WO2006075740A1 - Method and apparatus for judging conformity of lead storage battery - Google Patents

Method and apparatus for judging conformity of lead storage battery Download PDF

Info

Publication number
WO2006075740A1
WO2006075740A1 PCT/JP2006/300447 JP2006300447W WO2006075740A1 WO 2006075740 A1 WO2006075740 A1 WO 2006075740A1 JP 2006300447 W JP2006300447 W JP 2006300447W WO 2006075740 A1 WO2006075740 A1 WO 2006075740A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
lead
storage battery
terminal voltage
Prior art date
Application number
PCT/JP2006/300447
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kadoya
Takahiro Hori
Yasufumi Fukao
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to JP2006553011A priority Critical patent/JP4893312B2/en
Publication of WO2006075740A1 publication Critical patent/WO2006075740A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for determining the quality of a lead-acid battery and a device that performs a quality determination of a lead-acid battery. Moreover, this invention relates to the apparatus which charges the lead storage battery determined to be usable by the method.
  • lead-acid batteries When lead-acid batteries deteriorate, they cannot be used gradually.
  • the causes include sulfation phenomenon, active material deterioration, overdischarge, and internal short circuit.
  • the sulfation phenomenon is a phenomenon in which lead sulfate with low conductivity is deposited on the electrode plate. If this phenomenon occurs, the internal impedance of the lead storage battery increases and the lead storage battery cannot be used.
  • the active material deteriorates, the active material cannot contribute to the electrochemical reaction, so that the lead-acid battery cannot be used.
  • the discharge becomes too deep and overdischarge occurs the voltage will not recover sufficiently even if the battery is charged after that, so that the lead-acid battery cannot be used.
  • an internal short circuit occurs between the electrodes in the lead-acid battery, the voltage of the lead-acid battery will drop, making it impossible to use.
  • the first method is a method for determining pass / fail by discharging a lead-acid battery at a high rate and checking whether the voltage and the discharge current are sufficiently large.
  • development of a method, a device, a charger, and the like for determining the quality by discharging a lead-acid battery at a high rate before or after charging has been advanced.
  • the second method is a method in which the lead storage battery is charged with a constant current or a constant voltage, and the quality is determined based on the behavior of the charging voltage or the charging current at that time. In this case, the charging current is generally supplied for several tens of hours, and when it is short, it takes several minutes.
  • the third method is a method of judging pass / fail by examining the specific gravity and the like of the electrolytic solution. However, this method is applied only to an open type lead acid battery. This is because the sealed lead-acid battery cannot know the specific gravity of the electrolyte, which is information inside the battery. As a result, this third method cannot be applied to all lead-acid batteries.
  • the above-described second method is a method in which the lead storage battery is charged with a constant current or a constant voltage (diagnostic charge) and is determined based on the behavior of the charging voltage or the charging current at that time. Even if it is charged, it needs to be charged for several tens of hours and several hours. If charging is not performed for this amount of time, it cannot be judged good or bad. Therefore, there was a problem when the result of pass / fail judgment was needed immediately.
  • the lead-acid battery is determined to be a non-defective product by the lead-acid battery pass / fail judgment method, which is the second method, and the lead-acid battery has to be charged / discharged once or twice after being determined to be non-defective. However, some lead-acid batteries could be charged and discharged soon after that. In other words, there was a problem that the determination as a non-defective product by the above-mentioned second method was not necessarily accurate!
  • an object of the present invention is to make it possible to judge the quality of a lead storage battery in a very short time.
  • An object of the present invention is to provide an accurate pass / fail judgment result by detecting a lead storage battery in which a mild sulfation phenomenon has occurred, as a defective product.
  • the present invention relates to a method for determining the quality of a lead storage battery, wherein the method includes a temporary charging step in which the lead storage battery is charged with a constant current, and the lead storage battery is charged within 10 seconds after the charging starts with the constant current.
  • a determination step in which the terminal voltage of the storage battery is measured and it is determined whether or not the terminal voltage reaches a predetermined voltage; and a selection step in which the lead storage battery that has reached the predetermined voltage is selected as defective.
  • the lead-acid battery has a single cell, and the predetermined voltage is 2.67 V or more and 3. OOV or less per unit cell.
  • the magnitude of the constant current in the temporary charging process is 0.03 CA or more and 0.10 CA or less.
  • the lead storage battery is charged with a constant current (temporary charging process), and the charging is started and the terminal voltage of the lead storage battery reaches a predetermined level within a short period of time, for example, about 3 seconds. It is determined whether the pressure is reached. When the terminal voltage reaches a predetermined voltage, the lead storage battery is selected as defective. Time required for judgment and selection In this example, it takes about 3 seconds. Therefore, it is possible to judge the quality of lead-acid batteries in an extremely short time compared to the conventional method.
  • the "predetermined voltage” described in the claims of the present application is any one value included in a voltage range of 2.67V or more 3. OOV or less converted per unit cell of a lead storage battery.
  • the widely used lead-acid battery for automobiles is composed of six single cells connected in series (rated voltage: 12V). Therefore, when converted to the overall voltage of such a lead-acid battery for automobiles, “2.67 V or more and 3.00 V or less per single cell” means “the charging voltage of the entire lead-acid battery in which single cells are connected in series (charging This means that the terminal voltage inside is between 16V and 18V.
  • a lead storage battery in which a mild sulfation phenomenon occurs can also be detected.
  • the charging voltage terminal voltage during charging
  • the charging voltage drops. This is probably because part of the lead sulfate becomes soluble with slow charging and the internal impedance decreases.
  • the subsequent charging voltage behaves in the same manner as a good lead-acid battery. Therefore, as in the present invention, if it is determined whether or not the terminal voltage reaches a predetermined voltage within a short time of about 3 seconds after charging is started, such voltage behavior is detected. The And the lead acid battery which has produced the mild sulfation phenomenon is detected, and it can be determined that the lead acid battery is defective.
  • the terminal voltage of the lead storage battery may be measured before or after the start of charging in the temporary charging process, or may be measured after a lapse of time from the start of charging. Good.
  • the time until the terminal voltage of the lead storage battery is measured and it is determined whether or not the terminal voltage reaches a predetermined voltage is: Any number of seconds may be used as long as it is 10 seconds or less.
  • the lead storage battery can be determined by the present invention even for 1 second.
  • the time is preferably 0.5 seconds or more.
  • the time is required to be 10 seconds or less.
  • the rated capacity of the lead storage battery in the present application is determined as follows. In other words, for lead-acid batteries of the same type as the lead-acid battery type that is the subject of the pass / fail judgment, The time required to discharge until the terminal voltage of the lead-acid battery becomes 1.7VZ single cell is 4. 75-5. Find the discharge current that will be 25 hours (this discharge is 5 hour rate discharge), The value obtained by multiplying the magnitude of this discharge current by 5 is the rated capacity C (unit: Ah). And “0.10 CA as the magnitude of the constant current” means that the value obtained by multiplying the value of this rated capacity C by 0.10 is taken as the magnitude of the current. Specifically, the 46B24L type lead-acid battery for automobiles specified in JIS D 5301 has a rated capacity C force of 36 Ah, so 0.10 CA is 3.6 A.
  • the terminal voltage of the lead battery is measured when the charging means is charged with a constant current, and it is determined whether the terminal voltage is within a predetermined voltage range. You may have a means for judging when charging.
  • the determination unit at the time of charging measures the terminal voltage of the lead storage battery a plurality of times or at all times, and the measured terminal voltage is a predetermined voltage over time. Let's make it judge whether the force changes within the range.
  • the charging means when the charging means is charging, it is determined whether the terminal voltage of the lead storage battery changes within a predetermined voltage range as time elapses. As the process proceeds, it is checked whether the change in the terminal voltage is normal. Therefore, the failure of the lead storage battery that is overlooked when the temporary charging means is charging can be detected early and reliably during charging by the charging means. Whether or not the terminal voltage of the lead-acid battery has changed within the specified voltage range over time is determined by detecting how the terminal voltage changes. Therefore, the terminal voltage differential value, the terminal voltage difference value measured at different times, the terminal voltage differential value (double differential), or the difference value between the terminal voltage differences are detected. Used for.
  • the terminal voltage of the lead storage battery is measured before charging in the temporary charging step, and the measured terminal voltage does not reach the second predetermined voltage.
  • a charging stop process may be provided without performing the charging in the temporary charging process.
  • the terminal voltage of the lead storage battery is measured before the temporary charging means is charged, and if the measured terminal voltage does not reach the second predetermined voltage, the temporary charging means Even if you don't charge the battery, make sure you have a charging stop.
  • the voltage of the lead storage battery cannot be measured when the lead storage battery is firmly connected to the device for judging pass / fail or when the positive electrode and the negative electrode are connected in reverse. It is possible to prevent a situation in which temporary charging is performed in the state and the lead storage battery is judged to be defective. Also, if the voltage of a properly connected lead storage battery is extremely low, it can be determined that the lead storage battery is defective without actually charging. Therefore, defects in lead storage batteries are discovered in advance.
  • the charging is temporarily interrupted, the lead storage battery is connected to a predetermined resistor and discharged, and the terminal voltage and discharge current of the lead storage battery are discharged. It is also possible to provide discharge determination means for measuring whether or not the measured terminal voltage and discharge current are within a predetermined range.
  • the step of notifying the operator when the determination step or the main charge determination step determines that the terminal voltage is not within the predetermined voltage range, the step of notifying the operator, to another device A step of notifying and a step of automatically stopping the temporary charging may be included.
  • the judging means or the main charging time judging means judges that the terminal voltage is not within the predetermined voltage range, means for notifying the operator, means for notifying other equipment, temporary charging There may be a means to automatically stop /.
  • the determination step it may be determined whether or not it reaches another predetermined voltage lower than the predetermined voltage.
  • the determination means may determine whether or not another predetermined voltage lower than the predetermined voltage is reached.
  • This other predetermined voltage is set to a voltage that is not reached when the lead-acid battery is over-discharged! /, Or when the lead-acid battery is in an internal short-circuit condition. Lead storage It will be determined that the pond is in these states. And it becomes possible to determine the defective lead storage battery which fell into such a state.
  • FIG. 1 shows an embodiment of the present invention and is a perspective view showing an external appearance of a device for judging pass / fail.
  • FIG. 2 shows an embodiment of the present invention, and is a block diagram for explaining functions of an apparatus for judging pass / fail.
  • FIG. 3 shows an embodiment of the present invention, and is a flowchart for explaining the operation of a device for judging pass / fail.
  • FIG. 4 shows an embodiment of the present invention and is a flowchart for explaining details of the pre-charging process in FIG.
  • FIG. 5 shows an embodiment of the present invention, and is a time chart showing changes in charging voltage and charging current when a normal lead-acid battery is charged.
  • 11 is a temporary charging circuit
  • 12 is a main charging circuit
  • 12A is a constant current charging circuit
  • 12b is a constant voltage charging circuit
  • 13 is a switching circuit
  • 14 is a control unit
  • 17 is a timer
  • 18 is a terminal voltage measuring circuit
  • 19 is a voltage comparison unit
  • 20 is a voltage difference calculation unit
  • 21 is a voltage difference comparison unit.
  • This apparatus includes a temporary charging circuit 11 and a main charging circuit 12 as shown in FIG.
  • the charging circuit 12 includes a constant current charging circuit 12A and a constant voltage charging circuit 12b.
  • the temporary charging circuit 11 is a charging circuit that performs constant current charging of 0.5 A at a maximum voltage of 20V.
  • the constant current charging circuit 12A is a charging circuit that performs constant current charging of 3A at a maximum voltage of 14.5V
  • the constant voltage charging circuit 12b is a charging circuit that performs constant voltage charging of 14.5V.
  • the maximum voltage is 14.5V because the lead storage battery that is the target of the pass / fail judgment by this device. This is because the pond has six single cells and its rated voltage is 12V.
  • the temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b are connected to the charging terminal 1 shown in FIG. RU
  • the controller 14 of the charger controls the charging operation of the temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b. Further, the control unit 14 of the charger controls the switching circuit 13 to connect any one of the temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b to the charging terminal 1, Alternatively, control is performed so that the misaligned circuit is not connected.
  • a display unit 15 and an operation unit 16 are connected to the control unit 14.
  • the display unit 15 includes the power lamp 3, the charging lamp 5, and the NG lamp 6 shown in FIG.
  • the operation unit 16 includes the power switch 2 and the start switch 4 shown in FIG.
  • a timer 17 is connected to the control unit 14.
  • the timer 17 is a circuit for notifying completion of timing when the designated time elapses when the control unit 14 designates the timing time and instructs to start timing.
  • a terminal voltage measurement circuit 18 is also connected to the charging terminal 1.
  • the terminal voltage measurement circuit 18 is a circuit that converts the terminal voltage of the lead-acid battery connected to the charging terminal 1 (this terminal voltage is also referred to as “charging voltage” when charging) into a digital signal by AD conversion. It is.
  • the terminal voltage V converted into a digital signal by the terminal voltage measurement circuit 18 is sent to the voltage comparison unit 19 and the voltage difference calculation unit 20.
  • the voltage difference calculation unit 20 stores the terminal voltage V sent from the terminal voltage measurement circuit 18 and calculates the difference between the terminal voltage V and the terminal voltage V sent last time.
  • the difference ⁇ is output, and this voltage difference ⁇ is sent to the voltage difference comparison unit 21.
  • the voltage comparison unit 19 compares whether or not the terminal voltage V sent from the terminal voltage measurement circuit 18 is within the voltage range set by the control unit 14.
  • the voltage difference comparison unit 21 compares whether or not the voltage difference ⁇ V sent from the voltage difference calculation unit 20 is within the voltage difference range set by the control unit 14.
  • the comparison results of the voltage comparison unit 19 and the voltage difference comparison unit 21 are sent to the control unit 14.
