WO2006075570A1 - Plasma generating apparatus - Google Patents

Plasma generating apparatus Download PDF

Info

Publication number
WO2006075570A1
WO2006075570A1 PCT/JP2006/300128 JP2006300128W WO2006075570A1 WO 2006075570 A1 WO2006075570 A1 WO 2006075570A1 JP 2006300128 W JP2006300128 W JP 2006300128W WO 2006075570 A1 WO2006075570 A1 WO 2006075570A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
opening
electrodes
shape
gas
Prior art date
Application number
PCT/JP2006/300128
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Hori
Hiroyuki Kano
Original Assignee
National University Corporation Nagoya University
Nu Eco Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University, Nu Eco Engineering Co., Ltd. filed Critical National University Corporation Nagoya University
Publication of WO2006075570A1 publication Critical patent/WO2006075570A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32596Hollow cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Definitions

  • the present invention relates to a plasma generator for injecting plasma into a region having a desired shape.
  • the present invention is particularly useful as a plasma generator used for surface treatment, film formation, and other processing.
  • Patent Document 1 JP-A-1-226147
  • Patent Document 2 JP-A-9-22798
  • Non-Patent Document 1 Applied Physics Letter, Vol. 85, 549-551 (2004)
  • the soldered part may be cleaned using plasma.
  • the soldering location is not limited to a striped, rectangular, or circular region, and the length and other dimensions vary depending on the location.
  • Non-Patent Document 1 microwave-excited plasma using a narrow gap electrode described in Non-Patent Document 1 can easily form the gap in a stripe shape or a circumferential shape, it is difficult to generate a plasma having a complicated shape.
  • the present inventors flow plasma gas through the gap between two electrodes.
  • the present invention was completed with the idea of generating a plasma on at least one surface of two electrodes through which plasma gas flows.
  • the means according to claim 1 is a plasma generator, and includes two electrodes used with a gap so as to form an opening having a desired shape.
  • at least one recess is formed in a portion facing the gap between at least one of the electrodes.
  • the means according to claim 2 is a plasma generator, and includes two electrodes used with a gap therebetween so as to form an opening having a desired shape, and at least one of the electrodes A series of grooves corresponding to the shape of the opening is formed in the part facing the gap of the gap.
  • a gas that generates plasma By injecting a gas that generates plasma into the gap from the opposite side of the opening, a hollow force is generated in the groove. It is characterized in that plasma can be generated by sword discharge and plasma can be emitted in the range of the shape of the opening.
  • the electrode When the electrode is connected to a DC power supply or an AC power supply, a holo-force sword discharge is generated in the recess or groove on the electrode side to which a negative potential is applied, and high-density plasma is generated in the recess or groove.
  • the plasma is emitted along a gas flow and irradiated in the shape of an opening.
  • the gap between the two electrodes have a desired shape, it is possible to easily irradiate plasma to a minute or specially shaped region particularly efficiently.
  • a concave portion or a series of groove portions may be formed on the cathode side when a DC power source is used, at least one when an AC power source is used, and preferably both.
  • the present invention includes incorporating the plasma generator of the present invention as a part of a processing apparatus or processing apparatus using plasma.
  • FIG. 1 is a configuration diagram of a main part of a plasma generator according to a specific embodiment of the present invention.
  • FIG. 2 Perspective before assembly to explain the shape of electrodes 10A and 10B and jig 20 Figure (2. A), perspective view after assembly (2. B).
  • FIG. 3 Plan view (3. A), front view (3. B), 3. A cross-sectional view in the direction of arrow C of A (3. C), 3. B, D, E cross-sectional view (3. D and 3. E).
  • FIG. 4 is a diagram showing another electrode shape (opening shape).
  • FIG. 5 is a diagram showing another electrode shape (opening shape).
  • plasma is generated in the vicinity of the opening, and the plasma is irradiated to the object to be calored disposed in the vicinity of the opening, so that no other plasma generation region is necessary.
  • a jig consisting of two electrodes and an insulator to fix them is required.
  • the simplest configuration is to provide a gas channel in the insulator and to provide two electrodes at the end of the gas channel.
  • a jig made of an insulator having a gas flow path may be constituted by one piece or a combination of a plurality of parts.
  • the electrode material is stainless steel, molybdenum, tantalum, nickel, copper, tungsten Or these alloys etc. can be used. If the thickness of the surface that forms the recesses that cause a hollow sword discharge is 1 to 10 mm in the direction of the gas flow path, it is good. For example, if the width and depth of the recess that generates a sword discharge is less than 1mm and about 0.5mm, it is good.
  • the recess may be formed in a dot shape or a groove shape. The shape of the recess can be arbitrarily formed as a cylindrical surface, a hemispherical surface, a prismatic surface, a pyramid, or the like.
  • a known gas can be selected according to an object to be processed.
  • He, Ne, Ar and other rare gases for example, He, Ne, Ar and other rare gases, ammonia, hexafluoride, nitrogen trifluoride, fluorocarbons, and particularly fluorine compounds such as CF.
  • Gas flow rate and supply volume for example, He, Ne, Ar and other rare gases, ammonia, hexafluoride, nitrogen trifluoride, fluorocarbons, and particularly fluorine compounds such as CF.
  • the degree of vacuum can be set arbitrarily.
  • the power source connected to the electrode is not a device that generates plasma by high frequency, and the power source connected to the electrode is arbitrary, such as direct current, alternating current, and the frequency is not limited.
  • FIG. 1 is a diagram showing a configuration of a characteristic main part of a plasma generating apparatus according to a specific embodiment of the present invention.
  • FIG. 1. A is an external view showing the vicinity of an opening 101
  • FIG. B is a cross-sectional view along the gas flow path 201
