまうとリラクタンストルクを利用できなくなるので、全発生 トルクは電流位相角 β =0° で最大とならない。図 6は、電流値一定かつ極対数 =2 の IPMSMの電流位相角とトルクとの関係を例示する図である。マグネットトルク Tm は j8 =0° で最大となる力 リラクタンストルク Trは |8 =45° , —135° で最大である 。その結果、全発生トルク Tは電流位相角が 0° < |8<45° の範囲で最大になる。  [0057] For example, when the motor 505 or the generator 507 is SPMSM, the d-axis current Id does not contribute to the torque, so that the d-axis current ld = 0 (that is, β = 0) is the maximum efficiency operation. On the other hand, in the case of IPMS リ, if ld = 0, the reluctance torque cannot be used, so the total generated torque does not become maximum at the current phase angle β = 0 °. FIG. 6 is a diagram illustrating the relationship between the current phase angle of IPMSM with a constant current value and the number of pole pairs = 2 and the torque. Magnet torque Tm is maximum when j8 = 0 °. Reluctance torque Tr is maximum at | 8 = 45 ° and –135 °. As a result, the total generated torque T becomes maximum when the current phase angle is in the range of 0 ° <| 8 <45 °.
[0058] このように、 SPMSMおよび IPMSMのいずれにおいても、同一電流に対して発生 トルクを最大にできる電流位相角が存在することが分かる。逆にいえば、同一トルクに 対して取り出せる電流を最大にできる電流位相角が存在する。したがって、通常は最 も発電効率が高くなるように、 SPMSMであれば |8 =0° の ld=0制御を採用するこ とができる。この場合、電流位相角決定手段 815 (電流位相角決定プログラム)は、電 流指令作成手段 811に |8 =0° を渡すことになる。  [0058] Thus, it can be seen that both SPMSM and IPMSM have a current phase angle that can maximize the generated torque for the same current. Conversely, there is a current phase angle that can maximize the current that can be extracted for the same torque. Therefore, it is usually possible to adopt ld = 0 control of | 8 = 0 ° for SPMSM so that the power generation efficiency is the highest. In this case, the current phase angle determination means 815 (current phase angle determination program) passes | 8 = 0 ° to the current command creation means 811.
[0059] ここで、発電効率(=動力回収効率)とは、発電機 507の入力と出力との比率の意 味である。発電機 507の入力は、回転速度とトルクの積になり、出力は電圧と電流の 積になる。モータ 505の駆動効率を論ずる場合には、入力と出力が発電機 507の場 合と逆になる。 [0060] 一方、 IPMSMの場合は、機器定数 (極対数、鎖交磁束、 d軸インダクタンス、 q軸ィ ンダクタンス等)および電流値に応じて定まる最適な電流位相角 βで運転を行う必要 がある。電流位相角決定手段 815は、機器定数および電流値に応じて最適な電流 位相角 j8を求める。理論的には、ある駆動条件が与えられたとき、 IPMSMの損失が 最も小さくなるような電流位相角 βを求める演算を行う。し力しながら、その演算は煩 雑であり、与えられた時間内に演算をこなすには、処理能力の高いプロセッサ一等が 必要になる。したがって、例えば、電流値に対応する最適な電流位相角 j8をシミュレ ーシヨンや実験で予め求め、それらの結果に基づいて最適な電流位相角 βを求める ための近似関数やルックアップテーブルを用意しておき、それら近似関数やルックァ ップテーブルと、回転数制御手段 812が求めた電流指令値 I *とから最適な電流位 相角 βを見出すという方法を採用することができる。 Here, the power generation efficiency (= power recovery efficiency) means the ratio between the input and output of the generator 507. The input of generator 507 is the product of rotational speed and torque, and the output is the product of voltage and current. When discussing the driving efficiency of the motor 505, the input and output are the opposite of the case of the generator 507. [0060] On the other hand, in the case of IPMSM, it is necessary to operate at an optimal current phase angle β that is determined according to device constants (number of pole pairs, flux linkage, d-axis inductance, q-axis inductance, etc.) and current value. . The current phase angle determining means 815 obtains the optimum current phase angle j8 according to the device constant and the current value. Theoretically, when a certain driving condition is given, the calculation is performed to find the current phase angle β that minimizes the loss of IPMSM. However, the calculation is complicated, and a processor with high processing capability is required to perform the calculation within a given time. Therefore, for example, the optimal current phase angle j8 corresponding to the current value is obtained in advance by simulation or experiment, and an approximation function or lookup table for obtaining the optimal current phase angle β based on the results is prepared. In addition, it is possible to adopt a method of finding the optimum current phase angle β from these approximate functions and look-up tables and the current command value I * obtained by the rotation speed control means 812.
[0061] ところで、インバータ 506や可変速コンバータ 508で実際に制御できるのは、モータ 505や発電機 507の u相、 V相、 w相の電圧であり、検出できるのは u相、 ν相の電流と 回転子位置 Θである。したがって、 u相、 V相の電流値に基づいて d軸、 q軸に流す電 流を算出し、それから、 u相、 V相、 w相の電圧を導き、 u相、 V相、 w相の正弦波電流 を制御するという方法を採用する。このような手法は、モータに流す電流を d—q座標 上の電流ベクトルとして捉えるのでベクトル制御法と呼ばれており、ブラシレスモータ の制御に広く採用されて 、る。  [0061] By the way, the inverter 506 and the variable speed converter 508 can actually control the u-phase, V-phase, and w-phase voltages of the motor 505 and the generator 507, and can detect the u-phase and ν-phase voltages. Current and rotor position Θ. Therefore, the current flowing in the d-axis and q-axis is calculated based on the current values of the u-phase and V-phase, and then the u-phase, V-phase, and w-phase voltages are derived, and the u-phase, V-phase, and w-phase voltages are derived. The method of controlling the sine wave current is adopted. Such a method is called a vector control method because the current flowing through the motor is regarded as a current vector on the dq coordinate, and is widely used for brushless motor control.
[0062] 具体的な処理としては、まず、電流センサ 805a, 805bにより検出された発電機 50 7の相電流 iu, ivを、 2軸電流変換手段 806により、発電機 507のマグネットトルクに 寄与する q軸電流 Iqと、それに直交する d軸電流 Idの 2軸電流に変換する。 d軸は、 通常、界磁の作る磁束の方向にとる。  [0062] As specific processing, first, the phase currents iu, iv of the generator 507 detected by the current sensors 805a, 805b are contributed to the magnet torque of the generator 507 by the biaxial current conversion means 806. q-axis current Iq and d-axis current Id orthogonal to it are converted into 2-axis current. The d-axis is usually in the direction of the magnetic flux generated by the field.
[0063] 2軸電流変換手段 806 (2軸電流変換プログラム)は、まず、図 7Aに示すような 3相 交流座標 (u— V— w)から 2相交流座標(a— b)への変換を行う。この変換は、下記の 行列 [c] (式 5)によって与えられる。ただし、現在取り扱つている 3相交流座標では、 i u+iv+iw=0が成立するので、行列 [c]の 3行目は無視できる。  [0063] The 2-axis current conversion means 806 (2-axis current conversion program) first converts the 3-phase AC coordinates (u—V—w) to 2-phase AC coordinates (a—b) as shown in FIG. 7A. I do. This transformation is given by the following matrix [c] (Equation 5). However, in the three-phase AC coordinate currently handled, i u + iv + iw = 0 holds, so the third row of matrix [c] can be ignored.
[0064] [数 1] ぱ 5 )
Figure imgf000018_0001
[0064] [Equation 1] (5)
Figure imgf000018_0001
[0065] 上記(式 5)より、固定した 2相交流座標上の電流 ia, ibは、下記(式 6)で表される c ただし、 iw=― (iu+ivといつ条件を使つ。 [0065] From (Equation 5) above, the current ia, ib on the fixed two-phase AC coordinate is expressed by the following (Equation 6) c where iw = ― (iu + iv).
[0066] [数 2] [0066] [Equation 2]
Figure imgf000018_0004
Figure imgf000018_0004
(式 6 )
Figure imgf000018_0002
(Equation 6)
Figure imgf000018_0002
[0067] さらに、図 7Bに示すように、固定した 2相交流座標(a— b)から、回転する d— q直交 座標への変換を行う。この変換は、回転子位置 0 (後述する推定磁極位置)を用いて 下記(式 7)のようになる。なお、 sin θ , cos Θの値は、適切なルックアップテーブルを 参照して、その値を求めるようにすればよい。 [0067] Further, as shown in FIG. 7B, conversion from fixed two-phase AC coordinates (ab) to rotating d-q orthogonal coordinates is performed. This conversion is expressed by the following (Equation 7) using the rotor position 0 (the estimated magnetic pole position described later). The values of sin θ and cos Θ can be obtained by referring to an appropriate lookup table.
