JPH0915311A - Failure detection device for battery set - Google Patents
Failure detection device for battery setInfo
- Publication number
- JPH0915311A JPH0915311A JP7183393A JP18339395A JPH0915311A JP H0915311 A JPH0915311 A JP H0915311A JP 7183393 A JP7183393 A JP 7183393A JP 18339395 A JP18339395 A JP 18339395A JP H0915311 A JPH0915311 A JP H0915311A
- Authority
- JP
- Japan
- Prior art keywords
- terminal voltage
- battery
- module
- discharging
- failure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、電気自動車等に搭載
する組電池において、過放電等の故障が発生した単電池
を含むモジュール電池を検出するための故障検出装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure detection device for detecting a module battery including a unit cell in which a failure such as over-discharging has occurred in an assembled battery mounted on an electric vehicle or the like.
【0002】[0002]
【従来の技術】電気自動車等のバッテリには、ニッケル
−カドミウム電池やニッケル−金属水素化物電池又は鉛
蓄電池等の組電池が用いられる。この組電池は、所定の
電圧を得るために、複数の単電池(鉛蓄電池の場合には
単位セルに相当)を直列接続したモジュール電池をさら
に複数個組み合わせて接続したものである。2. Description of the Related Art As batteries for electric vehicles, assembled batteries such as nickel-cadmium batteries, nickel-metal hydride batteries or lead acid batteries are used. This assembled battery is obtained by combining a plurality of module batteries in which a plurality of unit cells (corresponding to a unit cell in the case of a lead storage battery) are connected in series to obtain a predetermined voltage.
【0003】ところで、ニッケル−カドミウム電池やニ
ッケル−金属水素化物電池等は、繰り返しの過放電を受
けると電界液の喪失によりドライアップ現象に至り、ま
た、微小短絡やデッドショ−トが発生すると発熱等の問
題が生じる。従って、このような故障の発生を検出し、
早急に電池交換等の対策を講じなければならない。組電
池を構成する各単電池にこのような過放電等の故障が発
生すると、端子電圧が異常に低下する。しかし、単電池
の端子電圧は、この単電池が正常な場合にも、温度環境
や放電の深度等によって変動する。従って、組電池全体
の端子電圧のみを測定したとしても、この端子電圧が異
常であるかどうかを直ちに判定することはできない。即
ち、故障による端子電圧の異常を検出するには、故障の
発生した単電池の端子電圧を同じ環境や同じ使用条件に
おいた正常な他の単電池の端子電圧と比較する必要があ
る。また、このような事情は鉛蓄電池に故障が発生した
場合も同様である。By the way, in nickel-cadmium batteries, nickel-metal hydride batteries, etc., when they are repeatedly over-discharged, a dry-up phenomenon occurs due to the loss of the electrolytic solution, and when a minute short circuit or dead short occurs, heat is generated. Problem arises. Therefore, detecting the occurrence of such a failure,
Immediate measures such as battery replacement should be taken. When such a failure as over discharge occurs in each of the unit cells constituting the assembled battery, the terminal voltage drops abnormally. However, the terminal voltage of the unit cell varies depending on the temperature environment, the depth of discharge, and the like even when the unit cell is normal. Therefore, even if only the terminal voltage of the whole assembled battery is measured, it is not possible to immediately determine whether or not this terminal voltage is abnormal. That is, in order to detect an abnormality in the terminal voltage due to a failure, it is necessary to compare the terminal voltage of the failed cell with the terminal voltage of another normal cell under the same environment and under the same use condition. Moreover, such a situation also applies when a failure occurs in the lead storage battery.
【0004】そこで、組電池を構成する各単電池や各モ
ジュール電池の端子電圧を測定し、これらの端子電圧を
相互に比較することにより異常を検出する検出装置が従
来から種々提案されている。例えば、特願昭58−53
187号で提案した検出装置は、充電時の各単電池や各
モジュール電池の端子電圧を測定するものであり、これ
らの端子電圧の最高値と最低値の差が所定値以上になっ
た場合に異常と判定する。また、特開昭55−1132
77号公報に記載の検出装置は、充放電時や無負荷時の
各モジュール電池の端子電圧を測定するものであり、こ
れらの端子電圧の差又は最高値と最低値の差が所定値以
上となった場合に異常と判定する。さらに、特開昭57
−105975号公報に記載の検出装置は、充放電時の
各単電池の端子電圧を測定するものであり、これらの端
子電圧の平均値との差が所定値以上となった場合に異常
と判定する。また、特開昭58−97273号公報に記
載の検出装置は、各モジュール電池の端子電圧の標準偏
差又は分散等が所定値以上となった場合に異常と判定す
る。Therefore, various detection devices have been proposed in the past, which detect an abnormality by measuring the terminal voltage of each unit cell or each module battery that constitutes an assembled battery and comparing these terminal voltages with each other. For example, Japanese Patent Application No. 58-53
The detecting device proposed in No. 187 measures the terminal voltage of each battery cell or each module battery during charging, and when the difference between the maximum value and the minimum value of these terminal voltages is more than a predetermined value. Judge as abnormal. Also, JP-A-55-1132
The detection device described in Japanese Patent Publication No. 77 is for measuring the terminal voltage of each module battery during charging and discharging or under no load, and the difference between these terminal voltages or the difference between the highest value and the lowest value is a predetermined value or more. If it becomes, it is determined to be abnormal. Furthermore, JP-A-57
The detection device described in Japanese Patent Laid-Open No. -105975 measures the terminal voltage of each cell during charging / discharging, and when the difference from the average value of these terminal voltages exceeds a predetermined value, it is determined to be abnormal. To do. Further, the detection device described in JP-A-58-97273 determines that an abnormality occurs when the standard deviation or variance of the terminal voltage of each module battery exceeds a predetermined value.
【0005】[0005]
【発明が解決しようとする課題】ところが、単電池は、
使用に伴う劣化により電池容量が各単電池の固体差に応
じて減少すると、充放電時に一部の単電池の端子電圧が
故障時よりも大きく低下することがあるので、この充放
電時には劣化による端子電圧の低下と故障による端子電
圧の低下を区別することが困難になる。しかしながら、
従来の検出装置では、充放電時にも単電池やこれを直列
接続したモジュール電池の端子電圧を測定するので、こ
の充放電時に劣化がある程度進んだ正常な単電池の端子
電圧が大きく低下した場合に異常を誤判定するおそれが
生じるという問題があった。即ち、従来の検出装置は、
個々の単電池の故障を検出するよりは、各単電池が劣化
によって充放電時の端子電圧に大きなバラツキが発生し
たことを検出して寿命の末期を判定することを主目的と
したものであった。However, the unit cell is
If the battery capacity decreases according to the individual difference of each cell due to deterioration due to use, the terminal voltage of some cells may drop significantly during charging / discharging than during failure. It becomes difficult to distinguish between a drop in terminal voltage and a drop in terminal voltage due to a failure. However,
Since the conventional detection device measures the terminal voltage of a single battery or a module battery in which these are connected in series even during charging / discharging, if the terminal voltage of a normal single battery that has deteriorated to some extent during charging / discharging drops significantly. There is a problem in that an abnormality may be erroneously determined. That is, the conventional detection device is
Rather than detecting the failure of individual cells, the main purpose is to determine the end of life by detecting the occurrence of large variations in the terminal voltage during charging and discharging due to deterioration of each cell. It was
【0006】また、各単電池やモジュール電池の端子電
圧は、通常は数m秒程度の時間をかけて走査により順に
測定するので、電気自動車等のように放電電流がパルス
的に断続して流れる場合には、最初と最後の測定時で放
電電流の状態に大きな差が生じることがあり、端子電圧
の測定条件が相違して誤判定を生じ易くなるという問題
もあった。Further, the terminal voltage of each unit cell or module battery is usually measured sequentially by scanning over a time of about several milliseconds, so that a discharge current intermittently flows in a pulsed manner like in an electric vehicle. In this case, there may be a large difference in the state of the discharge current between the first measurement and the last measurement, and the measurement conditions of the terminal voltage are different, which may cause an erroneous determination.