  • FIG. 1. C is a cross-sectional view showing details of the grooves 11 of the electrodes 10A and 10B.
  • a jig 20 made of a cylindrical insulator having a gas flow path 201 as a center is combined with two bent plate-like electrodes 10A and 10B.
  • an opening 101 having four sides (surfaces) surrounded by the two electrodes 10A and 10B and the jig 20 is formed.
  • the electrodes 10A and 10B are formed with two recesses 11 each having a width and a depth of 0.5 mm on the surfaces facing each other as shown in FIG. 1.
  • the recesses 11 are formed on the long side of the opening 101.
  • the groove has a length.
  • the cross section of the recess 11 has a rectangular shape with one side removed.
  • the shape of the gas flow path 201 is cylindrical in the vicinity of the connection portion 203 for introducing gas, and the cross section is rectangular at the tip end portion 202 via the taper portion 201t.
  • the electrodes 10A and 10B are fixed to the jig 20 with bolts 30A and 30B, respectively.
  • Electrodes 10A and 10B are connected to an AC power source, a voltage is applied, and a gas for generating plasma is passed through the gas flow path 201 of the jig 20 to the opening 101, the electrodes 10A and 10B In the recess 11 on the side to which a negative potential is applied, it is emitted by a holo-power sword discharge.
  • the generated electrons collide with the gas and plasma is generated with high density.
  • the plasma generated by the holo-power sword discharge rides on the gas flow and is irradiated from the opening 101. As a result, plasma is efficiently irradiated to a narrow region facing the opening 101 of the workpiece.
  • FIG. 2 is a perspective view for explaining the shapes of the electrodes 10A and 10B and the jig 20.
  • FIG. 2 A is a perspective view before assembly, and FIG. 2. B is a perspective view after assembly.
  • the groove 11 of the electrode 10B is a series of grooves corresponding to the longitudinal direction of the opening 101.
  • the groove 11 of the electrode 10A is formed in the same manner.
  • the tip 202 of the gas channel 201 of the jig 20 has a rectangular shape as shown in FIG.
  • the jig 20 has a projecting portion 211 above the tip end portion 202 of the gas flow path 201 and a recess 210A for assembling the electrode 10A.
  • a recess 210B for assembling the electrode 10B is provided.
  • a rectangular opening 101 is formed by the inner surface of the protruding portion 211 of the jig 20 and the electrodes 10A and 10B as shown in FIG.
  • FIG. 3 is a diagram for explaining the shape of the jig 20 in detail.
  • FIG. 3. A is a plan view seen from the front end 202 side of the gas flow path 201
  • C is a cross-sectional view in the direction of arrow C in Fig. 3.
  • Fig. 3. D and Fig. 3. E are cross-sectional views in the direction of arrow D and E in Fig. 3. B, respectively.
  • the jig 20 is provided with a protruding portion 211 ahead of the rectangular tip 202 of the gas flow channel 201 on the rectangular parallelepiped having the gas flow channel 201, and is used for assembling the electrodes 10A and 10B.
  • the concave portions 210A and 210B are provided, and a connecting portion 203 for introducing gas is provided.
  • a connecting portion 203 for introducing gas is provided.
  • the shape of the gas flow path 201 is cylindrical in the vicinity of the connecting portion 203 for introducing the gas, and the rectangular end via the tapered portion 201t It is part 202.
  • FIGS. 1 to 3 show the force that shows the “plasma generating part”, which is the main part of the plasma generating device. By incorporating this into the plasma generating device, the plasma generating device that enables various processings Can be configured. At this time, as shown in FIGS.
  • the jig 20 having the electrodes 10A and 10B fixed thereto is fixed by any means, the power source is connected, and the gas supply system is connected to the connection portion 203. It corresponds to the practice of the invention.
  • a diagram with “opening facing upward” is shown, but it is natural that the present invention includes a configuration for generating downflow plasma that emits plasma downward.
  • the configuration in FIG. 1 is a force that combines two electrodes with a jig 20 made of an insulator having a gas flow path to form an opening.
  • a jig 20 made of an insulator having a gas flow path to form an opening.
  • the structure in which the opening 101 is formed only by 10D is acceptable.
  • the recesses are formed on the surfaces of the electrodes 10C and 10D that form the opening 101 and face each other.
  • the recess is a continuous groove
  • the groove (recess) is formed like a star so as to correspond to the star shape of the opening 101.
  • the shape of the jig having the gas flow path, the method for fixing the jig and the electrode, and the method for connecting the electrode and the power source are arbitrary.
  • the shape of the opening may be a saddle shape as shown in FIG. 5A or a stripe shape having a wide portion as shown in FIG. If the width of the opening varies depending on the location as shown in Fig. 5.B, increase the number of recesses formed on the facing surface of the electrode in the wide part, if necessary.
  • FIG. 1 shows an embodiment for explaining the main part of the present invention, and the plasma generator may be configured with the openings in the lateral direction and the downward direction.
  • the present invention is suitable for plasma cleaning in a minute range.
  • the present invention is also applicable to simple photolithography (etching) and film formation that do not use a photoresist.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[PROBLEMS] To efficiently irradiate a region having a discretionary shape with plasma. [MEANS FOR SOLVING PROBLEMS] Electrodes (10A, 10B) are provided with a series of groove sections (11) on facing planes, respectively. An opening section (101) is formed by combining the electrodes (10A, 10B) and a jig (20) composed of an insulating material having a gas flow path (201) for generating plasma. Thus, when an alternating potential is applied to the electrodes (10A, 10B), hollow cathode plasma is generated in a groove section (11) of the electrode on a cathode side, and the plasma is applied on an object to be processed at an upper part in the drawing, with a flow of the gas for generating plasma. The region having a discretionary shape is efficiently irradiated with plasma by designing a region where the electrodes (10A, 10B) face each other, namely a shape of the opening section (101).

