WO2006075500A1 - Inorganic anion exchanger composed of yttrium compound and resin composition for electronic component sealing which uses same - Google Patents

Inorganic anion exchanger composed of yttrium compound and resin composition for electronic component sealing which uses same Download PDF

Info

Publication number
WO2006075500A1
WO2006075500A1 PCT/JP2005/023583 JP2005023583W WO2006075500A1 WO 2006075500 A1 WO2006075500 A1 WO 2006075500A1 JP 2005023583 W JP2005023583 W JP 2005023583W WO 2006075500 A1 WO2006075500 A1 WO 2006075500A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
anion exchanger
resin
inorganic anion
inorganic
Prior art date
Application number
PCT/JP2005/023583
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuharu Ono
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2006552877A priority Critical patent/JP5176323B2/en
Publication of WO2006075500A1 publication Critical patent/WO2006075500A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/276Nitrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Inorganic anion exchanger made of yttrium compound and resin composition for encapsulating electronic components using the same
  • the present invention relates to an inorganic anion exchanger, and more particularly to an inorganic anion exchanger suitably used for a resin composition for encapsulating electronic components. Furthermore, the present invention relates to a resin composition for encapsulating electronic components containing the inorganic anion exchanger, a resin obtained by curing the resin composition, and an electronic component obtained by sealing an element with the composition. In addition, the present invention relates to a cornice, an adhesive and a paste containing the inorganic anion exchanger, and a product containing them.
  • Conventional inorganic anion exchangers include, for example, hydrated talcite, hydrous bismuth, hydrous magnesium oxide, hydrous aluminum oxide, and the like.
  • inorganic anion exchangers are blended in resins for encapsulating electronic components, resins for encapsulating electrical components, resins for electrical products, and the like.
  • LSIs, ICs, hybrid ICs, transistors, diodes, and thyristors are mostly sealed with epoxy resin.
  • Such an electronic component sealing material suppresses defects caused by ionic impurities in raw materials or moisture entering from the outside, as well as flame retardancy, high adhesion, crack resistance and high volume resistivity.
  • Various characteristics such as electrical characteristics are required.
  • Epoxy resins that are frequently used as encapsulants for electronic parts include epoxy compounds, which are the main components, as well as epoxy compound curing agents, curing accelerators, inorganic fillers, flame retardants, pigments, and silane coupling agents. Etc.
  • this compound already has anions such as hydroxide ions and carbonate ions as anions, the anion exchange performance is not sufficient.
  • an anion exchanger generally adsorbs anions well when the surrounding environment is acidic, but hardly adsorbs anions near neutral or alkaline. Depending on the additive added to the sealing material, the pH of the resin composition may be near neutral, and the effect of the anion exchanger may not be fully exhibited. [0009] As a countermeasure against this, a method has been proposed in which an anion exchanger is mixed with a cation exchanger, which is a solid acid, to lower the apparent pH and improve ion exchange (for example, patent documents). 8). However, when a solid acid is added to the resin, it can damage the resin properties. In addition, since many cation exchangers contain heavy metals, cation exchangers may not be used together due to environmental considerations.
  • an aramid fiber contains an epoxy resin or a polyphenylene oxide resin and an ion scavenger.
  • the ion scavenger include an ion exchange resin and an inorganic ion exchanger.
  • an antimony-bismuth-based material and a dinoleconium-based material are described (for example, see Patent Document 10). ).
  • An insulating varnish containing an ion scavenger is known, and a multilayer printed wiring board is produced using this insulating varnish.
  • ion scavenger examples include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, zirconium phosphate, and hydrated talcite (for example, patent documents). 11).
  • an inorganic ion adsorbent is blended in an adhesive film for a multilayer wiring board.
  • the inorganic ion adsorbent include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, dinoleconium phosphate, and hydrated talcite (see, for example, Patent Document 12).
  • An epoxy resin adhesive containing an ion trapping agent is known.
  • the ion trapping agent include an anion exchanger and a cation exchanger (see, for example, Patent Document 13).
  • a conductive epoxy resin paste containing an ion scavenger and silver powder is known.
  • the ion scavenger include hydrated bismuth nitrate, magnesium aluminum hydride talcite, and antimony oxide (see, for example, Patent Document 14).
  • ion exchangers' ion scavengers described in these documents, there are those which describe the use of hydrated talcite, but these are used as they are or as calcined bodies.
  • anodic talcite and hydrous bismuth oxide are used in various applications because they have high anion exchange properties and relatively high chemical resistance and heat resistance. For example, it is used for the purpose of improving the reliability of semiconductor components by mixing it with semiconductor sealing resin in the electronics industry.
  • Hyde mouth talcite is highly soluble under high temperature and high humidity such as hot water of 100 ° C or higher.
  • range of use is limited because it is highly hygroscopic and adversely affects the properties of the sealing resin.
  • bismuth compounds such as hydrated hydrous bismuth have excellent performance and can be used in a wide range.
  • copper and alloys can be easily produced, and their use may be limited in terms of recycling.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-252451
  • Patent Document 2 Japanese Patent Application Laid-Open No. 64-64243
  • Patent Document 3 JP-A-60-40124
  • Patent Document 4 JP-A-60-42418
  • Patent Document 5 Japanese Patent Laid-Open No. 63-060112
  • Patent Document 6 Japanese Patent Laid-Open No. 02-293325
  • Patent Document 7 Japanese Patent Laid-Open No. 02-294354
  • Patent Document 8 JP-A-60-23901
  • Patent Document 9 Japanese Patent Laid-Open No. 05-140419
  • Patent Document 10 Japanese Patent Application Laid-Open No. 09-314758
  • Patent Document 11 JP-A-10-287830
  • Patent Document 12 JP-A-10-330696
  • Patent Document 13 Japanese Patent Application Laid-Open No. 10-013011
  • Patent Document 14 Japanese Patent Laid-Open No. 10-007763
  • x, y, and z are 0 or a positive number
  • 2x + y + z 6
  • n is 0 or a positive number
  • Another aspect of the present invention is an electronic component sealing resin composition containing the inorganic anion exchanger of the present invention, which contains an inorganic cation exchanger as an optional component.
  • Yet another aspect of the present invention is the above-described resin composition for encapsulating electronic components, which contains an epoxy resin and a curing agent.
  • Another aspect of the present invention is a resin obtained by curing the resin composition for sealing an electronic component described above.
  • Another aspect of the present invention is an electronic component obtained by sealing an element with the above-described electronic component sealing resin composition.
  • Another aspect of the present invention is a varnish, adhesive or paste containing the inorganic anion exchanger of the present invention, which may contain an inorganic cation exchanger.
  • Yet another aspect of the present invention is a product containing the varnish, adhesive or paste described above.
  • a new inorganic anion exchanger that is environmentally friendly and has high performance can be provided.
  • an electronic component sealing resin composition it is possible to provide an electronic component sealing resin composition, an electronic component sealing resin, and an electronic component using the inorganic anion exchanger.
  • the varnish using the said inorganic anion exchanger, an adhesive agent, a base, and the product containing these can be provided.
  • the inorganic anion exchanger of the present invention is an inorganic anion exchanger composed of the yttrium compound represented by the above formula (1), it is environmentally friendly and has high performance. This is preferable because it can be suitably used in applications where site-based anion exchangers, bismuth-based anion exchangers, and the like cannot be used.
  • the yttrium compound in the present invention is represented by the above formula (1).
  • X in formula (1) is 0 or a positive number of 3 or less, preferably a positive number of 3 or less, more preferably a positive number of 2.5 or less.
  • Y in formula (1) is a positive number of 0 or 6 or less, preferably 0 or 5.5 or less, more preferably 5 or less.
  • Z in the formula (1) is a positive number of 0 or 6 or less, preferably 0 or a positive number of 4 or less, more preferably a positive number of 3 or less.
  • yttrium compounds in the present invention include Y (OH) (NO) ⁇ ⁇ 0, Y
  • the raw material for obtaining the yttrium compound in the present invention any raw material can be used as long as it is obtained by the formula (1) and has anion exchange properties.
  • the yttrium compound in the present invention can be obtained by adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, which is dried and then heated.
  • yttrium oxide of the present invention can be obtained by solubilizing yttrium oxide with nitric acid and subjecting it to the treatment described above.
  • the yttrium compound in the present invention can be obtained, for example, by adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, which is dried and then heated.
  • the pH is preferably pH 7.5 to 12 force S, more preferably pH 8 to 11 force S, and more preferably 8.5 to 10 force.
  • the water temperature when this treatment is performed is preferably:! To 80 ° C force S, more preferably 10 to 60 ° C force S, and further preferably 15 to 40 ° C.
  • alkali metal hydroxide, carbonate Preferred examples include a rucali metal salt, an alkali metal hydrogen carbonate salt, ammonia, and a compound that generates ammonia by heating (for example, urea, hexamethylenetetramine, etc.).
  • this alkali metal sodium and potassium are preferable.
  • More preferable examples of the pH-adjusting agent include ammonia and compounds that generate ammonia by heating (for example, urea, hexamethylenetetramine, etc.).
  • the yttrium compound in the present invention can be obtained by, for example, adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, heat-treating it, then drying and heat-treating it. .
  • the heating temperature of this heat aging treatment has a preferable temperature depending on the heating time.
  • the heating temperature is preferably 100 to 300 ° C force S, more preferably 130 to 250 ° C, and even more preferably 150 to 200 ° C force S.
  • the heating time of the heat aging treatment varies depending on the heating temperature. The higher the temperature, the shorter the heating time, but generally 2 to 72 hours are preferred, 10 to 48 hours are more preferred, and 15 to 30 hours are more preferred.
  • Drying may be performed at room temperature or by heating in a drying furnace. That is, any treatment may be performed as long as excess water is removed from the precipitate.
  • the drying temperature in the present invention is preferably 80 to 250 ° C. force S, more preferably 110 to 200 ° C. Note that this drying and heating can be performed simultaneously. In this case, it is preferable to lower the temperature until moisture is removed, and then to raise the heating temperature.
  • the yttrium compound in the present invention can be obtained by drying the above precipitate and then heat-treating it.
  • This heating temperature has a preferable temperature depending on the heating time.
  • the caloric heat temperature 150 to: 1,000 ° C force S is preferable, 180 to 900 ° C force S is more preferable, 200 to
  • More preferred is 850 ° C.
  • the heating time for this heat treatment varies depending on the heating temperature. The higher the temperature, the shorter the heating time, but in general:!-72 hours are preferred, 2-48 hours are preferred, 3-30 hours are more preferred.
  • the yttrium compound in the present invention obtained as described above can be pulverized according to the purpose to obtain a desired particle size.
  • the particle size of the yttrium compound in the present invention is not particularly limited, but preferably the average particle size Diameter F. SO. 01 to 10 / im, more preferably ⁇ to 0.05 to 3 / im. Particle size force SO. 01 to: ⁇ ⁇ is preferable because the particles do not aggregate with each other and when added to the resin, the physical properties are not impaired.
  • the anion exchange capacity in the present invention is measured using hydrochloric acid.
  • lg sample and 50 ml of 0.1 M / liter hydrochloric acid are placed in a 100 ml polyethylene bottle, shaken at 40 ° C for 24 hours, and then the chloride ion concentration in the supernatant is measured by ion chromatography. Measured by topography.
  • the anion exchange capacity was calculated using the same procedure as described above for the sample without the sample, but measuring the chloride ion concentration as a blank value.
  • the anion exchange capacity of the inorganic anion exchanger of the present invention is preferably lmeq / g or more, more preferably 1.5 meqZg or more, more preferably 1.8 meqZg or more, and preferably 4.5 meqZg or less. Mashigu 4. Less than 3meq / g is more preferred 4meqZg or less is more preferred.
  • the ion exchange amount is within the above range, the performance of the resin blended with the anion exchanger of the present invention is hardly impaired, which is preferable.
  • the electrical conductivity of the supernatant is obtained by adding pure water to a specimen and stirring it, and measuring the electrical conductivity of the supernatant. In this measurement, 0.5 g of a sample and 50 ml of pure water were placed in a 100 ml polypropylene bottle, kept at 100 ° C. for 24 hours, and then the conductivity of the supernatant was measured.
  • the conductivity of the supernatant in the inorganic anion exchanger of the present invention is preferably 200 ⁇ S / cm or less, more preferably 150 ⁇ S / cm or less, force S, more preferably 100 ⁇ S / cm or less, force S, and even more preferably 1 ⁇ S / cm or more is preferred 3 ⁇ S / cm or more is more preferred 5 ⁇ SZcm or more is even more preferred.
  • the conductivity of the supernatant is within the above range, the performance of the resin containing the inorganic anion exchanger of the present invention is hardly impaired, which is preferable.
  • the inorganic anion exchanger of the present invention is preferably an inorganic anion exchanger having an anion exchange capacity of SlmeqZg or more and a supernatant conductivity of 200 ⁇ S / cm or less. Good.
  • Examples of the resin used in the resin composition for sealing an electronic component containing the inorganic anion exchanger of the present invention include a thermosetting resin such as a phenol resin, a urea resin, a melanin resin, an unsaturated polyester resin, and an epoxy resin.
  • a thermoplastic resin such as polyethylene, polystyrene, salted bull, and polypropylene may be used, and a thermosetting resin is preferable.
  • a phenol resin or an epoxy resin is preferable, and an epoxy resin is particularly preferable.
  • Epoxy resin composition for sealing electronic parts [0027] Epoxy resin composition for sealing electronic parts
  • the epoxy resin used in the present invention can be used without limitation as long as it can be used as an electronic component sealing resin.
  • any type can be used, such as phenol novolac type epoxy resin, bisphenol A type epoxy resin, alicyclic epoxy resin, etc.
  • Any material used as a molding material can be used.
  • the epoxy resin composition for sealing an electronic component preferably contains a curing agent and a curing accelerator.
  • any of those known as curing agents for epoxy resin compositions can be used, and preferred specific examples include acid anhydrides, amine-based curing agents, and nopolac-based curing agents. .
  • curing accelerator used in the present invention any of those known as curing accelerators for epoxy resin compositions can be used, and preferred specific examples include amine-based, phosphorus-based, and imidazole-based accelerators. is there.
  • the resin composition for electronic parts of the present invention can be blended with what is known as a component to be blended with the molding resin, if necessary.
  • this component include inorganic fillers, flame retardants, inorganic filler coupling agents, colorants, and release agents. These ingredients are known as components to be blended in the molding epoxy resin.
  • Specific examples of preferred inorganic fillers include crystalline silica powder, quartz glass powder, fused silica powder, alumina powder, and talc. Of these, crystalline silica powder, quartz glass powder, and fused silica powder are inexpensive. preferable.
  • flame retardants include antimony oxide, halogenated epoxy resins, magnesium hydroxide, aluminum hydroxide, red phosphorus compounds, phosphate ester compounds, etc.
  • Examples of coupling agents for inorganic fillers include silane
  • mold release agents include aliphatic paraffins and higher aliphatic alcohols.
  • a reactive diluent examples include butyl phenyl darisidino ether
  • examples of the solvent include methyl ethyl ketone
  • examples of the thixotropic agent include organically modified bentonite.
  • a preferred blending ratio of the inorganic anion exchanger of the present invention is 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight per 100 parts by weight of the resin composition for sealing an electronic component. .
  • a blending ratio of 0.1 part by weight or more is preferable because it has a large effect of improving the anion removability and moisture resistance reliability.
  • it is 10 parts by weight or less, it is preferable because it will not only lead to a sufficient effect and cost increase.
  • the anion scavenging ability of the inorganic anion exchanger of the present invention is increased and the effect of capturing cationic ions is improved.
  • the inorganic cation exchanger is an inorganic substance and has a cation exchange property.
  • the compounding ratio of the inorganic anion exchanger and inorganic cation exchanger of the present invention is not particularly limited, but is preferably 100: 0 to 20:80 by weight.
  • the inorganic anion exchanger and the inorganic cation exchanger according to the present invention may be blended separately when preparing the resin composition for sealing an electronic component, and these are mixed in advance. You can also. Preferably, a mixture is used. By doing so, the effect of using these components in combination can be further exhibited.
  • the inorganic cation exchanger include antimonic acid (antimony pentoxide hydrate), Examples include oxalic acid (niobium pentoxide hydrate), manganese oxide, zirconium phosphate, titanium phosphate, tin phosphate, cerium phosphate, zeolite, and clay minerals.
  • Antimonic acid (antimony pentoxide hydrate) Product) zirconium phosphate, and titanium phosphate.
  • the resin composition for sealing an electronic component of the present invention can be easily obtained by mixing the above raw materials by a known method.
  • the respective raw materials are appropriately blended, and the blend is kneaded.
  • the mixture is kneaded while heated in a machine to obtain a semi-cured resin composition, which is cooled to room temperature, pulverized by known means, and tableted as necessary.
  • the inorganic anion exchanger of the present invention can be used for various applications such as sealing, coating, and insulation of electronic components or electrical components.
  • the inorganic anion exchanger of the present invention can also be used for stabilizers, antifungal agents and the like for resins such as polyvinyl chloride.
  • a resin composition for electronic components containing the inorganic anion exchanger of the present invention is provided on a support member such as a lead frame, a wired tape carrier, a wiring board, glass, or a silicon wafer, on a semiconductor chip or transistor. It can be used for devices equipped with active elements such as diodes and thyristors, and passive elements such as capacitors, resistors and coils.
  • the resin composition for encapsulating electronic components of the present invention can also be used effectively for printed circuit boards.
  • An epoxy resin composition for encapsulating electronic components containing the inorganic anion exchanger of the present invention can be used in the same manner.
  • a low-pressure transfer molding method is the most common, but an injection molding method, A compression molding method or the like may be used.
  • a printed wiring board is formed using thermosetting properties such as an epoxy resin, and a copper foil or the like is bonded to the printed wiring board, and a circuit is produced by etching the film to produce a wiring board.
  • corrosion and insulation defects have become problems due to high density of circuits, lamination of circuits, and thinning of insulating layers.
  • Such corrosion can be prevented by adding the inorganic anion exchanger of the present invention when producing a wiring board.
  • corrosion of the wiring board can be prevented by adding the inorganic anion exchanger of the present invention to the insulating layer for the wiring board.
  • the wiring board containing the inorganic anion exchanger of the present invention can suppress the generation of defective products due to corrosion or the like. It is preferable to add 0.:! To 5 parts by weight of the inorganic anion exchanger of the present invention with respect to 100 parts by weight of the resin solid content in the wiring board or the insulating layer for the wiring board.
  • An inorganic cation exchanger may be contained therein.
  • the inorganic anion exchanger of the present invention By adding the inorganic anion exchanger of the present invention to a conductive adhesive or the like when connecting or wiring an electronic component to a wiring board, it is possible to suppress defects caused by corrosion etc. .
  • the conductive adhesive include those containing a conductive metal such as silver. It is preferable to add 0.:! To 5 parts by weight of the insoluble anion exchanger of the present invention with respect to 100 parts by weight of the resin solid content in the conductive adhesive. An inorganic cation exchanger may be contained here.
  • An electrical product, a printed wiring board, an electronic component, or the like can be produced using the varnish containing the inorganic anion exchanger of the present invention.
  • the varnish include those mainly composed of a thermosetting resin such as an epoxy resin. It is preferable to add from 0.5 to 5 parts by weight of the inorganic anion exchanger of the present invention to 100 parts by weight of the resin solid content. Inorganic cation exchangers may be included here.
  • the inorganic anion exchanger of the present invention can be added to a paste containing silver powder or the like.
  • Paste is used to improve the adhesion between connecting metals as an auxiliary agent for soldering. As a result, the generation of corrosive substances generated from the paste can be suppressed. It is preferable to add 0.:! To 5 parts by weight of the inorganic anion exchanger of the present invention with respect to 100 parts by weight of resin solids in the paste. Inorganic cation exchange here A substitute may be included.
  • the method includes a step of adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, a step of drying the precipitate after heat aging, and a step of heating the dried product.
  • Comparative compound 1 synthesized in Comparative example 1 was further heated at 400 ° C. for 4 hours to obtain comparative compound 2.
  • this compound was analyzed, it was La 2 O 3 (NO 3).
  • Bismuth anion exchanger IXE-500 (manufactured by Toagosei Co., Ltd.) was used as reference compound 2.
  • a crushed sample of the resin kneaded body 2 was prepared in the same manner as in the preparation of the resin kneaded body 1 except that the compound 2 was used instead of the compound 1.
  • a pulverized sample of resin kneaded body 3 was prepared in the same manner as in the preparation of resin kneaded body 1 except that compound 3 was used instead of compound 1.
  • a pulverized sample of comparative resin kneaded body 2 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 2 was used instead of compound 1.
  • a pulverized sample of comparative resin kneaded body 3 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 3 was used instead of compound 1.
  • a pulverized sample of comparative resin kneaded body 0 was prepared in the same manner as in the preparation of resin kneaded body 1 except that compound 1 was not used. That is, the comparative resin kneaded product 0 is a product containing Compound 1.
  • a ground sample of reference resin kneaded body 1 was prepared in the same manner as in preparation of resin kneaded body 1 except that reference compound 1 was used instead of compound 1.
  • a ground sample of reference resin kneaded body 2 was prepared in the same manner as in preparation of resin kneaded body 1 except that reference compound 2 was used instead of compound 1.
  • Comparative Example 5 Comparative resin kneaded body 2 53 4,4
  • Comparative Example 6 Comparative resin kneaded body 3 50 4.3
  • Reference Example 4 Reference resin kneaded body 2 60 4.2
  • Compound 1 0.5 g was placed in a 100 ml polypropylene bottle, 50 ml of pure water was added, stoppered and kept at 100 ° C. for 24 hours.
  • the bottle has a small hole.
  • Compound 2 Compound 3, Reference Compound 1, and Reference Compound 2 were also operated in the same manner as described above to prepare Mixture 2, Mixture 3, Reference Mixture 4, and Reference Mixture 5. These materials were used to measure the ion exchange rate.
  • Reference mixture 1 Reference compound 1 + Zirconium oxalate 96%
  • the inorganic anion exchanger of the present invention has a low ion solubility and a low hygroscopic property even under high temperature and high humidity with a large ion exchange capacity.
  • the inorganic anion exchanger of the present invention has a low ion solubility and a low hygroscopic property even under high temperature and high humidity with a large ion exchange capacity.
  • the inorganic anion exchanger of the present invention is one made of an environment and excellent in anion exchange properties.
  • the inorganic anion exchanger of the present invention is an inorganic anion exchanger that does not use a high-mouth talcite or a bismuth compound, which is problematic in terms of hygroscopicity or recycling. Even if the inorganic anion exchanger of the present invention is added to the resin, there is an effect of suppressing the elution of this force of anions.
  • the inorganic anion exchanger of the present invention can be used for various purposes such as sealing, coating, and insulation of highly reliable electronic parts or electric parts over a wide range.
  • the inorganic anion exchanger of the present invention can also be used as a resin stabilizer such as bull chloride, an antifungal agent, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Disclosed is a novel high-performance inorganic anion exchanger which is environment friendly. Specifically disclosed is an inorganic anion exchanger represented by the following formula (1). Y2Ox(OH)y(NO3)z·nH2O (1) (In the formula (1), x, y and z respectively represent 0 or a positive number while satisfying 2x + y + z = 6, and n represents 0 or a positive number.) Also disclosed are a resin composition for electronic component sealing which contains an inorganic anion exchanger represented by the above formula (1), an electronic component sealing resin, and an electronic component. Further disclosed are a varnish, adhesive and paste containing the inorganic anion exchanger, and products containing them.