[0068] [数 3]  [0068] [Equation 3]
(式 7 )
Figure imgf000018_0003
(Equation 7)
Figure imgf000018_0003
[0069] 図 8は、 d— q座標上の電流位相角 13を示す図である。電流位相角 j8は、電流べク トル Iと、 q軸電流 Iqとがなす角度で表される。電流ベクトル Iは、 d軸電流 Idと、 q軸電 流 Iqとの合成ベクトルである。 SPMSMの場合には、 Id = 0 ( |8 =0° )で最適制御と なる。 IPMSMの場合には、負の d軸電流を流すことで、 d軸電機子反作用による減 磁効果を利用して d軸方向の磁束を減少させることができ、等価的な弱め界磁制御 が実現できる。 FIG. 8 is a diagram showing the current phase angle 13 on the dq coordinate. The current phase angle j8 is represented by the angle formed by the current vector I and the q-axis current Iq. The current vector I is the d-axis current Id and the q-axis current This is a composite vector with the flow Iq. In the case of SPMSM, optimal control is achieved when Id = 0 (| 8 = 0 °). In the case of IPMSM, by flowing a negative d-axis current, the magnetic flux in the d-axis direction can be reduced using the demagnetization effect due to the d-axis armature reaction, and equivalent field-weakening control can be realized.
[0070] 図 5のブロック図に戻って説明を続ける。電流制御手段 810 (電流制御プログラム) は、電流指令作成手段 811から与えられる電流指令 Id * , Iq *と、 2軸電流変換手 段 806から与えられる電流値 Id, Iqとを用いて、下記(式 8) (式 9)により出力電圧 Vd , Vqを作成する。  Returning to the block diagram of FIG. 5, the description will be continued. The current control means 810 (current control program) uses the current commands Id * and Iq * given from the current command creation means 811 and the current values Id and Iq given from the two-axis current conversion means 806 as follows ( Equation 8) Output voltages Vd and Vq are created by (Equation 9).
Vd=Gpd X (Id * -Id) +Gid X∑ (Id *—Id) · · · (式 8)  Vd = Gpd X (Id * -Id) + Gid X∑ (Id * —Id)
Vq = Gpq X (Iq *— Iq) +Giq X∑ (Iq *— Iq)…(式 9)  Vq = Gpq X (Iq * — Iq) + Giq X∑ (Iq * — Iq)… (Equation 9)
ただし、 Vdは d軸電圧、 Vqは q軸電圧、 Gpdは d軸電流制御比例ゲイン、 Gidは積 分ゲイン、 Gpqは q軸電流制御比例ゲイン、 Giqは積分ゲインである。  Where Vd is d-axis voltage, Vq is q-axis voltage, Gpd is d-axis current control proportional gain, Gid is integral gain, Gpq is q-axis current control proportional gain, and Giq is integral gain.
[0071] 次に、上記のようにして求めた 2方向の出力 Vd, Vqは、正弦波電圧出力手段 809  Next, the two-direction outputs Vd and Vq obtained as described above are the sinusoidal voltage output means 809.
(正弦波電圧出力プログラム)に渡される。正弦波電圧出力手段 809は、 d—q座標 上の Vd, Vqと回転子位置 Θとに基づき、出力波形が正弦波となるように、 3相の出 力電圧 Vu, Vv, Vwを求める。具体的には、下記(式 10) (式 11)の回転変換および 2相 3相変換により、(1ー 座標上の電圧¥(1, Vqを、 3相の出力電圧 Vu, Vv, Vw に変換する。  (Sine wave voltage output program) The sine wave voltage output means 809 obtains three-phase output voltages Vu, Vv, Vw so that the output waveform becomes a sine wave based on Vd, Vq on the d-q coordinate and the rotor position Θ. Specifically, by the rotation transformation and the two-phase three-phase transformation of (Equation 10) and (Equation 11) below, the voltage on the 1-coordinate ¥ (1, Vq is changed to the three-phase output voltage Vu, Vv, Vw. Convert.
[0072] [数 4]  [0072] [Equation 4]
(式 1 0 )
Figure imgf000019_0001
(Formula 1 0)
Figure imgf000019_0001
(式 1 1 )
Figure imgf000019_0002
[0073] 上記のようにして 3相交流座標上の電圧 Vu, Vv, Vwを求めたのち、これら 3相の 電圧 Vu, Vv, Vwからスイッチング素子 803a〜803fのスイッチングパターンを作成 し、作成したスイッチングパターンに対応するスイッチングパターン信号 (デューティ 値 Du, Dv, Dw)をベースドライバ 808に出力する。そして、ベースドライバ 808は、 そのスイッチングパターン信号にしたがって、スイッチング素子 803a〜803fを駆動 するための PWM信号を作成して出力する。 PWM信号にしたがって各スイッチング 素子 803a〜803fが動作し、発電機 507が目標とする回転数 (速度)にて駆動される
(Formula 1 1)
Figure imgf000019_0002
[0073] After obtaining the voltages Vu, Vv, Vw on the three-phase AC coordinates as described above, the switching patterns of the switching elements 803a to 803f were created from these three-phase voltages Vu, Vv, Vw. The switching pattern signal (duty value Du, Dv, Dw) corresponding to the switching pattern is output to the base driver 808. Then, the base driver 808 creates and outputs a PWM signal for driving the switching elements 803a to 803f in accordance with the switching pattern signal. Each switching element 803a to 803f operates according to the PWM signal, and the generator 507 is driven at the target rotation speed (speed).
[0074] 7.回転子位置 Θの推定 [0074] 7. Estimation of rotor position Θ
つぎに、回転子位置回転数推定手段 807 (回転子位置回転数推定プログラム)に ついて説明する。ブラシレスモータの一般的な制御方法では、回転子位置 0 (磁極 位置)をホール素子ゃレゾルバで検出する。しかしながら、本発明のヒートポンプ応用 機器 500の実際の設計では、モータ 505や発電機 507は、圧縮機 501や膨張機 50 3のハウジング内に配置することが考えられる。そうした方が、シャフトを外部に露出さ せることによる冷媒漏れの問題が生じず、信頼性を高めることができるとともに、小型 化および低コストィ匕を図りやすいからである。圧縮機 501や膨張機 503のハウジング 内は、通常、高温高圧であり、ホール素子ゃレゾルバといった検出器が本来の性能 を発揮しづらい環境になっている。また、スペースの制約が大きいという問題もある。 したがって、ヒートポンプ応用機器 500には、モータ 505や発電機 507の回転子位置 Θを各相の卷線の誘起電圧から推定する、いわゆるセンサレス方式を採用すること が好ましい。  Next, the rotor position rotational speed estimation means 807 (rotor position rotational speed estimation program) will be described. In a general brushless motor control method, the rotor position 0 (magnetic pole position) is detected by a Hall element resolver. However, in the actual design of the heat pump application device 500 of the present invention, it is conceivable that the motor 505 and the generator 507 are arranged in the housing of the compressor 501 and the expander 503. This is because the problem of refrigerant leakage caused by exposing the shaft to the outside does not occur, reliability can be improved, and miniaturization and low cost are easy to achieve. The housings of the compressor 501 and the expander 503 are usually at high temperatures and pressures, and it is difficult for detectors such as Hall elements and resolvers to demonstrate their original performance. In addition, there is a problem that space constraints are large. Therefore, it is preferable to employ a so-called sensorless method in which the rotor position Θ of the motor 505 or the generator 507 is estimated from the induced voltage of the winding of each phase in the heat pump applied device 500.
[0075] まず、 iu+iv+iw=0という条件を用い、電流センサ 805a, 805bにより検出された 電流 , から、各相の卷線に流れる相電流 (iu, iv, iw)が得られる。また、正弦波 電圧出力手段 809により出力される 3相のデューティ値 Du, Dv, Dwと、分圧抵抗 8 13a, 813bから得られる電源電圧 Vdcとから、各相の卷線に印加される相電圧 (vu, vv, vw)が以下の式より求められる。  First, using the condition of iu + iv + iw = 0, phase currents (iu, iv, iw) flowing in the shoreline of each phase are obtained from the currents, detected by the current sensors 805a, 805b. Also, the phase applied to the winding of each phase from the three-phase duty values Du, Dv, Dw output by the sine wave voltage output means 809 and the power supply voltage Vdc obtained from the voltage dividing resistors 813a, 813b. The voltage (vu, vv, vw) is obtained from the following equation.
vu = Du XVdc…(式 12)  vu = Du XVdc ... (Formula 12)
w=DvXVdc…(式 13) vw=DwXVdc- · · (式 14) w = DvXVdc ... (Formula 13) vw = DwXVdc- (Equation 14)
[0076] これらの値から、下記(式 15)、(式 16)、(式 17)の演算により、各相の卷線に誘起 される誘起電圧値 eu, ev, ewが求められる。 [0076] From these values, the induced voltage values eu, ev, and ew induced in the shoreline of each phase are obtained by the following calculations (Equation 15), (Equation 16), and (Equation 17).
eu=vu— R'iu— L'dUu)/ dt' · · (式 15)  eu = vu— R'iu— L'dUu) / dt '· · (Equation 15)
ev=w— R'iv— L'd(iv)/ dt' · · (式 16)  ev = w— R'iv— L'd (iv) / dt '· · (Equation 16)
ew=vw— R'iw— L'd(iw) / dt' · · (式 17)  ew = vw— R'iw— L'd (iw) / dt '· (Equation 17)
[0077] ここで、 Rは卷線の抵抗、 Lは卷線のインダクタンスである。また、 d (iu) /dt, d (iv)[0077] Here, R is the resistance of the winding, and L is the inductance of the winding. D (iu) / dt, d (iv)
/dt, d(iw)Zdtはそれぞれ iu, iv, iwの時間微分である。 / dt and d (iw) Zdt are time derivatives of iu, iv and iw, respectively.