【0007】さらに、従来の検出装置が各単電池ごとに
端子電圧を測定する場合には、電気自動車に使用する組
電池のように多数の単電池が用いられていると、測定の
ために膨大な量の配電線が必要となり、各単電池間の空
間がこの配電線に塞がれて放熱が不十分になったり、多
数の配電線間の高電圧対策が必要になるという問題も生
じる。Further, when the conventional detection device measures the terminal voltage for each unit cell, if a large number of unit cells are used, such as an assembled battery used in an electric vehicle, it will be very large for the measurement. There is also a problem that a large amount of distribution lines are required, the space between the individual cells is blocked by the distribution lines, heat dissipation becomes insufficient, and high voltage measures between a large number of distribution lines are required.
【0008】この発明は、かかる事情に鑑みてなされた
ものであり、充放電が終了して各単電池の端子電圧が安
定したときにモジュール電池の端子電圧を測定すること
により、過放電等の故障による端子電圧の異常のみを確
実に検出することができる組電池の故障検出装置を提供
することを目的としている。The present invention has been made in view of the above circumstances, and measures the terminal voltage of a module battery when charging / discharging is completed and the terminal voltage of each cell is stable, so that overdischarge and the like can be prevented. It is an object of the present invention to provide an assembled battery failure detection device capable of reliably detecting only an abnormality in a terminal voltage due to a failure.
【0009】[0009]
【課題を解決するための手段】即ち、この発明は、上記
課題を解決するために、複数の単電池を直列接続した
モジュール電池をさらに複数個組み合わせて接続した組
電池において、この組電池の主たる充電及び/又は放電
が終了してから所定時間経過後における各モジュール電
池の端子電圧を測定する端子電圧測定手段と、この端子
電圧測定手段が測定した各モジュール電池の端子電圧を
パラメータとして演算を行うことにより基準電圧を推定
する基準電圧推定手段と、この基準電圧推定手段が推定
した基準電圧と端子電圧測定手段が測定した各モジュー
ル電池の端子電圧との差をそれぞれ演算し、これらの差
が所定値を超えた場合に単電池の故障と判定する故障判
定手段とを備えたことを特徴とする。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is directed to an assembled battery in which a plurality of module batteries in which a plurality of unit cells are connected in series are further combined and connected to each other. Terminal voltage measuring means for measuring the terminal voltage of each module battery after a lapse of a predetermined time from the end of charging and / or discharging, and calculation using the terminal voltage of each module battery measured by this terminal voltage measuring means as a parameter The reference voltage estimating means for estimating the reference voltage, and the difference between the reference voltage estimated by the reference voltage estimating means and the terminal voltage of each module battery measured by the terminal voltage measuring means, respectively, and these differences are set to a predetermined value. A failure determination means for determining that the unit cell has failed when the value exceeds the value is provided.
【0010】また、複数のニッケル−カドミウム電池
又はニッケル−金属水素化物電池からなる単電池を直列
接続したモジュール電池をさらに複数個組み合わせて接
続した組電池において、この組電池の主たる充電及び/
又は放電が終了してから2分間以上の所定時間経過後に
おける各モジュール電池の端子電圧を測定する端子電圧
測定手段と、この端子電圧測定手段が測定した各モジュ
ール電池の端子電圧の最大値又は平均値を基準電圧とし
て推定する基準電圧推定手段と、この基準電圧推定手段
が推定した基準電圧と端子電圧測定手段が測定した各モ
ジュール電池の端子電圧との差をそれぞれ演算し、これ
らの差が1Vを超えた場合に単電池の故障と判定する故
障判定手段とを備えたことを特徴とする。Also, in an assembled battery in which a plurality of module batteries in which a plurality of nickel-cadmium batteries or nickel-metal hydride batteries are connected in series are further combined and connected, the main charging and / or
Alternatively, a terminal voltage measuring means for measuring the terminal voltage of each module battery after a lapse of a predetermined time of 2 minutes or more after the end of discharging, and the maximum value or the average of the terminal voltage of each module battery measured by the terminal voltage measuring means. A reference voltage estimating means for estimating the value as a reference voltage, and a difference between the reference voltage estimated by the reference voltage estimating means and the terminal voltage of each module battery measured by the terminal voltage measuring means, respectively, and the difference between them is 1V. And a failure determination means for determining that the unit cell has failed.
【0011】[0011]
【作用】の手段によれば、端子電圧測定手段は、組電
池の主たる充電及び/又は放電が終了してから所定時間
が経過した後に、各モジュール電池の端子電圧を測定す
る。ここで、正常な単電池は、寿命末期に達しない程度
の劣化によって充放電時の端子電圧にバラツキが生じる
ようになった場合であっても、この充放電が終了すれ
ば、時間の経過に伴って端子電圧がほぼ均一な値に回復
し安定する。従って、全ての単電池が正常であれば、あ
る程度劣化したものが含まれていたとしても、端子電圧
測定手段が測定した端子電圧にはほとんどバラツキがな
くなる。According to the function, the terminal voltage measuring means measures the terminal voltage of each module battery after a lapse of a predetermined time after the main charging and / or discharging of the assembled battery is completed. Here, even if the normal unit cell has a variation in the terminal voltage during charging / discharging due to deterioration to the extent that it does not reach the end of its life, if this charging / discharging ends, time will elapse. Along with this, the terminal voltage recovers to a substantially uniform value and stabilizes. Therefore, if all the unit cells are normal, even if some of them are deteriorated to some extent, the terminal voltage measured by the terminal voltage measuring means has almost no variation.
【0012】しかし、単電池に過放電による故障が発生
すると、端子電圧は、充放電が終了した後も正常な単電
池のレベルまで回復するのが遅くなる。また、微小短絡
による故障が発生した場合には、充放電の終了後に単電
池の端子電圧が徐々に低下する。さらに、デッドショー
トによる故障が発生した場合には、充放電後の単電池の
電圧が0Vとなる。従って、これらの故障が発生した単
電池を含むモジュール電池の端子電圧は、充放電が終了
してから所定時間が経過した後も、正常な単電池のみか
らなるモジュール電池の端子電圧よりもある程度低下し
たものとなる。However, when a failure occurs in the unit cell due to over-discharging, the terminal voltage delays in recovering to the normal level of the unit cell even after charging / discharging is completed. Further, when a failure occurs due to a minute short circuit, the terminal voltage of the unit cell gradually decreases after the end of charging / discharging. Furthermore, when a failure due to a dead short circuit occurs, the voltage of the unit cell after charging / discharging becomes 0V. Therefore, the terminal voltage of the module battery including the unit cell in which these failures occur is reduced to some extent as compared with the terminal voltage of the module battery including only the normal unit cell even after a predetermined time has elapsed since the end of charging / discharging. It will be what you did.
【0013】このため、基準電圧推定手段が各モジュー
ル電池の端子電圧に基づいて基準電圧を推定し、故障判
定手段がこれら各モジュール電池の端子電圧とこの基準
電圧との差をそれぞれ演算すれば、故障が発生した単電
池を含むモジュール電池の端子電圧との差のみが大きく
なるので、この差が所定値を超えた場合に当該モジュー
ル電池の単電池に故障が発生したと判定することができ
る。Therefore, if the reference voltage estimating means estimates the reference voltage based on the terminal voltage of each module battery, and the failure determining means calculates the difference between the terminal voltage of each module battery and the reference voltage, Since only the difference with the terminal voltage of the module battery including the unit cell in which the failure has occurred becomes large, it can be determined that the unit cell of the module battery has failed when this difference exceeds a predetermined value.
【0014】なお、主たる充電及び/又は放電とは、外
部電源等からの充電と、モータ等の主となる負荷に電力
を供給するための放電を意味し、計器等への微小な電力
の供給のための放電は除外される。また、電気自動車等
の場合には、加速時にモータに電力を供給すると共にエ
ンジンブレーキを用いた場合には回生制動を行うので、
これら電力の供給による放電と回生制動による充電とが
繰り返されることによる充放電の場合も主たる充電及び
放電に含む。主たる充電及び/又は放電が行われている
かどうかは、充放電電流が所定値以上であるかどうかに
よって判断できる。The main charging and / or discharging means charging from an external power source or the like and discharging for supplying electric power to a main load such as a motor, and supply of minute electric power to an instrument or the like. The discharge for is excluded. Further, in the case of an electric vehicle or the like, electric power is supplied to the motor during acceleration, and regenerative braking is performed when engine braking is used.
