WO2006075563A1 - オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム - Google Patents

オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム Download PDF

Info

Publication number
WO2006075563A1
WO2006075563A1 PCT/JP2006/300112 JP2006300112W WO2006075563A1 WO 2006075563 A1 WO2006075563 A1 WO 2006075563A1 JP 2006300112 W JP2006300112 W JP 2006300112W WO 2006075563 A1 WO2006075563 A1 WO 2006075563A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
noise level
frequency component
signal
correction coefficient
Prior art date
Application number
PCT/JP2006/300112
Other languages
English (en)
French (fr)
Inventor
Osamu Shimada
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to EP06702057.8A priority Critical patent/EP1840874B1/en
Priority to JP2006552903A priority patent/JP5224017B2/ja
Publication of WO2006075563A1 publication Critical patent/WO2006075563A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/20Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • Audio encoding apparatus Audio encoding apparatus, audio encoding method, and audio encoding program
  • the present invention relates to an audio encoding device, an audio encoding method, and an audio encoding program, and in particular, an audio encoding device and an audio encoding method for encoding a wideband audio signal with a small amount of information and high quality. And audio encoding program.
  • SBR is intended to compensate for high frequency band signals (high frequency components) that are lost by audio code processing such as AAC, or band-limiting processing based on it, and is compensated by SBR.
  • the information encoded by the SBR includes information for generating a pseudo high-frequency component based on the low-frequency component transmitted using other means. By adding a pseudo high-frequency component to, the sound quality degradation due to band limitation is compensated.
  • FIG. 6 is a diagram illustrating an example of a band extension coding / decoding device using SBR.
  • the encoding side is composed of an input signal dividing unit 100, a low frequency component encoding unit 101, a high frequency component encoding unit 102, and a bit stream multiplexing unit 103
  • the decoding side is a bit stream separating unit 200, a low frequency component A component decoding unit 201, a subband division unit 202, a band extension unit 203, and a subband synthesis unit 204 are configured.
  • the input signal dividing unit 100 analyzes the input signal 1000 and outputs a high frequency sub-band signal 1001 divided into a plurality of high frequency bands and a low frequency signal 1002 including a low frequency component. .
  • the low-frequency signal 1002 is encoded into the low-frequency component information 1004 by the low-frequency component encoding unit 101 using the above-described encoding method such as AAC, and transmitted to the bit stream multiplexing unit 103.
  • the high frequency component encoding unit 102 extracts the high frequency energy information 1102 and the additional signal information 1103 from the high frequency subband signal 1001 and transmits them to the bit stream multiplexing unit 103.
  • the bitstream multiplexing unit 103 multiplexes the high frequency component information composed of the low frequency component information 1004, the high frequency energy information 1102, and the additional signal information 1103, and outputs the multiplexed bit stream 1005.
  • the high frequency energy information 1102 and the additional signal information 1103 are calculated in units of frames for each subband, for example. In consideration of the characteristics of the input signal 1000 in the time and frequency directions, it may be calculated in units of time obtained by further subdividing the frame in the time direction and in units of bands in which a plurality of subbands are combined in the frequency direction.
  • the high-frequency energy information 1102 and the additional signal information 1103 are calculated in time units obtained by further subdividing the frame in the time direction, the time change of the high-frequency subband signal 1001 can be expressed in more detail.
  • the total bits required to code the high frequency energy information 1102 and the additional signal information 1103 The number can be reduced.
  • the division unit in the time and frequency direction used for calculating the high-frequency energy information 1102 and the additional signal information 1103 is called a time-frequency grid, and the information is included in the high-frequency energy information 1102 and the additional signal information 1103.
  • the information included in the high frequency energy information 1102 and the additional signal information 1103 is only the high frequency energy information and the additional signal information. For this reason, the amount of information (total number of bits) is small compared to low band component information including waveform information and spectrum information of narrowband signals. I only need it. Therefore, it is suitable for low bit rate codes for wideband signals.
  • the multiplexed bit stream 1005 is separated into low-frequency component information 1007, high-frequency energy information 1105, and additional signal information 1106 by the bit stream separation unit 200.
  • the low-frequency component information 1007 is information encoded using an encoding method such as AAC, for example, and is decoded by the low-frequency component decoding unit 201 to generate a narrowband signal 1008 representing the low-frequency component.
  • Narrowband signal 1008 is divided into lowband subband signal 1009 by subband division section 202 and input to band extension section 203.
  • the low-frequency subband signal 1009 is also supplied to the subband synthesis unit 204 at the same time.
  • the band extension unit 203 reproduces the high frequency component lost due to the band limitation by copying the low frequency subband signal 1009 to the high frequency subband.
  • the high band energy information 1105 input to the band extension unit 203 includes energy information of the high band subband to be reproduced. After adjusting the energy of the low frequency subband signal 1009 using the high frequency energy information 1105, it is used as the high frequency component.
  • Band extension section 203 generates an additional signal in accordance with additional signal information included in additional signal information 1106. Here, a sine wave tone signal or a noise signal is used as the generated additional signal. The additional signal is added to the energy-adjusted high frequency component to obtain a high frequency sub-band signal 101.
  • Subband synthesizing section 204 band-synthesizes low band subband signal 1009 supplied from subband dividing section 202 and high band subband signal 1010 supplied from band extending section 203 to generate output signal 1011.
  • the gains of the copied low frequency subband signal 1009 and the additional signal are adjusted so that the energy of the high frequency subband signal 1010 becomes the energy value represented by the high frequency energy information 1105 (hereinafter referred to as target energy).
  • the high frequency subband signal 1010 is generated by adding the force to the high frequency component after energy adjustment.
  • the gain of the copied low-frequency subband signal 1009 and the additional signal can be determined, for example, by the following procedure.
  • one of the copied low-frequency subband signal 1009 and the additional signal is set as a main component of the high-frequency subband signal 1010, and the other as a subcomponent.
  • G is the main component amplitude adjustment gain
  • G is the sub component amplitude adjustment gain
  • E and N are the main component amplitude adjustment gain
  • Represent the energies of the low frequency subband signal 1009 and the additional signal, respectively. If the energy of the additional signal is normally set to 1, N l. R represents the target energy of the high frequency sub-band signal 1010, Q represents the energy ratio of the main component and the sub component, and R and Q are included in the high frequency energy information 1105 and the additional signal information 1106. Note that sqrt (') is an operator for finding the square root. On the other hand, when the additional signal is the main component and the low-frequency subband signal 1009 is the main component, the gain is determined by the following equation.
  • the low frequency subband signal 1009 and the additional signal are weighted and added to calculate the high frequency subband signal 1010.
  • an accurate energy ratio Q between the low-frequency subband signal 1009 and the noise signal to be added is added to the additional signal information 1103 generated on the code side.
  • the high frequency component code key unit 102 needs to accurately calculate the noise level of the high frequency component in the input signal.
  • Non-Patent Document 3 discloses a first conventional example of a high-frequency component code key unit 102 that calculates a noise level of a high-frequency component. 7 includes a time Z frequency dial generation unit 300, a spectrum envelope calculation unit 301, a noise level calculation unit 302, and a noise level integration unit 303.
  • the time Z frequency grid generation unit 300 uses the high frequency subband signal 1001 to Group multiple subband signals in the frequency direction and time Z frequency grid information no
  • the spectrum envelope calculation unit 301 extracts the target energy R of the high-frequency subband signal in units of time Z frequency grids, and supplies the target energy R to the bitstream multiplexing unit 103 as high-frequency energy information 1102.
  • the noise level calculation unit 302 outputs the ratio of the noise component included in the subband signal as the noise level 1101 for each subband.
  • the noise level integration unit 303 uses the average value of the noise levels in a plurality of subbands to obtain additional signal information 1103 representing the energy ratio Q in units of time Z frequency grids, and supplies the additional signal information 1103 to the bit stream multiplexing unit 103. To do.
  • X (k, 1) and Y (k, 1) denote the subband signal and the predicted subband signal of subband k, respectively.
  • a linear prediction method using a covariance method or an autocorrelation method is known.
  • the difference between the subband signal X and the predicted subband signal Y becomes small, and the value of the noise level T (k) becomes large.
  • the difference between the predicted subband signal Y and the subband signal X increases, and the value of the noise level T (k) decreases. In this way, the noise level T (k) can be calculated based on the size of the noise component contained in the subband signal.
  • the noise level integration unit 303 calculates the energy ratio Q between the low frequency subband signal and the noise signal in units of a plurality of subbands based on the time Z frequency grid information 1100. This is more than one subband unit, rather than calculating and signing the energy ratio Q for each subband unit. This is because the number of bits required for the additional signal information 1103 can be reduced by calculating the energy ratio Q. For example, N subbands from subband k to subband k + N— 1
  • the additional signal information 1103 is obtained by averaging the noise levels 1101 of N subbands from subband k to subband k + N ⁇ 1.
  • fNoise the frequency number of the additional signal information 1103, and c is a constant.
  • Patent Document 1 Japanese Translation of Special Publication 2002-536679
  • Non-Patent Document 1 "Digital Radio Musice (DRM); System Specification", E TSI, TS 101 980 VI. 1. 1, 5. 2. 6, September 2001
  • Non-Patent Document 2 AES (Audio Engineering Society) Convention Paper 55 53 ", 112th AES Convention, May 2002
  • Non-Patent Document 3 "Enhanced aacPlus general audio codec; Enhanced aacPl us encoder SBR part", 3GPP, TS 26. 404 V6. 0. 0, September 2004 Disclosure of Invention
  • the conventional additional signal information calculation method averages the noise level calculated independently for each subband, the perceptual priority of the subband is not considered. Therefore, the noise level of the sub-bands that are important to the auditory sense depends on the importance of the additional signal information.
  • the high-quality audio signal encoding device cannot be realized.
  • the method of calculating the additional signal information using the spectrum envelope has a problem that the amount of calculation increases because high resolution frequency analysis and smoothing processing are required.
  • the noise level varies greatly depending on the level of smoothness, and it is difficult to optimize the level of smoothing.
  • the present invention was invented in view of the above problems, and its purpose is to reduce the amount of additional signal information that reflects the noise level of an audibly important subband according to the degree of importance.
  • the object is to provide a technique relating to a high-quality audio signal code that can be calculated in quantity.
  • a first invention for solving the above-described problem is an input signal dividing unit for extracting a high frequency signal from an input signal, and generating a first high frequency component information by extracting a spectrum of the high frequency signal.
  • a first high-frequency component encoding unit ; a noise level calculation unit that obtains the noise level of the high-frequency signal by reflecting the importance of each frequency component; and second high-frequency component information using the noise level.
  • a second invention that solves the above-described problem is an input signal dividing unit that extracts a high-frequency signal from an input signal, and generates a first high-frequency component information by extracting a spectrum of the high-frequency signal.
  • a first high-frequency component encoding unit; a noise level calculation unit that calculates a noise level using the high-frequency signal; a correction coefficient calculation unit that calculates a correction coefficient using the high-frequency signal; and the correction A noise level correction unit that corrects the noise level using a coefficient to obtain a corrected noise level; and a second high frequency component encoding unit that generates second high frequency component information using the corrected noise level;
  • An audio encoding device comprising: a bit stream multiplexing unit that multiplexes the first high frequency component information and the second high frequency component information and outputs a multiplexed bit stream. It is.
  • a third invention for solving the above-described problem is the correction coefficient calculation according to the second invention.