[0078] 次に、求めた誘起電圧値 eu, ev, ewから、回転子位置 Θと推定回転数 comを推定 する。これは、可変速コンバータ 508が認識している推定角度 Θ mを誘起電圧の誤 差を用いて補正することにより、真値に収束させて、回転子位置 Θを推定する方法で ある。また、推定角度 Θ mから、推定回転数 comをも推定する。 Next, the rotor position Θ and the estimated rotational speed com are estimated from the obtained induced voltage values eu, ev, and ew. This is a method of estimating the rotor position Θ by converging it to a true value by correcting the estimated angle Θm recognized by the variable speed converter 508 using the error of the induced voltage. In addition, the estimated rotational speed com is also estimated from the estimated angle Θm.
[0079] まず、各相の誘起電圧基準値(eum, evm, ewm)を以下の式で求める。 First, an induced voltage reference value (eum, evm, ewm) of each phase is obtained by the following formula.
eum=em'sin、 Θ m+ β · · · (式 18)  eum = em'sin, Θ m + β (Equation 18)
evm=em-sin( Θ m+ β -120° )··· (式 19)  evm = em-sin (Θ m + β -120 °) (Equation 19)
ewm=em-sin( Θ m+ β -240° )…(式 20)  ewm = em-sin (Θ m + β -240 °)… (Formula 20)
ここで、誘起電圧振幅値 emは、誘起電圧値 eu, ev, ewの振幅値と一致させること により求める。  Here, the induced voltage amplitude value em is obtained by matching the amplitude values of the induced voltage values eu, ev, and ew.
[0080] このようにして求めた誘起電圧値と誘起電圧基準値との偏差 εを作成する。すなわ ち、下記 (式 21)のように、各相の誘起電圧推定値 esから各相の誘起電圧基準値 es mを減算したものを偏差 εにする。  A deviation ε between the induced voltage value thus obtained and the induced voltage reference value is created. In other words, the deviation ε is obtained by subtracting the induced voltage reference value es m of each phase from the estimated induced value es of each phase as shown in (Equation 21) below.
ε =es— esm' · · (式 21J  ε = es— esm '· · (Formula 21J
ここで、 sは相 (u/v/w)である。  Where s is the phase (u / v / w).
[0081] そして、この偏差 ε力 ゼロになれば推定角度 Θ mが真値になる。したがって、偏 差 εをゼロに収斂させるように、例えば、 ΡΙ演算で偏差 εを収斂する方法で、推定角 度 Θ mの真値を回転子位置 Θ (推定磁極位置)として求める。また、推定角度 Θ mの 変動値を演算することにより、推定回転数 comを推定することができる。  [0081] When the deviation ε force becomes zero, the estimated angle Θ m becomes a true value. Therefore, the true value of the estimated angle Θ m is obtained as the rotor position Θ (estimated magnetic pole position) by, for example, a method of converging the deviation ε by the ΡΙ operation so that the deviation ε converges to zero. Further, the estimated rotational speed com can be estimated by calculating the fluctuation value of the estimated angle Θ m.
[0082] なお、ホール素子ゃレゾルバで回転子位置 Θを検出し、回転数 ωを得るようしても よいことはもちろんである。 It should be noted that the rotor element Θ may be detected by a resolver to obtain the rotational speed ω. Of course it is good.
[0083] 8.回生電力が消費電力を上回った場合の制御 [0083] 8. Control when regenerative power exceeds power consumption
前述したように、通常の運転では、モータ 505の消費電力 Wmが発電機 507からの 回生電力 Wgよりも大である。ところが、ヒートポンプ応用機器 500の起動時、停止時 、圧縮機の減速時、熱交翻の状態の急変時などでは、(消費電力 Wm) < (回生電 力 Wg)となる場合がある。このような状況が継続すると、直流電力ライン DL , DLの  As described above, in normal operation, the power consumption Wm of the motor 505 is larger than the regenerative power Wg from the generator 507. However, when the heat pump application device 500 is started, stopped, when the compressor decelerates, or when the heat exchange state changes suddenly, (power consumption Wm) <(regenerative power Wg) may occur. If this situation continues, the DC power lines DL and DL
1 2 電圧が過昇し、平滑コンデンサ 512等の電気部品の破壊を招くおそれがある。そこで 、以下のようにして、直流電力ライン DL , DLの電圧過昇を防止する。  1 2 The voltage may rise excessively, which may cause damage to the electrical components such as the smoothing capacitor 512. Therefore, excessive voltage rise of the DC power lines DL and DL is prevented as follows.
1 2  1 2
[0084] 図 6で触れたように、 SPMSMや IPMSMといった永久磁石同期モータは、同一電 流に対して発生トルクを最大にできる電流位相角 j8が存在する。逆にいえば、発生ト ルクが最大になる電流位相角 βを避けることにより、回転数を変えることなぐ意図的 に非効率な運転を行うことができる。  [0084] As mentioned in FIG. 6, permanent magnet synchronous motors such as SPMSM and IPMSM have a current phase angle j8 that can maximize the generated torque for the same current. Conversely, by avoiding the current phase angle β where the generated torque is maximized, it is possible to perform an intentionally inefficient operation without changing the rotational speed.
[0085] 図 9は、ある設計の永久磁石型同期発電機 (IPMSM)の損失特性を表す特性図 である。つまり永久磁石同期発電機の励磁方向である d軸電流の大きさに対する、発 電機の損失特性を表した特性図である。この図に示されているように、発電機の損失 は、 d軸電流により変化し、損失が最小となるような d軸電流値 Id が存在する。した opt  FIG. 9 is a characteristic diagram showing loss characteristics of a permanent magnet synchronous generator (IPMSM) of a certain design. In other words, it is a characteristic diagram showing the loss characteristic of the generator with respect to the magnitude of the d-axis current that is the excitation direction of the permanent magnet synchronous generator. As shown in this figure, the loss of the generator varies with the d-axis current, and there is a d-axis current value Id that minimizes the loss. Opt
がって、通常運転時には、発電機の損失を最小にするように d軸電流 Id を制御す opt ればよい。一方、 d軸電流を最適値 Id からずれた値にすると、発電機の効率が低下 opt  Therefore, during normal operation, the d-axis current Id should be controlled opt to minimize the generator loss. On the other hand, if the d-axis current is deviated from the optimum value Id, the generator efficiency decreases.
することが分かる。また、 d軸電流を増カロさせる(d軸電流の絶対値を増加させる)と界 磁を低下させることとなり、誘起電圧値が低下することが分力つている。  I understand that In addition, increasing the d-axis current (increasing the absolute value of the d-axis current) decreases the field, and the induced voltage value decreases.
[0086] したがって、直流電力ライン DL , DLの電圧を低下させるためには、発電機 507の  [0086] Therefore, in order to reduce the voltage of the DC power lines DL, DL,
1 2  1 2
d軸電流を最適値 Id からずらして発電効率を低下させ、回生電力の量を減らすとと opt  If the d-axis current is shifted from the optimum value Id to reduce power generation efficiency and reduce the amount of regenerative power, opt
もに、弱め界磁効果により誘起電圧値を低下させればよい。例えば、直流電力ライン In addition, the induced voltage value may be lowered by the field weakening effect. For example, DC power line
DL , DLの電圧が基準値 (例えば、 AC200Vの電源入力を全波整流する場合ではThe DL and DL voltages are the reference values (for example, when full-wave rectification is applied to a 200V AC power input)
1 2 1 2
、約 280V)に対して、コンデンサ等の電気部品に影響を与えないような + 20Vの範 囲を超えた場合 (つまり閾値電圧を超えた場合)には、電流位相角を最適値からずら す制御を実行する。このようにして、 d軸電流を変化させ、発電効率を低下させるとと もに、弱め界磁効果によって直流電力ライン DL , DLの電圧を低減させる。ただし、 図 9より理解できるように、界磁を強める方向に d軸電流を変化させる場合でも、発電 効率の低下は期待できる。 , Approximately 280V), if the range of + 20V that does not affect the electrical components such as capacitors is exceeded (that is, the threshold voltage is exceeded), the current phase angle is shifted from the optimum value. Execute control. In this way, the d-axis current is changed to lower the power generation efficiency, and the voltage of the DC power lines DL and DL is reduced by the field weakening effect. However, As can be seen from Fig. 9, even when the d-axis current is changed in the direction of increasing the field, a decrease in power generation efficiency can be expected.
[0087] 具体的に、可変速コンバータ 508は、第 1電圧検出センサ 520によって直流電力ラ イン DL , DLの電圧を検出し、その電圧値が所定の値を超えると、発電機 507の電Specifically, the variable speed converter 508 detects the voltage of the DC power lines DL and DL by the first voltage detection sensor 520, and when the voltage value exceeds a predetermined value, the electric power of the generator 507 is detected.
1 2 1 2
流位相角 βを最適値 Id からずらす制御を行う。図 10は、マイクロコンピュータ 508b opt  Control is performed to shift the flow phase angle β from the optimum value Id. Figure 10 shows the microcomputer 508b opt
で実行される電流位相角決定プログラム (電流位相角決定手段 815)のフローチヤ一 トである。  This is a flow chart of the current phase angle determination program (current phase angle determination means 815) executed in step 1.