The main charging and discharging also includes the case of charging and discharging by repeating the discharging by the supply of the electric power and the charging by the regenerative braking. Whether or not the main charging and / or discharging is performed can be determined by whether or not the charge / discharge current is a predetermined value or more.
【0015】さらに、基準電圧推定手段による各モジュ
ール電池の端子電圧をパラメータとした演算は、測定時
における同じ条件での正常な単電池のみからなるモジュ
ール電池の端子電圧を推定するための演算であれば、ど
のような演算であってもよい。Further, the calculation using the terminal voltage of each module battery as a parameter by the reference voltage estimating means may be a calculation for estimating the terminal voltage of the module battery composed of only normal cells under the same conditions at the time of measurement. However, any calculation may be used.
【0016】また、の手段によれば、前記の単電池
としてニッケル−カドミウム電池又はニッケル−金属水
素化物電池を用い、前記の端子電圧測定手段における
所定時間を2分間以上の時間とし、前記の基準電圧推
定手段が推定する基準電圧を各モジュール電池の端子電
圧の最大値又は平均値とし、前記の故障判定手段にお
ける所定値を1Vとすることにより、ニッケル−カドミ
ウム電池やニッケル−金属水素化物電池における過放
電、微小短絡又はデッドショートの故障の検出に最適な
故障検出装置が提供される。According to the above means, a nickel-cadmium battery or a nickel-metal hydride battery is used as the unit cell, and the predetermined time in the terminal voltage measuring means is set to 2 minutes or more, and the reference In the nickel-cadmium battery or the nickel-metal hydride battery, the reference voltage estimated by the voltage estimating means is set to the maximum value or the average value of the terminal voltage of each module battery and the predetermined value in the failure determining means is set to 1V. Provided is a failure detection device that is most suitable for detecting failures such as over-discharge, micro short circuit, or dead short circuit.
【0017】[0017]
【実施例】以下、この発明の具体的実施例について図面
を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0018】図1乃至図10は本発明の一実施例を示す
ものであって、図1は組電池の故障検出装置の構成を示
すブロック図、図2は放電時における正常な単電池の端
子電圧の変化を示すタイムチャート、図3は放電時にお
ける正常なモジュール電池の端子電圧の変化を示すタイ
ムチャート、図4は放電時における過放電が発生した単
電池の端子電圧の変化を示すタイムチャート、図5は放
電時における微小短絡が発生した単電池の端子電圧の変
化を示すタイムチャート、図6は充電時における微小短
絡が発生した単電池の端子電圧の変化を示すタイムチャ
ート、図7は放電時におけるデッドショートが発生した
単電池の端子電圧の変化を示すタイムチャート、図8は
充電時におけるデッドショートが発生した単電池の端子
電圧の変化を示すタイムチャート、図9は放電時におけ
る各モジュール電池の端子電圧の相違を示す図、図10
は充電時における各モジュール電池の端子電圧の相違を
示す図である。1 to 10 show an embodiment of the present invention. FIG. 1 is a block diagram showing the structure of a failure detecting device for an assembled battery, and FIG. 2 is a terminal of a normal cell at the time of discharging. 3 is a time chart showing a change in voltage, FIG. 3 is a time chart showing a change in a terminal voltage of a normal module battery at the time of discharging, and FIG. 4 is a time chart showing a change in a terminal voltage of an over-discharged cell at the time of discharging. 5, FIG. 5 is a time chart showing a change in the terminal voltage of a unit cell in which a micro short circuit occurs during discharging, FIG. 6 is a time chart showing a change in the terminal voltage of a unit cell in which a micro short circuit occurs during charging, and FIG. A time chart showing a change in terminal voltage of a unit cell in which a dead short circuit occurs during discharging, and FIG. 8 shows a change in terminal voltage of a unit cell in which a dead short circuit occurs during charging. Im chart, Figure 9 showing the difference of the terminal voltage of each module battery during discharge, FIG. 10
FIG. 4 is a diagram showing a difference in terminal voltage of each module battery during charging.
【0019】本実施例は、電気自動車に搭載する組電池
の故障検出装置について説明する。図1に示すように、
組電池1は、10セルの単電池2aを直列接続したモジ
ュール電池2をさらに20個直列に接続したものであ
る。単電池2aとしては、角型のニッケル−カドミウム
電池を用いるものとする。そして、モジュール電池2
は、この単電池2aを10個図示しないホルダに収納し
て直列に接続したものである。この組電池1は、コント
ローラ3を介してモータ4に電源を供給するようになっ
ている。モータ4は、電気自動車を走行させるための駆
動装置であり、コントローラ3は、電気自動車のドライ
バの操作に応じて、このモータ4に供給される組電池1
からの電源を制御する回路である。また、この組電池1
は、図示しない残存容量計等の計器類にも電源を供給す
る。In this embodiment, a failure detecting device for an assembled battery mounted on an electric vehicle will be described. As shown in FIG.
The assembled battery 1 further comprises 20 module batteries 2 connected in series, each of which is a unit cell 2a of 10 cells. A rectangular nickel-cadmium battery is used as the unit cell 2a. And the module battery 2
Shows that 10 unit cells 2a are housed in a holder (not shown) and connected in series. The battery pack 1 supplies power to the motor 4 via the controller 3. The motor 4 is a drive device for running the electric vehicle, and the controller 3 is a battery pack 1 that is supplied to the motor 4 according to the operation of the driver of the electric vehicle.
It is a circuit that controls the power supply from. Also, this battery pack 1
Also supplies power to instruments such as a remaining capacity meter (not shown).
【0020】上記各モジュール電池2の両極端子は、検
出走査回路5を介して検出ユニット6に接続されてい
る。検出走査回路5は、無接点リレー等からなる2個1
組の同時に動作するスイッチ5a,5bを20個のモジ
ュール電池2に対応させて20組設けた回路であり、検
出ユニット6から送られて来る走査信号によって、各組
のスイッチ5a,5bが順番に1回ずつ導通することに
より走査を行うようになっている。そして、各モジュー
ル電池2の正極端子は、それぞれが対応する各組のスイ
ッチ5aを介した後に1本にまとめられて検出走査回路
5の正極入力に接続されると共に、各モジュール電池2
の負極端子は、それぞれが対応する各組のスイッチ5b
を介した後に1本にまとめられて検出走査回路5の負極
入力に接続されている。従って、検出ユニット6は、検
出走査回路5に走査信号を送ることにより、組電池1の
各モジュール電池2の端子電圧を順次切り替えながら走
査し、数m秒程度の時間をかけて順番に入力することに
なる。また、組電池1からコントローラ3等に至る配電
線上には、この組電池1に流れる充放電電流を検出する
ための変流器7が設けられていて、検出ユニット6に
は、この変流器7の検出出力も入力されるようになって
いる。The bipolar terminals of each module battery 2 are connected to a detection unit 6 via a detection scanning circuit 5. The detection scanning circuit 5 is composed of two contactless relays 1
This is a circuit in which 20 sets of switches 5a and 5b operating at the same time are provided corresponding to 20 module batteries 2, and the switches 5a and 5b of each set are sequentially operated by a scanning signal sent from the detection unit 6. Scanning is performed by conducting the electric current once. The positive terminals of each module battery 2 are connected to the positive input of the detection scanning circuit 5 through the corresponding switches 5a of each set, and then connected to the positive input of the detection scanning circuit 5.
The negative terminal of the switch 5b corresponds to each set of switches 5b.
And is connected to the negative input of the detection scanning circuit 5 after being connected via the. Therefore, the detection unit 6 sends a scanning signal to the detection scanning circuit 5 to scan while sequentially switching the terminal voltage of each module battery 2 of the assembled battery 1 and sequentially inputs the data over a period of several milliseconds. It will be. A current transformer 7 for detecting a charging / discharging current flowing in the battery pack 1 is provided on a distribution line extending from the battery pack 1 to the controller 3 and the like. The detection output of 7 is also input.
【0021】検出ユニット6は、組電池1とは別のバッ
テリである補機8から電源の供給を受けて動作するマイ
クロコンピュータ等の制御演算回路である。この検出ユ
ニット6は、上記各モジュール電池2の端子電圧を測定
する測定部6aと、全てのモジュール電池2の端子電圧
の平均値又はその中の最高値を求めて基準電圧とする推
定部6bと、この基準電圧を各モジュール電池2の端子
電圧と比較して故障の判定を行う判定部6cとからな
る。The detection unit 6 is a control arithmetic circuit such as a microcomputer which operates by receiving power supply from an auxiliary machine 8 which is a battery different from the assembled battery 1. The detection unit 6 includes a measuring unit 6a that measures the terminal voltage of each of the module batteries 2 and an estimating unit 6b that obtains the average value of the terminal voltages of all the module batteries 2 or the highest value among them as the reference voltage. The reference voltage is compared with the terminal voltage of each module battery 2 to determine a failure.