  • the unit calculates a correction coefficient that reflects the importance of each frequency component of the high frequency signal.
  • the correction coefficient calculation unit calculates energy for each frequency band of the high-frequency signal, and based on the energy for each frequency band. A correction coefficient is calculated.
  • a fifth invention for solving the above-mentioned problems is characterized in that, in the second or third invention, the correction coefficient calculation unit calculates a correction coefficient having a small value at a high frequency. To do.
  • a sixth invention that solves the above-described problem is that, in the first invention, at least the noise level calculated by the noise level calculation unit reflecting the importance of each frequency component of the high-frequency signal. It is characterized by smoothing in the time direction or frequency direction.
  • the correction coefficient calculation unit calculates the frequency component according to each frequency component of the high-frequency signal.
  • the correction coefficient is smoothed at least in the time direction or the frequency direction.
  • An eighth invention for solving the above-mentioned problem is to extract a high frequency signal from an input signal, extract a spectrum of the high frequency signal to generate first high frequency component information, and The noise level is calculated by reflecting the importance of each frequency component, second high frequency component information is generated from the noise level, and the first high frequency component information and the second high frequency component information are generated. And an audio coding method characterized by outputting a multiplexed bit stream. It is.
  • a ninth invention for solving the above-described problem is to extract a high frequency signal from an input signal, extract a spectrum of the high frequency signal to generate first high frequency component information, and The noise level is obtained using the high frequency signal, the correction coefficient is obtained using the high frequency signal, the noise level is corrected using the correction coefficient to obtain the correction noise level, and the second high noise is obtained using the correction noise level.
  • An audio coding method characterized by generating band component information, multiplexing the first high band component information and the second high band component information, and outputting a multiplexed bit stream.
  • a tenth invention for solving the above-mentioned problems is the above-mentioned eighth invention, wherein the correction coefficient is When obtaining the correction coefficient, a correction coefficient is obtained corresponding to the auditory importance corresponding to each frequency component of the high frequency signal.
  • a twelfth invention for solving the above-mentioned problems is characterized in that, in the above-mentioned eighth or ninth invention, when obtaining the correction coefficient, a correction coefficient having a small value at a high frequency is calculated. To do.
  • the eighth invention at the time of obtaining the noise level, at least a noise level obtained by reflecting importance of each frequency component of the high frequency signal is used. It is characterized by smoothing in the time direction or frequency direction.
  • the correction coefficient when the correction coefficient is obtained, the correction coefficient is determined according to each frequency component of the high frequency signal.
  • the calculated correction coefficient is smoothed at least in the time direction or frequency direction.
  • a fifteenth aspect of the present invention for solving the above-described problem is a process of extracting a high frequency signal from an input signal, a process of extracting a spectrum of the high frequency signal and generating first high frequency component information, Processing for obtaining the noise level of the high frequency signal by reflecting the importance of each frequency component, processing for generating second high frequency component information using the noise level, and the first high frequency component information
  • the present invention is configured to calculate a correction coefficient corresponding to auditory importance using a high frequency sub-band signal, correct a noise level, and generate additional signal information. It is possible to accurately reflect the noise level of a sub-band that is important perceptually. For this reason, a high-quality audio encoding device can be realized.
  • the invention's effect it is possible to calculate a correction coefficient based on the perceptual importance of the input signal and correct the noise level of each subband.
  • the correction coefficient calculation of the present invention performs frequency analysis with normal resolution, the amount of computation required for high-resolution frequency analysis is reduced, and subband noise that reflects auditory importance is reflected. You can ask for the level. As a result, a high-quality audio encoding device can be realized.
  • FIG. 1 is a block diagram showing the configuration of the best mode for carrying out the first invention of the present invention.
  • FIG. 2 is an explanatory diagram showing an operation concept of a correction coefficient calculation unit in the present invention.
  • FIG. 3 is a block diagram showing a configuration of an input signal dividing unit.
  • FIG. 4 is a block diagram showing the configuration of the best mode for carrying out the second invention of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the best mode for carrying out the third invention of the present invention.
  • FIG. 6 is a block diagram showing a band extension code decoding apparatus.
  • FIG. 7 is a block diagram showing a configuration of a high frequency component code key unit.
  • an audio encoding device includes an input signal dividing unit 100, a low frequency component encoding unit 101, a time Z frequency grid generating unit 300, a spectrum envelope.
  • the high frequency component code key unit 102 and the high frequency component code key unit 500 are different. Comparing these components in more detail using FIG. 1 and FIG. 7, a correction coefficient calculation unit 400 and a noise level correction unit 401 are added to the high frequency component code unit 500, and the noise level integration unit 300 is replaced by the noise level integration unit 402.
  • the correction coefficient calculation unit 400, the noise level correction unit 401, and the noise level integration unit 402 will be described.
  • the time Z frequency grid information 1100 obtained by grouping a plurality of subband signals in the time and frequency directions in the time Z frequency grid generation unit 300 using the high frequency subband signal 1001 This is transmitted to the correction coefficient calculation unit 400.
  • the correction coefficient calculation unit 400 calculates the perceptual importance of each subband using the high frequency subband signal 1001 and the time Z frequency grid information 1100, and calculates the correction coefficient 1200 of each subband to the noise level correction unit 401. Communicate to.
  • the noise level 1101 of each subband calculated by the noise level calculation unit 302 using the high frequency subband signal 1001 is also transmitted.
  • the noise level correction unit 401 corrects the noise level 1101 of each subband based on the correction coefficient 1200, and outputs the corrected noise level 1201 to the noise level integration unit 402.
  • Noise level integration section 402 calculates an average value of corrected noise levels 1103 in a plurality of subbands based on time Z frequency grid information 1100.
  • the energy ratio of the noise component is calculated in units of time Z frequency grid and output as additional signal information 1103.
  • FIG. 2 shows a part of the spectrum when the input signal 1000 is subjected to frequency analysis, where the horizontal axis represents frequency and the vertical axis represents energy.
  • N subbands from subband k to subband k + N— 1 are paired.
  • the noise component energy ratio Q in region 2 must be reflected in the additional signal information 1103 in accordance with the importance of region 2. In order to do so, it is necessary to calculate the listening and emotional importance of each subband.
  • the correction coefficient 1200 representing the perceptual importance of each subband can be calculated according to the energy of the high frequency subband signal 1001, for example.
  • Subband k to subband k
  • the correction coefficient a (k) for subband k can be expressed by the following equation, for example: .
  • E represents the energy of each subband.
  • the energy of each subband may be calculated for each time grid included in the time Z frequency grid information 1100, or may be calculated using subband signals included in a plurality of time grids.
  • the energy of the high frequency sub-band signal 1001 is used as it is, but the energy of the sub-band signal 1101 may be corrected.
  • the energy of the sub-band signal can be used for calculating the force correction coefficient in a logarithm rather than using it as it is.
  • the correction coefficient may be calculated by positively using auditory characteristics. For example, simultaneous masking that makes it impossible to perceive small sounds that are present simultaneously with loud sounds, It is also possible to calculate a correction coefficient that takes into account the effect of the continuous masking that occurs. Sounds smaller than the masking threshold cannot be perceived. Therefore, the correction coefficient corresponding to the auditory importance can be calculated by relatively reducing the correction coefficient of the subband that can be ignored for auditory perception. Conversely, the correction coefficient for subbands larger than the masking threshold may be relatively large.
  • the noise level correction unit 401 corrects the noise level 1101 of each subband calculated by the noise level calculation unit based on the correction coefficient 1200 calculated by the correction coefficient calculation unit, and the corrected noise level 1201 is input to the noise level integration unit 303. Output.
  • the corrected noise level T (k) is given by
  • T (k) a (k) X T (k)
  • the result obtained by adding a constant to the product can also be used as a corrected noise level. Furthermore, by defining the correction noise level as an arbitrary function of the correction factor 1200 and the noise level 1101.
  • the noise level integration unit 402 uses the corrected noise level 1201 to calculate the energy ratio Q of the additional signal for each frequency grid included in the time Z frequency grid information 1100 and outputs it as the attached calorie signal information 1103. For example, from subband k to subband k + N— 1
  • the input signal dividing unit 100 can be configured with a subband dividing unit 110 and a subband combining unit 111 as shown in FIG.
  • Subband dividing section 110 divides input signal 1000 into N subbands and outputs high frequency subband signal 1001.
  • the subband synthesizing unit 111 generates a low frequency signal 1002 by performing subband synthesis using M (MMN) subband signals of the low frequency of the subband signal.
  • M M
  • the down-sampling filter 112 can be used to down-sample the input signal 1000.
  • the down-sampling filter 112 includes a low-pass filter having a pass band corresponding to the band of the low-frequency signal 1002, and performs high-frequency suppression processing using the low-frequency filter before down-sampling processing. Further, as shown in FIG. 3 (c), the input signal 1000 may be output as the low frequency signal 1002 without being processed.
  • correction coefficient 1200 corresponding to auditory importance is calculated using high frequency subband signal 1001, noise level 1101 is corrected, and additional signal information 1103 is generated. Therefore, it is possible to accurately reflect the noise level of the sub-band that is important perceptually. As a result, a high-quality audio encoding device can be realized.
  • the best mode for carrying out the second invention of the present invention is that an input signal dividing unit 100, a low frequency component encoding unit 101, a time Z frequency grid generating unit 300, a spectral packet, An envelope calculation unit 301, a noise level calculation unit 302, a correction coefficient calculation unit 403, a noise level correction unit 401, a noise level integration unit 402, and a bit stream multiplexing unit 103 are included.
  • the correction coefficient calculation unit 400 is simply replaced with the correction coefficient calculation unit 403, and the other Part Are exactly the same. Therefore, the correction coefficient calculation unit 403 will be described in detail.
  • the correction coefficient calculation unit 403 calculates a correction coefficient 1202 by a predetermined method based on the time Z frequency grid information 1100 and outputs the correction coefficient 1202 to the noise level correction unit 401.
  • the correction coefficient 1202 can be calculated such that the correction coefficient 1202 takes a small value for a high frequency.
  • the correspondence relationship between the frequency and the correction coefficient 1202 can be determined to be expressed by a linear function as the simplest example, or may be determined to be expressed by a nonlinear function.
  • a high-frequency signal component is often attenuated more than a low-frequency signal component. Therefore, high-quality additional signal information 1103 can be calculated using the above-described method.
  • this embodiment uses a correction coefficient 1202 based on the characteristics of a general audio signal, the amount of calculation can be reduced as compared with the first embodiment of the present invention.
  • the third embodiment of the present invention is a computer that operates according to program 601 when the above-described first and second embodiments of the present invention are configured with program 601.
  • FIG. 5 the third embodiment of the present invention is a computer that operates according to program 601 when the above-described first and second embodiments of the present invention are configured with program 601.
  • the program 601 is read into a computer 600 (central processing unit; processor; data processing device) and controls the operation of the computer 600 (central processing unit; processor; data processing device).
  • the computer 600 central processing unit; processor; data processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