Description

明 細 書  Specification
プラズマ発生装置  Plasma generator
技術分野  Technical field
[0001] 本発明は、所望の形状の領域にプラズマを噴射するプラズマ発生装置に関する。  [0001] The present invention relates to a plasma generator for injecting plasma into a region having a desired shape.
本発明は表面処理及び膜形成その他の加工を行うために用いるプラズマ発生装置 として特に有用である。  The present invention is particularly useful as a plasma generator used for surface treatment, film formation, and other processing.
背景技術  Background art
[0002] プラズマを用いた表面処理及び膜形成その他の加工においては、例えば半導体ゥ ェハ全面にプラズマを噴射して用いるものが周知である。例えば、反応性イオンエツ チングによる表面加工やプラズマ CVDによる膜形成が良く知られている。  In surface treatment using plasma and film formation and other processing, for example, a method in which plasma is jetted over the entire surface of a semiconductor wafer is well known. For example, surface processing by reactive ion etching and film formation by plasma CVD are well known.
[0003] また、大口径ウェハ全体に高密度のプラズマを照射するものとして、いわゆる高周 波ホロ一力ソードプラズマも知られている(特許文献 1及び 2)。  [0003] In addition, so-called high-frequency holo-first sword plasma is also known as a technique for irradiating high-density plasma on the entire large-diameter wafer (Patent Documents 1 and 2).
特許文献 1 :特開平 1— 226147号公報  Patent Document 1: JP-A-1-226147
特許文献 2:特開平 9 - 22798号公報  Patent Document 2: JP-A-9-22798
非特許文献 1 : Applied Physics Letter, Vol. 85, 549-551(2004)  Non-Patent Document 1: Applied Physics Letter, Vol. 85, 549-551 (2004)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] さて、プラズマが種々の処理及び加工に適用されるにつれ、プラズマを大気圧下で 限られた領域に特に効率良く照射することが求められるようになった。例えばプリント 基板に外部配線をはんだ付けする場合、当該はんだ付け箇所をプラズマを用いて清 浄化処理する場合があげられる。当該はんだ付け箇所は、ストライプ状、矩形形状、 又は円状の領域には限られず、長さ等の寸法も場所によって異なる。  [0004] Now, as plasma is applied to various treatments and processes, it has been required to irradiate plasma in a limited area under atmospheric pressure particularly efficiently. For example, when soldering external wiring to a printed circuit board, the soldered part may be cleaned using plasma. The soldering location is not limited to a striped, rectangular, or circular region, and the length and other dimensions vary depending on the location.
[0005] 例えば誘電体バリア放電やストリーマ放電を用いると放電箇所がランダムとなり、特 定部分にプラズマを照射するような制御は非常に困難である。また、非特許文献 1に 記載の狭ギャップ電極を用いたマイクロ波励起プラズマは、当該ギャップをストライプ 状又は円周状とすることは容易であるが、複雑な形状のプラズマ生成は困難である。  [0005] For example, when dielectric barrier discharge or streamer discharge is used, the discharge location becomes random, and it is very difficult to control such that a specific portion is irradiated with plasma. In addition, although microwave-excited plasma using a narrow gap electrode described in Non-Patent Document 1 can easily form the gap in a stripe shape or a circumferential shape, it is difficult to generate a plasma having a complicated shape.
[0006] ここにおいて本発明者らは、 2つの電極の空隙にプラズマガスを流し、ホロ一力ソー ドプラズマをプラズマガスが流れる 2つの電極の少なくとも一方の面に発生させること を着想し、本願発明を完成させた。 [0006] Here, the present inventors flow plasma gas through the gap between two electrodes, The present invention was completed with the idea of generating a plasma on at least one surface of two electrodes through which plasma gas flows.
課題を解決するための手段  Means for solving the problem
[0007] 上記の課題を解決するため請求項 1に記載の手段は、プラズマ発生装置であって 、所望の形状の開口部を形成するように、間隙を挟んで用いられる 2つの電極を有し 、少なくとも片方の電極の間隙に面する部分に、少なくとも 1箇所の凹部が形成され ており、開口部とは逆側から間隙にプラズマを発生させるガスを注入することで、凹部 においてホロ一力ソード放電によるプラズマを発生可能とし、開口部からプラズマを 放出可能としたことを特徴とする。  [0007] In order to solve the above-mentioned problem, the means according to claim 1 is a plasma generator, and includes two electrodes used with a gap so as to form an opening having a desired shape. In addition, at least one recess is formed in a portion facing the gap between at least one of the electrodes. By injecting a gas that generates plasma into the gap from the side opposite to the opening, a hollow sword is formed in the recess. It is characterized in that plasma can be generated by discharge and plasma can be emitted from the opening.