Description

明 細 書  Specification
イットリウム化合物による無機陰イオン交換体およびそれを用いた電子部 品封止用樹脂組成物  Inorganic anion exchanger made of yttrium compound and resin composition for encapsulating electronic components using the same
技術分野  Technical field
[0001] 本発明は、無機陰イオン交換体、特に電子部品封止用樹脂組成物に好適に使用 される無機陰イオン交換体に関する。さらに、該無機陰イオン交換体を含有する電子 部品封止用樹脂組成物、これを硬化してなる樹脂および該組成物により素子を封印 してなる電子部品に関する。また、本発明は、該無機陰イオン交換体を含有するヮニ ス、接着剤およびペースト並びにこれらを含む製品に関する。  [0001] The present invention relates to an inorganic anion exchanger, and more particularly to an inorganic anion exchanger suitably used for a resin composition for encapsulating electronic components. Furthermore, the present invention relates to a resin composition for encapsulating electronic components containing the inorganic anion exchanger, a resin obtained by curing the resin composition, and an electronic component obtained by sealing an element with the composition. In addition, the present invention relates to a cornice, an adhesive and a paste containing the inorganic anion exchanger, and a product containing them.
背景技術  Background art
[0002] 従来、無機陰イオン交換体としては、ハイド口タルサイト、含水酸化ビスマス、含水 酸化マグネシウム、および含水酸化アルミニウム等が知られてレ、る。  Conventional inorganic anion exchangers include, for example, hydrated talcite, hydrous bismuth, hydrous magnesium oxide, hydrous aluminum oxide, and the like.
[0003] 近年、無機陰イオン交換体は、電子部品封止用樹脂、電気部品封止用樹脂、およ び電気製品用樹脂等に配合されている。 In recent years, inorganic anion exchangers are blended in resins for encapsulating electronic components, resins for encapsulating electrical components, resins for electrical products, and the like.
例えば、 LSI, IC、ハイブリッド IC、トランジスタ、ダイオード、およびサイリスタゃこれ らのハイブリッド部品の多くは、エポキシ樹脂を用いて封止されている。このような電 子部品封止材には、原材料中のイオン性不純物または外部より侵入する水分に起 因する不良を抑止すると共に、難燃性、高密着性、耐クラック性および高体積抵抗率 等の電気特性等、種々の特性が要求されている。  For example, LSIs, ICs, hybrid ICs, transistors, diodes, and thyristors are mostly sealed with epoxy resin. Such an electronic component sealing material suppresses defects caused by ionic impurities in raw materials or moisture entering from the outside, as well as flame retardancy, high adhesion, crack resistance and high volume resistivity. Various characteristics such as electrical characteristics are required.
電子部品封止材として多用されているエポキシ樹脂は、主成分であるエポキシィ匕 合物の他、エポキシ化合物硬化剤、硬化促進剤、無機充填物、難燃剤、顔料、およ びシランカップリング剤等により構成されている。  Epoxy resins that are frequently used as encapsulants for electronic parts include epoxy compounds, which are the main components, as well as epoxy compound curing agents, curing accelerators, inorganic fillers, flame retardants, pigments, and silane coupling agents. Etc.
更に、近年半導体の高集積化に伴い、 ICチップ上のアルミニウム配線幅の縮小に より、アルミニウムの腐食が早期に発生するようになった。この腐食は、主に、封止材 として用いられてレ、るエポキシ樹脂中に浸入した水分により助長されるものである。ま た、配線幅の縮小により、使用中に発生する熱が多くなつたため、該エポキシ樹脂に 酸化アンチモン、臭素化エポキシ樹脂、および無機水酸化物等の難燃剤が多量に 配合されるようになり、これらの難燃剤成分により、アルミニウム等配線の腐食が更に 助長されるようになってきている。 Furthermore, in recent years, with the high integration of semiconductors, the corrosion of aluminum began to occur at an early stage due to the reduction of the width of the aluminum wiring on the IC chip. This corrosion is mainly promoted by moisture that is used as a sealing material and penetrates into the epoxy resin. In addition, since the heat generated during use increased due to the reduction in wiring width, a large amount of flame retardant such as antimony oxide, brominated epoxy resin, and inorganic hydroxide was added to the epoxy resin. These flame retardant components have further promoted the corrosion of wiring such as aluminum.
[0004] 上記の腐食を防止するためエポキシ樹脂に対し耐湿信頼性を更に向上させること が要求されてきた。既に、この耐湿信頼性を高める要求に応えるために、問題となる 不純物イオン、特にハロゲンイオンを捕捉する目的で無機陰イオン交換体であるハイ ドロタルサイト類をエポキシ樹脂等に配合することが提案されている(例えば特許文 献 1、特許文献 2、および特許文献 3等参照)。  [0004] In order to prevent the above corrosion, it has been required to further improve the moisture resistance reliability of the epoxy resin. In order to meet the demand to improve moisture resistance reliability, it is proposed to add hydrotalcites, which are inorganic anion exchangers, to epoxy resins and the like in order to capture impurity ions, especially halogen ions, which are problematic. (For example, see Patent Document 1, Patent Document 2, and Patent Document 3).
この化合物は陰イオンとして水酸イオンおよび炭酸イオン等の陰イオンをすでに有 しているため、陰イオン交換性能は充分とは言えない。  Since this compound already has anions such as hydroxide ions and carbonate ions as anions, the anion exchange performance is not sufficient.
[0005] このハイド口タルサイトイ匕合物を焼成することにより、構造内の陰イオンが脱離し、ハ イド口タルサイト焼成物となる。ハイド口タルサイト焼成物は化合物内に陰イオンを含ま ないため、ハイド口タルサイトイ匕合物に比べ陰イオン交換性能に優れる。このものは 水を吸収して再び層状構造をとる。  [0005] By calcining this hydrated talcite compound, anions in the structure are desorbed to form a hydrated talcite product. Since the fired talcite hydrate does not contain anions in the compound, it excels in anion exchange performance compared to the hydrated talcite compound. This absorbs water and takes a layered structure again.
[0006] このハイド口タルサイト焼成物をエポキシ樹脂等に配合する提案もなされてレ、る(例 えば特許文献 4参照)。このものは陰イオン交換性能に優れ、電子部品の耐湿信頼 性向上に有効であるものの、吸湿性が非常に高ぐ空気中において吸湿しやすいた め、電子部品中で吸湿、および吸湿に伴なう体積増加がある。よって、はんだバスや リフロー装置処理等で高温にさらされた時等に、基板等の熱膨張係数の違いによつ て発生する熱応力や、吸湿水分が気化して発生する蒸気圧によって、素子、リードフ レーム等のインサート品と封止用成形材料との間で剥離が発生し、ノ^ケージクラッ ク、チップ損傷等の原因になる恐れがある。  [0006] Proposals have also been made for blending this fired talcite product with an epoxy resin or the like (see, for example, Patent Document 4). This product has excellent anion exchange performance and is effective in improving the moisture resistance reliability of electronic components, but it is easy to absorb moisture in the air where the moisture absorption is very high. There is an increase in volume. Therefore, when exposed to high temperatures, such as in solder bath or reflow equipment processing, the thermal stress generated by the difference in thermal expansion coefficient of the substrate, etc., and the vapor pressure generated by vaporization of moisture absorption moisture, In addition, peeling may occur between the inserts such as lead frames and the molding material for sealing, which may cause a cage crack or chip damage.
[0007] ビスマス化合物が陰イオン交換体になることが知られている(例えば特許文献 5、特 許文献 6参照)。陰イオン交換体であるビスマス化合物を配合した半導体封止用ェポ キシ樹脂組成物が知られてレ、る(例えば特許文献 7参照)。 [0007] It is known that a bismuth compound becomes an anion exchanger (see, for example, Patent Document 5 and Patent Document 6). An epoxy resin composition for semiconductor encapsulation containing a bismuth compound which is an anion exchanger is known (for example, see Patent Document 7).
[0008] また、陰イオン交換体は一般的に周囲の環境が酸性側では陰イオンをよく吸着す るが、中性付近あるいはアルカリ性側では陰イオンを吸着しにくい。封止材に配合さ れる添加剤によっては樹脂組成物の pHが中性付近になることがあり、陰イオン交換 体の効果が十分に発揮できなレ、場合がある。 [0009] この対策として、陰イオン交換体に固体酸である陽イオン交換体を混合して見かけ の pHを下げ、イオン交換性を向上させて使用する方法が提案されている(例えば特 許文献 8参照)。しかし、固体酸を樹脂に添加した場合、樹脂の物性を損ねたりする こと力 Sある。また、陽イオン交換体には重金属を含むものが多ぐ最近では環境への 配慮から陽イオン交換体を併用できない場合もある。 [0008] In addition, an anion exchanger generally adsorbs anions well when the surrounding environment is acidic, but hardly adsorbs anions near neutral or alkaline. Depending on the additive added to the sealing material, the pH of the resin composition may be near neutral, and the effect of the anion exchanger may not be fully exhibited. [0009] As a countermeasure against this, a method has been proposed in which an anion exchanger is mixed with a cation exchanger, which is a solid acid, to lower the apparent pH and improve ion exchange (for example, patent documents). 8). However, when a solid acid is added to the resin, it can damage the resin properties. In addition, since many cation exchangers contain heavy metals, cation exchangers may not be used together due to environmental considerations.
[0010] プリント配線板に用いるエポキシ樹脂に陽イオン交換体、陰イオン交換体、および 両イオン交換体等の無機イオン交換体を配合したものが知られてレ、る(例えば特許 文献 9参照)。  [0010] It is known that an epoxy resin used for a printed wiring board is blended with an inorganic ion exchanger such as a cation exchanger, an anion exchanger, or both ion exchangers (see, for example, Patent Document 9). .
ァラミド繊維にエポキシ樹脂あるいはポリフエ二レンオキサイド樹脂とイオン捕捉剤 を含有させたプリント基板が知られている。このイオン捕捉剤は、イオン交換樹脂や 無機イオン交換体が例示されていて、無機イオン交換体としては、アンチモン-ビス マス系のものゃジノレコニゥム系のものが記載されている(例えば特許文献 10参照)。 イオン捕捉剤を含有する絶縁ワニスが知られていて、この絶縁ワニスを用いて多層 プリント配線板を作製している。このイオン捕捉剤としては、活性炭、ゼォライト、シリ 力ゲル、活性アルミナ、活性白土、水和五酸化アンチモン、リン酸ジルコニウム、およ びハイド口タルサイト等が例示されてレ、る(例えば特許文献 11参照)。  There is known a printed circuit board in which an aramid fiber contains an epoxy resin or a polyphenylene oxide resin and an ion scavenger. Examples of the ion scavenger include an ion exchange resin and an inorganic ion exchanger. As the inorganic ion exchanger, an antimony-bismuth-based material and a dinoleconium-based material are described (for example, see Patent Document 10). ). An insulating varnish containing an ion scavenger is known, and a multilayer printed wiring board is produced using this insulating varnish. Examples of the ion scavenger include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, zirconium phosphate, and hydrated talcite (for example, patent documents). 11).
多層配線板用の接着フィルムに無機イオン吸着体を配合しているものが知られて いる。この無機イオン吸着剤としては、活性炭、ゼォライト、シリカゲル、活性アルミナ 、活性白土、水和五酸化アンチモン、リン酸ジノレコニゥム、およびハイド口タルサイト 等が例示されている(例えば特許文献 12参照)。  It is known that an inorganic ion adsorbent is blended in an adhesive film for a multilayer wiring board. Examples of the inorganic ion adsorbent include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, dinoleconium phosphate, and hydrated talcite (see, for example, Patent Document 12).
イオントラップ剤を含有させたエポキシ樹脂接着剤が知られている。このイオントラッ プ剤として、陰イオン交換体または陽イオン交換体が例示されている(例えば特許文 献 13参照)。  An epoxy resin adhesive containing an ion trapping agent is known. Examples of the ion trapping agent include an anion exchanger and a cation exchanger (see, for example, Patent Document 13).
イオン捕捉剤と銀粉等を含有させた導電性エポキシ樹脂ペーストが知られている。 このイオン捕捉剤としては、水和硝酸ビスマス、マグネシウムアルミニウムハイド口タル サイト、酸化アンチモン等が例示されている(例えば特許文献 14参照)。  A conductive epoxy resin paste containing an ion scavenger and silver powder is known. Examples of the ion scavenger include hydrated bismuth nitrate, magnesium aluminum hydride talcite, and antimony oxide (see, for example, Patent Document 14).
これらに記載のイオン交換体'イオン捕捉剤の中で、ハイド口タルサイトを用いること が記載されているものがあるが、これらはそのままのものまたは焼成体を用いている。 [0011] このうち、ノ、イド口タルサイトや含水酸ィ匕ビスマスは陰イオン交換性が高ぐ耐薬品 性や耐熱性も比較的優れているため、様々な用途に利用されている。例えば電子産 業分野における半導体の封止樹脂に混入させ、半導体部品などの信頼性を向上さ せる目的で使用している。 Among the ion exchangers' ion scavengers described in these documents, there are those which describe the use of hydrated talcite, but these are used as they are or as calcined bodies. [0011] Of these, anodic talcite and hydrous bismuth oxide are used in various applications because they have high anion exchange properties and relatively high chemical resistance and heat resistance. For example, it is used for the purpose of improving the reliability of semiconductor components by mixing it with semiconductor sealing resin in the electronics industry.