【0022】測定部6aは、上記変流器7によって組電
池1の充放電電流を常時監視し、この充放電電流が所定
値以下となる状態が所定時間持続すると、検出走査回路
5に走査信号を送って走査を実行させる。また、この走
査が実行されると、各モジュール電池2の端子電圧をA
D変換器等を介して順次入力しRAM等の記憶装置に一
旦記憶させる。ここで、組電池1には、電気自動車の走
行中の加速時等にモータ4に供給するための放電電流が
流れると共に、エンジンブレーキを用いたときに回生制
動による充電電流が流れ込む。また、充電スタンド等で
充電を行った場合には、外部電源からの充電電流が流れ
込む。さらに、この組電池1には、残存容量計等の計器
類に電源を供給するために、常時mAオーダーの微弱な
放電電流が暗電流として流れている。測定部6aは、こ
れら走行中の加速時等や充電中の充放電電流よりも十分
に低い電流値であり、かつ、暗電流として流れる微弱な
放電電流よりは十分に高い電流値となるように所定値を
設定し、組電池1の充放電電流がこの所定値を超えるこ
とによって、主たる充電若しくは放電又は充放電が行わ
れていることを検出する。そして、組電池1の充放電電
流が所定値以下となり微弱な暗電流のみが流れるように
なるとタイマを起動し、充放電電流がこの所定値を超え
ることなく所定時間が経過すると、検出走査回路5に走
査信号を送ることになる。この所定時間は、正常な単電
池2aが容量等の相違によって充放電時に端子電圧にバ
ラツキが生じた場合にも、これらの端子電圧が安定した
ほぼ均一な電圧に達するまでの十分な時間に設定され
る。例えばニッケル−カドミウム電池やニッケル−金属
水素化物電池等の場合には、端子電圧が安定するまでに
2分間程度を要するので、本実施例ではこの所定時間を
2分以上の時間に設定する。The measuring unit 6a constantly monitors the charging / discharging current of the battery pack 1 by the current transformer 7, and when the state in which the charging / discharging current is below a predetermined value continues for a predetermined time, a scanning signal is sent to the detection scanning circuit 5. To perform a scan. When this scanning is executed, the terminal voltage of each module battery 2 is changed to A
The data are sequentially input via a D converter or the like and temporarily stored in a storage device such as a RAM. Here, a discharge current to be supplied to the motor 4 at the time of acceleration during traveling of the electric vehicle, and a charging current due to regenerative braking flow into the assembled battery 1 when engine braking is used. Further, when charging is performed at a charging stand or the like, a charging current from an external power source flows in. Further, in the battery pack 1, a weak discharge current of the order of mA always flows as a dark current in order to supply power to meters such as a remaining capacity meter. The measuring unit 6a has a current value that is sufficiently lower than the charging / discharging current during acceleration such as during traveling or during charging, and that is sufficiently higher than the weak discharge current that flows as dark current. When a predetermined value is set and the charging / discharging current of the assembled battery 1 exceeds the predetermined value, it is detected that main charging or discharging or charging / discharging is being performed. Then, when the charging / discharging current of the assembled battery 1 becomes less than or equal to a predetermined value and only a weak dark current flows, a timer is started, and when a predetermined time elapses without the charging / discharging current exceeding this predetermined value, the detection scanning circuit 5 To send a scan signal to. This predetermined time is set to a sufficient time until the terminal voltages reach a stable and substantially uniform voltage even when the terminal voltages of the normal cell 2a vary due to differences in capacity and the like during charging and discharging. To be done. For example, in the case of a nickel-cadmium battery or a nickel-metal hydride battery, it takes about 2 minutes for the terminal voltage to stabilize, so in this embodiment, this predetermined time is set to 2 minutes or longer.
【0023】推定部6bは、測定部6aが記憶した全て
のモジュール電池2の端子電圧を読み出し、これらの平
均値又は最大値を求めると共に、この平均値又は最大値
を基準電圧としてRAM等の記憶装置に一旦記憶させ
る。モジュール電池2の安定時の端子電圧は、各単電池
2aが全て正常である場合にも、環境や使用条件に応じ
て変動する。そこで、推定部6bは、このように測定部
6aが測定した実際の端子電圧に基づいて演算を行うこ
とにより、対象となる組電池1と同じ環境かつ同じ使用
条件においた場合の正常な単電池2aのみからなるモジ
ュール電池2の端子電圧を基準電圧として推定してい
る。従って、この基準電圧は、正常なモジュール電池2
の端子電圧として推定するものであれば、平均値(相加
平均又は算術平均)や最大値に限らず、例えば中央値や
最小値を除外した平均値等のように他の演算によって求
めたものであってもよい。The estimating unit 6b reads the terminal voltages of all the module batteries 2 stored by the measuring unit 6a, obtains an average value or a maximum value thereof, and stores the average value or the maximum value as a reference voltage in a RAM or the like. Once stored in the device. The stable terminal voltage of the module battery 2 varies depending on the environment and use conditions even when all the unit cells 2a are normal. Therefore, the estimation unit 6b performs a calculation based on the actual terminal voltage measured by the measurement unit 6a in this manner, and thus a normal single battery under the same environment and the same use condition as the target assembled battery 1 The terminal voltage of the module battery 2 including only 2a is estimated as the reference voltage. Therefore, this reference voltage is the normal module battery 2
If it is to be estimated as the terminal voltage of, it is not limited to the average value (arithmetic average or arithmetic average) or the maximum value, but it is obtained by other calculation such as the average value excluding the median or the minimum value. May be
【0024】判定部6cは、測定部6aが記憶した各モ
ジュール電池2の端子電圧を順次読み出すと共に、この
端子電圧と推定部6bが記憶した基準電圧との差を求
め、これらの差が所定値を超えたかどうかをそれぞれ判
断する。そして、端子電圧と基準電圧との差が所定値を
超えたと判断した場合には、その端子電圧のモジュール
電池2に含まれる単電池2aに故障が発生したと判定し
て、例えば図示しない表示装置等に警告を発する。ニッ
ケル−カドミウム電池やニッケル−金属水素化物電池等
の場合には、単電池2aの定格電圧が1.2Vであるた
め、所定値は1V程度とするのが適当である。The determination unit 6c sequentially reads the terminal voltage of each module battery 2 stored in the measurement unit 6a, and calculates the difference between this terminal voltage and the reference voltage stored in the estimation unit 6b. It is judged whether or not each exceeds. When it is determined that the difference between the terminal voltage and the reference voltage exceeds a predetermined value, it is determined that the unit cell 2a included in the module battery 2 having the terminal voltage has a failure, and for example, a display device (not shown) Issue a warning to etc. In the case of a nickel-cadmium battery, a nickel-metal hydride battery, or the like, the rated value of the unit cell 2a is 1.2V, so it is appropriate to set the predetermined value to about 1V.
【0025】上記組電池1を構成する正常な単電池2a
の主たる放電時の端子電圧の変化を図2に示す。ただ
し、ここでは4個の単電池A〜Dの端子電圧の変化を示
している。ほとんど劣化が生じていない3個の単電池A
〜Cは、放電時に残存容量の減少に伴って端子電圧が徐
々に低下する。この際、端子電圧の低下の程度には多少
の固体差が生じるが、その差はわずかである。そして、
放電が終了すると端子電圧が徐々に上昇し、2分間が経
過すると全ての単電池A〜Cが定格電圧である1.2V
までほぼ回復して安定する。しかし、ある程度劣化が進
んだ単電池Dの場合には、電池容量が減少しているため
に、放電時に残存容量がほとんどなくなると急激に端子
電圧が低下する。もっとも、放電が終了すると、この端
子電圧も急速に上昇して、2分経過後には単電池A〜C
と同じ1.2Vまでほぼ回復して安定する。また、主た
る放電の終了後に上記暗電流が流れ続ける場合にも、こ
の暗電流はmAオーダーの微弱な放電電流にすぎないの
で、単電池A〜Eの端子電圧は同様に2分経過後にはほ
ぼ安定する。Normal cell 2a constituting the above-mentioned assembled battery 1
FIG. 2 shows the changes in the terminal voltage during the main discharge of. However, here, changes in the terminal voltages of the four unit cells A to D are shown. 3 cells A with almost no deterioration
In C to C, the terminal voltage gradually decreases as the remaining capacity decreases during discharge. At this time, although there is some individual difference in the degree of decrease in the terminal voltage, the difference is slight. And
After discharging, the terminal voltage gradually rises, and after 2 minutes, all the cells A to C have a rated voltage of 1.2V.