[0008] また、請求項 2に記載の手段は、プラズマ発生装置であって、所望の形状の開口部 を形成するように、間隙を挟んで用いられる 2つの電極を有し、少なくとも片方の電極 の間隙に面する部分に、開口部の形状に対応した一連の溝部が形成されており、開 口部とは逆側から間隙にプラズマを発生させるガスを注入することで、溝部において ホロ一力ソード放電によるプラズマを発生可能とし、開口部の形状の範囲にプラズマ を放出可能としたことを特徴とする。  [0008] Further, the means according to claim 2 is a plasma generator, and includes two electrodes used with a gap therebetween so as to form an opening having a desired shape, and at least one of the electrodes A series of grooves corresponding to the shape of the opening is formed in the part facing the gap of the gap. By injecting a gas that generates plasma into the gap from the opposite side of the opening, a hollow force is generated in the groove. It is characterized in that plasma can be generated by sword discharge and plasma can be emitted in the range of the shape of the opening.
発明の効果  The invention's effect
[0009] 電極を直流電源または交流電源に接続すると、負電位の印加された電極側の凹部 又は溝部にホロ一力ソード放電が生じ、当該凹部又は溝部に高密度のプラズマが発 生する。本発明は当該プラズマがガス流に沿って放出され、開口部の形状で照射さ れるものである。このように本願発明により、 2つの電極の間隙を所望の形状とするこ とで、微小な又は特殊な形状の領域に、プラズマを特に効率良く照射することが容易 に達成できる。この際、直流電源を用いる場合は陰極側に、交流電源を用いる場合 は少なくとも一方に、望ましくは両方に、凹部又は一連の溝部を形成すると良い。尚 、本発明のプラズマ発生装置をプラズマを用いた処理装置又は加工装置の一部とし て組み込むことも本願発明に包含される。  When the electrode is connected to a DC power supply or an AC power supply, a holo-force sword discharge is generated in the recess or groove on the electrode side to which a negative potential is applied, and high-density plasma is generated in the recess or groove. In the present invention, the plasma is emitted along a gas flow and irradiated in the shape of an opening. As described above, according to the present invention, by making the gap between the two electrodes have a desired shape, it is possible to easily irradiate plasma to a minute or specially shaped region particularly efficiently. In this case, a concave portion or a series of groove portions may be formed on the cathode side when a DC power source is used, at least one when an AC power source is used, and preferably both. It should be noted that the present invention includes incorporating the plasma generator of the present invention as a part of a processing apparatus or processing apparatus using plasma.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の具体的な一実施例に係るプラズマ発生装置の要部の構成図。  FIG. 1 is a configuration diagram of a main part of a plasma generator according to a specific embodiment of the present invention.
[図 2]電極 10A及び 10B及び治具 20の形状を説明するための、組み立て前の斜視 図(2. A)、組み立て後の斜視図(2. B)。 [Fig. 2] Perspective before assembly to explain the shape of electrodes 10A and 10B and jig 20 Figure (2. A), perspective view after assembly (2. B).
[図 3]治具 20の、ガス流路 201の先端部 202側から見た平面図(3. A)、正面図(3. B)、 3. Aの C矢視方向の断面図(3. C)、 3. Bで D、E矢視方向の断面図(3. D及 び 3. E)。  [Fig. 3] Plan view (3. A), front view (3. B), 3. A cross-sectional view in the direction of arrow C of A (3. C), 3. B, D, E cross-sectional view (3. D and 3. E).
[図 4]他の電極形状(開口部形状)を示す図。  FIG. 4 is a diagram showing another electrode shape (opening shape).
[図 5]他の電極形状(開口部形状)を示す図。  FIG. 5 is a diagram showing another electrode shape (opening shape).
符号の説明  Explanation of symbols
[0011] 10A、 10B :電極 [0011] 10A, 10B: Electrode
11 :凹部または溝部  11: Recess or groove
101 :開口部  101: Opening
20 :絶縁体から成る治具  20: Jig made of insulator
201 :ガス流路  201: Gas flow path
20 It :ガス流路のテーパ部  20 It: Gas channel taper
202 :ガス流路の先端部  202: Gas channel tip
203 :接続部  203: Connection part
21 OA, 210B :電極 10A、 10Bを組付けるための凹部  21 OA, 210B: Recess for mounting electrodes 10A, 10B
211 :突出部  211: Projection
30A、 30B :ボノレト  30A, 30B: Bonoleto