しかし、ハイド口タルサイトは 100°C以上の熱水中など高温高湿下では溶解性が大 きい。また、吸湿性が高く封止樹脂の物性に悪影響を与えるため、使用範囲が限ら れている。  However, Hyde mouth talcite is highly soluble under high temperature and high humidity such as hot water of 100 ° C or higher. In addition, the range of use is limited because it is highly hygroscopic and adversely affects the properties of the sealing resin.
一方、含水酸化ビスマスなどのビスマス化合物は優れた性能を持ち、広い範囲で の使用が可能であつたが、銅と合金をつくり易くリサイクルの面などから使用を制限す ることちある。  On the other hand, bismuth compounds such as hydrated hydrous bismuth have excellent performance and can be used in a wide range. However, copper and alloys can be easily produced, and their use may be limited in terms of recycling.
[0012] 特許文献 1 :特開昭 63— 252451号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 63-252451
特許文献 2:特開昭 64— 64243号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 64-64243
特許文献 3 :特開昭 60— 40124号公報  Patent Document 3: JP-A-60-40124
特許文献 4 :特開昭 60— 42418号公報  Patent Document 4: JP-A-60-42418
特許文献 5 :特開昭 63— 060112号公報  Patent Document 5: Japanese Patent Laid-Open No. 63-060112
特許文献 6:特開平 02— 293325号公報  Patent Document 6: Japanese Patent Laid-Open No. 02-293325
特許文献 7:特開平 02— 294354号公報  Patent Document 7: Japanese Patent Laid-Open No. 02-294354
特許文献 8 :特開昭 60— 23901号公報  Patent Document 8: JP-A-60-23901
特許文献 9:特開平 05— 140419号公報  Patent Document 9: Japanese Patent Laid-Open No. 05-140419
特許文献 10 :特開平 09— 314758号公報  Patent Document 10: Japanese Patent Application Laid-Open No. 09-314758
特許文献 11 :特開平 10— 287830号公報  Patent Document 11: JP-A-10-287830
特許文献 12 :特開平 10— 330696号公報  Patent Document 12: JP-A-10-330696
特許文献 13 :特開平 10— 013011号公報  Patent Document 13: Japanese Patent Application Laid-Open No. 10-013011
特許文献 14 :特開平 10— 007763号公報  Patent Document 14: Japanese Patent Laid-Open No. 10-007763
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 現在知られている高性能な無機陰イオン交換体は、上記のような問題等がある。本 発明が解決しょうとする課題は、環境に優しく高性能な新しい無機陰イオン交換体を 提供することである。 [0013] Currently known high performance inorganic anion exchangers have the above-mentioned problems. The problem to be solved by the present invention is to create a new inorganic anion exchanger that is environmentally friendly and has high performance. Is to provide.
課題を解決するための手段  Means for solving the problem
[0014] 本発明者は、電子産業分野における半導体封止剤等に使用できる新規な無機陰 イオン交換体を見出すため鋭意検討を行なった結果、下記式(1)で表されるイツトリ ゥム化合物が高い陰イオン交換性を持つことを見出し、本発明を完成するに至った。 [0014] As a result of intensive studies to find a novel inorganic anion exchanger that can be used as a semiconductor encapsulant or the like in the electronic industry field, the present inventors have found that an yttrium compound represented by the following formula (1) Was found to have high anion exchange properties, and the present invention was completed.
Y O (OH) (NO ) ·ηΗ Ο (1)  Y O (OH) (NO) · ηΗ Ο (1)
2 χ y 3 z 2  2 χ y 3 z 2
式(1)の x、 y、および zは 0または正の数であり、 2x+y+z = 6であり、 nは 0または 正の数である。  In the formula (1), x, y, and z are 0 or a positive number, 2x + y + z = 6, and n is 0 or a positive number.
本発明の他の一つの側面は、任意成分として無機陽イオン交換体を含有する、本 発明の無機陰イオン交換体を含有する電子部品封止用樹脂組成物である。 本発明のさらに他の一つの側面は、エポキシ樹脂および硬化剤を含有する上記記 載の電子部品封止用樹脂組成物である。  Another aspect of the present invention is an electronic component sealing resin composition containing the inorganic anion exchanger of the present invention, which contains an inorganic cation exchanger as an optional component. Yet another aspect of the present invention is the above-described resin composition for encapsulating electronic components, which contains an epoxy resin and a curing agent.
本発明の他の一つの側面は、上記記載の電子部品封止用樹脂組成物を硬化して なる樹脂である。  Another aspect of the present invention is a resin obtained by curing the resin composition for sealing an electronic component described above.
本発明の他の一つの側面は、上記記載の電子部品封止用樹脂組成物により素子 を封止してなる電子部品である。  Another aspect of the present invention is an electronic component obtained by sealing an element with the above-described electronic component sealing resin composition.
本発明の他の一つの側面は、無機陽イオン交換体を含有することもある、本発明の 無機陰イオン交換体を含有するワニス、接着剤、またはペーストである。  Another aspect of the present invention is a varnish, adhesive or paste containing the inorganic anion exchanger of the present invention, which may contain an inorganic cation exchanger.
本発明のさらに他の一つの側面は、上記記載のワニス、接着剤、またはペーストを 含有する製品である。  Yet another aspect of the present invention is a product containing the varnish, adhesive or paste described above.
発明の効果  The invention's effect
[0015] 本発明によれば、環境に優しく高性能な新しい無機陰イオン交換体を提供すること ができる。  [0015] According to the present invention, a new inorganic anion exchanger that is environmentally friendly and has high performance can be provided.
また、本発明によれば、前記無機陰イオン交換体を用いた電子部品封止用樹脂組 成物、電子部品封止用樹脂、および、電子部品を提供することができる。  In addition, according to the present invention, it is possible to provide an electronic component sealing resin composition, an electronic component sealing resin, and an electronic component using the inorganic anion exchanger.
さらに、本発明によれば、前記無機陰イオン交換体を用いたワニス、接着剤、ベー スト、並びに、これらを含有する製品を提供することができる。  Furthermore, according to this invention, the varnish using the said inorganic anion exchanger, an adhesive agent, a base, and the product containing these can be provided.
発明を実施するための最良の形態 [0016] 本発明の無機陰イオン交換体は、上記式(1)で表されるイットリウム化合物からなる 無機陰イオン交換体であるため、環境に優しく高性能であり、また、ノ、イド口タルサイト 系陰イオン交換体やビスマス系陰イオン交換体等が使用できない用途にも好適に用 レ、ることができるため好ましい。 BEST MODE FOR CARRYING OUT THE INVENTION [0016] Since the inorganic anion exchanger of the present invention is an inorganic anion exchanger composed of the yttrium compound represented by the above formula (1), it is environmentally friendly and has high performance. This is preferable because it can be suitably used in applications where site-based anion exchangers, bismuth-based anion exchangers, and the like cannot be used.
[0017] 〇イットリウム化合物 [0017] Yttrium compound
本発明におけるイットリウム化合物は、上記式(1)で表されるものである。 式(1)の Xとしては、 0または 3以下の正数であり、好ましくは 3以下の正数であり、よ り好ましくは 2. 5以下の正数である。  The yttrium compound in the present invention is represented by the above formula (1). X in formula (1) is 0 or a positive number of 3 or less, preferably a positive number of 3 or less, more preferably a positive number of 2.5 or less.
式(1)の yとしては、 0または 6以下の正数であり、好ましくは 0または 5. 5以下の正 数であり、より好ましくは 5以下の正数である。  Y in formula (1) is a positive number of 0 or 6 or less, preferably 0 or 5.5 or less, more preferably 5 or less.
式(1)の zとしては、 0または 6以下の正数であり、好ましくは 0または 4以下の正数で あり、より好ましくは 3以下の正数である。  Z in the formula (1) is a positive number of 0 or 6 or less, preferably 0 or a positive number of 4 or less, more preferably a positive number of 3 or less.
本発明におけるイットリウム化合物の具体例としては、 Y (OH) (NO ) ·Η 0、 Y  Specific examples of yttrium compounds in the present invention include Y (OH) (NO) · Η 0, Y
2 5.1 3 0.9 2 2 5.1 3 0.9 2
〇 (NO ) 、 Y O、などが挙げられ、また、 Y (OH) 、 Y (OH) (NO ) 、 Y (OH) (〇 (NO), Y O, etc., and Y (OH), Y (OH) (NO), Y (OH) (
2 2 3 2 2 3 2 6 2 4 3 2 2 32 2 3 2 2 3 2 6 2 4 3 2 2 3
NO ) 、 Y (OH) (NO ) 、 Y (OH) (NO ) 、 Y O (OH) 、 Y〇(OH) (NO )、 YNO), Y (OH) (NO), Y (OH) (NO), Y O (OH), Y〇 (OH) (NO), Y
3 3 2 2 3 4 2 3 5 2 4 2 3 3 23 3 2 2 3 4 2 3 5 2 4 2 3 3 2
O (OH) (NO ) 、 Y O (OH) (NO ) 、 Y 0 (N〇) 、 Y O (OH) 、 Y〇 (OH) (NOO (OH) (NO), Y O (OH) (NO), Y 0 (N〇), Y O (OH), Y〇 (OH) (NO
2 3 2 2 3 3 2 3 4 2 2 2 2 2 2 3 2 2 3 3 2 3 4 2 2 2 2 2
)、 Y O (NO )等も例示できる。  ), Y 2 O (NO 2), etc.
3 2 2 3 2  3 2 2 3 2
[0018] 本発明におけるイットリウム化合物を得るための原料は、式(1)で表され陰イオン交 換性を有するものが得られるならば、どのようなものでも使用することができる。例えば 、本発明におけるイットリウム化合物は、硝酸イットリウムの水溶液を塩基性に調整し て沈殿を生成させ、これを乾燥後加熱することにより得ることができる。また、例えば 酸化イットリウムを硝酸を用いて可溶化し、これを上記記載の処理を行うことにより本 発明のイットリウム化合物を得ることができる。  [0018] As the raw material for obtaining the yttrium compound in the present invention, any raw material can be used as long as it is obtained by the formula (1) and has anion exchange properties. For example, the yttrium compound in the present invention can be obtained by adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, which is dried and then heated. Further, for example, yttrium oxide of the present invention can be obtained by solubilizing yttrium oxide with nitric acid and subjecting it to the treatment described above.
[0019] 本発明におけるイットリウム化合物は、例えば硝酸イットリウムの水溶液を塩基性に 調整して沈殿を生成させ、これを乾燥後加熱することにより得ることができる。この pH としては、 pH7. 5〜: 12力 S好ましく、 pH8〜: 11力 Sより好ましく、更に pH8. 5〜: 10力好 ましレ、。この処理を行うときの水温は、:!〜 80°C力 S好ましく、 10〜60°C力 Sより好ましく、 15〜40°Cが更に好ましい。 pH調整するものとしては、水酸化アルカリ金属、炭酸ァ ルカリ金属塩、炭酸水素アルカリ金属塩、アンモニア、および加熱によりアンモニアが 発生する化合物(例えば尿素やへキサメチレンテトラミン等)等が好ましいものとして 例示できる。このアルカリ金属としては、ナトリウムおよびカリウムが好ましい。 pH調整 するものとして更に好ましいものは、アンモニア、加熱によりアンモニアが発生するィ匕 合物(例えば尿素やへキサメチレンテトラミン等)等である。 [0019] The yttrium compound in the present invention can be obtained, for example, by adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, which is dried and then heated. The pH is preferably pH 7.5 to 12 force S, more preferably pH 8 to 11 force S, and more preferably 8.5 to 10 force. The water temperature when this treatment is performed is preferably:! To 80 ° C force S, more preferably 10 to 60 ° C force S, and further preferably 15 to 40 ° C. For pH adjustment, alkali metal hydroxide, carbonate Preferred examples include a rucali metal salt, an alkali metal hydrogen carbonate salt, ammonia, and a compound that generates ammonia by heating (for example, urea, hexamethylenetetramine, etc.). As this alkali metal, sodium and potassium are preferable. More preferable examples of the pH-adjusting agent include ammonia and compounds that generate ammonia by heating (for example, urea, hexamethylenetetramine, etc.).
[0020] 本発明におけるイットリウム化合物は、例えば硝酸イットリウムの水溶液を塩基性に 調整して沈殿を生成させ、これを加熱熟成処理し、その後、乾燥し、加熱処理するこ とにより得ること力 Sできる。この加熱熟成処理の加熱温度は、加熱時間により好ましい 温度がある。例えば、加熱温度としては、 100〜300°C力 S好ましく、 130〜250°Cがよ り好ましく、 150〜200°C力 S更に好ましレヽ。 [0020] The yttrium compound in the present invention can be obtained by, for example, adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, heat-treating it, then drying and heat-treating it. . The heating temperature of this heat aging treatment has a preferable temperature depending on the heating time. For example, the heating temperature is preferably 100 to 300 ° C force S, more preferably 130 to 250 ° C, and even more preferably 150 to 200 ° C force S.