Almost recovers and stabilizes. However, in the case of the unit cell D that has deteriorated to some extent, the battery capacity has decreased, and therefore the terminal voltage sharply decreases when the remaining capacity almost disappears during discharging. However, when the discharge is completed, this terminal voltage also rises rapidly, and after 2 minutes, the unit cells A to C are discharged.
Same as 1.2V, it recovers and stabilizes. In addition, even when the dark current continues to flow after the end of the main discharge, the dark current is only a weak discharge current on the order of mA, so that the terminal voltages of the unit cells A to E are almost the same after 2 minutes. Stabilize.
【0026】従って、上記正常な単電池2aを10個直
列接続したモジュール電池2も、図3に示すように、主
たる放電時には端子電圧が低下するが、放電が終了する
とこの端子電圧が上昇して定格電圧である12V程度ま
で回復し安定する。ただし、ここでも4個のモジュール
電池E〜Hの端子電圧の変化を示している。これら4個
のモジュール電池E〜Hの放電時の端子電圧の低下の程
度は、それぞれのモジュール電池2を構成する各単電池
2aの劣化の進み具合に応じて相違する。そして、ここ
では3個のモジュール電池E〜Gの端子電圧は徐々に低
下するが、1個のモジュール電池Hの端子電圧は急激に
低下する場合を示す。従って、放電終了時には、モジュ
ール電池Eとモジュール電池Hの端子電圧の差は2V近
くになり、その少し後でも1V以上の差が生じている。
しかし、このモジュール電池Hの端子電圧は、放電が終
了してから2分経過後には、他のモジュール電池E〜G
と同じ12Vまでほぼ回復し、これらの間にほとんど差
がなくなる。Therefore, also in the module battery 2 in which ten normal cells 2a are connected in series, as shown in FIG. 3, the terminal voltage decreases at the time of the main discharge, but the terminal voltage rises at the end of the discharge. It recovers and stabilizes up to the rated voltage of 12V. However, here also, the changes in the terminal voltages of the four module batteries E to H are shown. The degree of reduction in the terminal voltage during discharge of these four module batteries E to H differs depending on the progress of deterioration of each unit cell 2a forming each module battery 2. In addition, here, the terminal voltage of the three module batteries E to G gradually decreases, but the terminal voltage of the one module battery H rapidly decreases. Therefore, at the end of discharging, the difference between the terminal voltages of the module battery E and the module battery H is close to 2V, and even slightly after that, there is a difference of 1V or more.
However, the terminal voltage of this module battery H is not equal to that of the other module batteries E to G after 2 minutes have elapsed from the end of discharging.
It recovers up to 12V, which is the same as, and there is almost no difference between them.
【0027】ところが、単電池2aに過放電が発生する
と、図4に示すように、端子電圧が主たる放電時に負電
圧である−1V近くまで低下し、放電が終了すると0V
程度まではすぐに回復するが、それ以上の電圧への回復
が遅くなる。即ち、過放電が発生した単電池2aの端子
電圧は、放電が終了してから2分経過以降も正常な単電
池2aの端子電圧と1V以上の差を有することになる。However, when over-discharging occurs in the unit cell 2a, as shown in FIG. 4, the terminal voltage drops to a negative voltage of -1V at the time of main discharge, and becomes 0V when the discharge ends.
It recovers to a certain extent immediately, but recovery to a higher voltage becomes slower. That is, the terminal voltage of the unit cell 2a in which over-discharging has occurred has a difference of 1 V or more from the normal terminal voltage of the unit cell 2a even after 2 minutes have elapsed from the end of discharging.
【0028】また、単電池2a内部の正負極間にセパレ
ータを介して微小な短絡が生じる微小短絡が発生する
と、図5に示すように、主たる放電時には大きな放電電
流が流れるために端子電圧が正常な単電池2aとほぼ同
様の特性となるが、放電終了後には内部の短絡電流によ
ってこの端子電圧が徐々に0V付近まで低下する。そし
て、このように微小短絡が発生した単電池2aは、主た
る充電時にも、図6に示すように、大きな充電電流が流
れることにより正常な単電池2aと同様に満充電の端子
電圧が1.5V程度まで達するが、充電終了後には、内
部の短絡電流によってこの端子電圧が徐々に0V付近ま
で低下する。即ち、微小短絡の場合には、充放電が終了
してから2分以上の時間が経過すると、正常な単電池2
aの端子電圧との差が1V以上に達するようになる。When a minute short circuit occurs between the positive and negative electrodes inside the unit cell 2a via the separator, as shown in FIG. 5, a large discharge current flows during the main discharge, so that the terminal voltage is normal. However, the terminal voltage gradually decreases to around 0V due to an internal short-circuit current after the end of discharge. As shown in FIG. 6, the unit cell 2a having such a micro short circuit has a fully charged terminal voltage of 1. when the main cell is charged, as shown in FIG. Although it reaches about 5V, the terminal voltage gradually decreases to around 0V due to an internal short-circuit current after the end of charging. That is, in the case of a micro short circuit, when a time of 2 minutes or more elapses after the end of charging / discharging, the normal cell 2
The difference from the terminal voltage of a reaches 1 V or more.
【0029】さらに、単電池2aの内部の正負極間が完
全に短絡するデッドショートが発生すると、図7に示す
ように、主たる放電時には分極により端子電圧が負電圧
である−1V以上となり、放電終了後は直ちに0Vに戻
る。そして、このようなデッドショートが発生した単電
池2aは、主たる充電時とこの充電後にも、図8に示す
ように、端子電圧が0V程度となる。即ち、デッドショ
ートの場合には、充放電が終了して2分経過以降も正常
な単電池2aの端子電圧と1V以上の差を有することに
なる。Furthermore, when a dead short circuit occurs in which the positive and negative electrodes inside the unit cell 2a are completely short-circuited, as shown in FIG. 7, the terminal voltage becomes negative voltage -1 V or more due to polarization during the main discharge, and the discharge occurs. Immediately after completion, it returns to 0V. Then, as shown in FIG. 8, the terminal voltage of the unit cell 2a in which such a dead short has occurred is approximately 0 V both during and after the main charging. That is, in the case of a dead short circuit, there is a difference of 1 V or more from the normal terminal voltage of the unit cell 2a even after 2 minutes have elapsed since the end of charging / discharging.
【0030】この結果、各モジュール電池2の端子電圧
は、全ての単電池2aが正常である場合にも、主たる放
電時やその直後には、各単電池2aの劣化の程度の相違
によって1V以上の電圧のバラツキが発生する可能性が
ある。しかし、正常な単電池2aのみからなるモジュー
ル電池2の場合には、放電が終了してから2分以上の時
間が経過すると、端子電圧が安定してほとんどバラツキ
がなくなる。これに対して、過放電やデッドショートが
発生した単電池2aを含むモジュール電池2は、放電が
終了してから2分以上の時間が経過しても端子電圧が回
復せず、正常な単電池2aのみのモジュール電池2の端
子電圧よりも1V以上低い電圧となる。また、微小短絡
が発生した単電池2aを含むモジュール電池2の端子電
圧は、主たる放電時やその直後及び主たる充電時やその
直後には、正常な単電池2aのみのモジュール電池2の
端子電圧とほとんど差が生じないが、充放電の終了から
2分以上の十分な時間が経過すれば、正常な単電池2a
のみのモジュール電池2の端子電圧よりも1V以上低い
電圧となる。As a result, the terminal voltage of each module battery 2 is 1 V or more depending on the degree of deterioration of each battery cell 2a during or immediately after the main discharge even when all the battery cells 2a are normal. The voltage may vary. However, in the case of the module battery 2 including only the normal unit cells 2a, the terminal voltage becomes stable and there is almost no variation when a time of 2 minutes or more has elapsed after the end of discharging. On the other hand, in the module battery 2 including the unit cell 2a in which over-discharging or dead short circuit has occurred, the terminal voltage does not recover even after a lapse of time of 2 minutes or more after the end of discharging, and the normal unit cell The voltage is 1 V or more lower than the terminal voltage of the module battery 2 having only 2a. In addition, the terminal voltage of the module battery 2 including the unit cell 2a in which the micro short circuit has occurred is the same as the terminal voltage of the normal unit battery 2a only during or immediately after the main discharge and during or immediately after the main charge. There is almost no difference, but if a sufficient time of 2 minutes or more has elapsed from the end of charging / discharging, the normal cell 2a
The voltage becomes 1 V or more lower than the terminal voltage of the module battery 2 only.