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明は開口部付近においてプラズマを発生させ、開口部間近に配置された被カロ ェ物に当該プラズマを照射させるので、他のプラズマ発生領域は必要ではない。開 口部を形成するためには、 2つの電極と、それを固定するための絶縁体から成る治具 が必要である。当該絶縁体にガス流路を設け、当該ガス流路の終端に 2つの電極を 配設することが最も簡単な構成となる。例えば矩形形状 (ストライプ状)の開口部を形 成するためには、 2つの電極の互いに対峙する面と、絶縁体から成る治具により 4辺( 面)を形成すると良い。ガス流路を有する絶縁体から成る治具は、 1個で構成しても、 複数個の部品を組み合わせて構成しても良い。  [0012] In the present invention, plasma is generated in the vicinity of the opening, and the plasma is irradiated to the object to be calored disposed in the vicinity of the opening, so that no other plasma generation region is necessary. In order to form the opening, a jig consisting of two electrodes and an insulator to fix them is required. The simplest configuration is to provide a gas channel in the insulator and to provide two electrodes at the end of the gas channel. For example, in order to form a rectangular (stripe-shaped) opening, it is preferable to form four sides (surfaces) using a surface of two electrodes facing each other and a jig made of an insulator. A jig made of an insulator having a gas flow path may be constituted by one piece or a combination of a plurality of parts.
[0013] 電極の材料としては、ステンレス、モリブデン、タンタル、ニッケル、銅、タングステン 、又は、これらの合金などを使用することができる。ホロ一力ソード放電を生じせしめる 凹部を形成する面は、ガスの流路方向に 1〜: 10mm程度の厚さがあれば良レ、。ホロ 一力ソード放電を生じせしめる凹部は、例えば幅及び深さを lmm以下、 0. 5mm程 度とすると良レ、。凹部はドット状に形成されても、溝状に形成されても良い。凹部の形 状は、円柱面状、半球面状、角柱面状、角錐状、その他任意に形成できる。 [0013] The electrode material is stainless steel, molybdenum, tantalum, nickel, copper, tungsten Or these alloys etc. can be used. If the thickness of the surface that forms the recesses that cause a hollow sword discharge is 1 to 10 mm in the direction of the gas flow path, it is good. For example, if the width and depth of the recess that generates a sword discharge is less than 1mm and about 0.5mm, it is good. The recess may be formed in a dot shape or a groove shape. The shape of the recess can be arbitrarily formed as a cylindrical surface, a hemispherical surface, a prismatic surface, a pyramid, or the like.
[0014] プラズマを発生させるためのガスは被カ卩ェ物に応じて、周知のガスを選択できる。 [0014] As a gas for generating plasma, a known gas can be selected according to an object to be processed.
例えば He、 Ne、 Arその他の希ガス、アンモニア、 6フッ化ィォゥ、 3フッ化窒素、フル ォロカーボン類、特に C F等のフッ素化合物などが挙げられる。ガスの流速、供給量  For example, He, Ne, Ar and other rare gases, ammonia, hexafluoride, nitrogen trifluoride, fluorocarbons, and particularly fluorine compounds such as CF. Gas flow rate and supply volume
2 4  twenty four
、或いは真空度は任意に設定できる。また、本発明は高周波によりプラズマを発生さ せるものではなぐ電極に接続する電源は、直流、交流、その他任意であって、周波 数に制限はない。  Alternatively, the degree of vacuum can be set arbitrarily. In the present invention, the power source connected to the electrode is not a device that generates plasma by high frequency, and the power source connected to the electrode is arbitrary, such as direct current, alternating current, and the frequency is not limited.
実施例 1  Example 1
[0015] 図 1は本発明の具体的な一実施例に係るプラズマ発生装置の特徴ある要部の構成 を示す図であり、 図 1. Aは開口部 101付近を示す外観図、図 1. Bはガス流路 201 に沿った断面図、図 1. Cは電極 10A及び 10Bの溝部 11の詳細を示す断面図であ る。  FIG. 1 is a diagram showing a configuration of a characteristic main part of a plasma generating apparatus according to a specific embodiment of the present invention. FIG. 1. A is an external view showing the vicinity of an opening 101, and FIG. B is a cross-sectional view along the gas flow path 201, and FIG. 1. C is a cross-sectional view showing details of the grooves 11 of the electrodes 10A and 10B.
[0016] 図 1. Bのように、ガス流路 201を中心に有する筒状の絶縁体から成る治具 20と、 2 つの屈曲した板状の電極 10A及び 10Bを組み合わせる。この際、図 1. Aのように、 2 つの電極 10A及び 10Bと治具 20と囲まれた、 4辺(面)を有する開口部 101が形成さ れる。電極 10A及び 10Bには、図 1. Cのように互いに対峙する面において、幅及び 深さが共に 0.5mmの凹部 11が 2箇所形成されており、当該凹部 11は開口部 101の 長辺の長さを有する溝部となっている。凹部 11の断面は 1辺が除かれた矩形状であ る。尚、ガス流路 201の形状は、ガスを導入する接続部 203付近においては円筒状 でありテーパ部 201tを経由して先端部 202においては断面が矩形状である。また、 電極 10A及び 10Bはボルト 30A及び 30Bで各々治具 20に固定されている。  [0016] As shown in FIG. 1. B, a jig 20 made of a cylindrical insulator having a gas flow path 201 as a center is combined with two bent plate-like electrodes 10A and 10B. At this time, as shown in FIG. 1.A, an opening 101 having four sides (surfaces) surrounded by the two electrodes 10A and 10B and the jig 20 is formed. The electrodes 10A and 10B are formed with two recesses 11 each having a width and a depth of 0.5 mm on the surfaces facing each other as shown in FIG. 1. C. The recesses 11 are formed on the long side of the opening 101. The groove has a length. The cross section of the recess 11 has a rectangular shape with one side removed. The shape of the gas flow path 201 is cylindrical in the vicinity of the connection portion 203 for introducing gas, and the cross section is rectangular at the tip end portion 202 via the taper portion 201t. The electrodes 10A and 10B are fixed to the jig 20 with bolts 30A and 30B, respectively.