加熱熟成処理の加熱時間は、加熱温度により好ましい時間が異なる。高温ほど加 熱時間は短くて良いが、一般的には、 2〜72時間が好ましぐ 10〜48時間がより好 ましぐ 15〜30時間が更に好ましい。  The heating time of the heat aging treatment varies depending on the heating temperature. The higher the temperature, the shorter the heating time, but generally 2 to 72 hours are preferred, 10 to 48 hours are more preferred, and 15 to 30 hours are more preferred.
[0021] 乾燥は、室温で行っても乾燥炉内で加熱して行っても良レ、。即ち、沈殿物から余分 な水分が除ければどのような処理を行っても良い。例えば、本発明における乾燥温 度としては、 80〜250°C力 S好ましく、 110〜200°Cがより好ましい。なお、この乾燥と 加熱とを同時に行っても良レ、。この場合、水分が除去されるまで低めの温度にし、そ の後加熱温度に上昇させることが好ましい。 [0021] Drying may be performed at room temperature or by heating in a drying furnace. That is, any treatment may be performed as long as excess water is removed from the precipitate. For example, the drying temperature in the present invention is preferably 80 to 250 ° C. force S, more preferably 110 to 200 ° C. Note that this drying and heating can be performed simultaneously. In this case, it is preferable to lower the temperature until moisture is removed, and then to raise the heating temperature.
[0022] 本発明におけるイットリウム化合物は、上記の沈殿を乾燥後、加熱処理することによ り得ること力 Sできる。この加熱温度は、加熱時間により好ましい温度がある。例えば、 カロ熱温度としては、 150〜: 1, 000°C力 S好ましく、 180〜900°C力 Sより好ましく、 200〜[0022] The yttrium compound in the present invention can be obtained by drying the above precipitate and then heat-treating it. This heating temperature has a preferable temperature depending on the heating time. For example, as the caloric heat temperature, 150 to: 1,000 ° C force S is preferable, 180 to 900 ° C force S is more preferable, 200 to
850°Cが更に好ましい。 More preferred is 850 ° C.
この加熱処理の加熱時間は、加熱温度により好ましい時間が異なる。高温ほど加 熱時間は短くて良いが、一般的には、:!〜 72時間が好ましぐ 2〜48時間がより好ま しぐ 3〜30時間が更に好ましい。  The heating time for this heat treatment varies depending on the heating temperature. The higher the temperature, the shorter the heating time, but in general:!-72 hours are preferred, 2-48 hours are preferred, 3-30 hours are more preferred.
[0023] 上記のようにして得られた本発明におけるイットリウム化合物は、 目的に応じて粉砕 処理を行って、希望する粒子径にすることができる。 [0023] The yttrium compound in the present invention obtained as described above can be pulverized according to the purpose to obtain a desired particle size.
本発明におけるイットリウム化合物の粒径はとくに限定しないが、好ましくは平均粒 径カ SO. 01〜: 10 /i m、より好ましく ίま 0. 05〜3 /i mである。粒径力 SO. 01〜: ίθ μ ΐηで あると、粒子同士が凝集することがなぐまた、樹脂に添加した場合に物性を損ねるこ とがないので好ましい。 The particle size of the yttrium compound in the present invention is not particularly limited, but preferably the average particle size Diameter F. SO. 01 to 10 / im, more preferably ί to 0.05 to 3 / im. Particle size force SO. 01 to: ίθ μΐη is preferable because the particles do not aggregate with each other and when added to the resin, the physical properties are not impaired.
[0024] 〇陰イオン交換容量 [0024] Anion exchange capacity
本発明における陰イオン交換容量とは、塩酸を用いて測定したものである。この測 定は、 lgの検体と 50mlの 0. 1M/リットル濃度の塩酸とを 100mlのポリエチレン製 の瓶に入れ、 40°Cで 24時間振盪し、その後、上清の塩素イオン濃度をイオンクロマ トグラフィ一で測定した。検体を入れなレ、で同様の操作を行って塩素イオン濃度を測 定したものをブランク値として陰イオン交換容量を算出した。  The anion exchange capacity in the present invention is measured using hydrochloric acid. In this measurement, lg sample and 50 ml of 0.1 M / liter hydrochloric acid are placed in a 100 ml polyethylene bottle, shaken at 40 ° C for 24 hours, and then the chloride ion concentration in the supernatant is measured by ion chromatography. Measured by topography. The anion exchange capacity was calculated using the same procedure as described above for the sample without the sample, but measuring the chloride ion concentration as a blank value.
本発明の無機陰イオン交換体の陰イオン交換容量は、 lmeq/g以上が好ましぐ 1. 5meqZg以上がより好ましぐ更に好ましくは 1. 8meqZg以上であり、また 4. 5 meqZg以下が好ましぐ 4. 3meq/g以下がより好ましぐ 4meqZg以下が更に好 ましい。  The anion exchange capacity of the inorganic anion exchanger of the present invention is preferably lmeq / g or more, more preferably 1.5 meqZg or more, more preferably 1.8 meqZg or more, and preferably 4.5 meqZg or less. Mashigu 4. Less than 3meq / g is more preferred 4meqZg or less is more preferred.
イオン交換量が上記範囲内であると、本発明の陰イオン交換体を配合した樹脂の 性能を損なうことが少なレ、ので好ましレ、。  If the ion exchange amount is within the above range, the performance of the resin blended with the anion exchanger of the present invention is hardly impaired, which is preferable.
[0025] 〇電導度 [0025] ○ Conductivity
上清の電導度とは、検体に純水を入れて撹拌し、この上清の電導度を測定したも のである。この測定は、 0. 5gの検体と 50mlの純水とを 100mlのポリプロピレン製の 瓶に入れ、 100°Cで 24時間保持し、その後、この上清の電導度を測定したものであ る。  The electrical conductivity of the supernatant is obtained by adding pure water to a specimen and stirring it, and measuring the electrical conductivity of the supernatant. In this measurement, 0.5 g of a sample and 50 ml of pure water were placed in a 100 ml polypropylene bottle, kept at 100 ° C. for 24 hours, and then the conductivity of the supernatant was measured.
本発明の無機陰イオン交換体における上清の電導度は、 200 μ S/cm以下が好 ましく、 150 μ S/cm以下力 Sより好ましく、 100 μ S/cm以下力 S更に好ましく、また 1 μ S/cm以上が好ましぐ 3 μ S/cm以上がより好ましぐ 5 μ SZcm以上が更に好 ましい。  The conductivity of the supernatant in the inorganic anion exchanger of the present invention is preferably 200 μS / cm or less, more preferably 150 μS / cm or less, force S, more preferably 100 μS / cm or less, force S, and even more preferably 1 μS / cm or more is preferred 3 μS / cm or more is more preferred 5 μSZcm or more is even more preferred.
上清の電導度が上記範囲であると、本発明の無機陰イオン交換体を配合した樹脂 の性能を損なうことが少なレ、ので好ましレ、。  If the conductivity of the supernatant is within the above range, the performance of the resin containing the inorganic anion exchanger of the present invention is hardly impaired, which is preferable.
例えば、本発明の無機陰イオン交換体は、陰イオン交換容量力 SlmeqZg以上であ り、かつ、上清の電導度が 200 μ S/cm以下の無機陰イオン交換体であることが好 ましい。 For example, the inorganic anion exchanger of the present invention is preferably an inorganic anion exchanger having an anion exchange capacity of SlmeqZg or more and a supernatant conductivity of 200 μS / cm or less. Good.
[0026] 〇電子部品封止用樹脂組成物  [0026] 〇 Resin composition for sealing electronic parts
本発明の無機陰イオン交換体を配合する電子部品封止用樹脂組成物に用いられ る樹脂としては、フエノール樹脂、ユリア樹脂、メラニン樹脂、不飽和ポリエステル樹脂 、およびエポキシ樹脂等の熱硬化性樹脂であっても、ポリエチレン、ポリスチレン、塩 化ビュル、およびポリプロピレン等の熱可塑性樹脂であってもよぐ好ましくは熱硬化 性樹脂である。本発明の電子部品封止用樹脂組成物に用いる熱硬化性樹脂として は、フエノール樹脂またはエポキシ樹脂が好ましぐ特に好ましくはエポキシ樹脂であ る。  Examples of the resin used in the resin composition for sealing an electronic component containing the inorganic anion exchanger of the present invention include a thermosetting resin such as a phenol resin, a urea resin, a melanin resin, an unsaturated polyester resin, and an epoxy resin. However, a thermoplastic resin such as polyethylene, polystyrene, salted bull, and polypropylene may be used, and a thermosetting resin is preferable. As the thermosetting resin used in the resin composition for encapsulating electronic parts of the present invention, a phenol resin or an epoxy resin is preferable, and an epoxy resin is particularly preferable.
[0027] 〇電子部品封止用エポキシ樹脂組成物  [0027] Epoxy resin composition for sealing electronic parts
本発明に用いるエポキシ樹脂は、電子部品封止用樹脂に用レ、ることのできるもので あれば限定なく用いることができる。例えば、 1分子中に 2個以上のエポキシ基を有し 、硬化可能なものであれば特に種類は問わず、フエノール'ノボラック型エポキシ樹脂 、ビスフエノール A型エポキシ樹脂、脂環式エポキシ樹脂等、成形材料として用いら れているものをいずれも使用できる。また、本発明の組成物の耐湿性を高めるために は、エポキシ樹脂として、塩ィ匕物イオン含有量が lOppm以下、加水分解性塩素含有 量が 1, OOOppm以下のものを用いることが好ましい。  The epoxy resin used in the present invention can be used without limitation as long as it can be used as an electronic component sealing resin. For example, as long as it has two or more epoxy groups in one molecule and can be cured, any type can be used, such as phenol novolac type epoxy resin, bisphenol A type epoxy resin, alicyclic epoxy resin, etc. Any material used as a molding material can be used. In order to improve the moisture resistance of the composition of the present invention, it is preferable to use an epoxy resin having a salt ion content of 1 Oppm or less and a hydrolyzable chlorine content of 1, OOOppm or less.
[0028] 本発明において、電子部品封止用エポキシ樹脂組成物は、硬化剤および硬化促 進剤を含有することが好ましレヽ。  In the present invention, the epoxy resin composition for sealing an electronic component preferably contains a curing agent and a curing accelerator.
本発明に用いる硬化剤はエポキシ樹脂組成物の硬化剤として知られているものを いずれも使用可能であり、好ましい具体例として、酸無水物、アミン系硬化剤およびノ ポラック系硬化剤等がある。  As the curing agent used in the present invention, any of those known as curing agents for epoxy resin compositions can be used, and preferred specific examples include acid anhydrides, amine-based curing agents, and nopolac-based curing agents. .
本発明に用いる硬化促進剤はエポキシ樹脂組成物の硬化促進剤として知られてい るものをいずれも使用可能であり、好ましい具体例として、アミン系、リン系、およびィ ミダゾール系の促進剤等がある。  As the curing accelerator used in the present invention, any of those known as curing accelerators for epoxy resin compositions can be used, and preferred specific examples include amine-based, phosphorus-based, and imidazole-based accelerators. is there.
[0029] 本発明の電子部品用樹脂組成物は、必要に応じて成形用樹脂に配合する成分と して知られたものを配合することもできる。この成分としては、無機充填物、難燃剤、 無機充填物用カップリング剤、着色剤、および離型剤等が例示できる。これらの成分 はいずれも成形用エポキシ樹脂に配合する成分として知られたものである。無機充 填物の好ましい具体例として、結晶性シリカ粉、石英ガラス粉、熔融シリカ粉、アルミ ナ粉およびタルク等が挙げられ、中でも結晶性シリカ粉、石英ガラス粉および熔融シ リカ粉が安価で好ましい。難燃剤の例としては、酸化アンチモン、ハロゲン化エポキシ 樹脂、水酸化マグネシウム、水酸化アルミニウム、赤燐系化合物、リン酸エステル系 化合物等があり、無機充填物用カップリング剤の例としては、シラン系およびチタン系 等があり、離型剤の例としては、脂肪族パラフィン、高級脂肪族アルコール等のヮック スがある。 [0029] The resin composition for electronic parts of the present invention can be blended with what is known as a component to be blended with the molding resin, if necessary. Examples of this component include inorganic fillers, flame retardants, inorganic filler coupling agents, colorants, and release agents. These ingredients Are known as components to be blended in the molding epoxy resin. Specific examples of preferred inorganic fillers include crystalline silica powder, quartz glass powder, fused silica powder, alumina powder, and talc. Of these, crystalline silica powder, quartz glass powder, and fused silica powder are inexpensive. preferable. Examples of flame retardants include antimony oxide, halogenated epoxy resins, magnesium hydroxide, aluminum hydroxide, red phosphorus compounds, phosphate ester compounds, etc. Examples of coupling agents for inorganic fillers include silane Examples of mold release agents include aliphatic paraffins and higher aliphatic alcohols.
[0030] 上記の成分の他に、反応性希釈剤、溶剤やチクソトロピー性付与剤等を含有するこ ともできる。具体的には、反応性希釈剤としてはプチルフヱニルダリシジノレエーテル、 溶剤としてはメチルェチルケトン、チクソトロピー性付与剤としては有機変性ベントナ イトが例示できる。  [0030] In addition to the above components, a reactive diluent, a solvent, a thixotropic agent, and the like can also be contained. Specifically, examples of the reactive diluent include butyl phenyl darisidino ether, examples of the solvent include methyl ethyl ketone, and examples of the thixotropic agent include organically modified bentonite.