【0031】そして、本実施例の故障検出装置は、検出
ユニット6の測定部6aが主たる充放電が終了して2分
以上の時間が経過した後に各モジュール電池2の端子電
圧を測定し、この端子電圧と基準電圧との差が1Vを超
えた場合に故障と判定するので、各単電池2aの劣化の
程度に影響されることなく、過放電や微小短絡又はデッ
ドショートによる故障が発生した単電池2aを含むモジ
ュール電池2を確実に検出することができるようにな
る。これに対して、例えば主たる放電が終了した直後に
各モジュール電池2の端子電圧を検出した場合には、劣
化の進んだ正常な単電池2aを含むモジュール電池2を
故障と誤判定するおそれがあり、また、微小短絡が発生
した単電池2aの故障を見逃す場合が生じる。The failure detecting apparatus of the present embodiment measures the terminal voltage of each module battery 2 after 2 minutes or more has elapsed since the main charging / discharging of the measuring unit 6a of the detecting unit 6 was completed. When the difference between the terminal voltage and the reference voltage exceeds 1 V, it is determined as a failure. Therefore, the failure due to over-discharge, a minute short circuit or a dead short circuit is generated without being affected by the degree of deterioration of each cell 2a. The module battery 2 including the battery 2a can be reliably detected. On the other hand, for example, when the terminal voltage of each module battery 2 is detected immediately after the main discharge is completed, the module battery 2 including the deteriorated normal cell 2a may be erroneously determined as a failure. In addition, there may occur a case where a failure of the unit cell 2a in which a micro short circuit has occurred is missed.
【0032】20個の各モジュール電池2の端子電圧を
放電終了直後に測定した場合と放電終了から2分後に測
定した場合の各電圧値の相違の具体例を表1と図9に示
す。Table 1 and FIG. 9 show specific examples of the difference between the respective voltage values when the terminal voltage of each of the 20 module batteries 2 is measured immediately after the end of discharge and when it is measured 2 minutes after the end of discharge.
【表1】この場合、放電終了直後には、各モジュール電
池2の端子電圧に大きなバラツキが生じ、これらの平均
値である10.0Vに対して、モジュール番号が3番と
5番と13番のモジュール電池2の端子電圧が1Vの差
を生じると共に、これらの最大値である11.0Vに対
しても多くのモジュール電池2の端子電圧が1V以上の
差を有することになる。しかし、放電終了から2分後に
は、ほとんどのモジュール電池2の端子電圧が12.0
V前後に収まり、モジュール番号が5番のモジュール電
池2の端子電圧である10.8Vのみが、平均値である
11.9Vや最大値である12.1Vに対して1V以上
の差となる。従って、本実施例の故障検出装置を用いた
場合には、このモジュール番号が5番のモジュール電池
2のみを確実に故障と判定することができる。[Table 1] In this case, immediately after the end of discharge, the terminal voltage of each module battery 2 greatly varies, and the module number is 3, 5, and 13 against the average value of 10.0 V. The terminal voltage of the module battery 2 of 1 has a difference of 1V, and the terminal voltage of many module batteries 2 has a difference of 1V or more with respect to the maximum value of 11.0V. However, the terminal voltage of most of the module batteries 2 is 12.0 after 2 minutes from the end of discharge.
Only 10.8 V, which is the terminal voltage of the module battery 2 having a module number of 5 and is around V, has a difference of 1 V or more with respect to the average value of 11.9 V and the maximum value of 12.1 V. Therefore, when the failure detection device of the present embodiment is used, it is possible to reliably determine that only the module battery 2 having the module number 5 is in failure.
【0033】また、20個の各モジュール電池2の端子
電圧を充電終了直後に測定した場合と充電終了から2分
後に測定した場合の各電圧値の相違の具体例を表2と図
10に示す。Table 2 and FIG. 10 show specific examples of the difference between the voltage values when the terminal voltage of each of the 20 module batteries 2 is measured immediately after the end of charging and when it is measured 2 minutes after the end of charging. .
【表2】この場合、充電終了直後には、各モジュール電
池2の端子電圧に大きなバラツキが生じ、これらの平均
値である15.0Vに対して、モジュール番号が4番と
5番と10番のモジュール電池2の端子電圧が1V以上
の差を有すると共に、これらの最大値である16.0V
に対しても多くのモジュール電池2の端子電圧が1V以
上の差を有することになる。しかし、充電終了から2分
後には、ほとんどのモジュール電池2の端子電圧が1
4.0V前後に収まり、モジュール番号が5番のモジュ
ール電池2の端子電圧である12.6Vのみが、平均値
である13.9Vや最大値である14.0Vに対して1
V以上の差となる。従って、この場合にも、本実施例の
故障検出装置を用いた場合には、モジュール番号が5番
のモジュール電池2のみを確実に故障と判定することが
できる。[Table 2] In this case, immediately after the end of charging, the terminal voltage of each module battery 2 greatly varies, and the module number is 4, 5, and 10 against the average value of 15.0V. The terminal voltage of the module battery 2 of 1 has a difference of 1 V or more, and the maximum value of these is 16.0 V.
However, the terminal voltages of many module batteries 2 have a difference of 1 V or more. However, the terminal voltage of most of the module batteries 2 becomes 1 after 2 minutes from the end of charging.
Only 12.6V, which is the terminal voltage of the module battery 2 having a module number of 5 and is around 4.0V, is 1 against the average value of 13.9V and the maximum value of 14.0V.
The difference is V or more. Therefore, also in this case, when the failure detection device of the present embodiment is used, it is possible to reliably determine that only the module battery 2 having the module number 5 is in failure.
【0034】上記のようにしていずれかのモジュール電
池2が故障であると判定された場合には、このモジュー
ル電池2を正常なものに交換するか、又は、このモジュ
ール電池2の故障が発生した単電池2aのみを交換す
る。When any of the module batteries 2 is determined to be defective as described above, the module battery 2 is replaced with a normal one, or the module battery 2 has failed. Only the unit cell 2a is replaced.
【0035】以上説明したように本実施例の故障検出装
置によれば、主たる充放電が終了してから2分以上の時
間が経過してから各モジュール電池2の端子電圧を測定
するので、各単電池2aの劣化の程度に影響されること
なく、故障の発生した単電池2aを含むモジュール電池
2のみを確実に検出することができるようになる。As described above, according to the failure detecting apparatus of the present embodiment, the terminal voltage of each module battery 2 is measured after a lapse of 2 minutes or more after the main charging / discharging is completed, and therefore, Only the module battery 2 including the failed unit cell 2a can be reliably detected without being affected by the degree of deterioration of the unit cell 2a.
【0036】また、検出ユニット6の測定部6aは、全
てのモジュール電池2の端子電圧を測定する際に、検出
走査回路5による走査に数m秒程度の時間を要するが、
主たる充放電の電流が流れなくなった安定した時期にこ
の測定を行うので、各モジュール電池2の測定のタイミ
ングが多少ずれたとしても、この測定条件が大きく相違
して誤判定を生じるようなおそれもなくなる。The measuring unit 6a of the detection unit 6 requires a time of about several milliseconds for scanning by the detection scanning circuit 5 when measuring the terminal voltages of all the module batteries 2.
Since this measurement is performed at a stable time when the main charging / discharging current stops flowing, even if the measurement timing of each module battery 2 is slightly deviated, there is a possibility that an erroneous determination may occur due to a large difference in the measurement conditions. Disappear.