高域サブバンド信号を用いて、聴感的な重要度に対応した補正係数を算出して、ノイズレベルを補正し、付加信号情報を生成することにより、聴感的に重要なサブバンドのノイズレベルを正確に反映することができる。これにより、聴感的に重要なサブバンドのノイズレベルを重要度に応じて反映した付加信号情報を少ない演算量で算出することができる。一般的なオーディオ信号の特性に基づく補正係数を用いるようにすれば、更に演算量を削減することができる。  

Description

明 細 書
オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化 プログラム
技術分野
[0001] 本発明は、オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号 化プログラムに関し、特に、広帯域なオーディオ信号を少ない情報量で高品質に符 号化するオーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プ ログラムに関する。
背景技術
[0002] 一般的な音響信号を、少な!、情報量で符号化でき、かつ高品質な再生信号を得ら れる技術として、帯域分割符号ィ匕を利用する方法が広く知られている。このような帯 域分割を利用した符号ィ匕の代表例としては、 ISOZIECの国際標準方式である MP EG - 2 AAC (Advanced Audio Coding)があり、 96kbps程度のビットレートに おいて、 16kHz以上の広帯域ステレオ信号を高品質に符号ィ匕することが可能である
[0003] し力しながら、ビットレートを例えば 48kbps程度に低下させた場合、高品質に符号 化できる帯域は 10kHz程度以下となり、主観的には高域信号成分に不足を感じる音 となる。このような帯域制限による音質劣化を補償する方法としては、たとえば、非特 許文献 1に記載がある、 SBR (Spectral Band Replication)と呼ばれる技術があ る。同様の技術は、例えば、非特許文献 2においても開示されている。
[0004] SBRは、 AAC等のオーディオ符号ィ匕処理、もしくはそれに準じる帯域制限処理に よって失われる高!ヽ周波数帯域の信号 (高域成分)を補償することを目的としており、 SBRによって補償される帯域よりも低 、周波数帯域の信号 (低域成分)につ 、ては、 他の手段を用いて伝送する必要がある。 SBRによって符号ィ匕された情報には、他の 手段を用いて伝送される低域成分を基に、擬似的な高域成分を生成するための情 報が含まれており、前記低域成分に擬似的な高域成分を加算することにより、帯域制 限による音質劣化を補償する。 [0005] 以下、図 6を参照しながら、 SBRの動作を詳しく説明する。図 6は、 SBRを用いた帯 域拡張符号化復号装置の一例を示す図である。符号化側は、入力信号分割部 100、 低域成分符号化部 101、高域成分符号化部 102、ビットストリーム多重化部 103から構 成され、復号側は、ビットストリーム分離部 200、低域成分復号部 201、サブバンド分割 部 202、帯域拡張部 203、サブバンド合成部 204から構成される。
[0006] 符号化側では、入力信号分割部 100が、入力信号 1000を分析し、複数の高周波数 帯域に分割した高域サブバンド信号 1001と低域成分を含む低域信号 1002を出力す る。低域信号 1002は上述の AAC等の符号化方式を用いて低域成分符号化部 101に より低域成分情報 1004に符号化され、ビットストリーム多重化部 103に伝達される。ま た、高域成分符号化部 102は、高域サブバンド信号 1001から高域エネルギ情報 1102 及び付加信号情報 1103を抽出し、ビットストリーム多重化部 103に伝達する。ビットスト リーム多重化部 103は低域成分情報 1004と高域エネルギ情報 1102及び付加信号情 報 1103から構成される高域成分情報を多重化し、多重化ビットストリーム 1005として 出力する。
[0007] ここで、高域エネルギ情報 1102及び付加信号情報 1103は、例えば、サブバンド毎 にフレーム単位で算出される。入力信号 1000の時間及び周波数方向の特性を考慮 して、時間方向にはフレームをさらに細分割した時間単位で、周波数方向には複数 のサブバンドをまとめたバンド単位で算出しても良い。高域エネルギ情報 1102及び付 加信号情報 1103を、時間方向のフレームをさらに細分割した時間単位で算出する場 合には、高域サブバンド信号 1001の時間変化をより詳細に表すことができる。高域ェ ネルギ情報 1102及び付加信号情報 1103を、複数のサブバンドをまとめたバンド単位 で算出する場合には、高域エネルギ情報 1102及び付加信号情報 1103を符号ィ匕する ために必要な総ビット数を削減できる。高域エネルギ情報 1102及び付加信号情報 11 03の算出に利用する時間及び周波数方向の分割単位を時間周波数グリッドと呼び、 その情報は高域エネルギ情報 1102及び付加信号情報 1103に含まれる。
[0008] このような構成では、高域エネルギ情報 1102及び付加信号情報 1103に含まれる情 報が、高域エネルギ情報と付加信号情報だけとなる。このため、狭帯域信号の波形 情報及びスペクトル情報を含む低域成分情報と比較して、少な 、情報量 (総ビット数) しか必要としない。したがって、広帯域信号の低ビットレート符号ィ匕に適している。
[0009] 復号側では、多重化ビットストリーム 1005がビットストリーム分離部 200において、低 域成分情報 1007、高域エネルギ情報 1105及び付加信号情報 1106に分離される。低 域成分情報 1007は、例えば AAC等の符号化方式を用いて符号化された情報であり 、低域成分復号部 201において復号されて、低域成分を表す狭帯域信号 1008を生 成する。狭帯域信号 1008は、サブバンド分割部 202において低域サブバンド信号 100 9に分割され、帯域拡張部 203に入力される。低域サブバンド信号 1009は、同時にサ ブバンド合成部 204にも供給される。帯域拡張部 203は、低域サブバンド信号 1009を 高域のサブバンドに複写することによって、帯域制限によって失われた高域成分を再 生する。
[0010] 帯域拡張部 203に入力される高域エネルギ情報 1105には、再生される高域サブバ ンドのエネルギ情報が含まれる。高域エネルギ情報 1105を用いて低域サブバンド信 号 1009のエネルギを調整した後、高域成分として利用する。また、帯域拡張部 203は 、付加信号情報 1106に含まれる付加信号情報にしたがって付加信号を生成する。こ こで、生成される付加信号としては、正弦波トーン信号やノイズ信号が用いられる。前 記エネルギ調整後の高域成分に前記付加信号を加算して、高域サブバンド信号 101
0としてサブバンド合成部 204に供給する。サブバンド合成部 204は、サブバンド分割 部 202から供給された低域サブバンド信号 1009と帯域拡張部 203から供給された高域 サブバンド信号 1010を帯域合成し、出力信号 1011を生成する。
[0011] ここで、帯域拡張部 203におけるエネルギ調整の動作について詳細に説明する。高 域サブバンド信号 1010のエネルギが高域エネルギ情報 1105の表すエネルギ値(以 下、目標エネルギとする)となるように、複写された低域サブバンド信号 1009と付加信 号の利得を調整して力もエネルギ調整後の高域成分に加算して、高域サブバンド信 号 1010を生成する。複写された低域サブバンド信号 1009と付加信号の利得は、例え ば、次の手順で決定することができる。
[0012] まず、複写された低域サブバンド信号 1009と付加信号とのうちいずれかを高域サブ バンド信号 1010の主成分とし、他方を副成分とする。低域サブバンド信号 1009を主成 分、付加信号を副成分とする場合は、次式で利得を決定する。 G =sqrt (R/E/ (l + Q) )
main
G =sqrt (R* QZN (l + Q) )
sub
ここで、 G は主成分の振幅調整用利得、 G は副成分の振幅調整用利得、 Eと N
mam sub
は、それぞれ、低域サブバンド信号 1009と付加信号のエネルギを表す。付加信号の エネルギが 1に正規ィ匕されている場合は、 N= lとする。また、 Rは高域サブバンド信 号 1010の目標エネルギ、 Qは主成分と副成分のエネルギ比を表し、 Rと Qは高域エネ ルギ情報 1105及び付加信号情報 1106に含まれている。なお、 sqrt(')は平方根を求 める演算子とする。一方、付加信号を主成分、低域サブバンド信号 1009を主成分と する場合は、次式で利得を決定する。
G =sqrt (R/N/ (l + Q) )
main
G =sqrt (R* Q/E/ (l + Q) )