[0088] まず、マイクロコンピュータ 508bは、第 1電圧検出センサ 520より、直流電力ライン DL , DLの電圧 V をサンプリングする(ST1)。次に、直流電力ライン DL , DLの First, the microcomputer 508b samples the voltage V of the DC power lines DL and DL from the first voltage detection sensor 520 (ST1). Next, DC power line DL, DL
1 2 DL 1 2 電圧 V が閾値電圧 V 未満かどうかを判断する(ST2)。閾値電圧 V 未満であると1 2 DL 1 2 Determine whether voltage V is lower than threshold voltage V (ST2). If the threshold voltage is less than V
DL TH TH DL TH TH
判断した場合は、発電効率が最大となるように最適な電流位相角 β を求め、電流 opt  If it is determined, the optimum current phase angle β is obtained so that the power generation efficiency is maximized, and the current opt
指令作成手段 811 (電流指令作成プログラム)に渡す (ST3)。 SPMSMの場合には β =0° が決まっている。 IPMSMの場合には、前述したように、電流指令値 I *に opt  Pass to command creation means 811 (current command creation program) (ST3). In the case of SPMSM, β = 0 ° is determined. In the case of IPMSM, as mentioned above, the current command value I * is opt
応じて最適な電流位相角 13  Depending on the optimum current phase angle 13
optを見出すことになる。  You will find opt.
[0089] 他方、直流電力ライン DL , DLの電圧 V が閾値電圧 V 以上であると判断した場  [0089] On the other hand, if it is determined that the voltage V of the DC power lines DL and DL is equal to or higher than the threshold voltage V,
1 2 DL TH  1 2 DL TH
合には、現在の直流電力ライン DL , DLの電圧 V と、閾値電圧 V との偏差 (V  The difference between the voltage V of the current DC power lines DL and DL and the threshold voltage V (V
1 2 DL TH DL 1 2 DL TH DL
-V )を求め、その偏差 (V -V )に応じた大きさの位相角ズレ量 Δ |8を算出す-V), and calculate the amount of phase angle deviation Δ | 8 according to the deviation (V -V).
TH DL TH TH DL TH
る(ST4)。具体的に、位相角ズレ量 Δ |8は、(V -V )に比例した大きさとすること  (ST4). Specifically, the phase angle deviation Δ | 8 should be proportional to (V -V).
DL TH  DL TH
ができる(図 11参照)。位相角ズレ量 Δ βを算出したら、次に、最適な電流位相角値 β を求め、その 13 にその位相角ズレ量 Δ βを加算または減算した電流位相角 13 opt opt  (See Fig. 11). After calculating the phase angle deviation amount Δ β, the optimum current phase angle value β is obtained, and the current phase angle 13 opt opt obtained by adding or subtracting the phase angle deviation amount Δ β to 13
'を算出する(ST5)。そして、算出した電流位相角 β 'を電流指令作成手段 811に渡 す(ST6)。  'Is calculated (ST5). Then, the calculated current phase angle β ′ is passed to the current command creating means 811 (ST6).
[0090] β ' = β Δ j8とする力、、 β ' = β + Δ j8とするかは、発電機 507の仕様によつ opt opt  [0090] Whether to make β '= β Δ j8 or β' = β + Δ j8 depends on the specifications of the generator 507 opt opt
て定めればよい。電流位相角 j8 'は、発電機 507の適切な制御が可能となるように、 0° 〜90° の範囲で定めることができる。また、(V -V )に対して電流位相角 β  Can be determined. The current phase angle j8 ′ can be determined in the range of 0 ° to 90 ° so that the generator 507 can be appropriately controlled. Also, the current phase angle β with respect to (V -V)
DL ΤΗ , 力 Sリニアに変化することは必須ではない。要するに、発電機 507が発電効率の高い 高効率状態から発電効率の低い低効率状態に変化すれば、それで足りる。極論す れば、電流指令作成手段 811に渡す電流位相角 /3 ,は、 1通りであってもよい。 [0091] 例えば、(V <V )という条件を満足する場合には、発電効率を最大にする最適It is not essential to change to DL 力, force S linear. In short, it is sufficient if the generator 507 changes from a high efficiency state with high power generation efficiency to a low efficiency state with low power generation efficiency. In an extreme case, the current phase angle / 3 passed to the current command creation means 811 may be one. [0091] For example, when the condition of (V <V) is satisfied, it is optimum to maximize the power generation efficiency
DL TH DL TH
な電流位相角 j8を採用する第 1モードにて発電機 507を制御し、(V <V )という  The generator 507 is controlled in the first mode that adopts a current phase angle j8, and (V <V)
DL TH  DL TH
条件を満足しない場合には、その第 1モードよりも発電効率が低くなる電流位相角 β 'を採用する第 2モードにて発電機 507を制御するようにする。このようにすれば、マ イク口コンピュータ 508bに懸力る負荷が非常に小さい、簡潔な制御を行えるようにな る。例えば、 SPMSMでは、 j8,≠0° の任意の値に固定することができる。 IPMSM では、例えば、 β, =0° に固定することができる。  When the condition is not satisfied, the generator 507 is controlled in the second mode that employs the current phase angle β ′, in which the power generation efficiency is lower than that in the first mode. In this way, it is possible to perform simple control with a very small load on the microphone computer 508b. For example, in SPMSM, it can be fixed at an arbitrary value of j8, ≠ 0 °. In IPMSM, for example, β, = 0 ° can be fixed.
[0092] 図 11は、本実施形態のヒートポンプ応用機器 500における可変速コンバータ 508 の電流位相角の設定原理を表す特性図である。直流電力ライン DL , DLの電圧 V FIG. 11 is a characteristic diagram showing the setting principle of the current phase angle of the variable speed converter 508 in the heat pump application device 500 of the present embodiment. DC power line DL, DL voltage V
1 2 D が 280V (基準値) + 20V= 300V (閾値電圧 V )未満の場合には、発電機 507の し TH  1 2 When D is less than 280V (reference value) + 20V = 300V (threshold voltage V), the generator 507
電流位相角を発電効率が最大となる最適値 j8 に設定する。電圧 V 力 S300V (閾 opt DL  The current phase angle is set to the optimum value j8 that maximizes the power generation efficiency. Voltage V Force S300V (Threshold opt DL
値電圧 V )以上となった場合には、その最適値 |8 より電流位相角を大きぐまたは  Value voltage V) or more, make the current phase angle larger than its optimum value | 8 or
TH opt  TH opt
小さく設定する。すなわち、直流電力ライン DL , DLの電圧 V が閾値電圧 V を超  Set smaller. That is, the voltage V of the DC power lines DL and DL exceeds the threshold voltage V.
1 2 DL TH えると、発電効率の低下および弱め界磁効果により、回転数を減少させなくとも電圧 1 2 DL TH Therefore, it is possible to reduce the voltage without reducing the rotation speed due to the decrease in power generation efficiency and the field weakening effect.
V が下がる。このようにして、可変速コンバータ 508により発電機 507および膨張機V goes down. In this way, the variable speed converter 508 allows the generator 507 and the expander to
DL DL
503の回転数を最適に制御しながら、直流電力ライン DL , DLの電圧 V を閾値電  While optimally controlling the number of revolutions of the 503, the voltage V of the DC power lines DL and DL is adjusted to the threshold voltage.
1 2 DL 圧 V 未満に収めることが可能となる。すなわち、可変速コンバータ 508は、直流電 1 2 DL Pressure can be kept below V. That is, the variable speed converter 508
TH TH
カライン DL , DLの電圧 V を所定値(閾値電圧 V )未満に抑制する電圧抑制手  A voltage suppressor that suppresses the voltage V of Karin DL and DL to less than the specified value (threshold voltage V).
1 2 DL TH  1 2 DL TH
段として機能する。  Functions as a stage.
[0093] なお、 IPMSMの場合には、負の d軸電流を過剰に流しすぎると、減磁起磁力によ り磁石が不可逆減磁するおそれがあり、 I Id Iの最大値に対する注意が必要である 。ただし、 β =0° はマグネットトルクが最大になる条件なので、大幅な効率低下を期 待できない可能性もある。したがって、不可逆減磁が生じない範囲内で I id Iが大き くなる方向(弱め界磁効果が高まる方向)に電流位相角 βをずらす制御を実行するこ とがでさる。  [0093] In the case of IPMSM, if too much negative d-axis current is applied, the magnet may be irreversibly demagnetized due to the demagnetizing magnetomotive force, and attention must be paid to the maximum value of I Id I. Is. However, since β = 0 ° is a condition that maximizes the magnet torque, it may not be possible to expect a significant reduction in efficiency. Therefore, it is possible to execute control to shift the current phase angle β in the direction in which I id I increases (the direction in which the field weakening effect increases) within a range where irreversible demagnetization does not occur.
[0094] また、これまで説明した同様の制御を、インバータ 506に実行させることも可能であ る。すなわち、インバータ 506は、第 2電圧検出センサ 521によって直流電力ライン D L , DLの電圧 V を検出し、その電圧値が所定の値を超えると、モータ 505の電流 [0094] Further, it is possible to cause the inverter 506 to execute the same control as described above. That is, the inverter 506 detects the voltage V of the DC power lines D L and DL by the second voltage detection sensor 521, and if the voltage value exceeds a predetermined value, the current of the motor 505
1 2 DL 位相角を最適値力 ずらし、駆動効率を低下させて直流電力ライン DL , DLの電圧 1 2 DL The voltage of the DC power lines DL and DL is reduced by shifting the phase angle to the optimum value and reducing the driving efficiency.