【0037】なお、本実施例では、電気自動車に用いる
組電池1の故障検出装置について説明したが、他の種々
の機器に用いる組電池についても、本発明を同様に実施
することができる。また、本実施例では、単電池2aと
してニッケル−カドミウム電池を用いたが、ニッケル−
金属水素化物電池やその他の各種2次電池を用いること
もできる。さらに、本実施例では、組電池1を20個の
モジュール電池2を直列接続したものとし、各モジュー
ル電池2を10個の単電池2aを直列接続したものとし
たが、複数の単電池を直列接続したモジュール電池をさ
らに複数個組み合わせて接続したものであれば、いずれ
の構成の組電池についても同様に実施することができ
る。しかも、複数のモジュール電池を並列接続又は直並
列接続することにより組電池を構成することもできる。
また、本実施例では、各モジュール電池2の端子電圧を
検出走査回路5により走査して順番に測定したが、これ
らの端子電圧を同時に測定するように構成することも可
能である。In the present embodiment, the failure detecting device for the assembled battery 1 used in the electric vehicle has been described, but the present invention can be similarly applied to assembled batteries used in various other devices. In addition, in the present embodiment, a nickel-cadmium battery was used as the unit cell 2a.
A metal hydride battery or other various secondary batteries can also be used. Further, in the present embodiment, the assembled battery 1 is configured by connecting 20 module batteries 2 in series, and each module battery 2 is configured by connecting 10 unit cells 2a in series. However, a plurality of unit cells are connected in series. As long as a plurality of connected module batteries are combined and connected, the assembled battery of any configuration can be similarly implemented. Moreover, an assembled battery can be constructed by connecting a plurality of module batteries in parallel or in series-parallel.
Further, in the present embodiment, the terminal voltage of each module battery 2 is scanned by the detection scanning circuit 5 and measured in order, but it is also possible to configure so that these terminal voltages are measured simultaneously.
【0038】[0038]
【発明の効果】以上の説明から明らかなように、この発
明の組電池の故障検出装置によれば、充放電が終了して
から所定時間が経過し各単電池の端子電圧が安定した後
にモジュール電池の端子電圧を測定するので、単電池の
劣化による充放電時の端子電圧のバラツキに影響される
ことなく、過放電等の故障による端子電圧の異常のみを
確実に検出することができるようになる。As is apparent from the above description, according to the battery pack failure detection apparatus of the present invention, the module is provided after a predetermined time has elapsed after the end of charging / discharging and the terminal voltage of each cell has stabilized. Since the terminal voltage of the battery is measured, it is possible to reliably detect only the abnormal terminal voltage due to a failure such as over-discharging without being affected by the variations in the terminal voltage during charging and discharging due to deterioration of the unit cell. Become.
【図1】本発明の一実施例を示すものであって、組電池
の故障検出装置の構成を示すブロック図である。FIG. 1 shows an embodiment of the present invention and is a block diagram showing a configuration of a battery pack failure detection device.
【図2】本発明の一実施例を示すものであって、放電時
における正常な単電池の端子電圧の変化を示すタイムチ
ャートである。FIG. 2 shows an example of the present invention and is a time chart showing changes in the terminal voltage of a normal cell during discharging.
【図3】本発明の一実施例を示すものであって、放電時
における正常なモジュール電池の端子電圧の変化を示す
タイムチャートである。FIG. 3 shows an embodiment of the present invention and is a time chart showing changes in the terminal voltage of a normal module battery during discharging.
【図4】本発明の一実施例を示すものであって、放電時
における過放電が発生した単電池の端子電圧の変化を示
すタイムチャートである。FIG. 4 shows an example of the present invention and is a time chart showing changes in the terminal voltage of a single cell in which over-discharge has occurred during discharging.
【図5】本発明の一実施例を示すものであって、放電時
における微小短絡が発生した単電池の端子電圧の変化を
示すタイムチャートである。FIG. 5 is a time chart showing an embodiment of the present invention and showing a change in terminal voltage of a single cell in which a minute short circuit has occurred during discharging.
【図6】本発明の一実施例を示すものであって、充電時
における微小短絡が発生した単電池の端子電圧の変化を
示すタイムチャートである。FIG. 6 is a time chart showing an embodiment of the present invention and showing a change in terminal voltage of a unit cell in which a micro short circuit occurs during charging.
【図7】本発明の一実施例を示すものであって、放電時
におけるデッドショートが発生した単電池の端子電圧の
変化を示すタイムチャートである。FIG. 7 shows an example of the present invention and is a time chart showing a change in terminal voltage of a unit cell in which a dead short circuit occurs during discharging.
【図8】本発明の一実施例を示すものであって、充電時
におけるデッドショートが発生した単電池の端子電圧の
変化を示すタイムチャートである。FIG. 8 shows an example of the present invention and is a time chart showing a change in terminal voltage of a single cell in which a dead short circuit occurs during charging.
【図9】本発明の一実施例を示すものであって、放電時
における各モジュール電池の端子電圧の相違を示す図で
ある。FIG. 9 is a diagram showing an example of the present invention and is a diagram showing a difference in terminal voltage of each module battery during discharging.
【図10】本発明の一実施例を示すものであって、充電
時における各モジュール電池の端子電圧の相違を示す図
である。FIG. 10 is a diagram showing an embodiment of the present invention and is a diagram showing a difference in terminal voltage of each module battery during charging.
1 組電池 2 モジュール電池 2a 単電池 5 検出走査回路 6 検出ユニット 6a 測定部 6b 推定部 6c 判定部 1 assembled battery 2 module battery 2a single battery 5 detection scanning circuit 6 detection unit 6a measurement unit 6b estimation unit 6c determination unit
Claims (2)
電池をさらに複数個組み合わせて接続した組電池におい
て、 この組電池の主たる充電及び/又は放電が終了してから
所定時間経過後における各モジュール電池の端子電圧を
測定する端子電圧測定手段と、 この端子電圧測定手段が測定した各モジュール電池の端
子電圧をパラメータとして演算を行うことにより基準電
圧を推定する基準電圧推定手段と、 この基準電圧推定手段が推定した基準電圧と端子電圧測
定手段が測定した各モジュール電池の端子電圧との差を
それぞれ演算し、これらの差が所定値を超えた場合に単
電池の故障と判定する故障判定手段とを備えたことを特
徴とする組電池の故障検出装置。1. An assembled battery in which a plurality of module batteries in which a plurality of unit cells are connected in series are further combined and connected, and each module battery after a lapse of a predetermined time after main charging and / or discharging of the assembled battery is completed. And a reference voltage estimating means for estimating a reference voltage by performing calculation using the terminal voltage of each module battery measured by the terminal voltage measuring means as a parameter, and the reference voltage estimating means. The difference between the reference voltage estimated by the terminal voltage and the terminal voltage of each module battery measured by the terminal voltage measuring means is respectively calculated, and failure determination means for determining a failure of the single battery when these differences exceed a predetermined value. A battery pack failure detection device characterized by being provided.