sub
以上の手続きによって算出した利得を用いて、低域サブバンド信号 1009と付加信号 を重み付け加算し、高域サブバンド信号 1010を算出する。
[0013] オーディオ信号を低ビットレートで高品質に符号ィ匕するためには、高域成分を少な い情報量に圧縮することが必要である。従って、高域成分符号ィ匕部 102において、正 確な高域エネルギ情報 1102及び付加信号情報 1103を抽出することが重要となる。例 えば、弦楽器など低域成分より高域成分のノイズレベルが高 ヽ信号を符号化する場 合、低域サブバンド信号 1009を高周波数帯域にコピーした信号に適切な大きさのノ ィズ信号を付加することにより品質を向上させることが可能である。適切な大きさのノ ィズ信号を復号側で付加するためには、符号ィ匕側において生成する付加信号情報 1 103に、低域サブバンド信号 1009と付加するノイズ信号の正確なエネルギ比 Qを含む 必要がある。このため、高域成分符号ィ匕部 102において、入力信号における高域成 分のノイズレベルを正確に算出する必要がある。
[0014] 高域成分のノイズレベルを算出する高域成分符号ィ匕部 102の第一の従来例が、非 特許文献 3に開示されている。図 7に示す高域成分符号ィ匕部は、時間 Z周波数ダリ ッド生成部 300、スペクトル包絡算出部 301、ノイズレベル算出部 302、ノイズレベル統 合部 303から構成される。
[0015] 時間 Z周波数グリッド生成部 300は、高域サブバンド信号 1001を用いて、時間及び 周波数方向の複数のサブバンド信号をグループィ匕し、時間 Z周波数グリッド情報 no
0を生成する。スペクトル包絡算出部 301は、時間 Z周波数グリッド単位で高域サブバ ンド信号の目標エネルギ Rを抽出し、高域エネルギ情報 1102としてビットストリーム多 重化部 103に供給する。ノイズレベル算出部 302は、各サブバンド単位で、サブバンド 信号に含まれるノイズ成分の割合をノイズレベル 1101として出力する。ノイズレベル統 合部 303は複数のサブバンドにおける前記ノイズレベルの平均値を用いて、時間 Z 周波数グリッド単位で前述のエネルギ比 Qを表す付加信号情報 1103を求め、ビットス トリーム多重化部 103に供給する。
[0016] ノイズレベル算出部 302におけるノイズレベル 1101の算出方法としては、予測残差 を用いた方法が知られており、サブバンド kのノイズレベル T(k)は、次の式に従って 算出できる。
[数 1]
Figure imgf000007_0001
ここで X(k, 1)と Y(k, 1)はそれぞれサブバンド kのサブバンド信号と予測サブバンド 信号を表す。予測サブバンド信号を算出する方法としては共分散法や自己相関法を 用いて線形予測する方法が知られて 、る。サブバンド信号にノイズ成分が少な 、とき 、サブバンド信号 Xと予測サブバンド信号 Yの差分は小さくなり、ノイズレベル T(k)の 値は大きくなる。逆にノイズ成分が多く含まれるとき、予測サブバンド信号 Yとサブバ ンド信号 Xの差分は大きくなり、ノイズレベル T(k)の値は小さくなる。このように、サブ バンド信号に含まれて 、るノイズ成分の大きさに基づ!、てノイズレベル T (k)を算出す ることがでさる。
[0017] ノイズレベル統合部 303は、時間 Z周波数グリッド情報 1100に基づき、複数のサブ バンド単位で、低域サブバンド信号とノイズ信号のエネルギ比 Qを算出する。これは、 各サブバンド単位でエネルギ比 Qを算出し符号ィ匕するよりも、複数のサブバンド単位 でエネルギ比 Qを算出したほうが、付加信号情報 1103に必要なビット数を削減できる ためである。例えば、サブバンド kからサブバンド k +N— 1までの Nサブバンドを同
0 0
一のエネルギ比 Q (fNoise)で表す場合を考える。付加信号情報 1103は、サブバンド kからサブバンド k +N— 1まで Nサブバンドのノイズレベル 1101を平均化することに
0 0
より算出される。 Q (fNoise)は、以下の式で表される。
[数 2]
Figure imgf000008_0001
p=k{ ここで、 fNoiseは付加信号情報 1103の周波数番号を表し、 cは定数である。
[0018] 高域成分のノイズレベルを算出する高域成分符号ィ匕部 102の第二の従来例として、 特許文献 1で開示されている方法がある。第二の従来例では、入力信号に高分解能 FFTを適用して算出されるスペクトル包絡の最大値と最小値の差を計算し、時間と周 波数で平滑ィ匕した結果をノイズレベルとして 、る。 特許文献 1:特表 2002— 536679号公報
非特許文献 1: "Digital Radio Mondiale (DRM); System Specification", E TSI, TS 101 980 VI. 1. 1, 5. 2. 6節, 2001年 9月
非特許文献 2 : AES (Audio Engineering Society) Convention Paper 55 53", 112th AES Convention, 2002年 5月
非特許文献 3 : "Enhanced aacPlus general audio codec; Enhanced aacPl us encoder SBR part", 3GPP, TS 26. 404 V6. 0. 0, 2004年 9月 発明の開示
発明が解決しょうとする課題
[0019] 従来の付加信号情報算出方法は、各サブバンド単位で独立に算出したノイズレべ ルを平均化しているため、サブバンドの聴感的な優先度が考慮されていない。そのた め、聴感的に重要なサブバンドのノイズレベルがその重要度に応じて付加信号情報 に反映されず、高品質なオーディオ信号符号化装置を実現できな!ヽと ヽぅ問題があ つた o
[0020] また、スペクトル包絡を用いて付加信号情報を算出する方法は、高分解能な周波 数解析や平滑ィ匕処理を必要とするために、演算量が増加するという問題があった。さ らに、平滑ィ匕の程度によってノイズレベルの値が大きく異なり、平滑化程度の最適化 が困難であるという問題もあった。
[0021] そこで、本発明は上記課題に鑑みて発明されたものであって、その目的は、聴感的 に重要なサブバンドのノイズレベルを重要度に応じて反映した付加信号情報を少な い演算量で算出することのできる、高品質なオーディオ信号符号ィ匕に関する技術を 提供することにある。
課題を解決するための手段
[0022] 上記課題を解決する第 1の発明は、入力信号から高域信号を抽出する入力信号分 割部と、前記高域信号のスペクトルを抽出して第一の高域成分情報を生成する第一 の高域成分符号化部と、前記高域信号のノイズレベルを各周波数成分の重要度を 反映させて求めるノイズレベル算出部と、前記ノイズレベルを用いて第二の高域成分 情報を生成する第二の高域成分符号化部と、前記第一の高域成分情報と前記第二 の高域成分情報とを多重化して、多重化ビットストリームを出力するビットストリーム多 重化部と、を有することを特徴とするオーディオ符号ィ匕装置である。
[0023] 上記課題を解決する第 2の発明は、入力信号から高域信号を抽出する入力信号分 割部と、前記高域信号のスペクトルを抽出して第一の高域成分情報を生成する第一 の高域成分符号化部と、前記高域信号を用いてノイズレベルを算出するノイズレべ ル算出部と、前記高域信号を用いて補正係数を算出する補正係数算出部と、前記 補正係数を用いて前記ノイズレベルを補正し、補正ノイズレベルを求めるノイズレべ ル補正部と、前記補正ノイズレベルを用いて第二の高域成分情報を生成する第二の 高域成分符号化部と、前記第一の高域成分情報と前記第二の高域成分情報とを多 重化して、多重化ビットストリームを出力するビットストリーム多重化部と、を有すること を特徴とするオーディオ符号化装置である。
[0024] 上記課題を解決する第 3の発明は、上記第 2の発明において、前記補正係数算出 部が、前記高域信号の各周波数成分の重要度を反映した補正係数を算出すること を特徴とする。
[0025] 上記課題を解決する第 4の発明は、上記第 2の発明において、前記補正係数算出 部が、前記高域信号の周波数帯域別エネルギを算出し、前記周波数帯域別エネル ギに基づいて補正係数を算出することを特徴とする。
[0026] 上記課題を解決する第 5の発明は、上記第 2又は第 3の発明において、前記補正 係数算出部が、高い周波数で小さい値を有するような補正係数を算出することを特 徴とする。
[0027] 上記課題を解決する第 6の発明は、上記第 1の発明において、前記ノイズレベル算 出部が、前記高域信号の各周波数成分の重要度を反映させて求めたノイズレベルを 少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする。