  • the voltage range and voltage difference range set by the control unit 14 are composed of an upper limit value and a lower limit value.
  • the upper limit value and lower limit value may be constant values regardless of the passage of time, or may change with the passage of time, as will be described later. However, the upper limit By setting either one of the value and the lower limit to positive or negative infinity, either the upper limit value or the lower limit value can be substantially omitted.
  • FIG. 2 is a functional block diagram for explaining the function of the charger, and does not necessarily correspond to actual hardware.
  • the temporary charging circuit 11, the main charging circuit 12, and the switching circuit 13 may be configured by switching a part of one charging circuit or switching settings.
  • the control unit 14 is configured by a microcomputer
  • the voltage comparison unit 19, the voltage difference calculation unit 20, and the voltage difference comparison unit 21 may be configured to be configured as part of the program. it can.
  • the completion of the time measurement may be notified by an interrupt using the interval 'timer, or a timer circuit that performs only the time measurement may be controlled by the controller 14. Please refer to them from time to time.
  • the pre-charging process was performed before the temporary charging described later in (2-2) was started.
  • the lead-acid battery is connected or the lead-acid battery is severely defective.
  • the pre-charging process described in (2-1) is not necessarily required in the present invention.
  • the worker connects the connector part of the charging clip to the charging terminal 1, attaches the clip part to the positive and negative terminals of the lead-acid battery, and turns on the power switch 2.
  • the power source of the charger is turned on and the control unit 14 starts to operate, and the pre-charging process as shown in the first step (hereinafter referred to as “S”) 1 in the flowchart of FIG. 3 is executed.
  • the power lamp 3 is turned on (S21), and the terminal voltage V (open voltage) of the connected lead storage battery is measured by the terminal voltage measuring circuit 18 ( S22). Then, the voltage comparison unit 19 determines whether the terminal voltage V is greater than or equal to the predetermined voltage VI (S23). When the power does not reach the predetermined voltage VI, the power lamp 3 is turned off (S24), the power supply of the charger is turned off (S25), and all the processes are completed.
  • the predetermined voltage VI is applied to the lead-acid battery. The voltage should be sufficiently lower than the terminal voltage V obtained when there is some abnormality such as an internal short circuit.
  • the fact that the terminal voltage V does not reach the predetermined voltage VI means that the connection of the lead storage battery by the charging clip is incomplete, or that the positive electrode and the negative electrode are reversely connected. Become. For this reason, when the power lamp 3 is turned off, the operator is required to reconnect the lead storage battery. If the connection is still complete, the charging clip should be checked for breaks and other causes.
  • the charger waits until the ON and enables receives an operation start switch 4 (S26) 0
  • the terminal voltage V (open voltage) of the lead storage battery is again measured by the terminal voltage measuring circuit 18 (S27). Note that the measurement result of S22 can be used for the measurement of the terminal voltage V of S27.
  • the voltage comparison unit 19 determines whether or not the measured terminal voltage V is equal to or higher than the predetermined voltage V2 (S28), and if the power does not reach the predetermined voltage V2, the NG lamp 6 is turned on. In both cases (S29), all processing is terminated.
  • the predetermined voltage V2 is a predetermined voltage that is much higher than the predetermined voltage VI, but is sufficiently low as the terminal voltage V of a normal and recoverable lead-acid battery. Therefore, the terminal voltage V of the lead storage battery is not less than the predetermined voltage VI, but has reached the predetermined voltage V2, which means that the lead storage battery cannot be recovered due to overdischarge or internal short circuit.
  • the temporary charging circuit 11 In the temporary charging, the temporary charging circuit 11 operates, the switching circuit 13 switches to the temporary charging circuit 11, and the charging lamp 5 is lit. Then, as shown in FIG. 3, provisional charging starts (S2).
  • the charging performed by the temporary charging unit is a constant current charging of 0.5 A.
  • the charging voltage is limited to a maximum of 20V.
  • the terminal voltage V of the lead storage battery was measured by the terminal voltage measuring circuit 18 within 10 seconds by the timer 17 (S3). Whether or not the terminal voltage V is within the voltage range R1 is determined by the voltage comparison unit 19 (S4). If the voltage is within the voltage range R1, the S3 and S4 Repeat the process (S5). Here, it corresponds to the “predetermined voltage” described in the voltage power range obtained by converting the upper limit value of the voltage range R1 per unit cell.
  • the NG lamp 6 is turned on (S16), the charging lamp 5 is turned off, and all the processes are completed.
  • defective lead-acid batteries can be selected with high probability at an early stage within 10 seconds after starting the start switch 4 (that is, within 10 seconds from the start of temporary charging). Whether or not a lead-acid battery that has been selected as defective in this way has actually become defective depends on the disassembly of the lead-acid battery (investigation of whether or not a sulfation phenomenon has occurred) and the subsequent charge and discharge. This was done by investigating behavior.
  • the terminal voltage V is always measured and determined by S3 to S5 during the temporary charging, but the measurement is performed at regular intervals during the charging by the temporary charging means. Judgment may be made, and each may be executed at a preset time.
  • the terminal voltage V after the start of temporary charging suddenly rises, but part of the lead sulfate becomes soluble with charging and the internal impedance decreases.
  • the terminal voltage V returns to the voltage range R1 due to a temporary drop. For this reason, if the terminal voltage V is measured and judged only once during temporary charging, there is a risk of overlooking the abnormality caused by this sulfuration. Therefore, it is desirable to measure and judge the terminal voltage V multiple times or constantly.
  • the constant current charging circuit 12A of the main charging circuit 12 operates, the switching circuit 13 switches to the constant current charging circuit 12A, and the constant current charging of the main charging is started (S6).
  • the constant current charging of the main charging is a constant current charging by 3 A and is performed for a maximum of 6 hours by the timer 17 timing.
  • the constant current charging it is determined whether 6 hours have elapsed since the start of constant current charging (S7), and then the terminal voltage V of the lead storage battery is measured by the terminal voltage measuring circuit 18 ( S8), whether or not the terminal voltage V is within the voltage range R2 is determined by the voltage comparator 19 (S9).
  • the voltage difference calculation unit 20 calculates the voltage difference ⁇ of the difference between the terminal voltage V measured in the previous S8 and the terminal voltage V measured this time.
  • the current terminal voltage V is stored instead of the previous terminal voltage V (S 10), and this voltage difference ⁇
  • the voltage difference comparison unit 21 determines whether or not the pressure difference is within the range R3 (Sl l). If the voltage difference ⁇ is within the voltage difference range R3, the voltage comparison unit 19 determines whether or not the terminal voltage V is 14.5 V or higher (S 12) until the terminal voltage V reaches 14.5 V or higher. Repeat the process from S7 to S12. When this “14.5 V or more” is converted per unit cell, it becomes “2.417 V or more”.
  • the constant current charging of the main charging in S12 described above is limited until the terminal voltage V increases to 14.5V.
  • the terminal voltage V of the lead storage battery used in the present embodiment further increases. Then, there is a risk of sudden overcharge.
  • the constant current charge of the main charge is limited to 6 hours in the above S7 because the lead voltage which does not reach the terminal voltage V force of 14.5V even after 6 hours have elapsed since the start of charging.
  • the storage battery has the ability to determine that a non-recoverable failure has occurred due to a slight internal short circuit. Accordingly, when it is determined that 6 hours have passed in the process of S7, the NG lamp 6 is turned on (S16), the charge lamp 5 is turned off and all the processes are ended.
  • the NG lamp 6 is turned on (S16), the charging lamp 5 is turned off, and all the processes are completed. If the terminal voltage V exceeds the upper limit of the voltage range R2, it is considered that the terminal voltage V has risen abnormally due to the force impedance or deterioration that has been missed during temporary charging due to the high internal impedance of the battery. . Also, the fact that the terminal voltage V does not reach the lower limit of the voltage range R2 is considered to be because the terminal voltage V does not rise sufficiently even if charging is performed due to the occurrence of overdischarge or internal short circuit.
  • the fact that the terminal voltage V is outside this voltage range R2 is an irrecoverable defect, so the NG lamp 6 is turned on to notify the operator of the defect and stop charging.
  • the terminal voltage V of a normal lead-acid battery rises from a voltage equal to or higher than the predetermined voltage V2 to 14.5V, so this voltage range R2 is By changing the value with the passage of time, in particular by raising the lower limit value with the passage of time, it becomes possible to more reliably sort out defects due to the occurrence of overdischarge or internal short circuit.
  • the charging lamp 5 is turned off and all the processes are terminated. Since the voltage difference ⁇ is the difference between the previous and current terminal voltage V, it indicates the rate of increase of this terminal voltage V.
  • the terminal voltage V measured last time is stored in the memory, so that the terminal voltage V last measured in S3 may be used as the previous value.
  • the dummy terminal voltage V within the voltage difference range R3 may be prepared for the previous time, and the processing of S11 may be omitted only for the first time.
  • Constant current for main charging The terminal voltage V of a normal lead-acid battery during charging increases at the beginning and end of this constant current charging, as shown in Fig. 5. Increase rate. Therefore, by examining the rate of increase of the terminal voltage V, it is possible to more accurately determine whether or not the charging is proceeding smoothly, thereby detecting the failure of the lead storage battery even earlier. It ’s like this. In other words, the fact that the voltage difference ⁇ does not reach the lower limit of the voltage difference range R3 is considered that the rate of increase of the terminal voltage V does not become sufficiently high even if charging is performed due to the occurrence of an internal short circuit, etc. It can be determined that the lead storage battery is defective. However, since it is not particularly hindered that the rate of increase is not abnormal, it is usually possible to omit the upper limit value of the voltage difference range R3 by setting it to positive infinity.
  • the voltage difference range R3 can also be changed according to the elapsed time from the start of the constant current charging of the main charging, thereby obtaining a sufficiently large increase rate at the initial stage of charging, for example. It is possible to detect a failure at an early stage by detecting that it has not been performed. Even in the case of a normal lead-acid battery, the terminal voltage V may increase little during the middle of charging, or may slightly decrease.
  • the lower limit of the difference range R3 can be set to 0 or a negative value to avoid false detection of defects.
  • the terminal voltage V is always measured and determined by S8 to S11 during the constant current charging of the main charging, but these are the constant current charging of the main charging. It may be executed at regular intervals during power transmission, or may be executed at predetermined times.
  • the voltage difference ⁇ is constant or the terminal voltage measurement circuit 18
  • a differential value of the terminal voltage V is obtained. However, this differential value may be subject to large short-term fluctuations, so that the effects of such fluctuations are eliminated. In addition, it is better to calculate the difference in the terminal voltage V measured at a rather long time interval.
  • the constant current charging circuit 12A of the main charging circuit 12 is stopped and the constant voltage charging of the main charging circuit 12 is stopped.
  • the circuit 12b is operated and the switching circuit 13 is switched to the constant voltage charging circuit 12b to start constant voltage charging for main charging (S13).
  • the constant voltage charge of this charge is a constant voltage charge of 14.5V, the charging current is limited to 3A at maximum, and it is performed for 2 hours at maximum by the timer 17 timing.
  • S 14 start of the constant current charge of the previous main charge
  • 2 hours have passed since the start of the constant voltage charge of this main charge.
  • the power is judged (S15) and it waits for whichever time has passed. If it is determined in S 15 that 2 hours have elapsed since the start of constant voltage charging, charging of the lead storage battery has been completed normally, so the charging lamp 5 is turned off and all processing is completed. To do. If it is determined in S14 that 6 hours have elapsed since the start of constant current charging, there is a possibility that charging by constant voltage charging may be insufficient.To limit the total charging time, charge If the charging lamp 5 is turned off, all processing is terminated.
  • the lead storage battery is temporarily charged, and the voltage behavior is investigated during a short period of time when the charging start force is short. For this reason, lead-acid batteries that have been overlooked in the past, such as lead-acid batteries that have produced a sulfation phenomenon, are accurately selected as defective. At the same time, the power of the lead storage battery is determined in a short time. As described above, the lead-acid battery is recovered by charging or replaced. Judgment whether it is necessary, can be made immediately before charging.
  • defects can be found with high probability by simply measuring the terminal voltage V of the lead-acid battery, which is cumbersome and difficult to distribute. Setup operation and installation of expensive discharge circuit are not required.
  • a charger for charging a control valve type lead storage battery having a rated voltage of 12 V is described.
  • any rated voltage, rated capacity, etc. can be used for lead-acid batteries, and the same can be applied to chargers that charge lead-acid batteries with multiple types of rated voltages.
  • the rated voltage is different, it is necessary to change the setting of the upper and lower limits of voltage range R1 to voltage difference range R3, so this setting operation of the rated voltage is necessary.
  • the specific numerical values shown in the above embodiment can be arbitrarily changed according to the characteristics of the lead storage battery. For example, during constant current charging of main charge, compare with terminal voltage V at S12 14.Voltage value such as 5V, temporary charge 10 seconds, total time of main charge 6 hours, or 2 for constant voltage charge Parameters such as time can also be changed as appropriate.
  • the NG lamp 6 when a lead storage battery is selected as defective, the NG lamp 6 is turned on to stop charging.
  • the measure when this defect is selected is arbitrary.
  • lamps other than the NG lamp 6 can be turned on, displayed on the display with characters, etc., or notified to the worker by voice or the like.
  • temporary charging may be automatically stopped as in the above embodiment, or an operator may manually stop charging upon notification of failure! ,.
  • the charging can be interrupted and discharged to perform the same determination as before.
  • the setting operation becomes cumbersome and the charger becomes expensive because a discharge circuit is provided.
  • the present invention relates to a method or apparatus for determining the quality of a lead storage battery widely used in industry such as the automobile industry. Therefore, this method or apparatus can also be used industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A method for judging conformity of a lead storage battery is characterized in that the method is provided with a temporary charging step wherein the lead storage battery is charged with a constant current; a judging step wherein a terminal voltage of the lead storage battery is measured within 10 seconds after starting the charging with the constant current and whether the terminal voltage reaches a prescribed voltage or not is judged; and a discriminating step wherein the lead storage battery reaching the prescribed voltage is discriminated nonconforming.