[0031] 本発明の無機陰イオン交換体の好ましい配合割合は、電子部品封止用樹脂組成 物 100重量部当たり 0. 1〜: 10重量部であり、より好ましくは 1〜5重量部である。配合 割合が 0. 1重量部以上であると、陰イオン除去性や耐湿信頼性を高める効果が大き いので好ましい。一方、 10重量部以下であると、十分な効果が得られると共に、コスト アップにつながることがなレ、ので好ましレ、。  [0031] A preferred blending ratio of the inorganic anion exchanger of the present invention is 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight per 100 parts by weight of the resin composition for sealing an electronic component. . A blending ratio of 0.1 part by weight or more is preferable because it has a large effect of improving the anion removability and moisture resistance reliability. On the other hand, if it is 10 parts by weight or less, it is preferable because it will not only lead to a sufficient effect and cost increase.
[0032] 本発明の無機陰イオン交換体に対し無機陽イオン交換体を併用することにより、本 発明の無機陰イオン交換体の陰イオン捕捉能を増加させ、且つ陽イオン性イオンの 捕捉効果を追加することができる。無機陽イオン交換体は、無機物であって、陽ィォ ン交換性を有する物質である。  [0032] By using an inorganic cation exchanger in combination with the inorganic anion exchanger of the present invention, the anion scavenging ability of the inorganic anion exchanger of the present invention is increased and the effect of capturing cationic ions is improved. Can be added. The inorganic cation exchanger is an inorganic substance and has a cation exchange property.
本発明の無機陰イオン交換体と無機陽イオン交換体との配合比は、特に限定はな いが、重量比で 100 : 0〜20 : 80が好ましい。本発明の無機陰イオン交換体と無機陽 イオン交換体との配合は、電子部品封止用樹脂組成物を作製する際に別個に配合 してもよく、これらを予め均一に混合してから行うこともできる。好ましくは混合物を用 いるものである。このようにすることにより、これらの成分を併用する効果をさらに発揮 させることができるからである。  The compounding ratio of the inorganic anion exchanger and inorganic cation exchanger of the present invention is not particularly limited, but is preferably 100: 0 to 20:80 by weight. The inorganic anion exchanger and the inorganic cation exchanger according to the present invention may be blended separately when preparing the resin composition for sealing an electronic component, and these are mixed in advance. You can also. Preferably, a mixture is used. By doing so, the effect of using these components in combination can be further exhibited.
[0033] 無機陽イオン交換体の具体例として、アンチモン酸 (五酸化アンチモン水和物)、二 ォブ酸(五酸化ニオブ水和物)、マンガン酸化物、リン酸ジルコニウム、リン酸チタン、 リン酸スズ、リン酸セリウム、ゼォライト、および粘土鉱物等が挙げられ、アンチモン酸 (五酸化アンチモン水和物)、リン酸ジルコニウム、およびリン酸チタンが好ましい。 [0033] Specific examples of the inorganic cation exchanger include antimonic acid (antimony pentoxide hydrate), Examples include oxalic acid (niobium pentoxide hydrate), manganese oxide, zirconium phosphate, titanium phosphate, tin phosphate, cerium phosphate, zeolite, and clay minerals. Antimonic acid (antimony pentoxide hydrate) Product), zirconium phosphate, and titanium phosphate.
[0034] 本発明の電子部品封止用樹脂組成物は、上記の原料を公知の方法で混合するこ とにより容易に得ることができ、例えば上記各原料を適宜配合し、この配合物を混練 機にかけて加熱状態で混練し、半硬化状の樹脂組成物とし、これを室温に冷却した 後、公知の手段により粉砕し、必要に応じて打錠することにより得られるものである。  [0034] The resin composition for sealing an electronic component of the present invention can be easily obtained by mixing the above raw materials by a known method. For example, the respective raw materials are appropriately blended, and the blend is kneaded. The mixture is kneaded while heated in a machine to obtain a semi-cured resin composition, which is cooled to room temperature, pulverized by known means, and tableted as necessary.
[0035] 本発明の無機陰イオン交換体は、電子部品または電気部品の封止、被覆、および 絶縁等の様々な用途に使用することが可能である。  [0035] The inorganic anion exchanger of the present invention can be used for various applications such as sealing, coating, and insulation of electronic components or electrical components.
さらに、ポリ塩化ビニル等の樹脂の安定剤、防鲭剤等にも本発明の無機陰イオン交 換体は使用可能である。  Furthermore, the inorganic anion exchanger of the present invention can also be used for stabilizers, antifungal agents and the like for resins such as polyvinyl chloride.
[0036] 本発明の無機陰イオン交換体を配合した電子部品用樹脂組成物は、リードフレー ム、配線済みのテープキャリア、配線板、ガラス、シリコンウェハ等の支持部材に、半 導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体 、コイル等の受動素子等の素子を搭載したものなどに使用することができる。また、プ リント回路板にも本発明の電子部品封止用樹脂組成物は有効に使用できる。本発明 の無機陰イオン交換体を配合した電子部品封止用エポキシ樹脂組成物も同様に用 レ、ることができる。  [0036] A resin composition for electronic components containing the inorganic anion exchanger of the present invention is provided on a support member such as a lead frame, a wired tape carrier, a wiring board, glass, or a silicon wafer, on a semiconductor chip or transistor. It can be used for devices equipped with active elements such as diodes and thyristors, and passive elements such as capacitors, resistors and coils. In addition, the resin composition for encapsulating electronic components of the present invention can also be used effectively for printed circuit boards. An epoxy resin composition for encapsulating electronic components containing the inorganic anion exchanger of the present invention can be used in the same manner.
本発明の電子部品封止用樹脂組成物または電子部品封止用エポキシ樹脂組成 物を用いて素子を封止する方法としては、低圧トランスファ成形法が最も一般的であ るが、インジェクション成形法、圧縮成形法等を用いてもよい。  As a method for sealing an element using the resin composition for sealing an electronic component or the epoxy resin composition for sealing an electronic component of the present invention, a low-pressure transfer molding method is the most common, but an injection molding method, A compression molding method or the like may be used.
[0037] 〇配線板への適用について [0037] ○ Application to wiring boards
エポキシ樹脂等の熱硬化性を用いてプリント配線基板とし、これに銅箔等を接着し 、これをエッチングカ卩ェ等して回路を作製して配線板を作製している。し力 近年、回 路の高密度化、回路の積層化および絶縁層の薄膜化等により腐食や絶縁不良が問 題となっている。配線板を作製するときに本発明の無機陰イオン交換体を添加するこ とによりこのような腐食を防止することができる。また、配線板用の絶縁層にも本発明 の無機陰イオン交換体を添加することにより、配線板の腐食等を防止することができ る。このようなことから本発明の無機陰イオン交換体を含有する配線板は、腐食等に 起因する不良品発生を抑制することができる。この配線板や配線板用の絶縁層中の 樹脂固形分 100重量部に対し、 0.:!〜 5重量部の本発明の無機陰イオン交換体を 添加することが好ましい。ここに無機陽イオン交換体を含有させても良い。 A printed wiring board is formed using thermosetting properties such as an epoxy resin, and a copper foil or the like is bonded to the printed wiring board, and a circuit is produced by etching the film to produce a wiring board. In recent years, corrosion and insulation defects have become problems due to high density of circuits, lamination of circuits, and thinning of insulating layers. Such corrosion can be prevented by adding the inorganic anion exchanger of the present invention when producing a wiring board. Moreover, corrosion of the wiring board can be prevented by adding the inorganic anion exchanger of the present invention to the insulating layer for the wiring board. The Therefore, the wiring board containing the inorganic anion exchanger of the present invention can suppress the generation of defective products due to corrosion or the like. It is preferable to add 0.:! To 5 parts by weight of the inorganic anion exchanger of the present invention with respect to 100 parts by weight of the resin solid content in the wiring board or the insulating layer for the wiring board. An inorganic cation exchanger may be contained therein.
[0038] 〇接着剤への配合について [0038] ○ About blending into adhesive
配線板等の基板に接着剤を用いて電子部品等を実装している。このとき用レ、る接 着剤に本発明の無機陰イオン交換体を添加することにより、腐食等に起因する不良 品発生を抑制することができる。この接着剤中の樹脂固形分 100重量部に対し、 0. 1〜5重量部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無機 陽イオン交換体を含有させても良レヽ。  Electronic components and the like are mounted on a substrate such as a wiring board using an adhesive. At this time, by adding the inorganic anion exchanger of the present invention to the adhesive, the generation of defective products due to corrosion or the like can be suppressed. It is preferable to add 0.1 to 5 parts by weight of the inorganic anion exchanger of the present invention to 100 parts by weight of the resin solid content in the adhesive. Even if it contains an inorganic cation exchanger, it is acceptable.
配線板に電子部品等を接続するまたは配線するときに用レ、る伝導性接着剤等に本 発明の無機陰イオン交換体を添加することにより腐食等に起因する不良を抑制する こと力 Sできる。この伝導性接着剤とは、銀等の伝導性金属を含むものが例示できる。 この伝導性接着剤中の樹脂固形分 100重量部に対し 0.:!〜 5重量部の本発明の無 機陰イオン交換体を添加することが好ましい。ここに無機陽イオン交換体を含有させ ても良い。  By adding the inorganic anion exchanger of the present invention to a conductive adhesive or the like when connecting or wiring an electronic component to a wiring board, it is possible to suppress defects caused by corrosion etc. . Examples of the conductive adhesive include those containing a conductive metal such as silver. It is preferable to add 0.:! To 5 parts by weight of the insoluble anion exchanger of the present invention with respect to 100 parts by weight of the resin solid content in the conductive adhesive. An inorganic cation exchanger may be contained here.
[0039] 〇ワニスへの配合について [0039] About compounding into varnish
本発明の無機陰イオン交換体を含有したワニスを用いて電気製品、プリント配線板 、または電子部品等を作製することができる。このワニスとしては、エポキシ樹脂等の 熱硬化性樹脂を主成分とするものが例示できる。この樹脂固形分 100重量部に対し 0.:!〜 5重量部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無 機陽イオン交換体を含有させても良い。  An electrical product, a printed wiring board, an electronic component, or the like can be produced using the varnish containing the inorganic anion exchanger of the present invention. Examples of the varnish include those mainly composed of a thermosetting resin such as an epoxy resin. It is preferable to add from 0.5 to 5 parts by weight of the inorganic anion exchanger of the present invention to 100 parts by weight of the resin solid content. Inorganic cation exchangers may be included here.
[0040] 〇ペーストへの配合について [0040] ○ About compounding into paste
銀粉等を含有させたペーストに本発明の無機陰イオン交換体を添加することができ る。ペーストとは、ハンダ付け等の補助剤として接続金属同士の接着を良くするため に用いられるものである。このことにより、ペーストから発生する腐食性物質の発生を 抑制することができる。このペースト中の樹脂固形分 100重量部に対し 0.:!〜 5重量 部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無機陽イオン交 換体を含有させても良い。 The inorganic anion exchanger of the present invention can be added to a paste containing silver powder or the like. Paste is used to improve the adhesion between connecting metals as an auxiliary agent for soldering. As a result, the generation of corrosive substances generated from the paste can be suppressed. It is preferable to add 0.:! To 5 parts by weight of the inorganic anion exchanger of the present invention with respect to 100 parts by weight of resin solids in the paste. Inorganic cation exchange here A substitute may be included.
[0041] イットリウム化合物による無機陰イオン交換体の製造方法に関する好ましい実施態 様の例を以下に示す。 [0041] An example of a preferred embodiment relating to a method for producing an inorganic anion exchanger using an yttrium compound is shown below.