[0017] 電極 10A及び 10Bを交流電源に接続して電圧を印加し、治具 20のガス流路 201 を通して開口部 101へプラズマを発生させるためのガスを流すと、電極 10A及び 10 Bのうち負電位が印加された側の凹部 11において、ホロ一力ソード放電により放出さ れた電子がガスに衝突してプラズマが高密度に発生する。このホロ一力ソード放電に よって発生したプラズマはガス流に乗って開口部 101から照射される。これにより、被 加工物の開口部 101に面した狭い領域に効率良くプラズマが照射される。 [0017] When electrodes 10A and 10B are connected to an AC power source, a voltage is applied, and a gas for generating plasma is passed through the gas flow path 201 of the jig 20 to the opening 101, the electrodes 10A and 10B In the recess 11 on the side to which a negative potential is applied, it is emitted by a holo-power sword discharge. The generated electrons collide with the gas and plasma is generated with high density. The plasma generated by the holo-power sword discharge rides on the gas flow and is irradiated from the opening 101. As a result, plasma is efficiently irradiated to a narrow region facing the opening 101 of the workpiece.
[0018] 図 2は、電極 10A及び 10B及び治具 20の形状を説明するための斜視図であり、図 FIG. 2 is a perspective view for explaining the shapes of the electrodes 10A and 10B and the jig 20.
2. Aは組み立て前の斜視図、図 2. Bは組み立て後の斜視図である。図 2. Aのよう に、電極 10Bの溝部 11は、開口部 101の長手方向に対応して一連の溝となっている 。電極 10Aの溝部 11も同様に形成される。治具 20のガス流路 201の先端部 202は 図 2· Aに示す通り矩形状である。治具 20はガス流路 201の先端部 202よりも上部に 、突出部 211を有し、また、電極 10Aを組み付けるための凹部 210Aを有している。 また、電極 10Bを組み付けるための凹部 210Bも同様に有している。図 2. Bの如ぐ 治具 20の突出部 211の内面と、電極 10A及び 10Bとで矩形状の開口部 101が形成 される。  2. A is a perspective view before assembly, and FIG. 2. B is a perspective view after assembly. As shown in FIG. 2. A, the groove 11 of the electrode 10B is a series of grooves corresponding to the longitudinal direction of the opening 101. The groove 11 of the electrode 10A is formed in the same manner. The tip 202 of the gas channel 201 of the jig 20 has a rectangular shape as shown in FIG. The jig 20 has a projecting portion 211 above the tip end portion 202 of the gas flow path 201 and a recess 210A for assembling the electrode 10A. Similarly, a recess 210B for assembling the electrode 10B is provided. A rectangular opening 101 is formed by the inner surface of the protruding portion 211 of the jig 20 and the electrodes 10A and 10B as shown in FIG.
[0019] 図 3は治具 20の形状を詳細に説明するための図であり、図 3. Aはガス流路 201の 先端部 202側から見た平面図、図 3. Bは正面図、図 3. Cは図 3. Aの C矢視方向の 断面図、図 3. D及び図 3. Eは各々図 3. Bで D、 E矢視方向の断面図である。図 2で も示した通り、ガス流路 201を有する直方体に、治具 20はガス流路 201の矩形状の 先端部 202よりも先に突出部 211を設け、電極 10A及び 10Bを組み付けるための凹 部 210A及び 210Bを設け、ガスを導入する接続部 203を設けた形状である。図 3. C 、 3. D及び 3. Eに示す通り、ガス流路 201の形状は、ガスを導入する接続部 203付 近においては円筒状でありテーパ部 201tを経由して矩形状の先端部 202になって いる。  FIG. 3 is a diagram for explaining the shape of the jig 20 in detail. FIG. 3. A is a plan view seen from the front end 202 side of the gas flow path 201, FIG. Fig. 3. C is a cross-sectional view in the direction of arrow C in Fig. 3. A. Fig. 3. D and Fig. 3. E are cross-sectional views in the direction of arrow D and E in Fig. 3. B, respectively. As shown in FIG. 2, the jig 20 is provided with a protruding portion 211 ahead of the rectangular tip 202 of the gas flow channel 201 on the rectangular parallelepiped having the gas flow channel 201, and is used for assembling the electrodes 10A and 10B. The concave portions 210A and 210B are provided, and a connecting portion 203 for introducing gas is provided. As shown in Fig. 3. C, 3. D and 3. E, the shape of the gas flow path 201 is cylindrical in the vicinity of the connecting portion 203 for introducing the gas, and the rectangular end via the tapered portion 201t It is part 202.