Description

明 細 書  Specification
鉛蓄電池の良否判定方法及び良否判定装置  Quality determination method and quality determination device for lead acid battery
技術分野  Technical field
[0001] 本発明は、鉛蓄電池の良否判定の方法、及び鉛蓄電池の良否判定が行われる装 置に関する。また、本願発明は、その方法により、使用可能であると判定された鉛蓄 電池を充電する装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for determining the quality of a lead-acid battery and a device that performs a quality determination of a lead-acid battery. Moreover, this invention relates to the apparatus which charges the lead storage battery determined to be usable by the method.
背景技術  Background art
[0002] 鉛蓄電池が劣化すると、次第に使用することができなくなる。この原因として、サル フエーシヨン現象、活物質の劣化、過放電、及び内部短絡等がある。サルフヱーショ ン現象とは、極板に導電性の低い硫酸鉛が析出する現象であり、この現象を生じると 鉛蓄電池の内部インピーダンスが大きくなり、鉛蓄電池を使用することができなくなる 。また、活物質が劣化すると、活物質が電気化学反応に寄与できなくなるため、鉛蓄 電池を使用することができなくなる。また、放電が深くなりすぎて過放電が生じると、そ の後に充電を行っても電圧が十分に回復しなくなるため、鉛蓄電池を使用することが できなくなる。また、鉛蓄電池内の極板間に内部短絡を生じると、鉛蓄電池の電圧が 低下し、使用することができなくなる。  [0002] When lead-acid batteries deteriorate, they cannot be used gradually. The causes include sulfation phenomenon, active material deterioration, overdischarge, and internal short circuit. The sulfation phenomenon is a phenomenon in which lead sulfate with low conductivity is deposited on the electrode plate. If this phenomenon occurs, the internal impedance of the lead storage battery increases and the lead storage battery cannot be used. In addition, when the active material deteriorates, the active material cannot contribute to the electrochemical reaction, so that the lead-acid battery cannot be used. Also, if the discharge becomes too deep and overdischarge occurs, the voltage will not recover sufficiently even if the battery is charged after that, so that the lead-acid battery cannot be used. In addition, if an internal short circuit occurs between the electrodes in the lead-acid battery, the voltage of the lead-acid battery will drop, making it impossible to use.
[0003] 鉛蓄電池が良品である力、又はこのような原因によって不良品に至っているかを判 定することが、しばしば必要とされる。このような判定は、良否判定と呼ばれる。その 判定の方法には様々な種類がある。代表例を以下に示す。  [0003] It is often necessary to determine whether a lead-acid battery is a good product, or whether it has resulted in a defective product due to such a cause. Such determination is called pass / fail determination. There are various types of judgment methods. A typical example is shown below.
[0004] 第一の方法は、鉛蓄電池を高率放電させ、電圧や放電電流が十分な大きさである 力どうかを調べることによって、良否判定をおこなう方法である。従来から、充電前又 は充電後に、鉛蓄電池を高率放電させて良否判定をする方法、装置、及び充電器 などの開発が進められてきていた。  [0004] The first method is a method for determining pass / fail by discharging a lead-acid battery at a high rate and checking whether the voltage and the discharge current are sufficiently large. Conventionally, development of a method, a device, a charger, and the like for determining the quality by discharging a lead-acid battery at a high rate before or after charging has been advanced.
[0005] 第二の方法は、鉛蓄電池に定電流又は定電圧で充電をおこない、そのときの充電 電圧又は充電電流の挙動に基づいて、良否判定をおこなう方法である。この場合に おける充電電流を流す時間は、一般的には数十分力 数時間であり、短い場合には 数分である。 [0006] 第三の方法は、電解液の比重等を調べることによって良否を判定する方法である。 ただし、この方法は、開放型鉛蓄電池にのみ適用される。なぜなら、密閉型鉛蓄電池 では、電池内部の情報である電解液の比重を知ることが出来ないからである。そのた め、この第三の方法は、すべての鉛蓄電池には適用することができない。 [0005] The second method is a method in which the lead storage battery is charged with a constant current or a constant voltage, and the quality is determined based on the behavior of the charging voltage or the charging current at that time. In this case, the charging current is generally supplied for several tens of hours, and when it is short, it takes several minutes. [0006] The third method is a method of judging pass / fail by examining the specific gravity and the like of the electrolytic solution. However, this method is applied only to an open type lead acid battery. This is because the sealed lead-acid battery cannot know the specific gravity of the electrolyte, which is information inside the battery. As a result, this third method cannot be applied to all lead-acid batteries.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 鉛蓄電池は充電された後でなければ放電することができないので、高率放電をさ せて良否判定をおこなうためには、すくなくとも充電を十分に行う必要がある。結果と して、前述の第一の方法によって即座に良否判定をすることができるのは、判定され る鉛蓄電池が偶然にもほぼ満充電の状態であった場合のみであり、それ以外のほと んどの場合には、実際に鉛蓄電池の充電を行った後でなければ判定ができな力つた 。そのため、前述の第一の方法には、良否判定によって結果を得るまでに相当の長 時間を要するという問題があった。  [0007] Since lead-acid batteries can only be discharged after being charged, in order to make a pass / fail judgment with high-rate discharge, it is necessary to charge at least sufficiently. As a result, it is only when the lead storage battery to be determined is almost fully charged by chance that the above-mentioned first method can be used to determine pass / fail immediately. In most cases, the decision was made only after the lead-acid battery was actually charged. Therefore, the first method described above has a problem that it takes a considerably long time to obtain a result by pass / fail judgment.
[0008] 次に、前述の第二の方法である鉛蓄電池に定電流又は定電圧で充電 (診断充電) をおこない、そのときの充電電圧又は充電電流の挙動に基づいて判定する方法が用 いられたとしても、数十分力 数時間程度の充電が必要とされる。この時間だけ充電 をおこなわなければ、良否判定がなされえない。そのため、即時に、良否判定の結果 が必要とされる場合に問題となっていた。し力も、この第二の方法である鉛蓄電池の 良否判定方法によって良品であると判定されて 、る鉛蓄電池には、良品と判定され た以降の 1〜2回程度の充放電であればすることができるものの、その後すぐに充放 電できなくなる鉛蓄電池も存在した。つまり、前述の第二の方法による良品であるとの 判定は、必ずしも正確ではな 、と!、う問題があった。  [0008] Next, the above-described second method is a method in which the lead storage battery is charged with a constant current or a constant voltage (diagnostic charge) and is determined based on the behavior of the charging voltage or the charging current at that time. Even if it is charged, it needs to be charged for several tens of hours and several hours. If charging is not performed for this amount of time, it cannot be judged good or bad. Therefore, there was a problem when the result of pass / fail judgment was needed immediately. The lead-acid battery is determined to be a non-defective product by the lead-acid battery pass / fail judgment method, which is the second method, and the lead-acid battery has to be charged / discharged once or twice after being determined to be non-defective. However, some lead-acid batteries could be charged and discharged soon after that. In other words, there was a problem that the determination as a non-defective product by the above-mentioned second method was not necessarily accurate!
[0009] 本願発明者らが研究をおこなった結果、本願発明者らは、 1〜2回程度の充放電で あればすることができるものの、その後すぐに充放電できなくなるこのような鉛蓄電池 は、共通して、軽度のサルフエーシヨン現象を生じていることを見出した。つまり、第二 の方法である良否判定方法では、軽度のサルフエーシヨン現象を生じた鉛蓄電池を 検知できて!/ヽな 、ことを明らかにした。  [0009] As a result of the study by the inventors of the present application, the present inventors have found that such a lead storage battery that can be charged / discharged once or twice, but cannot be charged / discharged immediately thereafter. In common, they found that a mild sulfation phenomenon occurred. In other words, it was clarified that the second method, the pass / fail judgment method, was able to detect lead-acid batteries that produced a mild sulfation phenomenon!
[0010] また、本願の発明者らによる研究の結果、従来の良否判定で軽度のサルフ ーショ ン現象が生じていることが見過ごされていたのは、鉛蓄電池に充電をおこなう診断充 電の時間が長いことが原因であることが明ら力となった。すなわち、軽度のサルフエ ーシヨン現象を生じた鉛蓄電池を充電した場合、充電電流を流した直後に急に電圧 が上昇した後に降下し、その後は、良品の鉛蓄電池と同じ挙動を示す。そのため、数 十分力 数時間程度の診断充電をおこなって力 良否判定をするような従来の方法 を用いれば、軽度のサルフエーシヨン現象が見過ごされることになつていたのである。 [0010] In addition, as a result of the research by the inventors of the present application, a mild sulfation is determined by conventional quality determination. The fact that the phenomenon was overlooked was clearly due to the long diagnostic charging time for charging lead-acid batteries. In other words, when a lead storage battery with a mild sulfation phenomenon is charged, the voltage suddenly rises immediately after the charging current is passed and then drops, and thereafter, the same behavior as a good lead storage battery is exhibited. For this reason, if a conventional method of performing a diagnostic charge for several tens of hours and making a power pass / fail judgment is used, a mild sulfation phenomenon would be overlooked.
[0011] 本願発明は、このような知見に基づき、上記の問題を解決するためになされた。す なわち、本願発明は、鉛蓄電池の良否判定をきわめて短時間でおこなえるようにする ことを目的とする。そして、本願発明は、軽度のサルフエーシヨン現象を生じている鉛 蓄電池をも検出することにより不良品として選別し、正確な良否判定結果を提供する ことを目的とする。  The present invention has been made to solve the above problems based on such knowledge. In other words, an object of the present invention is to make it possible to judge the quality of a lead storage battery in a very short time. An object of the present invention is to provide an accurate pass / fail judgment result by detecting a lead storage battery in which a mild sulfation phenomenon has occurred, as a defective product.
課題を解決するための手段  Means for solving the problem
[0012] 本願発明は、鉛蓄電池の良否を判定する方法において、この方法が、鉛蓄電池が 定電流で充電される仮充電工程、前記定電流で充電が開始されてから 10秒間以内 に前記鉛蓄電池の端子電圧が測定され、前記端子電圧が所定の電圧に到達するか 否かが判断される判断工程、及び前記所定の電圧に到達した鉛蓄電池が不良とし て選別される選別工程を備えることを特徴とする。また、その鉛蓄電池が単セルを備 え、所定の電圧が単セルあたり 2. 67V以上 3. OOV以下であることを特徴とする。さ らに、仮充電工程における定電流の大きさ力 0. 03CA以上 0. 10CA以下であるこ とを特徴とする。  [0012] The present invention relates to a method for determining the quality of a lead storage battery, wherein the method includes a temporary charging step in which the lead storage battery is charged with a constant current, and the lead storage battery is charged within 10 seconds after the charging starts with the constant current. A determination step in which the terminal voltage of the storage battery is measured and it is determined whether or not the terminal voltage reaches a predetermined voltage; and a selection step in which the lead storage battery that has reached the predetermined voltage is selected as defective. It is characterized by. In addition, the lead-acid battery has a single cell, and the predetermined voltage is 2.67 V or more and 3. OOV or less per unit cell. Furthermore, it is characterized in that the magnitude of the constant current in the temporary charging process is 0.03 CA or more and 0.10 CA or less.
[0013] 本願発明によれば、鉛蓄電池が定電流で充電され (仮充電工程)、この充電が開 始されて力 たとえば 3秒間程度の短い時間内に、鉛蓄電池の端子電圧が所定の電 圧に到達するか否かが判断される。そして、端子電圧が所定の電圧に達した場合に は、その鉛蓄電池が不良であるとして選別される。判断して選別するまでに要する時 間力 この例でいえば 3秒間程度であるので、従来の方法にくらべて、極めて短時間 で鉛蓄電池の良否判定をおこなうことが可能となる。  [0013] According to the present invention, the lead storage battery is charged with a constant current (temporary charging process), and the charging is started and the terminal voltage of the lead storage battery reaches a predetermined level within a short period of time, for example, about 3 seconds. It is determined whether the pressure is reached. When the terminal voltage reaches a predetermined voltage, the lead storage battery is selected as defective. Time required for judgment and selection In this example, it takes about 3 seconds. Therefore, it is possible to judge the quality of lead-acid batteries in an extremely short time compared to the conventional method.
[0014] 本願の請求の範囲に記載されて 、る「所定の電圧」は、鉛蓄電池の単セルあたりに 換算された 2. 67V以上 3. OOV以下の電圧範囲に含まれるいずれか一つの値であ る。現在、一般的に普及している自動車用鉛蓄電池は 6つの単セルが直列に接続さ れることにより構成されている(定格電圧: 12V)。したがって、このような自動車用鉛 蓄電池の全体の電圧で換算する場合、「単セルあたり 2. 67V以上 3. 00V以下」は、 「単セルが直列に接続された鉛蓄電池全体の充電電圧 (充電中の端子電圧)が 16V 以上 18V以下」を意味することになる。 [0014] The "predetermined voltage" described in the claims of the present application is any one value included in a voltage range of 2.67V or more 3. OOV or less converted per unit cell of a lead storage battery. In The Currently, the widely used lead-acid battery for automobiles is composed of six single cells connected in series (rated voltage: 12V). Therefore, when converted to the overall voltage of such a lead-acid battery for automobiles, “2.67 V or more and 3.00 V or less per single cell” means “the charging voltage of the entire lead-acid battery in which single cells are connected in series (charging This means that the terminal voltage inside is between 16V and 18V.
[0015] そして、本願発明によれば、軽度のサルフエーシヨン現象を生じている鉛蓄電池も、 検出され得る。サルフエーシヨン現象を生じている鉛蓄電池に充電電流が流されると 、充電電圧 (充電中の端子電圧)が急に上昇するが、その後は充電電圧が垂下する 。おそらぐ充電に伴って硫酸鉛の一部が可溶ィ匕して内部インピーダンスが低下する ためと思われる。そして、その後の充電電圧は、良品の鉛蓄電池と同様の挙動をとる 。そのため、本願発明のように、充電が開始されてから 3秒間程度の短時間の間に端 子電圧が所定の電圧に到達するか否かが判断されれば、このような電圧挙動が検出 される。そして、軽度のサルフエーシヨン現象を生じている鉛蓄電池が検出され、当 該鉛蓄電池が不良品であると判定されうる。  [0015] According to the present invention, a lead storage battery in which a mild sulfation phenomenon occurs can also be detected. When a charging current is passed through a lead storage battery in which a sulfation phenomenon occurs, the charging voltage (terminal voltage during charging) suddenly increases, but thereafter the charging voltage drops. This is probably because part of the lead sulfate becomes soluble with slow charging and the internal impedance decreases. The subsequent charging voltage behaves in the same manner as a good lead-acid battery. Therefore, as in the present invention, if it is determined whether or not the terminal voltage reaches a predetermined voltage within a short time of about 3 seconds after charging is started, such voltage behavior is detected. The And the lead acid battery which has produced the mild sulfation phenomenon is detected, and it can be determined that the lead acid battery is defective.
[0016] この場合において、鉛蓄電池の端子電圧は、仮充電工程における充電の開始前 又は開始時力も測定されてもよいし、充電の開始から時間が経過した後に測定され るようにされてちよい。  [0016] In this case, the terminal voltage of the lead storage battery may be measured before or after the start of charging in the temporary charging process, or may be measured after a lapse of time from the start of charging. Good.