(1)硝酸イットリウムの水溶液を塩基性に調整して沈殿を生成させる工程、この沈殿 物を加熱熟成処理させた後に乾燥させ、この乾燥した物を加熱する工程、またはこ の沈殿物を直接乾燥させ、この乾燥した物を加熱する工程を含むことを特徴とする陰 イオン交換活性を有するイットリウム化合物の製造方法、  (1) Adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, drying the precipitate after heat aging, heating the dried product, or directly drying the precipitate And a method for producing an yttrium compound having anion exchange activity, comprising the step of heating the dried product,
(2)硝酸イットリウムの水溶液を塩基性に調整して沈殿を生成させる工程、この沈殿 物を加熱熟成処理させた後に乾燥させる工程、この乾燥した物を加熱する工程を含 むことを特徴とする陰イオン交換活性を有するイットリウム化合物の製造方法、 (2) The method includes a step of adjusting the aqueous solution of yttrium nitrate to basic to produce a precipitate, a step of drying the precipitate after heat aging, and a step of heating the dried product. A method for producing an yttrium compound having anion exchange activity,
(3)硝酸イットリウムの水溶液を塩基性に調整して沈殿を生成させる工程、この沈殿 物を直接乾燥させる工程、この乾燥した物を加熱する工程を含むことを特徴とする陰 イオン交換活性を有するイットリウム化合物の製造方法、 (3) It has an anion exchange activity characterized by comprising a step of producing a precipitate by adjusting an aqueous solution of yttrium nitrate to basic, a step of directly drying the precipitate, and a step of heating the dried product. Production method of yttrium compound,
(4)硝酸イットリウムの水溶液を ρΗ7· 5〜: 12に調整して 1〜80°Cの水温で沈殿を生 成させる工程、この沈殿物を 100〜300°Cで加熱熟成処理させた後に乾燥させ、こ の乾燥した物を 150〜: 1, 000°Cで加熱する工程、またはこの沈殿物を直接乾燥させ 、この乾燥した物を 150〜1, 000°Cで加熱する工程を含むことを特徴とする陰イオン 交換活性を有するイットリウム化合物の製造方法、  (4) Adjusting the aqueous solution of yttrium nitrate to ρΗ7 · 5 ~: 12 to form a precipitate at a water temperature of 1 to 80 ° C, drying the precipitate after heating and aging at 100 to 300 ° C Heating the dried product at 150 to 1,000 ° C, or directly drying the precipitate and heating the dried product at 150 to 1,000 ° C. A method for producing an yttrium compound having an anion exchange activity,
(5)硝酸イットリウムの水溶液を ρΗ7· 5〜: 12に調整して 1〜80°Cの水温で沈殿を生 成させる工程、この沈殿物を 100〜300°Cで加熱熟成処理させた後に 80〜250°C で乾燥させ、この乾燥した物を 150〜1, 000°Cで加熱する工程、またはこの沈殿物 を直接 80〜250°Cで乾燥させ、この乾燥した物を 150〜: 1, 000°Cで加熱する工程 を含むことを特徴とする陰イオン交換活性を有するイットリウム化合物の製造方法。 上記(1)〜(5)何れか 1つに記載の製造方法で得られた陰イオン交換活性を有す るイットリウム化合物。  (5) Adjusting the aqueous solution of yttrium nitrate to ρΗ7 · 5 ~: 12 and forming a precipitate at a water temperature of 1 ~ 80 ° C. After the precipitate is heated and aged at 100 ~ 300 ° C Drying at ~ 250 ° C and heating the dried product at 150-1,000 ° C, or drying the precipitate directly at 80-250 ° C, and drying the dried product at 150-: 1, A method for producing an yttrium compound having an anion exchange activity, comprising the step of heating at 000 ° C. The yttrium compound which has the anion exchange activity obtained by the manufacturing method as described in any one of said (1)-(5).
実施例  Example
[0042] 以下、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこ れに限定されるものではなレ、。なお、%は重量%であり、部は重量部である。 [0043] <実施例 1 > [0042] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition,% is weight% and a part is a weight part. <Example 1>
lOgの硝酸イットリウムを 100mlの純水に溶解し、この溶液を 25°Cに保ちながら、ァ ンモニァ水溶液で pH9に調整した。そして、この溶液を 1時間撹拌後、沈殿物を濾過 し、純水で洗浄した。  lOg of yttrium nitrate was dissolved in 100 ml of pure water, and the solution was adjusted to pH 9 with an aqueous ammonia solution while keeping the solution at 25 ° C. Then, after stirring this solution for 1 hour, the precipitate was filtered and washed with pure water.
この沈殿物を乾燥機に入れ、 200°Cで 24時間加熱した。その後、粉砕し、イットリウ ム化合物(化合物 1)を得た。この化合物 1の分析を行なったところ、 Y (OH) (NO This precipitate was put into a dryer and heated at 200 ° C. for 24 hours. Thereafter, the mixture was pulverized to obtain an yttrium compound (Compound 1). When this compound 1 was analyzed, Y (OH) (NO
) ·Η〇であった。 ) · It was Η〇.
[0044] ぐ実施例 2 >  [0044] Example 2>
実施例 1で合成した化合物 1を更に 400°Cで 4時間加熱して、化合物 2を得た。この 化合物の分析を行なったところ、 Y O (NO )であった。  Compound 1 synthesized in Example 1 was further heated at 400 ° C. for 4 hours to obtain Compound 2. When this compound was analyzed, it was Y 2 O (NO 2).
[0045] ぐ実施例 3 >  [0045] Example 3>
10gの硝酸イットリウムを 100mlの純水に溶解し、この溶液を 25°Cに保ちながら、ァ ンモニァ水溶液で pH9に調整した。そしてこの溶液を 1時間撹拌後、ポリテトラフルォ 口エチレン製の密閉容器に入れ、 180°Cで 24時間加熱処理した。その後、室温まで 放冷し、沈殿物を濾過し、純水で洗浄した。  10 g of yttrium nitrate was dissolved in 100 ml of pure water, and the solution was adjusted to pH 9 with an aqueous ammonia solution while keeping the solution at 25 ° C. The solution was stirred for 1 hour, then placed in a polytetrafluoroethylene sealed container and heat-treated at 180 ° C. for 24 hours. Thereafter, the mixture was allowed to cool to room temperature, and the precipitate was filtered and washed with pure water.
これを乾燥機に入れ、 200°Cで 24時間加熱し、更に 500°Cで 4時間加熱した。つ いで粉碎し、イットリウム化合物(ィ匕合物 3)を得た。この化合物 3の分析を行なったと ころ、 Y〇であった。  This was put into a dryer and heated at 200 ° C. for 24 hours, and further heated at 500 ° C. for 4 hours. Subsequently, it was milled to obtain an yttrium compound (Compound 3). When this compound 3 was analyzed, it was YO.
[0046] <比較例 1 >  [Comparative Example 1]
10gの硝酸ランタンを 100mlの純水に溶解し、この溶液を 25°Cに保ちながら、アン モニァ水溶液で PH9に調整した。そして、 1時間撹拌後、沈殿物を濾過し、純水で洗 浄した。  10 g of lanthanum nitrate was dissolved in 100 ml of pure water, and the solution was adjusted to PH9 with an aqueous ammonia solution while maintaining the solution at 25 ° C. After stirring for 1 hour, the precipitate was filtered and washed with pure water.
この沈殿物を乾燥機に入れ、 200°Cで 24時間加熱した。その後、粉砕し、ランタン 化合物(比較化合物 1)を得た。この比較化合物 1の分析を行なったところ、 La (OH This precipitate was put into a dryer and heated at 200 ° C. for 24 hours. Thereafter, the mixture was pulverized to obtain a lanthanum compound (Comparative Compound 1). When this comparative compound 1 was analyzed, La (OH
) (NO ) · 2Η〇であった。 ) (NO) · It was 2Η〇.
[0047] <比較例 2 >  [0047] <Comparative Example 2>
比較例 1で合成した比較化合物 1を更に 400°Cで 4時間加熱して、比較化合物 2を 得た。この化合物の分析を行なったところ、 La O (NO )であった。 [0048] <比較例 3 > Comparative compound 1 synthesized in Comparative example 1 was further heated at 400 ° C. for 4 hours to obtain comparative compound 2. When this compound was analyzed, it was La 2 O 3 (NO 3). [0048] <Comparative Example 3>
10gの硝酸ランタンを 100mlの純水に溶解し、この溶液を 25°Cに保ちながら、アン モニァ水溶液で PH9に調整した。そしてこの溶液を 1時間撹拌後、ポリテトラフルォロ エチレン製の密閉容器に入れ、 180°Cで 24時間加熱処理した。その後、室温まで放 冷し、沈殿物を濾過し、純水で洗浄した。  10 g of lanthanum nitrate was dissolved in 100 ml of pure water, and this solution was adjusted to PH9 with an aqueous ammonia solution while maintaining the solution at 25 ° C. The solution was stirred for 1 hour, then placed in a polytetrafluoroethylene sealed container, and heat-treated at 180 ° C. for 24 hours. Thereafter, the mixture was allowed to cool to room temperature, and the precipitate was filtered and washed with pure water.
これを乾燥機に入れ、 200°Cで 24時間加熱し、更に 500°Cで 4時間加熱した。つ いで粉砕し、ランタン化合物(比較化合物 3)を得た。この比較化合物 3の分析を行な つたところ、 La Oであった。  This was put into a dryer and heated at 200 ° C. for 24 hours and further at 500 ° C. for 4 hours. Subsequently, the mixture was pulverized to obtain a lanthanum compound (Comparative Compound 3). This comparative compound 3 was analyzed and found to be La 2 O.
2 3  twenty three
[0049] <参考例 1 >  [0049] <Reference Example 1>
三酸化ビスマス Bi Oを参考化合物 1として用いた。  Bismuth trioxide BiO was used as reference compound 1.
2 3  twenty three
[0050] ぐ参考例 2 >  [0050] Reference Example 2>
ビスマス系陰イオン交換体 IXE— 500 (東亞合成株式会社製)を参考化合物 2とし て用いた。  Bismuth anion exchanger IXE-500 (manufactured by Toagosei Co., Ltd.) was used as reference compound 2.
[0051] <イオン交換容量測定試験 >  [0051] <Ion exchange capacity measurement test>
1. Ogのィ匕合物 1を 100mlのポジエチレン製の瓶に人れ、更に 50mlの 0. 1M/リツ トルの塩酸を投入し、密栓して 40°Cで 24時間振盪した。その後、ポアサイズ 0. 1 β mのメンブレンフィルターで溶液を濾過し、濾液の塩素イオン濃度をイオンクロマトグ ラフィ一で測定した。なにも固形分を入れなレ、で同様の操作を行って塩素イオン濃度 を測定したものと比較して陰イオン交換容量 (meq/g)を測定した。この結果を表 1 に示す。 1. Put Og compound 1 in a 100 ml positive ethylene bottle, add 50 ml of 0.1 M / liter hydrochloric acid, seal tightly and shake at 40 ° C for 24 hours. Then filtered solution using a membrane filter having a pore size 0. 1 beta m, was measured chlorine ion concentration of the filtrate by ion chromatography grayed Rafi scratch. The anion exchange capacity (meq / g) was measured in comparison with a sample in which the chlorine ion concentration was measured by performing the same operation with no solid content. Table 1 shows the results.
化合物 2、 3、比較化合物 1〜3、及び参考化合物 1、 2についても同様に操作し、ィ オン交換容量を測定した。これらの結果を表 1に示す。  Compounds 2 and 3, Comparative compounds 1 to 3, and Reference compounds 1 and 2 were similarly operated to measure the ion exchange capacity. These results are shown in Table 1.
[0052] [表 1] … ... イオン交換量 [0052] [Table 1] … ... ion exchange
(meq/g)  (meq / g)
実施例 1 Y2(OH) 5.1 (N03)o.9- H20 2 Example 1 Y 2 (OH) 5. 1 (N0 3) o.9- H 2 0 2
実施例 2 Y202(N03) 2 2.5 Example 2 Y 2 0 2 (N0 3 ) 2 2.5
実施例 3 γ2ο3 3.6 Example 3 γ 2 ο 3 3.6
比較例 1 La2 (OH) 4 (NOs) 2* 2n20 0.2  Comparative Example 1 La2 (OH) 4 (NOs) 2 * 2n20 0.2
比較例 2 La2 (OH) 4 (NOs) 2* 2n20 0.4  Comparative Example 2 La2 (OH) 4 (NOs) 2 * 2n20 0.4
比較俩 3 La2Oa 1 Comparison 俩 3 La 2 O a 1
参考俩 1 Bi203 3.9 Reference 1 Bi 2 0 3 3.9
参考俩 2 IXE-500 3.9  Reference 2 IXE-500 3.9
[0053] <実施例 4> <Example 4>
80部のクレゾ一ルノボラック型エポキシ樹脂(エポキシ当量 235)、 20部のブロム化 フエノールノボラック型エポキシ樹脂(エポキシ当量 275)、 50部のフエノールノボラッ ク樹脂(分子量 700〜: 1, 000)、 2部のトリフエニルホスフィン、 1部のカルナバワックス 、 1部のカーボンブラック、 370部の溶融シリカ、および 2部の化合物 1を配合し、これ を 80°C〜90°Cの熱ロールで 3〜5分間混練りした。その後、冷却し、粉砕して、粉末 状エポキシ樹脂組成物 Aを得た。そして、この組成物 Aを 100メッシュの篩で篩い分 けし、 100メッシュパスの試料を作製した。  80 parts cresol novolac type epoxy resin (epoxy equivalent 235), 20 parts brominated phenol novolac type epoxy resin (epoxy equivalent 275), 50 parts phenol novolac resin (molecular weight 700 ~: 1,000), 2 3 parts of triphenylphosphine, 1 part carnauba wax, 1 part carbon black, 370 parts fused silica, and 2 parts Compound 1 are mixed in a hot roll at 80 ° C-90 ° C for 3-5 Kneaded for a minute. Then, it cooled and grind | pulverized and the powdery epoxy resin composition A was obtained. The composition A was sieved with a 100 mesh sieve to prepare a 100 mesh pass sample.
この 100メッシュパスの試料を用いて、 170°Cで硬化させ、樹脂練込体 1を作製した 。この樹脂練込体 1を 2〜 3mmの大きさに粉砕した。この粉砕試料を用いて塩素ィォ ンの溶出試験を行った。  Using this 100 mesh pass sample, it was cured at 170 ° C. to produce a resin kneaded body 1. This resin kneaded body 1 was pulverized to a size of 2 to 3 mm. A chlorine elution test was conducted using the ground sample.
[0054] <実施例 5 > <Example 5>
化合物 1の代わりに化合物 2を用いた以外は樹脂練込体 1の作製と同様に操作し、 樹脂練込体 2の粉砕試料を作製した。  A crushed sample of the resin kneaded body 2 was prepared in the same manner as in the preparation of the resin kneaded body 1 except that the compound 2 was used instead of the compound 1.