2  2
V を低下させ、所定の範囲に収まるように制御を行う。  Reduce V and perform control so that it falls within the specified range.
DL  DL
[0095] 本実施形態におけるインバータ 506の電流位相角の設定原理も図 11と全く同じ設 定でよい。つまり、直流電力ライン DL , DLの電圧 V 力 S280V (基準値) + 20V= 3  [0095] The setting principle of the current phase angle of the inverter 506 in the present embodiment may be exactly the same as in FIG. In other words, DC power line DL, DL voltage V force S280V (reference value) + 20V = 3
1 2 DL  1 2 DL
OOV (閾値電圧 V )未満の場合には、モータ 505の電流位相角を駆動効率が最大  If it is less than OOV (threshold voltage V), the motor 505 current phase angle is the maximum drive efficiency.
TH  TH
となる最適値に設定する。電圧 V が 300V (閾値電圧 V )以上となった場合には、  Set to an optimal value. When the voltage V becomes 300V (threshold voltage V) or more,
DL TH  DL TH
その最適値より電流位相角を大きぐまたは小さく設定する。直流電力ライン DL , D  The current phase angle is set larger or smaller than the optimum value. DC power line DL, D
1 1
Lの電圧 V が閾値電圧 V を超えるとモータ 505の駆動効率が低下する。駆動効When the voltage V of L exceeds the threshold voltage V, the driving efficiency of the motor 505 decreases. Driving effect
2 DL TH 2 DL TH
率が低下すると、回転数を増大させなくとも消費電力が増加する。このようにすれば、 インバータ 506によりモータ 505および圧縮機 501の回転数を最適に制御しながら、 直流電力ライン DL , DLの電圧 V を閾値電圧 V 未満に収めることが可能となる。  When the rate decreases, the power consumption increases without increasing the rotational speed. In this way, it is possible to keep the voltage V of the DC power lines DL and DL below the threshold voltage V while optimally controlling the rotation speeds of the motor 505 and the compressor 501 by the inverter 506.
1 2 DL TH  1 2 DL TH
すなわち、インバータ 506は、直流電力ライン DL , DLの電圧 V を所定値(閾値電  That is, the inverter 506 sets the voltage V of the DC power lines DL and DL to a predetermined value (threshold voltage).
1 2 DL  1 2 DL
圧 V )  Pressure V)
TH未満に抑制する電圧抑制手段として機能する。  Functions as a voltage suppression means that suppresses below TH.
[0096] もちろん、発電機 507の発電効率を低下させる制御と、モータ 505の駆動効率を低 下させる制御とを並行して実行してもよい。そのようにすれば、直流電力ライン DL ,  Of course, the control for reducing the power generation efficiency of the generator 507 and the control for reducing the driving efficiency of the motor 505 may be executed in parallel. In that case, the DC power line DL,
1 1
DLの電圧 V が急激に上昇した場合にも対応できるし、 d軸電流を劇的に変化させ It can cope with a sudden rise in DL voltage V, and the d-axis current can be changed dramatically.
2 DL  2 DL
なくても、直流電力ライン DL , DLの電圧 V を低下させる効果を十分に得ることが  Even without this, the effect of reducing the voltage V of the DC power lines DL and DL can be obtained sufficiently.
1 2 DL  1 2 DL
可能となる。  It becomes possible.
[0097] (第 2実施形態) [0097] (Second Embodiment)
図 12は、本発明による第 2実施形態のヒートポンプ応用機器を示すブロック図であ る。第 1実施形態と共通部分については、同符号を用いている。第 2実施形態のヒー トポンプ応用機器 550の構成は、スィッチ 513と負荷 514との組を直流電力ライン DL に並列に接続しているという点で第 1実施形態のヒートポンプ応用機器 500の構成と FIG. 12 is a block diagram showing a heat pump application device according to the second embodiment of the present invention. The same reference numerals are used for parts common to the first embodiment. The configuration of the heat pump application device 550 of the second embodiment is the same as the configuration of the heat pump application device 500 of the first embodiment in that a set of the switch 513 and the load 514 is connected in parallel to the DC power line DL.
1 1
相違する。また、ヒートポンプ応用機器 550は、スィッチ 513のオンオフを制御する制 御手段としてのマイクロコンピュータ 519と、直流電力ライン DL , DLの電圧 V を検  Is different. The heat pump application device 550 also detects the microcomputer 519 as a control means for controlling on / off of the switch 513 and the voltage V of the DC power lines DL and DL.
1 2 DL 出する第 3電圧検出センサ 522とを備えて 、る。第 3電圧検出センサ 522による検出 結果は、マイクロコンピュータ 519に入力される。  1 2 DL A third voltage detection sensor 522 for outputting. The detection result by the third voltage detection sensor 522 is input to the microcomputer 519.
[0098] スィッチ 513は、トランジスタ等の半導体スィッチであってもよいし、リレー等の機械 的なスィッチであってもよい。負荷 514は、直流電力を消費できる抵抗負荷であれば 、その種類は限定されないが、単純な抵抗とするのがコストの観点から望ましい。な お、これらスィッチ 513および負荷 514は、可変速コンバータ 508側の直流電力ライ ン DLに配置してもよい。 [0098] The switch 513 may be a semiconductor switch such as a transistor or a machine such as a relay. It may be a typical switch. The type of load 514 is not limited as long as it is a resistive load that can consume DC power, but a simple resistance is desirable from the viewpoint of cost. Note that the switch 513 and the load 514 may be arranged in the DC power line DL on the variable speed converter 508 side.
2  2
[0099] スィッチ 513と負荷 514とを直列に接続した組は、直流電力ライン DL , DLの電圧  [0099] The combination of the switch 513 and the load 514 connected in series is the voltage of the DC power lines DL and DL.
1 2 1 2
V が閾値電圧 V 以上になった場合に、直流電力ライン DL , DLに供給される電When V exceeds the threshold voltage V, the power supplied to the DC power lines DL and DL
DL TH 1 2 DL TH 1 2
力の消費を開始して、直流電力ライン DL , DLの電圧 V を所定値(閾値電圧 V )  The power consumption starts and the voltage V of the DC power lines DL and DL is set to the predetermined value (threshold voltage V).
1 2 DL TH 未満に抑制する電圧抑制手段 515として機能する。スィッチ 513および負荷 514は、 以下のように動作する。  1 2 Functions as voltage suppression means 515 that suppresses to less than DL TH. Switch 513 and load 514 operate as follows.
[0100] 図 13は、直流電力ライン DL , DLの電圧 V の推移を表す特性図である。第 3電  FIG. 13 is a characteristic diagram showing the transition of the voltage V of the DC power lines DL and DL. 3rd electric
1 2 DL  1 2 DL
圧検出センサ 522によって検出される直流電力ライン DL , DLの電圧 V が所定の  The voltage V of the DC power lines DL and DL detected by the pressure detection sensor 522 is a predetermined value.
1 2 DL 制御開始電圧、例えば 320V以上となった場合に、マイクロコンピュータ 519はスイツ チ 513をオンする。これ〖こより、直流電力ライン DL , DL力も負荷 514に電流が流れ  1 2 DL The microcomputer 519 turns on the switch 513 when the DL control start voltage, for example, 320 V or more is reached. From this, the DC power line DL and DL force also flows through the load 514.
1 2  1 2
る。負荷 514が電力を消費することにより、直流電力ライン DL , DLの電圧 V が低  The As the load 514 consumes power, the voltage V of the DC power lines DL and DL is low.
1 2 DL 下する。その後、直流電力ライン DL , DLの電圧 V が所定の制御終了電圧、例え  1 2 DL Move down. After that, the voltage V of the DC power lines DL and DL becomes a predetermined control end voltage, for example
1 2 DL  1 2 DL
ば 310Vよりも低下すると、マイクロコンピュータ 519はスィッチ 513をオフする。このよ うに、第 3電圧検出センサ 522、マイクロコンピュータ 519、スィッチ 513および負荷 5 14によって、直流電力ライン DL , DLの電圧 V を所定の範囲に収める制御が実行  If the voltage drops below 310V, the microcomputer 519 turns off the switch 513. As described above, the third voltage detection sensor 522, the microcomputer 519, the switch 513, and the load 514 perform control to keep the voltage V of the DC power lines DL and DL within a predetermined range.
1 2 DL  1 2 DL
される。  Is done.
[0101] このような制御を繰り返した後、ヒートポンプ応用機器 550の運転状況が変化し、モ ータ 505の消費電力 Wmが回生電力 Wgよりも大となれば、直流電力ライン DL , DL  [0101] After such control is repeated, if the operating status of the heat pump application device 550 changes and the power consumption Wm of the motor 505 is greater than the regenerative power Wg, the DC power lines DL and DL
1 の電圧 V は定常値に安定する。このようにして、直流電力ライン DL , DLの電圧 The voltage V of 1 stabilizes at a steady value. In this way, the voltage of the DC power lines DL and DL
2 DL 1 2 過昇が回避され、ひ 、てはコンデンサ等の電気部品が破壊されな 、信頼性の高 、ヒ ートポンプ応用機器を実現できる。 2 DL 1 2 Overheating is avoided, and electrical components such as capacitors are not destroyed. A highly reliable heat pump application device can be realized.