[0028] 上記課題を解決する第 7の発明は、上記第 2から第 5の 、ずれかの発明にお 、て、 前記補正係数算出部が、前記高域信号の各周波数成分に応じて算出した補正係数 を少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする。
[0029] 上記課題を解決する第 8の発明は、入力信号から高域信号を抽出し、前記高域信 号のスペクトルを抽出して第一の高域成分情報を生成し、前記高域信号のノイズレ ベルを各周波数成分の重要度を反映させて求め、前記ノイズレベルカゝら第二の高域 成分情報を生成し、前記第一の高域成分情報と前記第二の高域成分情報とを多重 化して、多重化ビットストリームを出力することを特徴とするオーディオ符号ィ匕方法。 である。
[0030] 上記課題を解決する第 9の発明は、入力信号から高域信号を抽出し、前記高域信 号のスペクトルを抽出して第一の高域成分情報を生成し、前記高域信号を用いてノ ィズレベルを求め、前記高域信号を用いて補正係数を求め、前記補正係数を用いて 前記ノイズレベルを補正して補正ノイズレベルを求め、前記補正ノイズレベルを用い て第二の高域成分情報を生成し、前記第一の高域成分情報と前記第二の高域成分 情報とを多重化して、多重化ビットストリームを出力することを特徴とするオーディオ符 号化方法である。
[0031] 上記課題を解決する第 10の発明は、上記第 8の発明において、前記補正係数を 求める際に、前記高域信号の各周波数成分に応じた聴感的な重要度に対応して補 正係数を求めることを特徴とする。
[0032] 上記課題を解決する第 11の発明は、上記第 8の発明において、前記補正係数を 求める際に、前記高域信号の周波数帯域別エネルギを求め、前記周波数帯域別ェ ネルギに基づいて補正係数を求めることを特徴とする。
[0033] 上記課題を解決する第 12の発明は、上記第 8又は第 9の発明において、前記補正 係数を求める際に、高い周波数で小さい値を有するような補正係数を算出することを 特徴とする。
[0034] 上記課題を解決する第 13の発明は、上記第 8の発明において、前記ノイズレベル を求める際に、前記高域信号の各周波数成分の重要度を反映させて求めたノイズレ ベルを少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする。
[0035] 上記課題を解決する第 14の発明は、上記第 9から請求項 11の 、ずれかの発明に おいて、前記補正係数を求める際に、前記高域信号の各周波数成分に応じて算出 した補正係数を少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする
[0036] 上記課題を解決する第 15の発明は、入力信号から高域信号を抽出する処理と、前 記高域信号のスペクトルを抽出して第一の高域成分情報を生成する処理と、前記高 域信号のノイズレベルを各周波数成分の重要度を反映させて求める処理と、前記ノ ィズレベルを用いて第二の高域成分情報を生成する処理と、前記第一の高域成分 情報と前記第二の高域成分情報とを多重化して、多重化ビットストリームを出力する 処理とをコンピュータに実行させるためのプログラムである。
[0037] 本発明は、高域サブバンド信号を用いて、聴感的な重要度に対応した補正係数を 算出し、ノイズレベルを補正し、付加信号情報を生成するように構成されているため、 聴感的に重要なサブバンドのノイズレベルを正確に反映することができる。このため、 高品質のオーディオ符号ィ匕装置を実現することができる。
[0038] また、一般的なオーディオ信号の特性に基づく補正係数を用いるようにすれば、更 に演算量を削減することができる。
発明の効果 [0039] 本発明によれば、入力信号の聴感的な重要度に基づいた補正係数を算出し、各サ ブバンドのノイズレベルを補正することができる。
[0040] また、本発明の補正係数算出では、通常分解能の周波数解析を行うので、高分解 能な周波数解析に必要な演算量を削減しつつ、聴感的な重要度を反映したサブバ ンドのノイズレベルを求めることができる。その結果、高品質なオーディオ符号化装置 を実現することが可能となる。
図面の簡単な説明
[0041] [図 1]本発明の第 1の発明を実施するための最良の形態の構成を示すブロック図であ る。
[図 2]本発明における補正係数算出部の動作概念を示す説明図である。
[図 3]入力信号分割部の構成を表すブロック図である。
[図 4]本発明の第 2の発明を実施するための最良の形態の構成を示すブロック図であ る。
[図 5]本発明の第 3の発明を実施するための最良の形態の構成を示すブロック図であ る。
[図 6]帯域拡張符号ィ匕復号装置を示すブロック図である。
[図 7]高域成分符号ィ匕部の構成を示すブロック図である。
符号の説明
[0042] 110000 入力信号分割部
101 低域成分符号化部
102、 500 高域成分符号化部
103 ビットストリーム多重化部
110、 202 サブバンド分割部
111、 204 サブバンド合成部
112 ダウンサンプリングフイノレタ
200 ビットストリーム分離部
201 低域成分復号部
203 帯域拡張部 300 時間 Z周波数グリッド生成部
301 スペクトル包絡算出部
302 ノイズレベル算出部
303、 402 ノイズレベル統合部
400、 403 補正係数算出部
401 ノイズレベル補正部
1000 入力信号
1001 高域サブバンド信号
1002 低域信号
1004、 1007 低域成分情報
1005 ビットストリーム
1008 低域成分復号信号
1009 低域サブバンド信号
1010 高域サブバンド信号
1011 帯域拡張信号
1100 時間 Z周波数グリッド情報
1101 ノイズレべノレ
1102、 1105 高域エネルギ情報
1103、 1106 付加信号情報
1200、 1202 補正係数
1201 補正ノイズレベル
発明を実施するための最良の形態
[0043] 次に、本発明を実施するための最良の形態について図面を参照して詳細に説明 する。
[0044] まず、第 1の実施の形態について説明する。
[0045] 図 1を参照すると、本発明の第 1の実施の形態のオーディオ符号化装置は、入力信 号分割部 100、低域成分符号化部 101、時間 Z周波数グリッド生成部 300、スペクトル 包絡算出部 301、ノイズレベル算出部 302、補正係数算出部 400、ノイズレベル補正部 401、ノイズレベル統合部 402、ビットストリーム多重化部 103から構成される。図 1と図 6 は、高域成分符号ィ匕部 102と高域成分符号ィ匕部 500が異なる。これらの構成要素を図 1と図 7を用いてさらに詳細に比較すると、補正係数算出部 400及びノイズレベル補正 部 401が高域成分符号ィ匕部 500には付加されており、ノイズレベル統合部 300がノイズ レベル統合部 402に置換されている。以下、補正係数算出部 400、ノイズレベル補正 部 401及びノイズレベル統合部 402に関して詳細な動作を説明する。
[0046] 高域サブバンド信号 1001を用いて、時間 Z周波数グリッド生成部 300で、時間及び 周波数方向の複数のサブバンド信号をグループィ匕して得られた時間 Z周波数グリツ ド情報 1100を、補正係数算出部 400に伝達する。補正係数算出部 400は、高域サブ バンド信号 1001と時間 Z周波数グリッド情報 1100を用いて、各サブバンドの聴感的な 重要度を算出し、各サブバンドの補正係数 1200をノイズレベル補正部 401に伝達す る。
[0047] ノイズレベル補正部 401には、高域サブバンド信号 1001を用いてノイズレベル算出 部 302で算出された各サブバンドのノイズレベル 1101も、伝達される。ノイズレベル補 正部 401は、補正係数 1200に基づいて、各サブバンドのノイズレベル 1101を補正し、 補正ノイズレベル 1201をノイズレベル統合部 402に出力する。
[0048] ノイズレベル統合部 402は、時間 Z周波数グリッド情報 1100に基づいて、複数のサ ブバンドにおける補正ノイズレベル 1103の平均値を計算する。時間 Z周波数グリッド 単位でノイズ成分のエネルギ比を算出し、付加信号情報 1103として出力する。
[0049] 図 2は、入力信号 1000を周波数分析したときのスペクトルの一部を表しており、横軸 が周波数、縦軸がエネルギである。
[0050] 図 2において、サブバンド kからサブバンド k +N— 1までの N個のサブバンドに対
0 0
して、ノイズ信号のエネルギ比 Qを 1つ算出することを考える。これは、復号側におい てサブバンド kからサブバンド k +N—1までの N個のサブバンド全てに同一のエネ
0 0