[0020] 尚、図 3の各図においては、ボルト 30A及び 30Bを組み付けるための穴や、ガスを 導入する接続部 203のネジ山は省略した。また、電極 10A及び 10Bの組み付けは、 各々 1個のボルト 30A及び 30Bによるものに限定されなレ、。例えばガス流路 201の矩 形状の先端部 202付近に更に開口部 101の空隙幅調整用のヮッシャ及びボルトを 設ける等の任意の公知の技術を追加又は置換することができる。また、図 1乃至図 3 はプラズマ発生装置の要部である「プラズマ発生部分」を示したものである力 これを プラズマ発生装置に組み込むことで、様々な加工処理を可能とするプラズマ発生装 置を構成できる。この際、図 1乃至 3に示した、電極 10A及び 10Bを固定した治具 20 を、任意の手段で固定し、電源を接続し、接続部 203にガス供給系を接続することは 、全て本願発明の実施に当たる。尚、説明の都合上「開口部が上向き」の図を掲載し ているが、プラズマを下向きに放出するダウンフロープラズマを発生させる構成が本 願発明に包含されることは当然である。 In each drawing of FIG. 3, the holes for assembling the bolts 30A and 30B and the threads of the connecting portion 203 for introducing gas are omitted. Also, the assembly of electrodes 10A and 10B is not limited to one with bolts 30A and 30B, respectively. For example, any known technique such as providing a gap width adjusting washer and a bolt of the opening 101 near the rectangular front end 202 of the gas channel 201 can be added or replaced. In addition, FIGS. 1 to 3 show the force that shows the “plasma generating part”, which is the main part of the plasma generating device. By incorporating this into the plasma generating device, the plasma generating device that enables various processings Can be configured. At this time, as shown in FIGS. 1 to 3, the jig 20 having the electrodes 10A and 10B fixed thereto is fixed by any means, the power source is connected, and the gas supply system is connected to the connection portion 203. It corresponds to the practice of the invention. For the convenience of explanation, a diagram with “opening facing upward” is shown, but it is natural that the present invention includes a configuration for generating downflow plasma that emits plasma downward.
[0021] 図 1の構成は、ガス流路を有する絶縁物から成る治具 20に 2つの電極を組み合わ せて開口部を形成するものであった力 例えば図 4のように、 2つの電極 10C及び 10 Dのみで開口部 101を形成する構成としても良レ、。図 4の構成においては、開口部 1 01を形成する電極 10C及び 10Dの互いに対峙する面に、凹部を形成する。凹部を 連続した溝とする場合は、開口部 101の星型形状に対応するように、当該溝部(凹部 )が星型様に形成される。尚、ガス流路を有する治具の形状及び治具と電極との固定 方法、並びに電極と電源との接続方法については任意である。  [0021] The configuration in FIG. 1 is a force that combines two electrodes with a jig 20 made of an insulator having a gas flow path to form an opening. For example, as shown in FIG. Also, the structure in which the opening 101 is formed only by 10D is acceptable. In the configuration of FIG. 4, the recesses are formed on the surfaces of the electrodes 10C and 10D that form the opening 101 and face each other. When the recess is a continuous groove, the groove (recess) is formed like a star so as to correspond to the star shape of the opening 101. The shape of the jig having the gas flow path, the method for fixing the jig and the electrode, and the method for connecting the electrode and the power source are arbitrary.
[0022] その他、開口部の形状は、図 5· Aのように鉤型でも、また図 5· Bのように幅広の部 分を有するストライプ状でも良い。図 5· Bのように開口部の幅が場所によって異なる 場合は、必要に応じ、幅広部分において電極の対峙する面に形成する凹部を多くす る。  [0022] In addition, the shape of the opening may be a saddle shape as shown in FIG. 5A or a stripe shape having a wide portion as shown in FIG. If the width of the opening varies depending on the location as shown in Fig. 5.B, increase the number of recesses formed on the facing surface of the electrode in the wide part, if necessary.
[0023] 図 1では、下方からプラズマ発生ガスを導入し、被加工物を開口部 101の上方向に 配設することを想定して記載したが、開口部の向き、即ちプラズマの放出方向は上方 向に限られない。図 1は本発明の要部を説明するための一実施例であり、開口部を 横方向、下方向としてプラズマ発生装置を構成しても良い。  [0023] In Fig. 1, it is assumed that a plasma generating gas is introduced from below and the workpiece is disposed above the opening 101. However, the direction of the opening, that is, the direction in which the plasma is emitted is described. It is not limited to upward. FIG. 1 shows an embodiment for explaining the main part of the present invention, and the plasma generator may be configured with the openings in the lateral direction and the downward direction.
産業上の利用可能性  Industrial applicability
[0024] 本発明は、微小範囲のプラズマ洗浄に適している。本発明はその他フォトレジストを 用いない簡易なフォトリソグラフ(エッチング)及び膜形成にも適用可能である。 [0024] The present invention is suitable for plasma cleaning in a minute range. The present invention is also applicable to simple photolithography (etching) and film formation that do not use a photoresist.