[0055] <実施例 6 > [Example 6]
化合物 1の代わりに化合物 3を用いた以外は樹脂練込体 1の作製と同様に操作し、 樹脂練込体 3の粉砕試料を作製した。  A pulverized sample of resin kneaded body 3 was prepared in the same manner as in the preparation of resin kneaded body 1 except that compound 3 was used instead of compound 1.
[0056] <比較例 4> [0056] <Comparative Example 4>
化合物 1の代わりに比較化合物 1を用レ、た以外は樹脂練込体 1の作製と同様に操 作し、比較樹脂練込体 1の粉砕試料を作製した。 The same procedure as in the preparation of the resin kneaded body 1 was conducted except that Comparative Compound 1 was used instead of Compound 1. The crushed sample of comparative resin kneaded body 1 was prepared.
[0057] <比較例 5 > [0057] <Comparative Example 5>
化合物 1の代わりに比較化合物 2を用いた以外は樹脂練込体 1の作製と同様に操 作し、比較樹脂練込体 2の粉砕試料を作製した。  A pulverized sample of comparative resin kneaded body 2 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 2 was used instead of compound 1.
[0058] ぐ比較例 6 > [0058] Gu Comparative Example 6>
化合物 1の代わりに比較化合物 3を用いた以外は樹脂練込体 1の作製と同様に操 作し、比較樹脂練込体 3の粉砕試料を作製した。  A pulverized sample of comparative resin kneaded body 3 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 3 was used instead of compound 1.
[0059] ぐ比較例 7 > [0059] Gu Comparative Example 7>
化合物 1を用いない以外は樹脂練込体 1の作製と同様に操作し、比較樹脂練込体 0の粉砕試料を作製した。即ち、比較樹脂練込体 0は化合物 1含まなレ、ものである。  A pulverized sample of comparative resin kneaded body 0 was prepared in the same manner as in the preparation of resin kneaded body 1 except that compound 1 was not used. That is, the comparative resin kneaded product 0 is a product containing Compound 1.
[0060] ぐ参考例 3 > [0060] Gu Reference Example 3>
化合物 1の代わりに参考化合物 1を用いた以外は樹脂練込体 1の作製と同様に操 作し、参考樹脂練込体 1の粉砕試料を作製した。  A ground sample of reference resin kneaded body 1 was prepared in the same manner as in preparation of resin kneaded body 1 except that reference compound 1 was used instead of compound 1.
[0061] <参考例 4 > [0061] <Reference Example 4>
化合物 1の代わりに参考化合物 2を用いた以外は樹脂練込体 1の作製と同様に操 作し、参考樹脂練込体 2の粉砕試料を作製した。  A ground sample of reference resin kneaded body 2 was prepared in the same manner as in preparation of resin kneaded body 1 except that reference compound 2 was used instead of compound 1.
[0062] <樹脂練込体からの塩素イオン抽出試験 > [0062] <Chlorine ion extraction test from resin kneaded body>
上記で作製した 5gの各樹脂練込体、比較樹脂練込体または参考樹脂練込体と 50 mlの純水とをポリテトラフルォロエチレン製耐圧容器に入れて密閉し、 125°Cで 100 時間加熱した。冷却後、水を取り出し、水に溶出した塩素イオンの濃度をイオンクロ マトグラフィ一で測定した。またこの水の pHを測定した。これらの結果を表 2に示す。  Put 5 g of each resin kneaded body, comparative resin kneaded body or reference resin kneaded body prepared above and 50 ml of pure water in a polytetrafluoroethylene pressure vessel, and seal at 125 ° C. Heated for 100 hours. After cooling, the water was taken out and the concentration of chloride ions eluted in the water was measured by ion chromatography. The pH of this water was also measured. These results are shown in Table 2.
[0063] [表 2] ¾J づ [0063] [Table 2] ¾J
矣 ί¾体 A ノ;辰 £¾_  矣 ί¾ 体 A ノ; 辰 £ ¾_
pH  pH
(ppm)  (ppm)
実施例 4 樹脂練込体 1 19 4.3  Example 4 Resin kneaded body 1 19 4.3
実施例 5 樹脂練込体 2 19 4.3  Example 5 Resin kneaded body 2 19 4.3
実施例 6 樹脂練込体 3 20 4—3  Example 6 Kneaded resin 3 20 4-3
比較例 4 比較榭脂練込体 1 56 4.3  Comparative Example 4 Comparative sallow kneaded body 1 56 4.3
比較例 5 比較樹脂練込体 2 53 4,4  Comparative Example 5 Comparative resin kneaded body 2 53 4,4
比較例 6 比較樹脂練込体 3 50 4.3  Comparative Example 6 Comparative resin kneaded body 3 50 4.3
比較例 7 比較樹脂練込体 0 19 4.3  Comparative Example 7 Comparative resin kneaded body 0 19 4.3
参考例 3 参考樹脂練込体 1 18 4.3  Reference Example 3 Reference resin kneaded body 1 18 4.3
参考例 4 参考樹脂練込体 2 60 4.2  Reference Example 4 Reference resin kneaded body 2 60 4.2
[0064] <吸湿性の測定 > [0064] <Measurement of hygroscopicity>
実施例 1で作製した化合物 1 2. Ogをアルミ製容器に入れ、 35°C、湿度 90%の恒 温恒湿器内に 24時間放置した。そして 24時間後の重量を測定し、増加率を求めた 。この結果を表 3に示す。  Compound 1 produced in Example 1 2. Og was placed in an aluminum container and allowed to stand in a constant temperature and humidity chamber at 35 ° C. and 90% humidity for 24 hours. Then, the weight after 24 hours was measured to determine the rate of increase. The results are shown in Table 3.
化合物 2および 3、比較化合物:!〜 3、参考化合物 1および 2についても同様に試験 した。この結果を表 3に示す。  Compounds 2 and 3, comparative compounds:! To 3, and reference compounds 1 and 2 were also tested in the same manner. The results are shown in Table 3.
[0065] ぐ上清の電導度の測定 > [0065] Measurement of conductivity of the supernatant>
0. 5gの化合物 1を 100mlのポリプロピレン製の瓶に入れ、更に 50mlの純水を投 入し、栓をして、 100°Cで 24時間保持した。尚、瓶には小孔を設けてある。  0.5 g of Compound 1 was placed in a 100 ml polypropylene bottle, 50 ml of pure water was added, stoppered and kept at 100 ° C. for 24 hours. The bottle has a small hole.
24時間後、冷却し、 0. 1 μ mのメンブレンフィルターでこの溶液を濾過し、濾液の 電導度を測定した。この結果を表 3に示す。  After 24 hours, the solution was cooled, the solution was filtered through a 0.1 μm membrane filter, and the conductivity of the filtrate was measured. The results are shown in Table 3.
化合物 2および 3、比較化合物:!〜 3、参考化合物 1および 2についても同様に試験 した。この結果を表 3に示す。  Compounds 2 and 3 and comparative compounds:! To 3 and reference compounds 1 and 2 were also tested in the same manner. The results are shown in Table 3.
[0066] [表 3] 吸湿性 电导 J [0066] [Table 3] Hygroscopic conductivity J
Cwt%) ( jLi S/cm)  Cwt%) (jLi S / cm)
化合物 1 4.1 26  Compound 1 4.1 26
化合物 2 2.7 35  Compound 2 2.7 35
化合物 3 0.5 10  Compound 3 0.5 10
比較化合物 1 > 10 > 100  Comparative compound 1> 10> 100
比較化合物 2 > 10 > 100  Comparative compound 2> 10> 100
比較化合物 3 > 10 > 100  Comparative compound 3> 10> 100
参考化合物 4 0.5 8  Reference compound 4 0.5 8
参考化合物 5 0.5 10  Reference compound 5 0.5 10
[0067] <陽イオン交換体との配合 > [0067] <Combination with cation exchanger>
実施例 1で合成した化合物 1と陽イオン交換体であるひ燐酸ジルコニウムとを重量 比 1: 1で良く混合して、混合物 1を作製した。この混合物 1を用いてイオン交換率の 測定に用いた。  Compound 1 synthesized in Example 1 and zirconium arsenate, which is a cation exchanger, were well mixed at a weight ratio of 1: 1 to prepare mixture 1. This mixture 1 was used to measure the ion exchange rate.
化合物 2、化合物 3、参考化合物 1、および参考化合物 2についても上記と同様に 操作して、混合物 2、混合物 3、参考混合物 4、および参考混合物 5を作製した。これ らの物についてイオン交換率の測定に用いた。  Compound 2, Compound 3, Reference Compound 1, and Reference Compound 2 were also operated in the same manner as described above to prepare Mixture 2, Mixture 3, Reference Mixture 4, and Reference Mixture 5. These materials were used to measure the ion exchange rate.
[0068] <イオン交換率測定試験 > [0068] <Ion exchange rate measurement test>
1. Ogの混合物 1を 100mlのポリプロピレン製の瓶に入れ、 50mlの 0. 02M塩化ナ トリウム水溶液を投入し、密栓して 40°Cで 24時間振とうした。その後、ポアサイズ 0. 1 μ mのメンブレンフィルターで溶液を濾過し、濾液中の塩素イオン濃度を測定した。 塩化ナトリウム水溶液だけのもので同様の操作を行って塩素イオン濃度を測定した。 混合物 1の陰イオン交換率は、これら測定した値から算出して、表 4に示した。  1. Og mixture 1 was placed in a 100 ml polypropylene bottle, 50 ml of 0.02M aqueous sodium chloride solution was added, sealed, and shaken at 40 ° C. for 24 hours. Thereafter, the solution was filtered through a membrane filter having a pore size of 0.1 μm, and the chloride ion concentration in the filtrate was measured. The same procedure was performed using only a sodium chloride aqueous solution, and the chloride ion concentration was measured. The anion exchange rate of mixture 1 was calculated from these measured values and shown in Table 4.
混合物 2、混合物 3、参考混合物 1、および参考混合物 2についても同様に操作し て、イオン交換率を算出し、表 4に示した。また、化合物 1、化合物 2、化合物 3、参考 化合物 1、および参考化合物 2についても同様に操作して、イオン交換率を算出し、 表 4に示した。  The same procedure was performed for mixture 2, mixture 3, reference mixture 1, and reference mixture 2, and the ion exchange rate was calculated and shown in Table 4. In addition, compound 1, compound 2, compound 3, reference compound 1 and reference compound 2 were similarly operated, and the ion exchange rate was calculated and shown in Table 4.
[0069] [表 4] イオン [0069] [Table 4] ion
交換率  Exchange rate
混合物 1 化合物 1 + 燐酸ジルコニウム 98%  Mixture 1 Compound 1 + Zirconium phosphate 98%
混合物 2 化合物 2+ 燐酸ジルコニウム 99%  Mixture 2 Compound 2+ Zirconium phosphate 99%
混合物 3 化合物 3 +ひ燐酸ジルコニウム 95%  Mixture 3 Compound 3 + Zirconium phosphate 95%
参考混合物 1 参考化合物 1 + 憐酸ジルコニウム 96%  Reference mixture 1 Reference compound 1 + Zirconium oxalate 96%
参考混合物 2 参考化合物 2 + 燐酸ジルコニウム 99%  Reference mixture 2 Reference compound 2 + Zirconium phosphate 99%
化合物 1 Υ2 (ΟΗ) 5.1 (ΝΟ3)· Η2Ο 20% Compound 1 Υ 2 (ΟΗ) 5. 1 (ΝΟ 3) 0Α · Η 2 Ο 20%
化合物 2 Y202 (N03) 2 40% Compound 2 Y 2 0 2 (N0 3 ) 2 40%
化合物 3 Υ2Ο3 2% Compound 3 Υ 2 Ο 3 2%
参考化合物 1 Bi203 5% Reference compound 1 Bi 2 0 3 5%
参考化合物 2 IXE- 500 70%  Reference compound 2 IXE- 500 70%
[0070] 表 1〜4から明らかなように、本発明の無機陰イオン交換体は、イオン交換容量が大 きぐ高温高湿下においても溶解性が低ぐさらに吸湿性が低い。また、封止材樹脂 に添カ卩しても、塩素イオンの溶出を抑える効果がある。これにより、幅広い範囲で信 頼性の高い封止材組成物の提供が可能である。 [0070] As is apparent from Tables 1 to 4, the inorganic anion exchanger of the present invention has a low ion solubility and a low hygroscopic property even under high temperature and high humidity with a large ion exchange capacity. In addition, even if added to the encapsulant resin, there is an effect of suppressing elution of chlorine ions. As a result, it is possible to provide a highly reliable sealing material composition in a wide range.
また、陽イオン交換体を含む樹脂組成物とすることにより、より高レ、イオン交換率を 示す。  Further, by using a resin composition containing a cation exchanger, a higher ion exchange rate is exhibited.
産業上の利用可能性  Industrial applicability
[0071] 本発明の無機陰イオン交換体は、環境製や陰イオン交換性に優れたものである。 [0071] The inorganic anion exchanger of the present invention is one made of an environment and excellent in anion exchange properties.
また、本発明の無機陰イオン交換体は、吸湿性またはリサイクルの面で問題のあるハ イド口タルサイトやビスマス化合物を用いない無機陰イオン交換体である。そして、榭 脂に本発明の無機陰イオン交換体を配合してもこれ力 の陰イオンの溶出を抑える 効果がある。このことから、本発明の無機陰イオン交換体は、幅広い範囲で信頼性の 高い電子部品または電気部品の封止、被覆、および絶縁等の様々な用途に使用す ること力 Sできる。また、本発明の無機陰イオン交換体は、塩化ビュルなどの樹脂の安 定剤、防鲭剤などにも使用することができる。  In addition, the inorganic anion exchanger of the present invention is an inorganic anion exchanger that does not use a high-mouth talcite or a bismuth compound, which is problematic in terms of hygroscopicity or recycling. Even if the inorganic anion exchanger of the present invention is added to the resin, there is an effect of suppressing the elution of this force of anions. Thus, the inorganic anion exchanger of the present invention can be used for various purposes such as sealing, coating, and insulation of highly reliable electronic parts or electric parts over a wide range. In addition, the inorganic anion exchanger of the present invention can also be used as a resin stabilizer such as bull chloride, an antifungal agent, and the like.