ルギ比 Qを適用することを意味する。このように、複数のサブバンドに対して共通のェ ネルギ比 Qを用いると、各サブバンドに対して異なるエネルギ比を適用するよりも付カロ 信号情報 1103に必要なビット数を削減できる。
[0051] ここで、図 2に示すようなエネルギ分布を有する信号の場合、領域 2のェネルギは領 域 1や領域 3のエネルギよりも大き!/、。エネルギの大き 、信号はエネルギの小さ ヽ信 号よりも聴感的に重要となるため、領域 2の信号をより正確に符号ィ匕する必要がある。
[0052] 高品質な符号ィ匕を可能にするためには、領域 2におけるノイズ成分のエネルギ比 Q が付加信号情報 1103に、領域 2の重要度に応じて反映されていなければならない。 そのためには、各サブバンドの聴、感的な重要度をあら力じめ算出しておく必要がある
[0053] 各サブバンドの聴感的な重要度を表す補正係数 1200は、例えば、高域サブバンド 信号 1001のエネルギに応じて算出することができる。サブバンド kからサブバンド k
0 0
+N- 1 - 1までの Nサブバンドから、ノイズ信号のエネルギ比 Qを 1つ算出するとし たとき、サブバンド kの補正係数 a (k)は、例えば、以下の式で表すことができる。
[数 3]
N · E(k)
"(ん ) = k0 + N-\
Figure imgf000015_0001
ここで、 Eは各サブバンドのエネルギを表す。なお、各サブバンドのエネルギは、時間 Z周波数グリッド情報 1100に含まれる時間グリッド単位に算出してもよいし、複数の時 間グリッドに含まれるサブバンド信号を用いて算出してもよ 、。
[0054] 上述の手法では、高域サブバンド信号 1001のエネルギをそのまま用いているが、サ ブバンド信号 1101のエネルギを修正したものを用いてもよい。例えば、人間の聴覚特 性として、音の強さの知覚は対数に比例していることが知られている。このため、サブ バンド信号のエネルギをそのまま用いるのではなぐ対数ィ匕して力 補正係数算出に 用いることもできる。単なる対数ば力りでなぐより複雑な関数や多項式などを用いて 、エネルギを修正することも可能である。対数を近似する多項式は、これらの例の一 つであり、演算量削減に貢献する。
[0055] さらに、聴覚の特性を積極的に用いて補正係数を算出してもよい。例えば、大きな 音と同時に存在する小さな音が知覚できなくなる同時マスキングや、時間方向に発 生する継時マスキングの影響を考慮した補正係数を算出することもできる。マスキン グ閾値よりも小さな音は知覚できな 、ため、聴感上無視できるサブバンドの補正係数 を相対的に小さくすることにより、聴感的な重要度に応じた補正係数を算出すること ができる。逆に、マスキング閾値よりも大きいサブバンドの補正係数を相対的に大きく してちよい。
[0056] これまでの説明では、サブバンドのエネルギを用いて補正係数 1200を表す a (k)を 算出する例について説明してきた。しかし、聴感的な重要度に応じて変化する指標と なるものであれば、いかなる指標を用いてもよいことは明らかである。また、補正係数 1200を表す a (k)を時間方向に対して平滑ィ匕し、急激な値の変化を避けるようにして ちょい。
[0057] 次に、ノイズレベル補正部 401の動作について詳細に説明する。ノイズレベル補正 部 401は、補正係数算出部で算出した補正係数 1200に基づいて、ノイズレベル算出 部で算出した各サブバンドのノイズレベル 1101を補正し、補正ノイズレベル 1201をノ ィズレベル統合部 303に出力する。
[0058] 補正の方法としては、例えば、補正係数 1200とノイズレベル 1101の積を補正ノイズ レベル 1201とすることができる。すなわち、補正ノイズレベル T (k)は、次式で与えら
2
れる。
[0059] T (k) =a (k) X T (k)
2
また、前記積に定数を加算した結果を補正ノイズレベルとすることもできる。さら〖こ、 補正係数 1200及びノイズレベル 1101の任意の関数として、補正ノイズレベルを定義 することちでさる。
[0060] ノイズレベル統合部 402は、補正ノイズレベル 1201を用いて、時間 Z周波数グリッド 情報 1100に含まれる周波数グリッド単位で付加信号のエネルギ比 Qを算出し、付カロ 信号情報 1103として出力する。例えば、サブバンド kからサブバンド k +N— 1まで
0 0
の Nサブバンドから、ノイズ信号のエネルギ比 Qを 1つ算出するとしたとき、補正ノイズ レベル T (k)を用いたエネルギ比 Qは、以下の式で与えられる。
2
[数 4] Q{JNoise) = c · ~™
Figure imgf000017_0001
ここで、 fNoiseは付加信号情報の周波数指標を表し、 cは定数である。
[0061] 入力信号分割部 100は、図 3 (a)に示すように、サブバンド分割部 110とサブバンド 合成部 111で構成することができる。サブバンド分割部 110は、入力信号 1000を N個 のサブバンドに分割し、高域サブバンド信号 1001を出力する。サブバンド合成部 111 は、前記サブバンド信号の低域の M (Mく N)個のサブバンド信号を用いてサブバン ド合成することにより、低域信号 1002を生成する。低域信号 1002を生成するための別 の方法として、例えば、図 3 (b)のように、ダウンサンプリングフィルタ 112を用いて入力 信号 1000をダウンサンプリングすることもできる。ダウンサンプリングフィルタ 112は、低 域信号 1002の帯域に相当する通過帯域を有する低域通過フィルタを含み、ダウンサ ンプリング処理の前に低域フィルタによる高域抑圧処理を行う。また、図 3 (c)のように 、入力信号 1000を加工せずに低域信号 1002として出力してもよい。
[0062] 本実施の形態では、高域サブバンド信号 1001を用いて、聴感的な重要度に対応し た補正係数 1200を算出し、ノイズレベル 1101を補正し、付加信号情報 1103を生成す るように構成されて 、るため、聴感的に重要なサブバンドのノイズレベルを正確に反 映することができる。このため、高品質のオーディオ符号ィ匕装置を実現することができ る。
[0063] 次に、本発明の第 2の実施の形態について図 4を用いて詳細に説明する。
[0064] 図 4を参照すると、本発明の第 2の発明を実施するための最良の形態は、入力信号 分割部 100、低域成分符号化部 101、時間 Z周波数グリッド生成部 300、スペクトル包 絡算出部 301、ノイズレベル算出部 302、補正係数算出部 403、ノイズレベル補正部 40 1、ノイズレベル統合部 402、ビットストリーム多重化部 103とを含む。
[0065] 本発明の第 2の実施の形態は、本発明の第 1の実施の形態と比較して、補正係数 算出部 400が補正係数算出部 403に置き換わって 、るだけであり、他の部分にっ 、て は全く同一である。そこで、補正係数算出部 403について詳細に説明する。
[0066] 補正係数算出部 403は、時間 Z周波数グリッド情報 1100に基づき、予め定められた 手法で補正係数 1202を算出し、ノイズレベル補正部 401へ出力する。
[0067] 補正係数 1202の算出方法は、例えば、高い周波数に対して補正係数 1202が小さ い値をとるようにすることができる。周波数と補正係数 1202の対応関係は、最も簡単 な例として線形関数で表されるように定めることもできるし、非線形関数で表されるよう に定めてもよい。オーディオ信号の一般的な特性として、高周波数の信号成分は低 周波数の信号成分より減衰していることが多いため、上述の方法を用いて高品質な 付加信号情報 1103を算出することができる。
[0068] 本実施の形態は、一般的なオーディオ信号の特性に基づく補正係数 1202を用いる ために、本発明の第 1の実施の形態と比較して、演算量を削減することができる。
[0069] 次に、本発明の第 3の実施の形態ついて図面を参照して詳細に説明する。
[0070] 図 5を参照すると、本発明の第 3の実施の形態は、上述した本発明の第 1および第 2の実施の形態をプログラム 601により構成した場合に、そのプログラム 601により動作 するコンピュータ 600の構成図である。
[0071] プログラム 601は、コンピュータ 600 (中央処理装置;プロセッサ;データ処理装置)に 読み込まれ、コンピュータ 600 (中央処理装置;プロセッサ;データ処理装置)の動作 を制御する。コンピュータ 600 (中央処理装置;プロセッサ;データ処理装置)はプログ ラム 601の制御により、上述した本発明の第 1及び第 2の発明において説明した処理 と同一の処理を実行し、入力信号 1000からビットストリーム 1005を出力する。
[0072] なお、本発明が上記各実施形態に限定されず、本発明の技術思想の範囲内にお いて、各実施形態が適宜変更され得ることは明らかである。