ッケル−金属水素化物電池からなる単電池を直列接続し
たモジュール電池をさらに複数個組み合わせて接続した
組電池において、この組電池の主たる充電及び/又は放
電が終了してから2分間以上の所定時間経過後における
各モジュール電池の端子電圧を測定する端子電圧測定手
段と、 この端子電圧測定手段が測定した各モジュール電池の端
子電圧の最大値又は平均値を基準電圧として推定する基
準電圧推定手段と、 この基準電圧推定手段が推定した基準電圧と端子電圧測
定手段が測定した各モジュール電池の端子電圧との差を
それぞれ演算し、これらの差が1Vを超えた場合に単電
池の故障と判定する故障判定手段とを備えたことを特徴
とする組電池の故障検出装置。2. An assembled battery in which a plurality of module batteries in which a plurality of nickel-cadmium batteries or nickel-metal hydride batteries are connected in series are further combined and connected, and the main charging and / or discharging of the assembled battery is performed. The terminal voltage measuring means for measuring the terminal voltage of each module battery after a lapse of a predetermined time of 2 minutes or more from the completion of the above, and the maximum or average value of the terminal voltage of each module battery measured by this terminal voltage measuring means Reference voltage estimating means for estimating the reference voltage, and a difference between the reference voltage estimated by the reference voltage estimating means and the terminal voltage of each module battery measured by the terminal voltage measuring means are respectively calculated, and the difference exceeds 1V. A failure detection device for an assembled battery, comprising: a failure determination means for determining a failure of a single battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7183393A JPH0915311A (en) | 1995-06-26 | 1995-06-26 | Failure detection device for battery set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7183393A JPH0915311A (en) | 1995-06-26 | 1995-06-26 | Failure detection device for battery set |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0915311A true JPH0915311A (en) | 1997-01-17 |
Family
ID=16134998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7183393A Pending JPH0915311A (en) | 1995-06-26 | 1995-06-26 | Failure detection device for battery set |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0915311A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999045402A1 (en) * | 1998-03-06 | 1999-09-10 | Matsushita Electric Industrial Co., Ltd. | Voltage measuring instrument with flying capacitor |
WO2000016108A1 (en) * | 1998-09-11 | 2000-03-23 | Matsushita Electric Industrial Co., Ltd. | Battery voltage detector |
KR20030033463A (en) * | 2001-10-23 | 2003-05-01 | 현대자동차주식회사 | Method of checking battery module fail for electric vehicles |
WO2003041210A1 (en) * | 2001-11-09 | 2003-05-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for judging state of assembled battery |
WO2005017545A1 (en) * | 2003-08-14 | 2005-02-24 | Panasonic Ev Energy Co., Ltd. | Secondary battery voltage correcting method and unit and battery residual capacity estimating method and unit |
JP2009170397A (en) * | 2007-12-18 | 2009-07-30 | Mitsumi Electric Co Ltd | Battery pack and portable device using the same, internal short-circuit detection method for the same, and internal short-circuit detection program |
JP2012088097A (en) * | 2010-10-18 | 2012-05-10 | Ntt Facilities Inc | Battery pack management device, battery pack management method, and battery pack system |
DE112011104434T5 (en) | 2010-12-16 | 2013-09-12 | Honda Motor Co., Ltd. | Battery control device and battery control method |
JP2013185861A (en) * | 2012-03-06 | 2013-09-19 | Hioki Ee Corp | Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery |
JP2014072992A (en) * | 2012-09-28 | 2014-04-21 | Mitsubishi Motors Corp | Chargeability determination device of battery |
JP5930342B2 (en) * | 2012-07-27 | 2016-06-08 | トヨタ自動車株式会社 | Secondary battery short circuit inspection method |
EP3040732A4 (en) * | 2013-08-30 | 2017-06-21 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
EP3040733A4 (en) * | 2013-08-30 | 2017-06-28 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
WO2019176602A1 (en) * | 2018-03-16 | 2019-09-19 | 株式会社Gsユアサ | Inspection method, inspection device, learning model and production method for power storage element unit |
JP2020532737A (en) * | 2017-11-13 | 2020-11-12 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal device and its battery safety monitoring method and monitoring system |
JP2022522342A (en) * | 2019-11-05 | 2022-04-18 | エルジー エナジー ソリューション リミテッド | Battery diagnostic device, battery diagnostic method and energy storage system |
-
1995
- 1995-06-26 JP JP7183393A patent/JPH0915311A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999045402A1 (en) * | 1998-03-06 | 1999-09-10 | Matsushita Electric Industrial Co., Ltd. | Voltage measuring instrument with flying capacitor |
WO2000016108A1 (en) * | 1998-09-11 | 2000-03-23 | Matsushita Electric Industrial Co., Ltd. | Battery voltage detector |
US6462510B1 (en) | 1998-09-11 | 2002-10-08 | Matsushita Electric Industrial Co., Ltd. | Battery voltage detector |
KR20030033463A (en) * | 2001-10-23 | 2003-05-01 | 현대자동차주식회사 | Method of checking battery module fail for electric vehicles |
WO2003041210A1 (en) * | 2001-11-09 | 2003-05-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for judging state of assembled battery |
US7129707B2 (en) | 2001-11-09 | 2006-10-31 | Toyota Jidosha Kabushiki Kaisha | Apparatus for judging state of assembled battery |
WO2005017545A1 (en) * | 2003-08-14 | 2005-02-24 | Panasonic Ev Energy Co., Ltd. | Secondary battery voltage correcting method and unit and battery residual capacity estimating method and unit |
US7528575B2 (en) | 2003-08-14 | 2009-05-05 | Panasonic Ev Energy Co., Ltd. | Method and apparatus for correcting voltage of secondary battery, and method and apparatus for estimating state of charge of secondary battery |
JP2009170397A (en) * | 2007-12-18 | 2009-07-30 | Mitsumi Electric Co Ltd | Battery pack and portable device using the same, internal short-circuit detection method for the same, and internal short-circuit detection program |
JP2012088097A (en) * | 2010-10-18 | 2012-05-10 | Ntt Facilities Inc | Battery pack management device, battery pack management method, and battery pack system |
DE112011104434T5 (en) | 2010-12-16 | 2013-09-12 | Honda Motor Co., Ltd. | Battery control device and battery control method |
US9438059B2 (en) | 2010-12-16 | 2016-09-06 | Honda Motor Co., Ltd. | Battery control apparatus and battery control method |
JP2013185861A (en) * | 2012-03-06 | 2013-09-19 | Hioki Ee Corp | Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery |
JP5930342B2 (en) * | 2012-07-27 | 2016-06-08 | トヨタ自動車株式会社 | Secondary battery short circuit inspection method |
JP2014072992A (en) * | 2012-09-28 | 2014-04-21 | Mitsubishi Motors Corp | Chargeability determination device of battery |
EP3040732A4 (en) * | 2013-08-30 | 2017-06-21 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
EP3040733A4 (en) * | 2013-08-30 | 2017-06-28 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
US10203377B2 (en) | 2013-08-30 | 2019-02-12 | Ngk Insultors, Ltd. | Device, method, and non-transitory recording medium storing program for specifying abnormality-occurrence area of secondary battery system |
JP2020532737A (en) * | 2017-11-13 | 2020-11-12 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal device and its battery safety monitoring method and monitoring system |
US11204393B2 (en) | 2017-11-13 | 2021-12-21 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal device, method for monitoring battery safety therefor |
WO2019176602A1 (en) * | 2018-03-16 | 2019-09-19 | 株式会社Gsユアサ | Inspection method, inspection device, learning model and production method for power storage element unit |
JP2022522342A (en) * | 2019-11-05 | 2022-04-18 | エルジー エナジー ソリューション リミテッド | Battery diagnostic device, battery diagnostic method and energy storage system |
US11796599B2 (en) | 2019-11-05 | 2023-10-24 | Lg Energy Solution, Ltd. | Battery diagnosis apparatus, battery diagnosis method and energy storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1837944B1 (en) | Electric power supply control apparatus | |
US7355411B2 (en) | Method and apparatus for estimating state of charge of secondary battery | |
EP3933415B1 (en) | Apparatus for estimating insulation resistance and battery system using the same | |
US7800345B2 (en) | Battery management system and method of operating same | |
US9252624B2 (en) | Battery control device and battery system | |
JP5092812B2 (en) | Battery monitoring device and failure diagnosis method | |
EP3958006B1 (en) | Battery diagnosis apparatus and method | |
JP5274110B2 (en) | Power supply for vehicle | |
JPH0915311A (en) | Failure detection device for battery set | |
JP6382453B2 (en) | Battery monitoring device | |
KR20020064998A (en) | System and method for determining battery state-of-health | |
JP7371203B2 (en) | Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method | |
JP2002033135A (en) | Battery pack diagnostic device | |
JP2022537796A (en) | Battery diagnostic device and method | |
JP2018136314A (en) | Fault diagnosis device, power storage device, and fault diagnosis method | |
JP2005160233A (en) | Battery pack and cell battery pack | |
EP3876384A1 (en) | Battery pack and charging management method thereof | |
US11381095B2 (en) | Management device, energy storage apparatus, and management method for energy storage device | |
JP2007205977A (en) | Monitor for secondary battery | |
JP2009257923A (en) | Device of detecting abnormality of battery pack | |
US20220097566A1 (en) | Cell Balancing Device | |
US20200400749A1 (en) | Current measuring device, energy storage apparatus, and current measurement method | |
JP3654058B2 (en) | Battery inspection device | |
KR20210041981A (en) | Diagnosis method of battery pack, battery management system, battery apparatus | |
JP2003045387A (en) | Battery pack system, and deterioration decision method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090718 |
|
LAPS | Cancellation because of no payment of annual fees |