[0017] 定電流による充電 (仮充電)が開始された後において、鉛蓄電池の端子電圧が測 定され、その端子電圧が所定の電圧に到達する力否かが判断されるまでの時間は、 10秒間以下であれば何秒間であっても良い。たとえば、 1秒間であっても、本願発明 によって鉛蓄電池の判定をすることが可能である。しかし、本願及び本願の基礎出願 の出願時の技術水準にある電源 (電流を流す装置)の精度等を考慮すれば、その時 間は 0. 5秒以上であることが望ましい。一方、その時間が 10秒間を超えるほどに長く なると、良品であって偶然にも充電状態にある鉛蓄電池までもが、所定の電圧に到 達しうる。そうすると、その到達によって、本来的に良品である鉛蓄電池が不良として 選別されてしまう。以上により、その時間は 10秒間以下であることが必要とされる。  [0017] After charging (preliminary charging) with constant current is started, the time until the terminal voltage of the lead storage battery is measured and it is determined whether or not the terminal voltage reaches a predetermined voltage is: Any number of seconds may be used as long as it is 10 seconds or less. For example, the lead storage battery can be determined by the present invention even for 1 second. However, considering the accuracy of the power source (device that flows current) in the state of the art at the time of filing of the present application and the basic application of the present application, the time is preferably 0.5 seconds or more. On the other hand, if the time becomes longer than 10 seconds, a lead-acid battery that is good and accidentally charged can reach a predetermined voltage. In that case, the lead-acid battery, which is essentially a good product, will be selected as defective. Therefore, the time is required to be 10 seconds or less.
[0018] また、本願における鉛蓄電池の定格容量は、次のように定める。すなわち、良否判 定の対象となる鉛蓄電池の型式と同じ型式の鉛蓄電池であって良品のものについて 、その鉛蓄電池の端子電圧が 1. 7VZ単セルになるまで放電するのに要する時間が 4. 75-5. 25時間となる放電電流を求め(この放電は、 5時間率放電である)、この 放電電流の値の大きさを 5倍して得られた値を定格容量 C (単位は Ah)とする。そし て、「定電流の大きさとしての 0. 10CA」とは、この定格容量 Cの値の大きさに 0. 10 を乗じて得た数値を電流の大きさとすることを意味する。具体的に説明すると、 JIS D 5301に規定される 46B24L型自動車用鉛蓄電池においては、その定格容量 C 力 36Ahであるので、 0. 10CAは、 3. 6Aとなる。 [0018] The rated capacity of the lead storage battery in the present application is determined as follows. In other words, for lead-acid batteries of the same type as the lead-acid battery type that is the subject of the pass / fail judgment, The time required to discharge until the terminal voltage of the lead-acid battery becomes 1.7VZ single cell is 4. 75-5. Find the discharge current that will be 25 hours (this discharge is 5 hour rate discharge), The value obtained by multiplying the magnitude of this discharge current by 5 is the rated capacity C (unit: Ah). And “0.10 CA as the magnitude of the constant current” means that the value obtained by multiplying the value of this rated capacity C by 0.10 is taken as the magnitude of the current. Specifically, the 46B24L type lead-acid battery for automobiles specified in JIS D 5301 has a rated capacity C force of 36 Ah, so 0.10 CA is 3.6 A.
[0019] なお、本願の発明は、次のような構成を採用することもできる。  [0019] Note that the invention of the present application can also employ the following configuration.
(1)本願発明の装置においては、本充電手段が定電流で充電している時に鉛蓄電 池の端子電圧を測定し、その端子電圧が所定の電圧範囲内であるかどうかを判断す る本充電時判断手段を備えさせてもよ ヽ。  (1) In the device of the present invention, the terminal voltage of the lead battery is measured when the charging means is charged with a constant current, and it is determined whether the terminal voltage is within a predetermined voltage range. You may have a means for judging when charging.
[0020] これによれば、本充電がされている時にも鉛蓄電池の端子電圧が所定の電圧範囲 内であるかどうかが判断されるので、仮充電手段が充電しているときに見落とされた 鉛蓄電池の不良が、本充電時に発見されうる。  [0020] According to this, since it is determined whether or not the terminal voltage of the lead storage battery is within a predetermined voltage range even when the main charge is performed, it was overlooked when the temporary charging means was charging. Lead-acid battery failures can be found during the main charge.
[0021] (2)本願発明の装置においては、本充電時判断手段が、複数回又は常時、鉛蓄電 池の端子電圧を測定し、測定された端子電圧が時間の経過に伴って所定の電圧範 囲内で変化する力否かを判断させるようにしてもょ 、。  [0021] (2) In the device of the present invention, the determination unit at the time of charging measures the terminal voltage of the lead storage battery a plurality of times or at all times, and the measured terminal voltage is a predetermined voltage over time. Let's make it judge whether the force changes within the range.
[0022] これによれば、本充電手段が充電しているときに、鉛蓄電池の端子電圧が時間の 経過に伴って所定の電圧範囲内で変化しているかどうかが判断されるので、充電の 進行に伴い端子電圧の変化が正常であるかどうかが調べられることになる。そのため 、仮充電手段が充電しているときに見落とされた鉛蓄電池の不良が、本充電手段に よる充電中において、早期かつ確実に発見されうる。なお、鉛蓄電池の端子電圧が 時間の経過に伴って所定の電圧範囲内で変化しているかどうかの判断は、端子電圧 の変化の仕方を検知することによりおこなわれる。そのため、端子電圧の微分値、異 なる時刻に測定された端子電圧の差の値、端子電圧の微分値の微分値 (二重微分) 、又は端子電圧の差同士のさらに差の値等が検知に用いられる。  [0022] According to this, when the charging means is charging, it is determined whether the terminal voltage of the lead storage battery changes within a predetermined voltage range as time elapses. As the process proceeds, it is checked whether the change in the terminal voltage is normal. Therefore, the failure of the lead storage battery that is overlooked when the temporary charging means is charging can be detected early and reliably during charging by the charging means. Whether or not the terminal voltage of the lead-acid battery has changed within the specified voltage range over time is determined by detecting how the terminal voltage changes. Therefore, the terminal voltage differential value, the terminal voltage difference value measured at different times, the terminal voltage differential value (double differential), or the difference value between the terminal voltage differences are detected. Used for.
[0023] (3)本願発明の方法においては、仮充電工程の充電がされる前に、鉛蓄電池の端 子電圧が測定され、測定された端子電圧が第二の所定の電圧に達していない場合 に、仮充電工程による充電を実行させな 、充電制止工程を備えさせるようにしてもよ い。また、本願発明の装置においては、仮充電手段が充電する前に、鉛蓄電池の端 子電圧を測定し、測定した端子電圧が第二の所定電圧に達していない場合に、仮充 電手段による充電を実行させな 、充電制止手段を備えさせるようにしてもょ 、。 [0023] (3) In the method of the present invention, the terminal voltage of the lead storage battery is measured before charging in the temporary charging step, and the measured terminal voltage does not reach the second predetermined voltage. Case In addition, a charging stop process may be provided without performing the charging in the temporary charging process. In the apparatus of the present invention, the terminal voltage of the lead storage battery is measured before the temporary charging means is charged, and if the measured terminal voltage does not reach the second predetermined voltage, the temporary charging means Even if you don't charge the battery, make sure you have a charging stop.
[0024] これによれば、鉛蓄電池が良否判定をする装置に確実に接続されていな力つた場 合、又は正極と負極とを逆に接続していた場合に、鉛蓄電池の電圧を測定できない 状態のままで仮充電を実行し、その鉛蓄電池が不良であると判断するような事態が 防止されうる。また、正しく接続された鉛蓄電池の電圧が極めて低い場合には、実際 に充電を行うまでもなくその鉛蓄電池が不良であると判断されうる。そのため、鉛蓄電 池の不良が事前に発見される。  [0024] According to this, the voltage of the lead storage battery cannot be measured when the lead storage battery is firmly connected to the device for judging pass / fail or when the positive electrode and the negative electrode are connected in reverse. It is possible to prevent a situation in which temporary charging is performed in the state and the lead storage battery is judged to be defective. Also, if the voltage of a properly connected lead storage battery is extremely low, it can be determined that the lead storage battery is defective without actually charging. Therefore, defects in lead storage batteries are discovered in advance.
[0025] (4)本願発明の装置においては、本充電手段による充電中に、一旦この充電を中断 して、鉛蓄電池を所定抵抗に接続して放電させると共にこの鉛蓄電池の端子電圧と 放電電流を測定し、この測定した端子電圧と放電電流が所定範囲内であるかどうか を判断する放電判定手段を備えるようにしてもょ ヽ。  [0025] (4) In the device of the present invention, during the charging by the charging means, the charging is temporarily interrupted, the lead storage battery is connected to a predetermined resistor and discharged, and the terminal voltage and discharge current of the lead storage battery are discharged. It is also possible to provide discharge determination means for measuring whether or not the measured terminal voltage and discharge current are within a predetermined range.
[0026] これによれば、本充電手段が充電して 、るときに、放電による判定も行わせるように することが可能となるので、鉛蓄電池の不良が確実に発見されうる。  [0026] According to this, since it becomes possible to make a determination by discharging when the charging means is charged, a failure of the lead storage battery can be reliably detected.
[0027] (5)本願発明の方法においては、判断工程、又は本充電時判断工程が端子電圧を 所定の電圧範囲内にないと判断した場合に、作業者に告知する工程、他の機器へ 通知する工程、仮充電が自動的に中止される工程が含まれても良い。本願発明の装 置においては、判断手段、又は本充電時判断手段が端子電圧を所定の電圧範囲内 にないと判断した場合、作業者に告知する手段、他の機器へ通知する手段、仮充電 を自動的に中止させる手段が備えられてもよ!/、。  [0027] (5) In the method of the present invention, when the determination step or the main charge determination step determines that the terminal voltage is not within the predetermined voltage range, the step of notifying the operator, to another device A step of notifying and a step of automatically stopping the temporary charging may be included. In the device of the present invention, when the judging means or the main charging time judging means judges that the terminal voltage is not within the predetermined voltage range, means for notifying the operator, means for notifying other equipment, temporary charging There may be a means to automatically stop /.
[0028] (6)本願発明の方法においては、判断工程において、所定の電圧よりも小さい別の 所定電圧に到達するカゝ否かが判断されるようにしても良い。本願発明の装置におい ては、判断手段において、所定の電圧よりも小さい別の所定電圧に到達するか否か を判断するようにしても良い。  [0028] (6) In the method of the present invention, in the determination step, it may be determined whether or not it reaches another predetermined voltage lower than the predetermined voltage. In the apparatus of the present invention, the determination means may determine whether or not another predetermined voltage lower than the predetermined voltage is reached.
[0029] この別の所定電圧を、鉛蓄電池が過放電状態になって!/、る場合、又は鉛蓄電池が 内部短絡状態になつて 、る場合に到達しな 、電圧に設定しておくことにより、鉛蓄電 池がこれらの状態に陥っていることが判定されることとなる。そして、このような状態に 陥った不良の鉛蓄電池を判定することが可能となる。 [0029] This other predetermined voltage is set to a voltage that is not reached when the lead-acid battery is over-discharged! /, Or when the lead-acid battery is in an internal short-circuit condition. Lead storage It will be determined that the pond is in these states. And it becomes possible to determine the defective lead storage battery which fell into such a state.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]図 1は、本発明の一実施形態を示すものであって、良否を判定する装置の外観 を示す斜視図である。  FIG. 1 shows an embodiment of the present invention and is a perspective view showing an external appearance of a device for judging pass / fail.
[図 2]図 2は、本発明の一実施形態を示すものであって、良否を判定する装置の機能 を説明するためのブロック図である。  FIG. 2 shows an embodiment of the present invention, and is a block diagram for explaining functions of an apparatus for judging pass / fail.
[図 3]図 3は、本発明の一実施形態を示すものであって、良否を判定する装置の動作 を説明するためのフローチャートである。  FIG. 3 shows an embodiment of the present invention, and is a flowchart for explaining the operation of a device for judging pass / fail.
[図 4]図 4は、本発明の一実施形態を示すものであって、図 3における充電前処理の 詳細を説明するためのフローチャートである。  FIG. 4 shows an embodiment of the present invention and is a flowchart for explaining details of the pre-charging process in FIG.
[図 5]図 5は、本発明の一実施形態を示すものであって、正常な鉛蓄電池の充電時 の充電電圧と充電電流の変化を示すタイムチャートである。  FIG. 5 shows an embodiment of the present invention, and is a time chart showing changes in charging voltage and charging current when a normal lead-acid battery is charged.
符号の説明  Explanation of symbols
[0031] 11は仮充電回路、 12は本充電回路、 12Aは定電流充電回路、 12bは定電圧充電 回路、 13は切替回路、 14は制御部、 17はタイマ、 18は端子電圧測定回路、 19は電 圧比較部、 20は電圧差演算部、 21は電圧差比較部である。  [0031] 11 is a temporary charging circuit, 12 is a main charging circuit, 12A is a constant current charging circuit, 12b is a constant voltage charging circuit, 13 is a switching circuit, 14 is a control unit, 17 is a timer, 18 is a terminal voltage measuring circuit, 19 is a voltage comparison unit, 20 is a voltage difference calculation unit, and 21 is a voltage difference comparison unit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本発明の最良の実施形態について図 1〜図 5を参照して説明する。 Hereinafter, the best embodiment of the present invention will be described with reference to FIGS.
[0033] 本願発明の方法が実施される装置、又は本願発明の装置の回路構成を、図 1の装 置の外観図、及び図 2の機能ブロック図に基づいて説明する。 [0033] An apparatus in which the method of the present invention is implemented or a circuit configuration of the apparatus of the present invention will be described based on an external view of the apparatus in FIG. 1 and a functional block diagram in FIG.
[0034] (1)本願発明の方法が実施される装置の概要 [0034] (1) Outline of an apparatus for carrying out the method of the present invention
この装置は、図 2のように、仮充電回路 11と本充電回路 12を備える。また、本充電 回路 12は、定電流充電回路 12Aと定電圧充電回路 12bを備える。仮充電回路 11は 、最大電圧 20Vで 0. 5Aの定電流充電を行う充電回路である。定電流充電回路 12 Aは、最大電圧 14. 5Vで 3Aの定電流充電を行う充電回路であり、定電圧充電回路 12bは、 14. 5Vの定電圧充電を行う充電回路である。なお、前記のように、最大電 圧が 14. 5Vとなっているのは、この装置によって良否判定をする対象となる鉛蓄電 池が 6つの単セルを備えるものであり、その定格電圧が 12Vだからである。 This apparatus includes a temporary charging circuit 11 and a main charging circuit 12 as shown in FIG. The charging circuit 12 includes a constant current charging circuit 12A and a constant voltage charging circuit 12b. The temporary charging circuit 11 is a charging circuit that performs constant current charging of 0.5 A at a maximum voltage of 20V. The constant current charging circuit 12A is a charging circuit that performs constant current charging of 3A at a maximum voltage of 14.5V, and the constant voltage charging circuit 12b is a charging circuit that performs constant voltage charging of 14.5V. As described above, the maximum voltage is 14.5V because the lead storage battery that is the target of the pass / fail judgment by this device. This is because the pond has six single cells and its rated voltage is 12V.