Claims

請求の範囲
[1] 入力信号から高域信号を抽出する入力信号分割部と、
前記高域信号のスペクトルを抽出して第一の高域成分情報を生成する第一の高域 成分符号化部と、
前記高域信号のノイズレベルを各周波数成分の重要度を反映させて求めるノイズ レベル算出部と、
前記ノイズレベルを用いて第二の高域成分情報を生成する第二の高域成分符号 化部と、
前記第一の高域成分情報と前記第二の高域成分情報とを多重化して、多重化ビッ トストリームを出力するビットストリーム多重化部と、
を有することを特徴とするオーディオ符号ィ匕装置。
[2] 入力信号から高域信号を抽出する入力信号分割部と、
前記高域信号のスペクトルを抽出して第一の高域成分情報を生成する第一の高域 成分符号化部と、
前記高域信号を用 Vヽてノイズレベルを算出するノイズレベル算出部と、 前記高域信号を用いて補正係数を算出する補正係数算出部と、
前記補正係数を用いて前記ノイズレベルを補正し、補正ノイズレベルを求めるノィ ズレベル補正部と、
前記補正ノイズレベルを用いて第二の高域成分情報を生成する第二の高域成分 符号化部と、
前記第一の高域成分情報と前記第二の高域成分情報とを多重化して、多重化ビッ トストリームを出力するビットストリーム多重化部と、
を有することを特徴とするオーディオ符号ィ匕装置。
[3] 前記補正係数算出部は、前記高域信号の各周波数成分の重要度を反映した補正 係数を算出することを特徴とする請求項 2に記載のオーディオ符号ィ匕装置。
[4] 前記補正係数算出部は、前記高域信号の周波数帯域別エネルギを算出し、前記 周波数帯域別エネルギに基づいて補正係数を算出することを特徴とする請求項 2に 記載のオーディオ符号化装置。
[5] 前記補正係数算出部は、高い周波数で小さい値を有するような補正係数を算出す ることを特徴とする請求項 2又は請求項 3に記載のオーディオ符号化装置。
[6] 前記ノイズレベル算出部は、前記高域信号の各周波数成分の重要度を反映させて 求めたノイズレベルを少なくとも時間方向または周波数方向に平滑ィ匕することを特徴 とする請求項 1に記載のオーディオ符号化装置。
[7] 前記補正係数算出部は、前記高域信号の各周波数成分に応じて算出した補正係 数を少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする請求項 2か ら請求項 5のいずれかに記載のオーディオ符号化装置。
[8] 入力信号から高域信号を抽出し、
前記高域信号のスペクトルを抽出して第一の高域成分情報を生成し、 前記高域信号のノイズレベルを各周波数成分の重要度を反映させて求め、 前記ノイズレベルから第二の高域成分情報を生成し、
前記第一の高域成分情報と前記第二の高域成分情報とを多重化して、多重化ビッ トストリームを出力する
ことを特徴とするオーディオ符号ィ匕方法。
[9] 入力信号から高域信号を抽出し、
前記高域信号のスペクトルを抽出して第一の高域成分情報を生成し、 前記高域信号を用いてノイズレベルを求め、
前記高域信号を用 Vヽて補正係数を求め、
前記補正係数を用 V、て前記ノイズレベルを補正して補正ノイズレベルを求め、 前記補正ノイズレベルを用いて第二の高域成分情報を生成し、
前記第一の高域成分情報と前記第二の高域成分情報とを多重化して、多重化ビッ トストリームを出力する
ことを特徴とするオーディオ符号ィ匕方法。
[10] 前記補正係数を求める際に、前記高域信号の各周波数成分に応じた聴感的な重 要度に対応して補正係数を求めることを特徴とする請求項 8に記載のオーディオ符 号化方法。
[11] 前記補正係数を求める際に、前記高域信号の周波数帯域別エネルギを求め、前 記周波数帯域別エネルギに基づいて補正係数を求めることを特徴とする請求項 8に 記載のオーディオ符号化方法。
[12] 前記補正係数を求める際に、高い周波数で小さい値を有するような補正係数を算 出することを特徴とする請求項 8又は請求項 9に記載のオーディオ符号化方法。
[13] 前記ノイズレベルを求める際に、前記高域信号の各周波数成分の重要度を反映さ せて求めたノイズレベルを少なくとも時間方向または周波数方向に平滑ィ匕することを 特徴とする請求項 8に記載のオーディオ符号化方法。
[14] 前記補正係数を求める際に、前記高域信号の各周波数成分に応じて算出した補 正係数を少なくとも時間方向または周波数方向に平滑ィ匕することを特徴とする請求 項 9から請求項 11の 、ずれかに記載のオーディオ符号ィ匕方法。
[15] 入力信号から高域信号を抽出する処理と、
前記高域信号のスペクトルを抽出して第一の高域成分情報を生成する処理と、 前記高域信号のノイズレベルを各周波数成分の重要度を反映させて求める処理と 前記ノイズレベルを用いて第二の高域成分情報を生成する処理と、
前記第一の高域成分情報と前記第二の高域成分情報とを多重化して、多重化ビッ トストリームを出力する処理と
をコンピュータに実行させるためのプログラム。
PCT/JP2006/300112 2005-01-11 2006-01-06 オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム WO2006075563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06702057.8A EP1840874B1 (en) 2005-01-11 2006-01-06 Audio encoding device, audio encoding method, and audio encoding program
JP2006552903A JP5224017B2 (ja) 2005-01-11 2006-01-06 オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-003291 2005-01-11
JP2005003291 2005-01-11

Publications (1)

Publication Number Publication Date
WO2006075563A1 true WO2006075563A1 (ja) 2006-07-20

Family

ID=36677588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300112 WO2006075563A1 (ja) 2005-01-11 2006-01-06 オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム

Country Status (4)