[0102] なお、スィッチ 513、負荷 514、第 3電圧検出センサ 522およびマイクロコンピュータ 519を、第 1実施形態で説明した動力回収装置 601の一部として構成するようにして ちょい。  [0102] Note that the switch 513, the load 514, the third voltage detection sensor 522, and the microcomputer 519 may be configured as a part of the power recovery apparatus 601 described in the first embodiment.
[0103] また、負荷 514は、蓄電作用を持ったコンデンサ等の蓄電器に置き換えることが可 能である。すなわち、直流電力ライン DL , DLの電圧 V が閾値電圧 V 以上にな [0103] In addition, the load 514 can be replaced with a capacitor such as a capacitor having a power storage function. Noh. That is, the voltage V of the DC power lines DL and DL is not less than the threshold voltage V.
1 2 DL TH つた場合に、スィッチ 513をオンして蓄電器への蓄電を開始する。このような構成によ つても、直流電力ライン DL , DLの電圧過昇を抑制することが可能である。  1 2 When DL TH is connected, switch 513 is turned on to start storing power in the battery. Even with such a configuration, it is possible to suppress the voltage increase of the DC power lines DL and DL.
1 2  1 2
[0104] また、電流位相角 βを制御することによって発電機 507の発電効率やモータ 505 の駆動効率を低下させる制御 (第 1実施形態)を、本第 2実施形態の制御と並行して 実行してもよい。そうすれば、直流電力ライン DL , DLの電圧 V が急激に上昇する  [0104] Further, the control (first embodiment) for reducing the power generation efficiency of the generator 507 and the drive efficiency of the motor 505 by controlling the current phase angle β is executed in parallel with the control of the second embodiment. May be. Then, the voltage V of the DC power lines DL and DL rises rapidly.
1 2 DL  1 2 DL
ケースにも迅速に対応できるようになる。  It will be possible to respond quickly to cases.
[0105] (第 3実施形態) [0105] (Third embodiment)
図 14は、本発明による第 3実施形態のヒートポンプ応用機器を示すブロック図であ る。ヒートポンプ応用機器 560は、膨張機 503、発電機 507および可変速コンバータ 528を含む動力回収装置 602を備えている。こうした点については第 1実施形態と同 様である。第 1実施形態との相違点は、直流電力ライン DL , DLの電圧 V が閾値  FIG. 14 is a block diagram showing a heat pump application device according to a third embodiment of the present invention. The heat pump application device 560 includes a power recovery device 602 including an expander 503, a generator 507, and a variable speed converter 528. These points are the same as in the first embodiment. The difference from the first embodiment is that the voltage V of the DC power lines DL and DL is the threshold value.
1 2 DL 電圧 V 以上となったときに、可変速コンバータ 528およびインバータ 526が実行す 1 2 Variable speed converter 528 and inverter 526 execute when DL voltage becomes V or higher.
ΤΗ ΤΗ
る制御にある。  Is in control.
[0106] 直流電力ライン DL , DLの電圧 V が閾値電圧 V 以上となったとき、可変速コン  [0106] When the voltage V of the DC power lines DL and DL exceeds the threshold voltage V, the variable speed control
1 2 DL ΤΗ  1 2 DL ΤΗ
バータ 528は発電機 507及び膨張機 503の回転数を低減する制御を実行して、直 流電力ライン DL , DLの電圧 V を閾値電圧 V 未満に抑制する。同様に、インバ  The barter 528 performs control to reduce the rotational speed of the generator 507 and the expander 503, and suppresses the voltage V of the DC power lines DL and DL to be less than the threshold voltage V. Similarly, Imba
1 2 DL ΤΗ  1 2 DL ΤΗ
ータ 526はモータ 505および圧縮機 501の回転数を増大する制御を実行して、直流 電力ライン DL , DLの電圧 V を閾値電圧 V 未満に抑制する。  The data 526 executes control to increase the rotational speeds of the motor 505 and the compressor 501 and suppress the voltage V of the DC power lines DL and DL to be less than the threshold voltage V.
1 2 DL ΤΗ  1 2 DL ΤΗ
[0107] 図 15は、直流電力ライン DL , DLの電圧 V の推移を表す特性図である。通常状  FIG. 15 is a characteristic diagram showing the transition of the voltage V of the DC power lines DL and DL. Normal condition
1 2 DL  1 2 DL
態においては、ヒートポンプ応用機器 560の出力を所望の値にするとともに、冷凍サ イタル効率を最大にするように、膨張機 503および圧縮機 501の回転数が最適値に て制御される。  In this state, the rotation speeds of the expander 503 and the compressor 501 are controlled to the optimum values so that the output of the heat pump application device 560 is set to a desired value and the refrigeration cycle efficiency is maximized.
[0108] 他方、直流電力ライン DL , DLの電圧 V が所定の制御開始電圧(閾値電圧 V )  On the other hand, the voltage V of the DC power lines DL and DL is a predetermined control start voltage (threshold voltage V).
1 2 DL ΤΗ 1 2 DL ΤΗ
、例えば 320V以上になると、可変速コンバータ 528は、発電機 507および膨張機 5 03の回転数を低減する制御を実行する。これにより、膨張機 503による発電量が低 下し、直流電力ライン DL , DLの電圧 V が低下する。その後、直流電力ライン DL For example, when it becomes 320 V or more, variable speed converter 528 executes control to reduce the rotational speeds of generator 507 and expander 5003. As a result, the amount of power generated by the expander 503 decreases, and the voltage V of the DC power lines DL and DL decreases. Then, DC power line DL
1 2 DL 1 1 2 DL 1
, DLの電圧 V が所定の制御終了電圧、例えば 310Vよりも低下すると、可変速コ, When the DL voltage V drops below a certain control end voltage, e.g. 310V, the variable speed co
2 DL ンバータ 528は、発電機 507および膨張機 503の回転数を、冷凍サイクル効率が最 大となるような所定の回転数に再び設定する。このような制御を繰り返した後、ヒート ポンプ応用機器 550の運転状況が変化し、モータ 505の消費電力 Wmが可変速コン バータ 528からの回生電力 Wgよりも大となれば、直流電力ライン DL , DLの電圧 V 2 DL The inverter 528 again sets the rotation speeds of the generator 507 and the expander 503 to a predetermined rotation speed that maximizes the refrigeration cycle efficiency. After such control is repeated, if the operating status of the heat pump application device 550 changes and the power consumption Wm of the motor 505 is greater than the regenerative power Wg from the variable speed converter 528, the DC power line DL, DL voltage V
1 2  1 2
DLは定常値に安定する。  DL stabilizes to a steady value.
[0109] 第 1実施形態で説明したように、発電機 507の目標回転数は、放熱器の出口に配 置された温度センサ 516および圧力センサ 517の出力に基づいて、冷凍サイクル効 率が最大となるように、マイクロコンピュータ 509が決定する。したがって、第 1電圧検 出センサ 520の出力をマイクロコンピュータ 509が取得できるようにし、直流電力ライ ン DL , DLの電圧 V が過昇していないかどうかを、マイクロコンピュータ 509に判  [0109] As described in the first embodiment, the target rotational speed of the generator 507 has the maximum refrigeration cycle efficiency based on the outputs of the temperature sensor 516 and the pressure sensor 517 arranged at the outlet of the radiator. The microcomputer 509 decides so that Therefore, the microcomputer 509 can acquire the output of the first voltage detection sensor 520, and the microcomputer 509 determines whether or not the voltage V of the DC power lines DL and DL is excessive.
1 2 DL  1 2 DL
断させるようにしてもよい。マイクロコンピュータ 509は、直流電力ライン DL, DLの  You may make it refuse. Microcomputer 509 is a DC power line DL, DL
1 2 電圧 V が閾値電圧 V 以上となった場合に、冷凍サイクル効率が最大になる目標 1 2 Target that maximizes refrigeration cycle efficiency when voltage V exceeds threshold voltage V
DL TH DL TH
回転数よりも低い回転数を設定する。そして、設定した回転数を可変速コンバータ 52 8に渡す。もちろん、直流電力ライン DL , DLの電圧 V が閾値電圧 V 以上かどう  Set the number of revolutions lower than the number of revolutions. Then, the set rotational speed is passed to the variable speed converter 528. Of course, whether the voltage V of the DC power lines DL and DL is higher than the threshold voltage V
1 2 DL TH  1 2 DL TH
カゝを可変速コンバータ 528で判断するようにしてもよい。この場合、可変速コンバータ 528においては、マイクロコンピュータ 509から渡される目標回転数よりも低い回転数 で (式 2)の演算を実行することとなる。  The key may be determined by the variable speed converter 528. In this case, the variable speed converter 528 performs the calculation of (Equation 2) at a lower rotational speed than the target rotational speed passed from the microcomputer 509.
[0110] また、圧縮機 506の回転数を変更するようにしてもよい。直流電力ライン DL , DL [0110] Further, the rotational speed of the compressor 506 may be changed. DC power line DL, DL
1 2 の電圧 V が所定の制御開始電圧(閾値電圧 V )、例えば 320V以上となると、イン  1 When the voltage V of 2 becomes a predetermined control start voltage (threshold voltage V), for example, 320 V or higher, the
DL TH  DL TH
バータ 526は、モータ 505および圧縮機 501の回転数を増大する制御を実行する。 これにより、モータ 505の消費電力が増大し、直流電力ライン DL , DLの電圧 V が  The barter 526 executes control for increasing the rotational speeds of the motor 505 and the compressor 501. As a result, the power consumption of the motor 505 increases and the voltage V of the DC power lines DL and DL is reduced.