[0035] これらの仮充電回路 11、定電流充電回路 12A、及び定電圧充電回路 12bは、そ れぞれ切替回路 13を介して、図 1に示した充電端子 1に接続されて!、る。 The temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b are connected to the charging terminal 1 shown in FIG. RU
[0036] 充電器の制御部 14は、仮充電回路 11、定電流充電回路 12A、及び定電圧充電 回路 12bの充電動作を制御する。さらに、充電器の制御部 14は、切替回路 13を制 御することによって、仮充電回路 11、定電流充電回路 12A、及び定電圧充電回路 1 2bの 、ずれかを充電端子 1に接続し、又は 、ずれの回路も接続しな 、ように制御す る。 [0036] The controller 14 of the charger controls the charging operation of the temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b. Further, the control unit 14 of the charger controls the switching circuit 13 to connect any one of the temporary charging circuit 11, the constant current charging circuit 12A, and the constant voltage charging circuit 12b to the charging terminal 1, Alternatively, control is performed so that the misaligned circuit is not connected.
[0037] 制御部 14には、表示部 15と操作部 16が接続されている。表示部 15は、図 1に示し た電源ランプ 3と充電ランプ 5と NGランプ 6を備える。操作部 16は、図 1に示した電源 スィッチ 2とスタートスィッチ 4を備える。また、制御部 14には、タイマ 17が接続されて いる。タイマ 17は、制御部 14が計時時間を指定して計時開始を指示すると、指定し た時間経過時に計時完了を通知する回路である。  A display unit 15 and an operation unit 16 are connected to the control unit 14. The display unit 15 includes the power lamp 3, the charging lamp 5, and the NG lamp 6 shown in FIG. The operation unit 16 includes the power switch 2 and the start switch 4 shown in FIG. In addition, a timer 17 is connected to the control unit 14. The timer 17 is a circuit for notifying completion of timing when the designated time elapses when the control unit 14 designates the timing time and instructs to start timing.
[0038] 充電端子 1には、端子電圧測定回路 18も接続されている。端子電圧測定回路 18 は、充電端子 1に接続された鉛蓄電池の端子電圧 (この端子電圧は、充電中であれ ば「充電電圧」とも呼ばれる。)を A—D変換によりディジタル信号に変換する回路で ある。この端子電圧測定回路 18がディジタル信号に変換した端子電圧 Vは、電圧比 較部 19と電圧差演算部 20に送られる。電圧差演算部 20は、端子電圧測定回路 18 カゝら送られて来た端子電圧 Vを記憶すると共に、この端子電圧 Vと前回送られて来た 端子電圧 Vとの差を演算して電圧差 Δνを出力するものであり、この電圧差 Δνは、 電圧差比較部 21に送られる。  A terminal voltage measurement circuit 18 is also connected to the charging terminal 1. The terminal voltage measurement circuit 18 is a circuit that converts the terminal voltage of the lead-acid battery connected to the charging terminal 1 (this terminal voltage is also referred to as “charging voltage” when charging) into a digital signal by AD conversion. It is. The terminal voltage V converted into a digital signal by the terminal voltage measurement circuit 18 is sent to the voltage comparison unit 19 and the voltage difference calculation unit 20. The voltage difference calculation unit 20 stores the terminal voltage V sent from the terminal voltage measurement circuit 18 and calculates the difference between the terminal voltage V and the terminal voltage V sent last time. The difference Δν is output, and this voltage difference Δν is sent to the voltage difference comparison unit 21.
[0039] 電圧比較部 19は、端子電圧測定回路 18から送られた端子電圧 Vが制御部 14によ つて設定された電圧範囲内かどうかを比較する。電圧差比較部 21は、電圧差演算部 20から送られた電圧差 Δ Vが制御部 14によって設定された電圧差範囲内かどうかを 比較する。これら電圧比較部 19と電圧差比較部 21の比較結果は、制御部 14に送ら れるようになっている。制御部 14が設定する電圧範囲や電圧差範囲は、上限値と下 限値とからなる。そして、その上限値と下限値は、後述のように、時間の経過にかかわ らず一定値とする場合、又は時間の経過に伴って変化する場合がある。ただし、上限 値と下限値のいずれか一方を正又は負の無限大とすることによって、実質的に上限 値又は下限値のいずれか一方を省略することもできる。 The voltage comparison unit 19 compares whether or not the terminal voltage V sent from the terminal voltage measurement circuit 18 is within the voltage range set by the control unit 14. The voltage difference comparison unit 21 compares whether or not the voltage difference ΔV sent from the voltage difference calculation unit 20 is within the voltage difference range set by the control unit 14. The comparison results of the voltage comparison unit 19 and the voltage difference comparison unit 21 are sent to the control unit 14. The voltage range and voltage difference range set by the control unit 14 are composed of an upper limit value and a lower limit value. The upper limit value and lower limit value may be constant values regardless of the passage of time, or may change with the passage of time, as will be described later. However, the upper limit By setting either one of the value and the lower limit to positive or negative infinity, either the upper limit value or the lower limit value can be substantially omitted.
[0040] なお、図 2は、充電器の機能を説明するための機能ブロック図であり、必ずしも実際 のハードウェアには対応しない。例えば仮充電回路 11と本充電回路 12と切替回路 1 3は、一つの充電回路の一部を切り替えたり設定を切り替えたりすることにより構成し てもよい。また、例えば制御部 14がマイクロコンピュータによって構成される場合、電 圧比較部 19、電圧差演算部 20、及び電圧差比較部 21がそのプログラムの一部とし て構成されるよう〖こすることができる。さら〖こ、タイマ 17による時間の経過の判断につ いていえば、インターバル 'タイマを用いた割り込みによって計時完了の通知がされ るようにしてもよいし、計時のみを行うタイマ回路を制御部 14のプログラムから随時参 照するようにしてちょい。  [0040] FIG. 2 is a functional block diagram for explaining the function of the charger, and does not necessarily correspond to actual hardware. For example, the temporary charging circuit 11, the main charging circuit 12, and the switching circuit 13 may be configured by switching a part of one charging circuit or switching settings. For example, when the control unit 14 is configured by a microcomputer, the voltage comparison unit 19, the voltage difference calculation unit 20, and the voltage difference comparison unit 21 may be configured to be configured as part of the program. it can. Furthermore, for determining the passage of time by the timer 17, the completion of the time measurement may be notified by an interrupt using the interval 'timer, or a timer circuit that performs only the time measurement may be controlled by the controller 14. Please refer to them from time to time.
[0041] (2)本願発明の方法が使用される装置の動作  [0041] (2) Operation of an apparatus in which the method of the present invention is used
上記構成の充電器を用いて、鉛蓄電池 (定格電圧: 12V)が充電される場合の動作 を説明する。この説明は、図 3及び図 4のフローチャートに基づく。  The operation when a lead-acid battery (rated voltage: 12V) is charged using the charger with the above configuration will be described. This description is based on the flowcharts of FIGS.
[0042] (2— 1)充電前処理  [0042] (2— 1) Pre-charging treatment
この実施形態では、後の(2— 2)で説明する仮充電を開始する前に充電前処理が 行われた。これによつて、鉛蓄電池の接続又は鉛蓄電池の重度の不良が確認される 力もである。しかし、この(2—1)で説明される充電前処理は、本願発明において必 ずしも必要とされるものではな 、。  In this embodiment, the pre-charging process was performed before the temporary charging described later in (2-2) was started. As a result, the lead-acid battery is connected or the lead-acid battery is severely defective. However, the pre-charging process described in (2-1) is not necessarily required in the present invention.
[0043] 作業者は、充電クリップのコネクタ部を充電端子 1に接続すると共に、クリップ部を鉛 蓄電池の正負極端子に取り付け、電源スィッチ 2を ONにする。これにより、充電器の 電源が ONとなって制御部 14が動作を開始し、図 3のフローチャートの最初のステツ プ (以下「S」という) 1に示すような充電前処理が実行される。  [0043] The worker connects the connector part of the charging clip to the charging terminal 1, attaches the clip part to the positive and negative terminals of the lead-acid battery, and turns on the power switch 2. As a result, the power source of the charger is turned on and the control unit 14 starts to operate, and the pre-charging process as shown in the first step (hereinafter referred to as “S”) 1 in the flowchart of FIG. 3 is executed.
[0044] 充電前処理においては、図 4に示すように、電源ランプ 3が点灯し(S21)、接続され た鉛蓄電池の端子電圧 V (開放電圧)が端子電圧測定回路 18で測定される(S22)。 そして、端子電圧 Vが所定電圧 VI以上カゝ否かが電圧比較部 19で判断される (S23) 。所定電圧 VIに達していな力つた場合には、電源ランプ 3が消灯し (S24)、充電器 の電源を OFFにして(S25)、全ての処理が終了する。所定電圧 VIは、鉛蓄電池に 内部短絡等の多少の異常があつたときに得られる端子電圧 Vよりも十分に低い電圧 とする。これによつて、端子電圧 Vが所定電圧 VIに達していないということは、充電ク リップによる鉛蓄電池の接続が不完全であること、又は正極と負極とを逆接続したこと を意味することになる。そのため、電源ランプ 3が消灯した場合には、鉛蓄電池の接 続を再度やり直すことが作業者に求められる。それでもなお接続が完全である場合 には、充電クリップの断線やその他の原因を調べることが求められる。 In the pre-charging process, as shown in FIG. 4, the power lamp 3 is turned on (S21), and the terminal voltage V (open voltage) of the connected lead storage battery is measured by the terminal voltage measuring circuit 18 ( S22). Then, the voltage comparison unit 19 determines whether the terminal voltage V is greater than or equal to the predetermined voltage VI (S23). When the power does not reach the predetermined voltage VI, the power lamp 3 is turned off (S24), the power supply of the charger is turned off (S25), and all the processes are completed. The predetermined voltage VI is applied to the lead-acid battery. The voltage should be sufficiently lower than the terminal voltage V obtained when there is some abnormality such as an internal short circuit. Therefore, the fact that the terminal voltage V does not reach the predetermined voltage VI means that the connection of the lead storage battery by the charging clip is incomplete, or that the positive electrode and the negative electrode are reversely connected. Become. For this reason, when the power lamp 3 is turned off, the operator is required to reconnect the lead storage battery. If the connection is still complete, the charging clip should be checked for breaks and other causes.
[0045] 鉛蓄電池の端子電圧 Vが所定電圧 VI以上であると電圧比較部 19が判断した場合 、充電器は、スタートスィッチ 4の操作を受け付け可能にして ONとなるまで待機する( S26) 0作業者がスタートスィッチ 4を ONにすると、再度鉛蓄電池の端子電圧 V (開 放電圧)を端子電圧測定回路 18で測定する(S27)。なお、この S27の端子電圧 Vの 測定は、 S22による測定結果を流用することもできる。 [0045] When the voltage comparing unit 19 when the terminal voltage V of the lead storage battery is equal to or higher than the predetermined voltage VI is determined, the charger waits until the ON and enables receives an operation start switch 4 (S26) 0 When the operator turns on the start switch 4, the terminal voltage V (open voltage) of the lead storage battery is again measured by the terminal voltage measuring circuit 18 (S27). Note that the measurement result of S22 can be used for the measurement of the terminal voltage V of S27.
[0046] そして、測定した端子電圧 Vが所定電圧 V2以上であるかどうかを電圧比較部 19で 判断し (S28)、所定電圧 V2に達していな力つた場合には、 NGランプ 6を点灯すると 共に(S29)、全ての処理を終了する。所定電圧 V2は、所定電圧 VIよりは遙かに高 いが、正常であり回復可能な鉛蓄電池の端子電圧 Vとしては十分に低すぎる所定の 電圧である。従って、鉛蓄電池の端子電圧 Vが所定電圧 VI以上ではあるが所定電 圧 V2には達して 、な 、と 、うことは、鉛蓄電池が過放電や内部短絡等により回復不 可能な不良になっていると考えられるので、作業者は、 NGランプ 6の点灯により鉛蓄 電池が充電を行っても無駄であると知ることができる。従って、充電器は、鉛蓄電池 が重度の不良である場合には、充電を開始する前にこの不良を発見することができ る。しかし、 S28の処理で、鉛蓄電池の端子電圧 Vが所定電圧 V2以上であると判断 した場合には、この充電前処理を正常に終了し図 3の S2以降の充電処理を実行す る。  [0046] Then, the voltage comparison unit 19 determines whether or not the measured terminal voltage V is equal to or higher than the predetermined voltage V2 (S28), and if the power does not reach the predetermined voltage V2, the NG lamp 6 is turned on. In both cases (S29), all processing is terminated. The predetermined voltage V2 is a predetermined voltage that is much higher than the predetermined voltage VI, but is sufficiently low as the terminal voltage V of a normal and recoverable lead-acid battery. Therefore, the terminal voltage V of the lead storage battery is not less than the predetermined voltage VI, but has reached the predetermined voltage V2, which means that the lead storage battery cannot be recovered due to overdischarge or internal short circuit. Therefore, the operator can know that it is useless even if the lead storage battery is charged by turning on the NG lamp 6. Therefore, if the lead acid battery is severely defective, the charger can detect this defect before starting charging. However, if it is determined in the process of S28 that the terminal voltage V of the lead storage battery is equal to or higher than the predetermined voltage V2, this pre-charging process is terminated normally and the charging process after S2 in FIG. 3 is executed.
[0047] なお、充電前処理では、鉛蓄電池の端子電圧 Vが所定電圧 VI以上であったとして も所定電圧 V2よりも僅かに低 、だけである場合には、 NGランプ 6を点灯した状態で 図 3の S2以降の充電処理を実行するようにしてもよい。この場合、作業者は、 NGラン プ 6が点灯したまま充電が開始されることから、充電中に鉛蓄電池が不良と判断され る可能性が高 、ことを事前に知ることができる。 [0048] (2— 2)仮充電、判断、および選別 [0047] In the pre-charging process, if the terminal voltage V of the lead storage battery is only slightly lower than the predetermined voltage V2 even if it is equal to or higher than the predetermined voltage VI, the NG lamp 6 is turned on. You may make it perform the charge process after S2 of FIG. In this case, the worker can know in advance that charging is started while the NG lamp 6 is lit, so that the lead storage battery is likely to be judged defective during charging. [0048] (2—2) Temporary charging, judgment and sorting
仮充電においては、仮充電回路 11が動作し、切替回路 13が仮充電回路 11に切り 替え、充電ランプ 5が点灯する。そして、図 3に示すように、仮充電が開始する(S2)。  In the temporary charging, the temporary charging circuit 11 operates, the switching circuit 13 switches to the temporary charging circuit 11, and the charging lamp 5 is lit. Then, as shown in FIG. 3, provisional charging starts (S2).
[0049] 本実施形態で説明される充電器において、仮充電手段によりおこなわれる充電は 0 . 5Aの定電流充電とした。また、充電電圧は最大で 20Vに制限されている。  In the charger described in the present embodiment, the charging performed by the temporary charging unit is a constant current charging of 0.5 A. The charging voltage is limited to a maximum of 20V.
[0050] 仮充電手段による充電が開始された後、タイマ 17の計時によって 10秒間以内に、 鉛蓄電池の端子電圧 Vが端子電圧測定回路 18で測定された (S3)。この端子電圧 V が電圧範囲 R1内かどうかを電圧比較部 19で判断し(S4)、電圧範囲 R1内であれば 、仮充電手段による充電を開始して 10秒が経過するまでこの S3と S4の処理を繰り返 す (S5)。ここで、電圧範囲 R1の上限値を単セルあたりに換算した電圧力 請求の範 囲に記載された「所定の電圧」に対応する。  [0050] After the charging by the temporary charging means was started, the terminal voltage V of the lead storage battery was measured by the terminal voltage measuring circuit 18 within 10 seconds by the timer 17 (S3). Whether or not the terminal voltage V is within the voltage range R1 is determined by the voltage comparison unit 19 (S4). If the voltage is within the voltage range R1, the S3 and S4 Repeat the process (S5). Here, it corresponds to the “predetermined voltage” described in the voltage power range obtained by converting the upper limit value of the voltage range R1 per unit cell.