Country Link
US (1) US8082156B2 (ja)
EP (1) EP1840874B1 (ja)
JP (1) JP5224017B2 (ja)
WO (1) WO2006075563A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086924A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 音声符号化装置および音声符号化方法
WO2012050023A1 (ja) * 2010-10-15 2012-04-19 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
JP2015228044A (ja) * 2007-05-08 2015-12-17 サムスン エレクトロニクス カンパニー リミテッド オーディオ信号の符号化及び復号化方法並びにその装置
JP2016006540A (ja) * 2009-10-07 2016-01-14 ソニー株式会社 復号装置および方法、並びにプログラム
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111568A1 (ja) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. 符号化装置、復号化装置、およびこれらの方法
JPWO2008053970A1 (ja) * 2006-11-02 2010-02-25 パナソニック株式会社 音声符号化装置、音声復号化装置、およびこれらの方法
US7853545B2 (en) * 2007-02-26 2010-12-14 International Business Machines Corporation Preserving privacy of one-dimensional data streams using dynamic correlations
US7840516B2 (en) * 2007-02-26 2010-11-23 International Business Machines Corporation Preserving privacy of one-dimensional data streams by perturbing data with noise and using dynamic autocorrelation
JP2009044268A (ja) * 2007-08-06 2009-02-26 Sharp Corp 音声信号処理装置、音声信号処理方法、音声信号処理プログラム、及び、記録媒体
US8190440B2 (en) * 2008-02-29 2012-05-29 Broadcom Corporation Sub-band codec with native voice activity detection
US20120278087A1 (en) * 2009-10-07 2012-11-01 Nec Corporation Multiband compressor and method of adjusting the same
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
US8560330B2 (en) * 2010-07-19 2013-10-15 Futurewei Technologies, Inc. Energy envelope perceptual correction for high band coding
JP5777041B2 (ja) * 2010-07-23 2015-09-09 沖電気工業株式会社 帯域拡張装置及びプログラム、並びに、音声通信装置
JP5743137B2 (ja) * 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
EP2710588B1 (en) 2011-05-19 2015-09-09 Dolby Laboratories Licensing Corporation Forensic detection of parametric audio coding schemes
JP5942358B2 (ja) 2011-08-24 2016-06-29 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
WO2013124445A2 (en) * 2012-02-23 2013-08-29 Dolby International Ab Methods and systems for efficient recovery of high frequency audio content
US9542955B2 (en) * 2014-03-31 2017-01-10 Qualcomm Incorporated High-band signal coding using multiple sub-bands
KR20210111603A (ko) * 2020-03-03 2021-09-13 삼성전자주식회사 음질 개선 방법 및 그 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259094A (ja) * 1993-03-05 1994-09-16 Sony Corp 圧縮データ記録及び又は再生装置又は方法
JPH06313694A (ja) * 1993-04-28 1994-11-08 Toshiba Corp 熱交換器および空調換気扇
JPH09127986A (ja) * 1995-10-26 1997-05-16 Sony Corp 符号化信号の多重化方法及び信号符号化装置
JPH09261066A (ja) * 1996-03-27 1997-10-03 Matsushita Electric Ind Co Ltd ロスレス符号装置とロスレス記録媒体とロスレス復号装置とロスレス符号復号装置
JPH11514453A (ja) * 1995-09-14 1999-12-07 エリクソン インコーポレイテッド 音声信号を適応的に濾波して雑音のある環境条件での音声了解度を高めるシステム
WO2003046891A1 (en) * 2001-11-29 2003-06-05 Coding Technologies Ab Methods for improving high frequency reconstruction

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705377B2 (ja) * 1991-07-31 1998-01-28 松下電器産業株式会社 帯域分割符号化方法
JP3278900B2 (ja) * 1992-05-07 2002-04-30 ソニー株式会社 データ符号化装置及び方法
JP3186315B2 (ja) * 1993-02-27 2001-07-11 ソニー株式会社 信号圧縮装置、信号伸張装置、信号送信装置、信号受信装置及び信号送受信装置
JPH08123490A (ja) * 1994-10-24 1996-05-17 Matsushita Electric Ind Co Ltd スペクトル包絡量子化装置
JPH08162963A (ja) * 1994-11-30 1996-06-21 Sony Corp データ符号化装置および復号装置
TW321810B (ja) 1995-10-26 1997-12-01 Sony Co Ltd
EP0880235A1 (en) 1996-02-08 1998-11-25 Matsushita Electric Industrial Co., Ltd. Wide band audio signal encoder, wide band audio signal decoder, wide band audio signal encoder/decoder and wide band audio signal recording medium
JP3344944B2 (ja) * 1997-05-15 2002-11-18 松下電器産業株式会社 オーディオ信号符号化装置,オーディオ信号復号化装置,オーディオ信号符号化方法,及びオーディオ信号復号化方法
EP0878790A1 (en) * 1997-05-15 1998-11-18 Hewlett-Packard Company Voice coding system and method
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
SE9903553D0 (sv) 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
AUPR647501A0 (en) * 2001-07-19 2001-08-09 Vast Audio Pty Ltd Recording a three dimensional auditory scene and reproducing it for the individual listener
US7333929B1 (en) * 2001-09-13 2008-02-19 Chmounk Dmitri V Modular scalable compressed audio data stream
JP3926726B2 (ja) 2001-11-14 2007-06-06 松下電器産業株式会社 符号化装置および復号化装置
KR100723753B1 (ko) * 2002-08-01 2007-05-30 마츠시타 덴끼 산교 가부시키가이샤 스펙트럼 대역 복사에 의한 오디오 디코딩 장치 및 오디오디코딩 방법
JP3861770B2 (ja) * 2002-08-21 2006-12-20 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
CA2469674C (en) * 2002-09-19 2012-04-24 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and method
JP4380174B2 (ja) * 2003-02-27 2009-12-09 沖電気工業株式会社 帯域補正装置
WO2005004113A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited オーディオ符号化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259094A (ja) * 1993-03-05 1994-09-16 Sony Corp 圧縮データ記録及び又は再生装置又は方法
JPH06313694A (ja) * 1993-04-28 1994-11-08 Toshiba Corp 熱交換器および空調換気扇
JPH11514453A (ja) * 1995-09-14 1999-12-07 エリクソン インコーポレイテッド 音声信号を適応的に濾波して雑音のある環境条件での音声了解度を高めるシステム
JPH09127986A (ja) * 1995-10-26 1997-05-16 Sony Corp 符号化信号の多重化方法及び信号符号化装置
JPH09261066A (ja) * 1996-03-27 1997-10-03 Matsushita Electric Ind Co Ltd ロスレス符号装置とロスレス記録媒体とロスレス復号装置とロスレス符号復号装置
WO2003046891A1 (en) * 2001-11-29 2003-06-05 Coding Technologies Ab Methods for improving high frequency reconstruction

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228044A (ja) * 2007-05-08 2015-12-17 サムスン エレクトロニクス カンパニー リミテッド オーディオ信号の符号化及び復号化方法並びにその装置
JP2017203995A (ja) * 2007-05-08 2017-11-16 サムスン エレクトロニクス カンパニー リミテッド オーディオ信号の符号化及び復号化方法並びにその装置
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
JP2017203999A (ja) * 2009-10-07 2017-11-16 ソニー株式会社 復号装置および方法、並びにプログラム
JP2016006540A (ja) * 2009-10-07 2016-01-14 ソニー株式会社 復号装置および方法、並びにプログラム
JPWO2011086924A1 (ja) * 2010-01-14 2013-05-16 パナソニック株式会社 音声符号化装置および音声符号化方法
WO2011086924A1 (ja) * 2010-01-14 2011-07-21 パナソニック株式会社 音声符号化装置および音声符号化方法
JP5809066B2 (ja) * 2010-01-14 2015-11-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 音声符号化装置および音声符号化方法
US10224054B2 (en) 2010-04-13 2019-03-05 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10297270B2 (en) 2010-04-13 2019-05-21 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10381018B2 (en) 2010-04-13 2019-08-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10546594B2 (en) 2010-04-13 2020-01-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9177563B2 (en) 2010-10-15 2015-11-03 Sony Corporation Encoding device and method, decoding device and method, and program
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
RU2630384C1 (ru) * 2010-10-15 2017-09-07 Сони Корпорейшн Устройство и способ декодирования и носитель записи программы
US9536542B2 (en) 2010-10-15 2017-01-03 Sony Corporation Encoding device and method, decoding device and method, and program
TWI479481B (zh) * 2010-10-15 2015-04-01 Sony Corp Encoding apparatus and method, decoding apparatus and method, and program
US10236015B2 (en) 2010-10-15 2019-03-19 Sony Corporation Encoding device and method, decoding device and method, and program
CN103155031A (zh) * 2010-10-15 2013-06-12 索尼公司 编码装置和方法、解码装置和方法以及程序
JP2012083678A (ja) * 2010-10-15 2012-04-26 Sony Corp 符号化装置および方法、復号装置および方法、並びにプログラム
WO2012050023A1 (ja) * 2010-10-15 2012-04-19 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
US11705140B2 (en) 2013-12-27 2023-07-18 Sony Corporation Decoding apparatus and method, and program

Also Published As

Publication number Publication date
EP1840874B1 (en) 2019-04-10
US8082156B2 (en) 2011-12-20
EP1840874A1 (en) 2007-10-03
JP5224017B2 (ja) 2013-07-03
US20080140425A1 (en) 2008-06-12
EP1840874A4 (en) 2008-05-28
JPWO2006075563A1 (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5224017B2 (ja) オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム
JP4934427B2 (ja) 音声信号復号化装置及び音声信号符号化装置
JP3579047B2 (ja) オーディオ復号装置と復号方法およびプログラム
KR101278546B1 (ko) 대역폭 확장 출력 데이터를 생성하기 위한 장치 및 방법
JP5203077B2 (ja) 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
EP2056294B1 (en) Apparatus, Medium and Method to Encode and Decode High Frequency Signal
JP2022123060A (ja) 符号化オーディオ信号を復号する復号装置および復号方法
US10255928B2 (en) Apparatus, medium and method to encode and decode high frequency signal
KR102055022B1 (ko) 부호화 장치 및 방법, 복호 장치 및 방법, 및 프로그램
JP4313993B2 (ja) オーディオ復号化装置およびオーディオ復号化方法
JP4354561B2 (ja) オーディオ信号符号化装置及び復号化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006552903

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11794984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006702057

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006702057

Country of ref document: EP