1 2 DL 低下する。その後、直流電力ライン DL , DLの電圧 V が所定の制御終了電圧、例  1 2 DL Decreases. After that, the voltage V of the DC power lines DL and DL is the predetermined control end voltage, eg
1 2 DL  1 2 DL
えば 310Vよりも低下すると、インバータ 526は、モータ 505および圧縮機 501の回転 数を、冷凍サイクル効率が最大となるような所定の回転数に再び設定する。  For example, when the voltage drops below 310 V, inverter 526 resets the rotation speeds of motor 505 and compressor 501 to a predetermined rotation speed that maximizes the refrigeration cycle efficiency.
[0111] 上記のような制御により、直流電力ライン DL , DLの電圧過昇が回避され、ひいて [0111] By the control as described above, the voltage increase of the DC power lines DL and DL is avoided, and as a result
1 2  1 2
はコンデンサ等の電気部品の破壊される恐れの小さい高信頼性のヒートポンプ応用 機器を実現できる。なお、本実施形態では、発電機 507の回転数を操作する構成で 説明したが、可変速コンバータ 528により発電機 507に流れる電流値を操作する(例 えば、電流値を増加する)構成でも同様の機能を実現できる。すなわち、本実施形態 では回転数制御のループの中に電流制御のループを組み込んでいる力 その回転 数制御のループをはずして、指令電流値を目標値として与えて制御を行う方法もあ る。この場合、膨張機 503の回転数を制御するのではなぐトルク(=電流)を制御す ることとなる。このような制御であれば、同期モータ(同期発電機)の他にも誘導モータ を好適に利用することができる。 Can realize a highly reliable heat pump application device with little risk of destruction of electrical components such as capacitors. In the present embodiment, the configuration in which the number of revolutions of the generator 507 is manipulated has been described. For example, a similar function can be realized with a configuration in which the current value is increased. That is, in this embodiment, there is also a method in which the current control loop is incorporated in the rotation speed control loop and the control is performed by removing the rotation speed control loop and giving the command current value as the target value. In this case, the torque (= current) is controlled rather than controlling the rotational speed of the expander 503. If it is such control, an induction motor can be used suitably besides a synchronous motor (synchronous generator).
[0112] 最後に、本明細書で説明したいくつかの実施形態は、本発明の趣旨を逸脱しない 範囲内で相互に組み合わせ可能であることを言及しておく。 [0112] Finally, it should be noted that several embodiments described in this specification can be combined with each other without departing from the spirit of the present invention.
産業上の利用可能性  Industrial applicability
[0113] 以上のように、本発明のヒートポンプ応用機器および動力回収装置は、構成部品の 破壊がなく信頼性を高める効果を有し、冷暖房装置や給湯機などのヒートポンプ式 冷凍装置などに有用である。 [0113] As described above, the heat pump application device and the power recovery device of the present invention have the effect of improving reliability without destruction of the component parts, and are useful for heat pump refrigeration devices such as air conditioning and heating devices and water heaters. is there.

Claims

請求の範囲 The scope of the claims
[1] 冷媒を圧縮する圧縮機と、  [1] a compressor for compressing the refrigerant;
前記圧縮機を作動させるモータと、  A motor for operating the compressor;
前記圧縮機により圧縮された前記冷媒を冷却する放熱器と、  A radiator for cooling the refrigerant compressed by the compressor;
前記放熱器を通過した前記冷媒を膨張させる膨張機と、  An expander that expands the refrigerant that has passed through the radiator;
前記膨張機により膨張した前記冷媒を蒸発させる蒸発器と、  An evaporator for evaporating the refrigerant expanded by the expander;
前記膨張機に接続され、前記冷媒の膨張エネルギーで発電する発電機と、 前記発電機が生成する交流電力を直流電力に変換して前記モータ側に回生出力 する直流電力出力手段と、  A generator connected to the expander and generating power with the expansion energy of the refrigerant; DC power output means for converting AC power generated by the generator into DC power and regenerating and outputting the DC power;
前記直流電力出力手段が電力を回生する直流電力ラインの電圧を所定値未満に 抑制する電圧抑制手段と、  Voltage suppression means for suppressing the voltage of the DC power line, in which the DC power output means regenerates power, to less than a predetermined value;
を備えた、ヒートポンプ応用機器。  Heat pump application equipment equipped with.
[2] 前記電圧抑制手段が、前記発電機の駆動を制御する発電機制御手段に兼用され ている、請求項 1記載のヒートポンプ応用機器。 [2] The heat pump application device according to [1], wherein the voltage suppression means is also used as a generator control means for controlling driving of the generator.
[3] 前記発電機制御手段は、前記直流電力ラインの電圧が前記所定値以上となった 場合に、前記発電機の発電効率を低下させる制御を実行する、請求項 2記載のヒー トポンプ応用機器。 [3] The heat pump application device according to claim 2, wherein the generator control means executes control for reducing the power generation efficiency of the generator when the voltage of the DC power line becomes equal to or higher than the predetermined value. .
[4] 前記発電機が永久磁石型同期発電機であり、 [4] The generator is a permanent magnet type synchronous generator,
さらに、前記直流電力出力手段および前記発電機制御手段の両者を含む可変速 コンバータを備え、  And a variable speed converter including both the DC power output means and the generator control means,
前記可変速コンバータは、前記永久磁石型同期発電機が発電効率の高い高効率 状態から発電効率の低い低効率状態に移るように、当該永久磁石型同期発電機の 電流位相角を変更する制御を実行する、請求項 3記載のヒートポンプ応用機器。  The variable speed converter performs control to change the current phase angle of the permanent magnet type synchronous generator so that the permanent magnet type synchronous generator moves from a high efficiency state with high power generation efficiency to a low efficiency state with low power generation efficiency. The heat pump application apparatus according to claim 3, wherein the heat pump application apparatus is executed.
[5] 前記電圧抑制手段が、前記モータの駆動を制御するモータ制御手段に兼用されて いる、請求項 1記載のヒートポンプ応用機器。  5. The heat pump application device according to claim 1, wherein the voltage suppression unit is also used as a motor control unit that controls driving of the motor.
[6] 前記モータ制御手段は、前記直流電力ラインの電圧が前記所定値以上となった場 合に、前記モータの駆動効率を低下させる制御を実行する、請求項 5記載のヒートポ ンプ応用機器。 6. The heat pump application device according to claim 5, wherein the motor control means executes control for reducing drive efficiency of the motor when the voltage of the DC power line becomes equal to or higher than the predetermined value.
[7] 前記モータが永久磁石型同期モータであり、 [7] The motor is a permanent magnet type synchronous motor,
前記モータ制御手段が、前記永久磁石型同期モータの電流位相角を変更する制 御を実行して、当該永久磁石型同期モータを高効率駆動状態から低効率駆動状態 に変更するインバータである、請求項 6記載のヒートポンプ応用機器。  The motor control means is an inverter that executes control for changing a current phase angle of the permanent magnet type synchronous motor to change the permanent magnet type synchronous motor from a high efficiency driving state to a low efficiency driving state. Item 6. Heat pump application device.
[8] 前記電圧抑制手段は、前記直流電力ラインの電圧が前記所定値以上になった場 合に、前記直流電力ラインに供給される電力の蓄電または消費を開始する、請求項[8] The voltage suppression means starts storing or consuming power supplied to the DC power line when the voltage of the DC power line becomes equal to or higher than the predetermined value.
1記載のヒートポンプ応用機器。 1. Heat pump application equipment described in 1.
[9] 前記電圧抑制手段は、負荷と、前記負荷への給電をオンオフするスィッチとから構 成され、前記直流電力ラインの電圧が前記所定値以上になった場合に、前記スイツ チをオンして前記負荷への給電を開始する、請求項 8記載のヒートポンプ応用機器。 [9] The voltage suppression means includes a load and a switch for turning on and off the power supply to the load, and turns on the switch when the voltage of the DC power line becomes equal to or higher than the predetermined value. 9. The heat pump application device according to claim 8, wherein power supply to the load is started.
[10] 前記発電機制御手段は、前記直流電力ラインの電圧が前記所定値以上となった 場合に、前記発電機の回転数を低減する制御を実行する、請求項 2記載のヒートポ ンプ応用機器。 10. The heat pump application device according to claim 2, wherein the generator control means executes control to reduce the number of revolutions of the generator when the voltage of the DC power line becomes equal to or higher than the predetermined value. .
[11] 前記モータ制御手段は、前記直流電力ラインの電圧が前記所定値以上となった場 合に、前記モータの回転数を増大する制御を実行する、請求項 5記載のヒートポンプ 応用機器。  11. The heat pump application device according to claim 5, wherein the motor control means executes control to increase the number of rotations of the motor when the voltage of the DC power line becomes equal to or higher than the predetermined value.
[12] 作動流体を膨張させる膨張機と、  [12] an expander for expanding the working fluid;
前記膨張機に接続され、前記作動流体の膨張エネルギーで発電する発電機と、 前記発電機が生成する交流電力を直流電力に変換して出力する直流電力出力手 段と、  A generator that is connected to the expander and generates power with the expansion energy of the working fluid; and a DC power output means that converts AC power generated by the generator into DC power and outputs the DC power.