[0051] S4において端子電圧 Vが電圧範囲 R1の上限値に到達する場合、鉛蓄電池にサ ルフエーシヨン現象が生じていると考えられる。サルフエーシヨン現象を生じると、鉛蓄 電池の内部インピーダンスが高くなるためである。このような鉛蓄電池力 その後 1、 2 度ならば使用できるものの、その後は速やかに使用できなくなる「不良」の電池である ことは、前述したとおりである。  [0051] If the terminal voltage V reaches the upper limit value of the voltage range R1 in S4, it is considered that a lead-acid battery has undergone a surfacing phenomenon. This is because when the sulfation phenomenon occurs, the internal impedance of the lead-acid battery increases. As mentioned above, this lead-acid battery power is a “bad” battery that can be used once or twice thereafter, but cannot be used immediately thereafter.
[0052] 一方、 S4において端子電圧 Vが電圧範囲 R1の下限値に到達しない場合は、過放 電、又は内部短絡の発生により、実際に充電を行っても端子電圧 Vが十分に上昇し な 、と考えられる。このような鉛蓄電池は「不良」である。  [0052] On the other hand, if the terminal voltage V does not reach the lower limit value of the voltage range R1 in S4, the terminal voltage V does not rise sufficiently even if the battery is actually charged due to overdischarge or internal short circuit. ,it is conceivable that. Such a lead acid battery is "bad".
[0053] 以上のように、端子電圧 Vが電圧範囲 R1の範囲外にある場合は、 NGランプ 6を点 灯させて(S 16)、充電ランプ 5を消灯すると共に全ての処理を終了する。これによりス タートスィッチ 4を ONにしてから 10秒間以内(すなわち、仮充電による充電の開始か ら 10秒間以内)という早期に、高い確率で不良の鉛蓄電池を選別することができる。 このようにして不良であるとして選別された鉛蓄電池が現実に不良に至っているかど うかは、その鉛蓄電池の解体調査(サルフエーシヨン現象を生じて 、るか否かの調査 )、及びその後の充放電挙動の調査によっておこなわれた。その結果、不良であると して選別された鉛蓄電池は、現実にサルフエーシヨン現象を生じている等により不良 であることが明らかとなった。つまり、正確な良否判定の結果が得られていた。 [0054] また、この 10秒間という時間を 5秒間、 3秒間、 2秒間、および 1秒間のように短くし て、同様に良否判定をおこなった。このようにしても、 10秒間の場合と同等に、良否 の選別をおこなうことが可能であった。そして、不良であるとして選別された鉛蓄電池 が現実に不良に至っているかどうかについて、前記の解体調査ゃ充放電挙動の調 查をすることによって検証した。その結果、不良であるとして選別された鉛蓄電池は、 現実に不良に至っていることがわ力つた。以上の結果から、 10秒間の時間を短くして も、正確な良否判定の結果を得られることが明らかである。 As described above, when the terminal voltage V is outside the range of the voltage range R1, the NG lamp 6 is turned on (S16), the charging lamp 5 is turned off, and all the processes are completed. As a result, defective lead-acid batteries can be selected with high probability at an early stage within 10 seconds after starting the start switch 4 (that is, within 10 seconds from the start of temporary charging). Whether or not a lead-acid battery that has been selected as defective in this way has actually become defective depends on the disassembly of the lead-acid battery (investigation of whether or not a sulfation phenomenon has occurred) and the subsequent charge and discharge. This was done by investigating behavior. As a result, it was clarified that the lead-acid batteries selected as defective are defective due to the fact that a sulfation phenomenon actually occurs. That is, an accurate pass / fail judgment result was obtained. [0054] Further, the pass / fail judgment was made in the same manner by shortening the time of 10 seconds to 5 seconds, 3 seconds, 2 seconds, and 1 second. Even in this way, it was possible to select pass / fail as in the case of 10 seconds. Then, whether or not the lead storage battery selected as defective is actually defective was verified by examining the disassembly investigation and the charge / discharge behavior. As a result, it was found that the lead-acid batteries selected as defective are actually defective. From the above results, it is clear that accurate pass / fail judgment results can be obtained even if the time of 10 seconds is shortened.
[0055] なお、図 3のフローチャートでは、上記仮充電中に常時 S3〜S5による端子電圧 V の測定と判断を行うようにしているが、仮充電手段による充電中の一定時間ごとに測 定と判断をするようにしてもょ ヽし、予め設定された時間にそれぞれ実行するようにし てもよい。ただし、鉛蓄電池にサルフエーシヨン現象が生じていた場合には、仮充電 の開始後の端子電圧 Vが急に上昇するが、充電に伴って硫酸鉛の一部が可溶ィ匕し て内部インピーダンスが一時的に低下することにより端子電圧 Vが電圧範囲 R1内に 戻る。そのため、仮充電中に 1回だけ端子電圧 Vの測定と判断を行ったのでは、この サルフエーシヨンによる異常を見逃すおそれがある。そのため、端子電圧 Vの測定と 判断は、複数回又は常時おこなわれることが望ましい。  In the flowchart of FIG. 3, the terminal voltage V is always measured and determined by S3 to S5 during the temporary charging, but the measurement is performed at regular intervals during the charging by the temporary charging means. Judgment may be made, and each may be executed at a preset time. However, if a sulfation phenomenon occurs in the lead-acid battery, the terminal voltage V after the start of temporary charging suddenly rises, but part of the lead sulfate becomes soluble with charging and the internal impedance decreases. The terminal voltage V returns to the voltage range R1 due to a temporary drop. For this reason, if the terminal voltage V is measured and judged only once during temporary charging, there is a risk of overlooking the abnormality caused by this sulfuration. Therefore, it is desirable to measure and judge the terminal voltage V multiple times or constantly.
[0056] (2— 3)本充電  [0056] (2-3) Charging
上記 S5で 10秒が経過し、選別がなされた後の動作につ!、て説明する。  The operation after 10 seconds have passed in S5 and the selection has been made will be explained.
[0057] 本充電回路 12の定電流充電回路 12Aが動作し、切替回路 13がこの定電流充電 回路 12Aに切り替え、本充電の定電流充電が開始する(S6)。  The constant current charging circuit 12A of the main charging circuit 12 operates, the switching circuit 13 switches to the constant current charging circuit 12A, and the constant current charging of the main charging is started (S6).
[0058] 本実施形態で説明される充電器においては、本充電の定電流充電は、 3Aによる 定電流充電であり、タイマ 17の計時により最大 6時間行われるものとした。そして、本 充電の定電流充電中には、定電流充電の開始から 6時間が経過したかどうかが判断 され (S7)、次に鉛蓄電池の端子電圧 Vが端子電圧測定回路 18で測定され (S8)、 端子電圧 Vが電圧範囲 R2内かどうかが電圧比較部 19で判断される(S9)。  In the charger described in the present embodiment, the constant current charging of the main charging is a constant current charging by 3 A and is performed for a maximum of 6 hours by the timer 17 timing. During constant current charging, it is determined whether 6 hours have elapsed since the start of constant current charging (S7), and then the terminal voltage V of the lead storage battery is measured by the terminal voltage measuring circuit 18 ( S8), whether or not the terminal voltage V is within the voltage range R2 is determined by the voltage comparator 19 (S9).
[0059] また、端子電圧 Vが電圧範囲 R2内であれば、前回 S8で測定した端子電圧 Vと今 回測定した端子電圧 Vとの差の電圧差 Δνを電圧差演算部 20で演算すると共に、 前回の端子電圧 Vに代えて今回の端子電圧 Vを記憶し (S 10)、この電圧差 ΔΥが電 圧差範囲 R3内かどうかを電圧差比較部 21で判断する(Sl l)。電圧差 Δνが電圧差 範囲 R3内であれば、端子電圧 Vが 14. 5V以上になったかどうかを電圧比較部 19で 判断し(S 12)、この端子電圧 Vが 14. 5V以上となるまで S7〜S12の処理を繰り返す 。なお、この「14. 5V以上」を単セルあたりに換算すると、「2. 417V以上」となる。 [0059] If the terminal voltage V is within the voltage range R2, the voltage difference calculation unit 20 calculates the voltage difference Δν of the difference between the terminal voltage V measured in the previous S8 and the terminal voltage V measured this time. The current terminal voltage V is stored instead of the previous terminal voltage V (S 10), and this voltage difference ΔΥ The voltage difference comparison unit 21 determines whether or not the pressure difference is within the range R3 (Sl l). If the voltage difference Δν is within the voltage difference range R3, the voltage comparison unit 19 determines whether or not the terminal voltage V is 14.5 V or higher (S 12) until the terminal voltage V reaches 14.5 V or higher. Repeat the process from S7 to S12. When this “14.5 V or more” is converted per unit cell, it becomes “2.417 V or more”.
[0060] 上記 S 12で本充電の定電流充電を端子電圧 Vが 14. 5Vに上昇するまでに制限す るのは、本実施形態で用 ヽる鉛蓄電池の端子電圧 Vがこれ以上に上昇すると急激に 過充電となるおそれがある力 である。また、上記 S7で本充電の定電流充電を 6時 間に制限するのは、充電を開始してから 6時間が経過しても、端子電圧 V力この 14. 5Vに達しな 、ような鉛蓄電池は、微少な内部短絡等が発生して 、るために回復不 能な不良が生じていると判断できる力もである。従って、この S7の処理で 6時間が経 過したと判断された場合には、 NGランプ 6を点灯させて(S 16)、充電ランプ 5を消灯 すると共に全ての処理を終了する。  [0060] The constant current charging of the main charging in S12 described above is limited until the terminal voltage V increases to 14.5V. The terminal voltage V of the lead storage battery used in the present embodiment further increases. Then, there is a risk of sudden overcharge. In addition, the constant current charge of the main charge is limited to 6 hours in the above S7 because the lead voltage which does not reach the terminal voltage V force of 14.5V even after 6 hours have elapsed since the start of charging. The storage battery has the ability to determine that a non-recoverable failure has occurred due to a slight internal short circuit. Accordingly, when it is determined that 6 hours have passed in the process of S7, the NG lamp 6 is turned on (S16), the charge lamp 5 is turned off and all the processes are ended.
[0061] 上記 S9で端子電圧 Vが電圧範囲 R2外であると判断された場合にも、 NGランプ 6 を点灯して (S16)、充電ランプ 5を消灯すると共に全ての処理を終了する。端子電圧 Vが電圧範囲 R2の上限値を超えるということは、仮充電のときには見逃された力 サ ルフエーシヨンや劣化により電池の内部インピーダンスが高くなつて端子電圧 Vが異 常に上昇していると考えられる。また、端子電圧 Vが電圧範囲 R2の下限値に達しな いということは、過放電や内部短絡の発生により充電を行っても端子電圧 Vが十分に 上昇しないからであると考えられる。従って、端子電圧 Vがこの電圧範囲 R2外になる ということは、回復不能なほどの不良であるため、 NGランプ 6を点灯させて作業者に 不良を知らせると共に充電を中止する。そして、これにより、本充電の定電流充電を 開始してからも、早期に鉛蓄電池の不良を選別することができる可能性が高くなる。 なお、この本充電の定電流充電中には、図 5に示すように、正常な鉛蓄電池の端子 電圧 Vは、所定電圧 V2以上の電圧から 14. 5Vまで上昇するので、この電圧範囲 R2 は、時間の経過と共に変化させ、特に下限値を時間の経過と共に引き上げるように することで、過放電や内部短絡の発生による不良をより確実に選別することができる ようになる。  [0061] Even when it is determined in S9 that the terminal voltage V is outside the voltage range R2, the NG lamp 6 is turned on (S16), the charging lamp 5 is turned off, and all the processes are completed. If the terminal voltage V exceeds the upper limit of the voltage range R2, it is considered that the terminal voltage V has risen abnormally due to the force impedance or deterioration that has been missed during temporary charging due to the high internal impedance of the battery. . Also, the fact that the terminal voltage V does not reach the lower limit of the voltage range R2 is considered to be because the terminal voltage V does not rise sufficiently even if charging is performed due to the occurrence of overdischarge or internal short circuit. Therefore, the fact that the terminal voltage V is outside this voltage range R2 is an irrecoverable defect, so the NG lamp 6 is turned on to notify the operator of the defect and stop charging. As a result, even after starting constant-current charging for main charging, there is a high possibility that defects in lead-acid batteries can be selected early. During constant current charging of this main charging, as shown in Fig. 5, the terminal voltage V of a normal lead-acid battery rises from a voltage equal to or higher than the predetermined voltage V2 to 14.5V, so this voltage range R2 is By changing the value with the passage of time, in particular by raising the lower limit value with the passage of time, it becomes possible to more reliably sort out defects due to the occurrence of overdischarge or internal short circuit.
[0062] 上記 S11で電圧差 ΔΥが電圧差範囲 R3外であると判断された場合にも、 NGラン プ 6を点灯させて(S 16)、充電ランプ 5を消灯すると共に全ての処理を終了する。電 圧差 Δνは、前回と今回の端子電圧 Vの差であるため、この端子電圧 Vの上昇率を 示すことになる。なお、 S10で最初にこの電圧差 Δνを演算する場合には、前回測定 した端子電圧 Vが記憶されて ヽな ヽので、 S3で最後に測定した端子電圧 Vを前回分 として流用してもよいし、電圧差範囲 R3内となるようなダミーの端子電圧 Vを前回分と して用意しておいてもよぐ初回だけ S11の処理を省略してもよい。本充電の定電流 充電中の正常な鉛蓄電池の端子電圧 Vは、図 5に示すように、この定電流充電の初 期と終期に上昇率が高くなるが、その間は安定してほぼ一定の上昇率となる。従って 、この端子電圧 Vの上昇率を調べることにより、充電が順調に進んでいるかどうかをよ り的確に判断することができ、これによつて鉛蓄電池の不良をさらに早期に発見する ことができるよう〖こなる。即ち、電圧差 Δνが電圧差範囲 R3の下限値に達しないとい うことは、内部短絡の発生等により充電を行っても端子電圧 Vの上昇率が十分に高く ならなくなっていると考えられ、鉛蓄電池の不良であると判断できる。ただし、この上 昇率が異常ではない程度に高くなることは特に支障がないため、通常は電圧差範囲 R3の上限値を正の無限大にして省略することができる。 [0062] If it is determined in S11 that the voltage difference ΔΥ is outside the voltage difference range R3, 6 is turned on (S16), the charging lamp 5 is turned off and all the processes are terminated. Since the voltage difference Δν is the difference between the previous and current terminal voltage V, it indicates the rate of increase of this terminal voltage V. When this voltage difference Δν is calculated for the first time in S10, the terminal voltage V measured last time is stored in the memory, so that the terminal voltage V last measured in S3 may be used as the previous value. However, the dummy terminal voltage V within the voltage difference range R3 may be prepared for the previous time, and the processing of S11 may be omitted only for the first time. Constant current for main charging The terminal voltage V of a normal lead-acid battery during charging increases at the beginning and end of this constant current charging, as shown in Fig. 5. Increase rate. Therefore, by examining the rate of increase of the terminal voltage V, it is possible to more accurately determine whether or not the charging is proceeding smoothly, thereby detecting the failure of the lead storage battery even earlier. It ’s like this. In other words, the fact that the voltage difference Δν does not reach the lower limit of the voltage difference range R3 is considered that the rate of increase of the terminal voltage V does not become sufficiently high even if charging is performed due to the occurrence of an internal short circuit, etc. It can be determined that the lead storage battery is defective. However, since it is not particularly hindered that the rate of increase is not abnormal, it is usually possible to omit the upper limit value of the voltage difference range R3 by setting it to positive infinity.