Claims

請求の範囲 The scope of the claims
[1] プラズマ発生装置であって、  [1] A plasma generator,
所望の形状の開口部を形成するように、間隙を挟んで用いられる 2つの電極を有し 少なくとも片方の前記電極の前記間隙に面する部分に、少なくとも 1箇所の凹部が 形成されており、  In order to form an opening having a desired shape, two electrodes are used with a gap interposed therebetween, and at least one recess is formed in a portion facing the gap of at least one of the electrodes,
前記開口部とは逆側から前記間隙にプラズマを発生させるガスを注入することで、 前記凹部においてホロ一力ソード放電によるプラズマを発生可能とし、前記開口部か らプラズマを放出可能としたことを特徴とするプラズマ発生装置。  By injecting a gas for generating plasma into the gap from the side opposite to the opening, it is possible to generate a plasma by a holo-force sword discharge in the recess and to discharge the plasma from the opening. A plasma generating apparatus.
[2] プラズマ発生装置であって、 [2] A plasma generator,
所望の形状の開口部を形成するように、間隙を挟んで用いられる 2つの電極を有し 少なくとも片方の前記電極の前記間隙に面する部分に、前記開口部の形状に対応 した一連の溝部が形成されており、  A series of grooves corresponding to the shape of the opening is formed in a portion of the electrode facing the gap of at least one of the electrodes so as to form an opening having a desired shape. Formed,
前記開口部とは逆側から前記間隙にプラズマを発生させるガスを注入することで、 前記溝部においてホロ一力ソード放電によるプラズマを発生可能とし、前記開口部の 形状の範囲にプラズマを放出可能としたことを特徴とするプラズマ発生装置。  By injecting a gas that generates plasma into the gap from the side opposite to the opening, it is possible to generate plasma by a holo-force sword discharge in the groove, and it is possible to emit plasma in a range of the shape of the opening The plasma generator characterized by having performed.
PCT/JP2006/300128 2005-01-11 2006-01-10 Plasma generating apparatus WO2006075570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-003615 2005-01-11
JP2005003615A JP2006196210A (en) 2005-01-11 2005-01-11 Plasma generator

Publications (1)

Publication Number Publication Date
WO2006075570A1 true WO2006075570A1 (en) 2006-07-20

Family

ID=36677595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300128 WO2006075570A1 (en) 2005-01-11 2006-01-10 Plasma generating apparatus

Country Status (2)

Country Link
JP (1) JP2006196210A (en)
WO (1) WO2006075570A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684725B2 (en) * 2005-04-20 2011-05-18 国立大学法人名古屋大学 Hydrophilic treatment equipment
JP5170509B2 (en) * 2007-03-26 2013-03-27 勝 堀 Insecticide sterilization method and insecticide sterilizer
JP4296523B2 (en) * 2007-09-28 2009-07-15 勝 堀 Plasma generator
JP5145076B2 (en) * 2008-02-22 2013-02-13 Nuエコ・エンジニアリング株式会社 Plasma generator
JP5559292B2 (en) * 2012-11-29 2014-07-23 Nuエコ・エンジニアリング株式会社 Plasma generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194526A (en) * 1989-01-23 1990-08-01 Minoru Sugawara Plasma generation apparatus
JP2004533703A (en) * 2001-03-28 2004-11-04 シーピーフィルムズ、インク. Bipolar plasma source, plasma sheet source, and effusion cell using bipolar plasma source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194526A (en) * 1989-01-23 1990-08-01 Minoru Sugawara Plasma generation apparatus
JP2004533703A (en) * 2001-03-28 2004-11-04 シーピーフィルムズ、インク. Bipolar plasma source, plasma sheet source, and effusion cell using bipolar plasma source

Also Published As

Publication number Publication date
JP2006196210A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
WO2006075570A1 (en) Plasma generating apparatus
WO2009104709A1 (en) Plasma generator
JP2007005306A (en) Ion trap having built-in electrode for changing electric field
JP4540519B2 (en) Cleaning device, liquid crystal display substrate cleaning device, and liquid crystal display assembly device
JP6678232B2 (en) Plasma generator
JP2020017419A (en) Plasma generator
JP4296523B2 (en) Plasma generator
KR100876052B1 (en) Neutralizer-type high frequency electron source
JP2006236772A (en) Neutral particle beam source and neutral particle beam processing apparatus
JP5126983B2 (en) Plasma generator
JP4684725B2 (en) Hydrophilic treatment equipment
JP4930983B2 (en) Atmospheric pressure plasma generator
JP5961899B2 (en) Atmospheric pressure plasma generator
KR20100081068A (en) Apparatus for generating plasma
WO2018164005A1 (en) Air purifier
JP4873407B2 (en) Atmospheric pressure glow discharge plasma generator
JP5996654B2 (en) Plasma processing equipment
US6529538B1 (en) Gas laser oscillator apparatus
JP2007042503A (en) Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method
JP5559292B2 (en) Plasma generator
JP7144753B2 (en) Plasma device
JP7328500B2 (en) Atmospheric plasma processing equipment
KR102093251B1 (en) Electrode assembly for dielectric barrier discharge and plasma generator using the same
JP4841177B2 (en) Plasma cleaning equipment
KR100551338B1 (en) Electrode head of an ion beam generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711498

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711498

Country of ref document: EP