前記直流電力出力手段の出力電圧が所定値以上となった場合に、前記発電機の 発電効率を低下させる制御を実行する発電機制御手段と、  Generator control means for executing control to reduce the power generation efficiency of the generator when the output voltage of the DC power output means is a predetermined value or more;
を備えた、動力回収装置。  Power recovery device with
[13] 前記直流電力出力手段および前記発電機制御手段の両者を含む可変速コンパ一 タを備えた、請求項 12記載の動力回収装置。 13. The power recovery apparatus according to claim 12, comprising a variable speed comparator including both the DC power output means and the generator control means.
[14] 前記発電機が永久磁石型同期発電機であり、 [14] The generator is a permanent magnet type synchronous generator,
前記可変速コンバータは、前記永久磁石型同期発電機が発電効率の高い高効率 状態から発電効率の低い低効率状態に移るように、当該永久磁石型同期発電機の 電流位相角を変更する制御を実行する、請求項 13記載の動力回収装置。 The variable speed converter is arranged so that the permanent magnet synchronous generator moves from a high efficiency state with high power generation efficiency to a low efficiency state with low power generation efficiency. 14. The power recovery apparatus according to claim 13, wherein control for changing a current phase angle is executed.
[15] 作動流体を膨張させる膨張機と、 [15] an expander for expanding the working fluid;
前記膨張機に接続され、前記作動流体の膨張エネルギーで発電する発電機と、 前記発電機が生成する交流電力を直流電力に変換して出力する直流電力出力手 段と、  A generator that is connected to the expander and generates power with the expansion energy of the working fluid; and a DC power output means that converts AC power generated by the generator into DC power and outputs the DC power.
前記直流電力出力手段の出力電圧が所定値以上となった場合に、前記直流電力 出力手段力 電力供給を受けて蓄電または電力消費を開始する電圧抑制手段と、 を備えた、動力回収装置。  A power recovery apparatus, comprising: a voltage suppression unit that receives power supply from the DC power output unit and starts power storage or power consumption when an output voltage of the DC power output unit exceeds a predetermined value.
[16] 前記電圧抑制手段は、負荷と、前記負荷への給電をオンオフするスィッチとを含み 、前記直流電力出力手段の出力電圧が前記所定値以上になった場合に、前記スィ ツチをオンして前記直流電力出力手段から前記負荷への給電を開始する、請求項 1 5記載の動力回収装置。 [16] The voltage suppression means includes a load and a switch for turning on and off the power supply to the load, and turns on the switch when the output voltage of the DC power output means becomes equal to or higher than the predetermined value. 16. The power recovery apparatus according to claim 15, wherein power supply to the load is started from the DC power output means.
[17] 作動流体を膨張させる膨張機と、 [17] an expander for expanding the working fluid;
前記膨張機に接続され、前記作動流体の膨張エネルギーで発電する発電機と、 前記発電機が生成する交流電力を直流電力に変換して出力する直流電力出力手 段と、  A generator that is connected to the expander and generates power with the expansion energy of the working fluid; and a DC power output means that converts AC power generated by the generator into DC power and outputs the DC power.
前記直流電力出力手段の出力電圧が所定値以上となった場合に、前記発電機の 回転数を低減する制御を実行する発電機制御手段と、  Generator control means for executing control to reduce the rotational speed of the generator when the output voltage of the DC power output means is equal to or higher than a predetermined value;
を備えた、動力回収装置。  Power recovery device with
PCT/JP2006/300454 2005-01-17 2006-01-16 Heat pump application device and power recovering device using expander WO2006075742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553012A JP3943124B2 (en) 2005-01-17 2006-01-16 Heat pump application equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005009576 2005-01-17
JP2005-009576 2005-01-17

Publications (1)

Publication Number Publication Date
WO2006075742A1 true WO2006075742A1 (en) 2006-07-20

Family

ID=36677762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300454 WO2006075742A1 (en) 2005-01-17 2006-01-16 Heat pump application device and power recovering device using expander

Country Status (2)

Country Link
JP (1) JP3943124B2 (en)
WO (1) WO2006075742A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057875A (en) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp Refrigerating cycle device
EP1906116A2 (en) * 2006-09-21 2008-04-02 Sanyo Electric Co., Ltd. Control device of motor for refrigerant compressor
JP2008096081A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2010051535A (en) * 2008-08-28 2010-03-11 Toshiba Corp Washing drying machine
JP2010210205A (en) * 2009-03-12 2010-09-24 Daikin Ind Ltd Refrigerating device and method for operating the same
JP2013002660A (en) * 2011-06-13 2013-01-07 Osaka Gas Co Ltd Thermal system
JP2014045555A (en) * 2012-08-24 2014-03-13 Kito Corp Motor and electric chain block having this motor
WO2014192467A1 (en) * 2013-05-28 2014-12-04 富士電機株式会社 Device for detecting magnetic pole position of permanent magnet-type synchronous motor
JP2015133881A (en) * 2014-01-16 2015-07-23 アイダエンジニアリング株式会社 Motor excitation device, motor excitation method, and motor control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428588Y1 (en) * 1970-05-15 1979-09-13
JPS6042557A (en) * 1983-08-18 1985-03-06 株式会社前川製作所 Method of recovering power by using volume type two phase current expansion machine
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation
JP2002233193A (en) * 2001-01-31 2002-08-16 Mitsubishi Heavy Ind Ltd Wind power generator
JP2003047294A (en) * 2001-08-01 2003-02-14 Takasago Thermal Eng Co Ltd Generating and cooling system and its operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428588Y1 (en) * 1970-05-15 1979-09-13
JPS6042557A (en) * 1983-08-18 1985-03-06 株式会社前川製作所 Method of recovering power by using volume type two phase current expansion machine
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation
JP2002233193A (en) * 2001-01-31 2002-08-16 Mitsubishi Heavy Ind Ltd Wind power generator
JP2003047294A (en) * 2001-08-01 2003-02-14 Takasago Thermal Eng Co Ltd Generating and cooling system and its operation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057875A (en) * 2006-08-31 2008-03-13 Mitsubishi Electric Corp Refrigerating cycle device
EP1906116A2 (en) * 2006-09-21 2008-04-02 Sanyo Electric Co., Ltd. Control device of motor for refrigerant compressor
EP1906116A3 (en) * 2006-09-21 2011-05-11 Sanyo Electric Co., Ltd. Control device of motor for refrigerant compressor
JP2008096081A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Refrigerating cycle device
US8424347B2 (en) 2008-08-28 2013-04-23 Kabushiki Kaisha Toshiba Washer dryer
JP2010051535A (en) * 2008-08-28 2010-03-11 Toshiba Corp Washing drying machine
JP2010210205A (en) * 2009-03-12 2010-09-24 Daikin Ind Ltd Refrigerating device and method for operating the same
JP2013002660A (en) * 2011-06-13 2013-01-07 Osaka Gas Co Ltd Thermal system
JP2014045555A (en) * 2012-08-24 2014-03-13 Kito Corp Motor and electric chain block having this motor
WO2014192467A1 (en) * 2013-05-28 2014-12-04 富士電機株式会社 Device for detecting magnetic pole position of permanent magnet-type synchronous motor
JP6008264B2 (en) * 2013-05-28 2016-10-19 富士電機株式会社 Magnetic pole position detection device for permanent magnet type synchronous motor
US10161766B2 (en) 2013-05-28 2018-12-25 Fuji Electric Co., Ltd. Magnetic pole position detection device of permanent magnet-type synchronous motor
JP2015133881A (en) * 2014-01-16 2015-07-23 アイダエンジニアリング株式会社 Motor excitation device, motor excitation method, and motor control device

Also Published As

Publication number Publication date
JPWO2006075742A1 (en) 2008-06-12
JP3943124B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP3963940B2 (en) Heat pump equipment
JP3943124B2 (en) Heat pump application equipment
JP4053968B2 (en) Synchronous motor driving device, refrigerator and air conditioner
US20080072619A1 (en) Control device of motor for refrigerant compressor
JP3644391B2 (en) Inverter device, compressor control device, refrigeration / air conditioning device control device, motor control method, compressor, refrigeration / air conditioning device
JP7074613B2 (en) Open winding motor drive and refrigeration cycle equipment
JP2008206323A (en) Motor driving device
JP2008164183A (en) Refrigerating cycle device
JP2018067981A (en) Motor controller and heat pump-type refrigeration cycle device
JP5178335B2 (en) AC motor control device
JP2004040861A (en) Driving-gear of motor
JP2013126284A (en) Electric motor drive apparatus
JP4631627B2 (en) Refrigeration cycle equipment
JP6309173B2 (en) Motor drive device, heat pump device using the motor drive device, refrigeration air conditioner, and blower
JP4940881B2 (en) Refrigeration cycle equipment
JP6982532B2 (en) Refrigeration cycle device
JP2007155155A (en) Refrigerating cycle device using expander
JP2008106989A (en) Refrigerating cycle device
JP2003037988A (en) Method and device for driving brushless dc motor
EP3355466A1 (en) Motor control device, rotary compressor system and motor control method
JP7237746B2 (en) Open winding motor drive device and refrigeration cycle device
JP7251496B2 (en) Inverter control device and in-vehicle fluid machinery
JP4910530B2 (en) Refrigeration cycle equipment
JP4682869B2 (en) Refrigeration cycle equipment
JP2010288348A (en) Controller for synchronous motor, and freezer and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553012

Country of ref document: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711735

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711735

Country of ref document: EP