[0063] なお、上記電圧差範囲 R3も、本充電の定電流充電の開始からの経過時間等に応 じて変化させることができ、これによつて例えば充電の初期に十分大きな上昇率が得 られていないことを検出して、早期に不良を発見することができる。また、正常な鉛蓄 電池であっても、充電の中期には、端子電圧 Vがほとんど上昇しな力つたり、逆に僅 かに低下したりする場合もあるので、このような時期の電圧差範囲 R3の下限値を 0や 負の値に設定して、不良の誤検出を避けるようにすることもできる。  [0063] It should be noted that the voltage difference range R3 can also be changed according to the elapsed time from the start of the constant current charging of the main charging, thereby obtaining a sufficiently large increase rate at the initial stage of charging, for example. It is possible to detect a failure at an early stage by detecting that it has not been performed. Even in the case of a normal lead-acid battery, the terminal voltage V may increase little during the middle of charging, or may slightly decrease. The lower limit of the difference range R3 can be set to 0 or a negative value to avoid false detection of defects.
[0064] なお、図 3のフローチャートでは、上記本充電の定電流充電中に常時 S8〜S11に よる端子電圧 Vの測定等や判断を行うようにしているが、これらは本充電の定電流充 電中の一定時間ごとに実行するようにしてもよいし、予め設定された時間にそれぞれ 実行するよう〖こしてもよい。また、このフローチャートでは、 S9の端子電圧 Vが電圧範 囲 R2内かどうかの判断を行った場合には、必ず S11の電圧差 Δνが電圧差範囲 R3 内かどうかの判断も行うようにしている力 これらは個別にそれぞれ独立して異なる時 期や回数で行うこともできる。特に、電圧差 ΔΥは、常時又は端子電圧測定回路 18 での A-D変換のサンプリング周期ごとに算出すると、端子電圧 Vの微分値を得ること になるが、この微分値には短期の大きな変動が加わることがあるので、このような変動 の影響をなくすために、ある程度長い時間間隔で測定した端子電圧 Vの差を演算す るようにした方がよい。 In the flowchart of FIG. 3, the terminal voltage V is always measured and determined by S8 to S11 during the constant current charging of the main charging, but these are the constant current charging of the main charging. It may be executed at regular intervals during power transmission, or may be executed at predetermined times. In this flowchart, when it is determined whether the terminal voltage V of S9 is within the voltage range R2, it is also determined whether the voltage difference Δν of S11 is within the voltage difference range R3. Force These can be done individually and at different times and times. In particular, the voltage difference ΔΥ is constant or the terminal voltage measurement circuit 18 When calculating for each AD conversion sampling period, a differential value of the terminal voltage V is obtained. However, this differential value may be subject to large short-term fluctuations, so that the effects of such fluctuations are eliminated. In addition, it is better to calculate the difference in the terminal voltage V measured at a rather long time interval.
[0065] 上記 S 12で鉛蓄電池の端子電圧が 14. 5V以上になったと判断されると、本充電回 路 12の定電流充電回路 12Aを停止させて、この本充電回路 12の定電圧充電回路 1 2bを動作させると共に切替回路 13をこの定電圧充電回路 12bに切り替えて本充電 の定電圧充電を開始する(S 13)。本充電の定電圧充電は、 14. 5Vによる定電圧充 電であり、充電電流は最大で 3Aに制限され、タイマ 17の計時により最大 2時間行わ れる。この本充電の定電圧充電中には、先の本充電の定電流充電の開始から 6時間 が経過したかどうかと(S 14)、この本充電の定電圧充電の開始から 2時間が経過した 力どうかが判断され (S15)、いずれか早い方の時間が経過するのを待つ。そして、 S 15で定電圧充電の開始から 2時間が経過したと判断された場合には、鉛蓄電池の 充電が正常に完了したことになるので、充電ランプ 5を消灯すると共に全ての処理を 終了する。また、 S14で定電流充電の開始から 6時間が経過したと判断された場合に は、定電圧充電による充電が不足している可能性はある力 トータルの充電時間を制 限するために、充電が一応正常に完了したものとして、充電ランプ 5を消灯すると共 に全ての処理を終了する。なお、 S 14で 6時間が経過したと判断されるということは、 本充電の定電流充電により端子電圧 Vが 14. 5Vに達するまでに 4時間以上を要して いることになり、鉛蓄電池に軽微な過放電や僅かな微少短絡が発生している可能性 があるので、この場合は、鉛蓄電池の軽微な不良があることを作業者に警告したり、 この鉛蓄電池を不良として取り扱うこともできる。  [0065] When it is determined in S12 that the terminal voltage of the lead storage battery has reached 14.5 V or more, the constant current charging circuit 12A of the main charging circuit 12 is stopped and the constant voltage charging of the main charging circuit 12 is stopped. The circuit 12b is operated and the switching circuit 13 is switched to the constant voltage charging circuit 12b to start constant voltage charging for main charging (S13). The constant voltage charge of this charge is a constant voltage charge of 14.5V, the charging current is limited to 3A at maximum, and it is performed for 2 hours at maximum by the timer 17 timing. During constant voltage charging of this main charge, whether 6 hours have passed since the start of the constant current charge of the previous main charge (S 14), and 2 hours have passed since the start of the constant voltage charge of this main charge. The power is judged (S15) and it waits for whichever time has passed. If it is determined in S 15 that 2 hours have elapsed since the start of constant voltage charging, charging of the lead storage battery has been completed normally, so the charging lamp 5 is turned off and all processing is completed. To do. If it is determined in S14 that 6 hours have elapsed since the start of constant current charging, there is a possibility that charging by constant voltage charging may be insufficient.To limit the total charging time, charge If the charging lamp 5 is turned off, all processing is terminated. Note that it is determined that 6 hours have passed in S14, which means that it takes 4 hours or more for the terminal voltage V to reach 14.5V due to the constant current charging of the main charge, and the lead storage battery In this case, warn the operator that there is a minor defect in the lead-acid battery, or treat the lead-acid battery as defective. You can also.
[0066] (2— 4)本願発明の実施形態による効果  [0066] (2-4) Effects of the embodiment of the present invention
以上のように、本願発明が実施される上記実施形態の充電器によれば、鉛蓄電池 に仮充電がされ、その充電の開始力 短い時間の間に電圧挙動の調査がなされる。 そのため、サルフエーシヨン現象を生じた鉛蓄電池のような従来は見過ごされた鉛蓄 電池が、不良であるとして正確に選別される。併せて、鉛蓄電池が不良であるかどう 力が短時間に選別される。以上により、鉛蓄電池が充電により回復するか又は交換を 要するのかの判断力、充電前に即時に行うことができる。 As described above, according to the charger of the above-described embodiment in which the present invention is implemented, the lead storage battery is temporarily charged, and the voltage behavior is investigated during a short period of time when the charging start force is short. For this reason, lead-acid batteries that have been overlooked in the past, such as lead-acid batteries that have produced a sulfation phenomenon, are accurately selected as defective. At the same time, the power of the lead storage battery is determined in a short time. As described above, the lead-acid battery is recovered by charging or replaced. Judgment whether it is necessary, can be made immediately before charging.
[0067] また、本充電が開始された後も、この鉛蓄電池が不良であるかどうかを随時選別す る場合は、比較的早期に鉛蓄電池の不良が発見される。したがって、充電時間の無 駄をなくし、迅速に鉛蓄電池の交換等の対応を取ることができる。  [0067] Further, even after the start of the main charging, when selecting whether or not the lead storage battery is defective at any time, the defect of the lead storage battery is found relatively early. Accordingly, it is possible to eliminate wasteful charging time and take measures such as quickly replacing the lead storage battery.
[0068] また、本充電の間に、鉛蓄電池の端子電圧 Vだけでなく電圧差 Δνに基づく判断も されることによって、より正確な選別が可能となる。  [0068] In addition, more accurate sorting is possible by making a determination based on the voltage difference Δν as well as the terminal voltage V of the lead storage battery during the main charge.
[0069] さらに、本願発明の良否判定の方法、及び良否判定装置によれば、鉛蓄電池の端 子電圧 Vを測定するだけで不良を高 、確率で発見できるので、面倒で分力り難 、設 定操作、及び高価な放電回路の設置が不要となる。  [0069] Further, according to the quality determination method and quality determination device of the present invention, defects can be found with high probability by simply measuring the terminal voltage V of the lead-acid battery, which is cumbersome and difficult to distribute. Setup operation and installation of expensive discharge circuit are not required.
[0070] (2— 5)上記の実施形態とは異なる構成態様  [0070] (2-5) Configuration aspects different from the above embodiment
上記実施形態では、定格電圧が 12Vの制御弁式鉛蓄電池に充電を行う充電器に ついて説明されている。しかし、鉛蓄電池の定格電圧や定格容量等は任意のものが 使用でき、複数種類の定格電圧の鉛蓄電池の充電を行う充電器にも同様に実施可 能である。ただし、定格電圧が異なる場合には、電圧範囲 R1〜電圧差範囲 R3の上 限値や下限値等の設定を変更する必要があるので、この定格電圧の設定操作は必 要となる。  In the above embodiment, a charger for charging a control valve type lead storage battery having a rated voltage of 12 V is described. However, any rated voltage, rated capacity, etc., can be used for lead-acid batteries, and the same can be applied to chargers that charge lead-acid batteries with multiple types of rated voltages. However, if the rated voltage is different, it is necessary to change the setting of the upper and lower limits of voltage range R1 to voltage difference range R3, so this setting operation of the rated voltage is necessary.
[0071] 上記実施形態では、本充電の定電流充電の際に電圧差 Δνを演算して不良の選 別を行う場合を示した。しかし、この電圧差 Δνに加えて、又はこの電圧差 Δνに代 えて、前回と今回の電圧差 Δ Vの差 (二重微分)を演算して不良の選別を行うこともで き、端子電圧 Vが時間の経過に伴って所定範囲内の変化をしているかどうかを判断 するためのものであれば、端子電圧 Vにどのような演算を施したものを用いてもよい。  [0071] In the above embodiment, a case has been described in which the voltage difference Δν is calculated and the failure is selected in the constant current charging of the main charging. However, in addition to this voltage difference Δν or instead of this voltage difference Δν, the difference (double differential) between the previous and current voltage difference ΔV can be calculated and the defect voltage can be selected. As long as it is used to determine whether V changes within a predetermined range as time passes, it is possible to use the terminal voltage V that has been subjected to any calculation.
[0072] 上記実施形態では、所定の時間が経過したかどうかを、例えばタイマ 17の計時時 間を参照する等して、一連の処理の中で判断する場合を示した。しかし、タイマ 17か ら計時完了の割り込みを受ける場合には、この割り込みルーチンが適宜処理を行うよ うになる。  [0072] In the above embodiment, a case has been described in which whether or not the predetermined time has elapsed is determined in a series of processes, for example, by referring to the time measured by the timer 17. However, when the timer 17 receives a timing complete interrupt from the timer 17, this interrupt routine will take appropriate action.
[0073] S3と S4、 S8と S9、及び S8と S10と S11の処理ち、この害 Uり込みノレ一チン内で行う ようにすることにより、一定時間間隔や予め指定した時刻にこれらをそれぞれ実行す ることがでさるよう〖こなる。 [0074] 本充電の定電流充電の際にも、端子電圧 Vを測定したり電圧差 Δνを演算したりす ることにより不良の選別を行うようにした。しかし、これらの双方、又はいずれか一方は 省略されうる。 [0073] By performing the processing of S3 and S4, S8 and S9, and S8 and S10 and S11 in this harmful U penetration, these are respectively performed at a fixed time interval or a predetermined time. It's a little tricky to do. [0074] During constant current charging of the main charging, defects were selected by measuring the terminal voltage V and calculating the voltage difference Δν. However, both or one of these can be omitted.
[0075] 上記実施形態で示した具体的な数値は、鉛蓄電池の特性等に応じて任意に変更 されうる。例えば、本充電の定電流充電中に S12で端子電圧 Vと比較する 14. 5V等 の電圧値、仮充電の 10秒、本充電のトータル時間である 6時間、又は定電圧充電の ための 2時間等のパラメータも、適宜変更されうる。  The specific numerical values shown in the above embodiment can be arbitrarily changed according to the characteristics of the lead storage battery. For example, during constant current charging of main charge, compare with terminal voltage V at S12 14.Voltage value such as 5V, temporary charge 10 seconds, total time of main charge 6 hours, or 2 for constant voltage charge Parameters such as time can also be changed as appropriate.
[0076] 上記実施形態では、鉛蓄電池を不良として選別した場合に、 NGランプ 6を点灯し て充電を中止した。しかし、この不良を選別した場合の措置は任意である。例えば、 NGランプ 6以外のランプの点灯、ディスプレイへの文字等による表示、又は音声等 による作業者への告知等をすることができる。さらに、この充電器を接続したコンビュ ータ等に通知するようにすることができる。また、不良を判定した場合には、上記実施 形態のように自動的に仮充電を中止するようにしてもよいし、不良の告知により作業 者が手動で充電を中止するようにしてもよ!、。  In the above embodiment, when a lead storage battery is selected as defective, the NG lamp 6 is turned on to stop charging. However, the measure when this defect is selected is arbitrary. For example, lamps other than the NG lamp 6 can be turned on, displayed on the display with characters, etc., or notified to the worker by voice or the like. Furthermore, it is possible to notify a computer or the like connected to this charger. In addition, when a failure is determined, temporary charging may be automatically stopped as in the above embodiment, or an operator may manually stop charging upon notification of failure! ,.
[0077] 上記実施形態では、鉛蓄電池の端子電圧 V (充電電圧)のみにより不良の選別を 行う場合を示した。しかし、この端子電圧 Vと共に充電電流を検出することによって良 否の判定が行われうる。  [0077] In the above-described embodiment, the case where the defect selection is performed only by the terminal voltage V (charge voltage) of the lead storage battery has been described. However, the quality can be judged by detecting the charging current together with the terminal voltage V.
[0078] 本充電の定電流充電中に充電をー且中断して放電を行わせ、これによつて従来と 同様の判定を行うようにすることもできる。この場合には、設定操作が面倒になり放電 回路を設けるために充電器も高価になるが、鉛蓄電池の不良を早期に高い確率で 選別できるだけでなぐ最終的に確実な不良判定もできる。  [0078] During constant current charging of the main charging, the charging can be interrupted and discharged to perform the same determination as before. In this case, the setting operation becomes cumbersome and the charger becomes expensive because a discharge circuit is provided. However, it is possible to make a reliable defect determination as long as the defects of the lead storage battery can be selected with high probability at an early stage.
[0079] 本出願は、 2005年 1月 17日出願の日本特許出願 (特願 2005-009574)に基づくもの であり、それらの内容はここに参照として取り込まれる。  [0079] This application is based on a Japanese patent application filed on January 17, 2005 (Japanese Patent Application No. 2005-009574), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0080] 以上のように、本願発明は、自動車業界など広く産業界で利用されている鉛蓄電 池に関して、その良否を判定する方法又は装置に関する。したがって、この方法又は 装置もまた産業上利用することができる。 [0080] As described above, the present invention relates to a method or apparatus for determining the quality of a lead storage battery widely used in industry such as the automobile industry. Therefore, this method or apparatus can also be used industrially.

Claims

請求の範囲 The scope of the claims
[1] 鉛蓄電池の良否を判定する方法において、前記方法は、  [1] In the method for judging the quality of a lead-acid battery, the method comprises:
鉛蓄電池が定電流で充電される仮充電工程、  Temporary charging process in which lead acid battery is charged with constant current,
前記定電流で充電が開始されてから 10秒間以内に前記鉛蓄電池の端子電圧が 測定され、前記端子電圧が所定の電圧に到達するカゝ否かが判断される判断工程、 及び  A determination step in which the terminal voltage of the lead storage battery is measured within 10 seconds after charging is started at the constant current, and it is determined whether or not the terminal voltage reaches a predetermined voltage; and
前記所定の電圧に到達した鉛蓄電池が不良として選別される選別工程 を備える。  A sorting step in which the lead storage battery that has reached the predetermined voltage is sorted as defective;
[2] 請求項 1に記載された方法において、  [2] In the method of claim 1,
前記鉛蓄電池は、単セルを備え、  The lead storage battery includes a single cell,
前記所定の電圧が、前記単セルあたり 2. 67V以上 3. OOV以下である。  The predetermined voltage is 2.67 V or more and 3. OOV or less per unit cell.
[3] 請求項 1に記載された方法において、 [3] In the method of claim 1,
前記仮充電工程における定電流の大きさ力 0. 03CA以上 0. 10CA以下である。  The magnitude of the constant current in the temporary charging step is 0.03 CA or more and 0.110 CA or less.
[4] 鉛蓄電池の良否を判定する装置において、前記装置は、 [4] In the device for judging the quality of the lead-acid battery, the device comprises:
鉛蓄電池を定電流で充電する仮充電手段、  Temporary charging means for charging the lead storage battery with a constant current;
前記定電流で充電を開始してから 10秒間以内に前記鉛蓄電池の端子電圧を測定 し、前記端子電圧が所定の電圧に到達するカゝ否かを判断する判断手段、及び 前記所定の電圧に到達した鉛蓄電池を不良として選別する選別手段  Measuring means for measuring the terminal voltage of the lead-acid battery within 10 seconds after starting charging at the constant current, and determining whether the terminal voltage reaches a predetermined voltage; and Sorting means to sort lead batteries that have arrived as defective
を備える。  Is provided.
[5] 請求項 4に記載された装置において、  [5] In the device according to claim 4,
前記鉛蓄電池は、単セルを備え、  The lead storage battery includes a single cell,
前記所定の電圧が、前記単セルあたり 2. 67V以上 3. 00V以下である。  The predetermined voltage is 2.67V to 3.00V per unit cell.
[6] 請求項 4に記載された装置において、 [6] In the device according to claim 4,
前記仮充電手段における定電流の大きさが、 0. 03CA以上 0. 10CA以下である。  The magnitude of the constant current in the temporary charging means is 0.03 CA or more and 0.10 CA or less.
[7] 請求項 4力も 6の何れかに記載された装置において、前記装置は、さらに、 [7] The device according to any one of claims 4 and 6, wherein the device further comprises:
前記判断手段が前記鉛蓄電池の端子電圧を前記所定の電圧に到達して!/、な 、と 判断した場合に本充電をおこなう本充電手段  Main charging means for performing main charging when the determination means determines that the terminal voltage of the lead-acid battery has reached the predetermined voltage!
を備える。 請求項 7に記載された装置において、 Is provided. The device according to claim 7,
PCT/JP2006/300447 2005-01-17 2006-01-16 Method and apparatus for judging conformity of lead storage battery WO2006075740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553011A JP4893312B2 (en) 2005-01-17 2006-01-16 Quality determination method and quality determination device for lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-009574 2005-01-17
JP2005009574 2005-01-17

Publications (1)

Publication Number Publication Date
WO2006075740A1 true WO2006075740A1 (en) 2006-07-20

Family

ID=36677760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300447 WO2006075740A1 (en) 2005-01-17 2006-01-16 Method and apparatus for judging conformity of lead storage battery

Country Status (2)

Country Link
JP (1) JP4893312B2 (en)
WO (1) WO2006075740A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914429A1 (en) * 2007-03-28 2008-10-03 Peugeot Citroen Automobiles Sa Liquid lead battery charging capacity determining method for motor vehicle, involves determining whether battery has low capacity if voltage is higher than high threshold, and degraded capacity if voltage is between high and low thresholds
JP2010075014A (en) * 2008-09-22 2010-04-02 Mitsuba Sankowa:Kk Charging method and charger
JP2013537792A (en) * 2010-07-15 2013-10-03 ゼットパワー, エルエルシー Method and apparatus for recharging a battery
WO2014049933A1 (en) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
WO2017046900A1 (en) * 2015-09-16 2017-03-23 株式会社ユーパーツ Secondary battery regeneration device and regeneration method
US10291051B2 (en) 2013-01-11 2019-05-14 Zpower, Llc Methods and systems for recharging a battery
JP2019175821A (en) * 2018-03-29 2019-10-10 株式会社アール・イー・コンサルティング Reproduction device of lead storage battery and reproduction process of lead storage battery
CN110416647A (en) * 2019-06-28 2019-11-05 国网天津市电力公司电力科学研究院 It is a kind of to enter network detecting method suitable for distribution terminal lead-acid accumulator
US10547189B2 (en) 2015-04-29 2020-01-28 Zpower, Llc Temperature dependent charge algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197042A (en) * 1990-11-28 1992-07-16 Furukawa Battery Co Ltd:The Constant current, constant voltage type charger
JPH11355968A (en) * 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd Charging for storage battery and charger therefor
JP2000243456A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method for charging lead-acid battery
JP2004199933A (en) * 2002-12-17 2004-07-15 Yuasa Corp Charging method and quality judging method of lead-acid battery, and charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197042A (en) * 1990-11-28 1992-07-16 Furukawa Battery Co Ltd:The Constant current, constant voltage type charger
JPH11355968A (en) * 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd Charging for storage battery and charger therefor
JP2000243456A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method for charging lead-acid battery
JP2004199933A (en) * 2002-12-17 2004-07-15 Yuasa Corp Charging method and quality judging method of lead-acid battery, and charger

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914429A1 (en) * 2007-03-28 2008-10-03 Peugeot Citroen Automobiles Sa Liquid lead battery charging capacity determining method for motor vehicle, involves determining whether battery has low capacity if voltage is higher than high threshold, and degraded capacity if voltage is between high and low thresholds
JP2010075014A (en) * 2008-09-22 2010-04-02 Mitsuba Sankowa:Kk Charging method and charger
US9240696B2 (en) 2010-07-15 2016-01-19 Zpower, Llc Method and apparatus for recharging a battery
JP2013537792A (en) * 2010-07-15 2013-10-03 ゼットパワー, エルエルシー Method and apparatus for recharging a battery
WO2014049933A1 (en) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
CN104662731A (en) * 2012-09-26 2015-05-27 丰田自动车株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
JP2014067614A (en) * 2012-09-26 2014-04-17 Toyota Motor Corp Method of manufacturing sealed battery, inspection apparatus, and inspection program
CN104662731B (en) * 2012-09-26 2016-04-20 丰田自动车株式会社 The manufacture method of sealing cell and testing fixture
US9372239B2 (en) 2012-09-26 2016-06-21 Toyota Jidosha Kabushiki Kaisha Sealed battery manufacturing method and inspection device
US10291051B2 (en) 2013-01-11 2019-05-14 Zpower, Llc Methods and systems for recharging a battery
US11735940B2 (en) 2013-01-11 2023-08-22 Riot Energy Inc. Methods and systems for recharging a battery
US10547189B2 (en) 2015-04-29 2020-01-28 Zpower, Llc Temperature dependent charge algorithm
WO2017046900A1 (en) * 2015-09-16 2017-03-23 株式会社ユーパーツ Secondary battery regeneration device and regeneration method
JP2019175821A (en) * 2018-03-29 2019-10-10 株式会社アール・イー・コンサルティング Reproduction device of lead storage battery and reproduction process of lead storage battery
CN110416647A (en) * 2019-06-28 2019-11-05 国网天津市电力公司电力科学研究院 It is a kind of to enter network detecting method suitable for distribution terminal lead-acid accumulator

Also Published As

Publication number Publication date
JPWO2006075740A1 (en) 2008-06-12
JP4893312B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4893312B2 (en) Quality determination method and quality determination device for lead acid battery
US9874611B2 (en) Battery charger with automatic voltage detection
KR101989491B1 (en) Apparatus method for defect detecting of the battery cell by unknown discharge current
US8179139B2 (en) Rechargeable battery abnormality detection apparatus and rechargeable battery apparatus
US7663344B2 (en) Method for managing a pool of rechargeable batteries according to priority criteria determined based on a state of health of batteries
US20130043876A1 (en) Method for estimating state-of-charge of lithium ion battery
US20130207592A1 (en) Battery Charger and Battery Charge Method
EP3719917B1 (en) Chargeable battery abnormality detection apparatus and chargeable battery abnormality detection method
JP2010091520A (en) Battery module abnormality detection circuit, and detection method therefor
US20100327809A1 (en) Charging apparatus and quality judging apparatus for packed battery
JP2010231948A (en) Method for inspecting internal short circuit of battery
JP2010256210A (en) Method of inspection short-circuiting of control valve type lead storage battery and short-circuiting inspection apparatus of the control valve type lead storage battery
KR20220102454A (en) Apparatus and method for diagnosing battery system
JPH0915311A (en) Failure detection device for battery set
US6992487B1 (en) Arrangement for testing battery while under load and charging
JP6472838B2 (en) Battery testing apparatus and method
JP2002313435A (en) Battery inspection method
KR20130039684A (en) Charging system with diagnostic function for battery life
JP2022105409A (en) Battery status determination method and battery status determination device
JP3455979B2 (en) Method and apparatus for detecting short between electrodes of secondary battery
KR101377995B1 (en) Battery diagnostic apparatus and diagnostic method thereof
CN115443417A (en) Method and device for checking the state of a battery
CN101369005A (en) Sealed lead-acid battery detection method
JP5843518B2 (en) Disconnection detector
JPH05236662A (en) Charging system for lead storage battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006553011

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711728

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711728

Country of ref document: EP