Claims

請求の範囲  The scope of the claims
下記式(1)で表される無機陰イオン交換体。  An inorganic anion exchanger represented by the following formula (1).
Y O (OH) (NO ) ·ηΗ Ο (1)  Y O (OH) (NO) · ηΗ Ο (1)
2 χ y 3 z 2  2 χ y 3 z 2
(式(1)の x、 y、および zは 0または正の数であり、 2x + y + z = 6であり、 nは 0または 正の数である。 )  (In the formula (1), x, y, and z are 0 or a positive number, 2x + y + z = 6, and n is 0 or a positive number.)
請求項 1に記載の無機陰イオン交換体を含有する電子部品封止用樹脂組成物。 無機陽イオン交換体を含有する請求項 2に記載の電子部品封止用樹脂組成物。 請求項 2または 3に記載の電子部品封止用樹脂組成物を硬化してなる樹脂。 請求項 2または 3に記載の電子部品封止用樹脂組成物により素子を封止してなる 電子部品。  A resin composition for encapsulating electronic parts, comprising the inorganic anion exchanger according to claim 1. The resin composition for sealing an electronic component according to claim 2, comprising an inorganic cation exchanger. A resin obtained by curing the resin composition for sealing an electronic component according to claim 2. An electronic component obtained by sealing an element with the resin composition for sealing an electronic component according to claim 2.
[6] 請求項 1に記載の無機陰イオン交換体を含有するワニス。  [6] A varnish containing the inorganic anion exchanger according to claim 1.
[7] 無機陽イオン交換体を含有する請求項 6に記載のワニス。  7. The varnish according to claim 6, comprising an inorganic cation exchanger.
[8] 請求項 6または 7に記載のワニスを含む製品。  [8] A product comprising the varnish according to claim 6 or 7.
[9] 請求項 1に記載の無機陰イオン交換体を含有する接着剤。  [9] An adhesive comprising the inorganic anion exchanger according to claim 1.
[10] 無機陽イオン交換体を含有する請求項 9に記載の接着剤。  10. The adhesive according to claim 9, containing an inorganic cation exchanger.
[11] 請求項 9または 10に記載の接着剤を含む製品。  [11] A product comprising the adhesive according to claim 9 or 10.
[12] 請求項 1に記載の無機陰イオン交換体を含有するペースト。  [12] A paste containing the inorganic anion exchanger according to claim 1.
[13] 無機陽イオン交換体を含有する請求項 12に記載のペースト。  13. The paste according to claim 12, comprising an inorganic cation exchanger.
[14] 請求項 12または 13に記載のペーストを含む製品。  [14] A product comprising the paste according to claim 12 or 13.
PCT/JP2005/023583 2005-01-11 2005-12-22 Inorganic anion exchanger composed of yttrium compound and resin composition for electronic component sealing which uses same WO2006075500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552877A JP5176323B2 (en) 2005-01-11 2005-12-22 Inorganic anion exchanger with yttrium compound and resin composition for sealing electronic parts using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005004181 2005-01-11
JP2005-004181 2005-01-11

Publications (1)

Publication Number Publication Date
WO2006075500A1 true WO2006075500A1 (en) 2006-07-20

Family

ID=36677530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023583 WO2006075500A1 (en) 2005-01-11 2005-12-22 Inorganic anion exchanger composed of yttrium compound and resin composition for electronic component sealing which uses same

Country Status (3)

Country Link
JP (1) JP5176323B2 (en)
TW (1) TWI378827B (en)
WO (1) WO2006075500A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2009184869A (en) * 2008-02-06 2009-08-20 National Institute For Materials Science Method for producing layered rare earth hydroxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131429A (en) 2004-11-02 2006-05-25 Towa Corp Low-adhesion material and resin mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146917A (en) * 1986-12-10 1988-06-18 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor
JPS63268727A (en) * 1987-04-24 1988-11-07 Matsushita Electric Works Ltd Epoxy resin composition
JPH0339319A (en) * 1989-07-07 1991-02-20 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH05243426A (en) * 1992-02-27 1993-09-21 Toray Ind Inc Epoxy resin composition for semiconductor sealing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192444A (en) * 1986-02-18 1987-08-24 Matsushita Electric Works Ltd Epoxy resin molding material for use in sealing semiconductor
JPH021781A (en) * 1988-06-10 1990-01-08 Hiromi Yamada Radioactive adhesive
JPH0897335A (en) * 1994-09-29 1996-04-12 Toshiba Corp Resin composition for semiconductor encapsulation and semiconductor package using the same
JPH1013011A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Adhesive for electronic parts and method for mounting electronic parts
JP3838389B2 (en) * 1997-04-15 2006-10-25 日立化成工業株式会社 Insulating material and multilayer printed wiring board using the same
JPH11278950A (en) * 1998-03-30 1999-10-12 Sumitomo Osaka Cement Co Ltd Adhesive for bonding and bonded body
JP2001226640A (en) * 2000-02-16 2001-08-21 Nippon Paint Co Ltd Cationic electrodeposition paint composition
JP4170570B2 (en) * 2000-08-09 2008-10-22 電気化学工業株式会社 High thermal conductive filler and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146917A (en) * 1986-12-10 1988-06-18 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor
JPS63268727A (en) * 1987-04-24 1988-11-07 Matsushita Electric Works Ltd Epoxy resin composition
JPH0339319A (en) * 1989-07-07 1991-02-20 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH05243426A (en) * 1992-02-27 1993-09-21 Toray Ind Inc Epoxy resin composition for semiconductor sealing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031190A (en) * 2006-07-26 2008-02-14 Shin Etsu Chem Co Ltd Curable silicone composition containing phosphor for led, and led light-emitting device using the composition
JP2009184869A (en) * 2008-02-06 2009-08-20 National Institute For Materials Science Method for producing layered rare earth hydroxide

Also Published As

Publication number Publication date
TWI378827B (en) 2012-12-11
JP5176323B2 (en) 2013-04-03
JPWO2006075500A1 (en) 2008-06-12
TW200633782A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
JP5157911B2 (en) Resin composition for sealing electronic parts
JP5126223B2 (en) Hydrotalcite compound and method for producing the same, inorganic ion scavenger, composition, resin composition for electronic component sealing
JP5447539B2 (en) Spherical hydrotalcite compound and resin composition for sealing electronic parts
KR102040351B1 (en) Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
JP4337411B2 (en) Inorganic anion exchanger and epoxy resin composition for sealing electronic parts using the same
JP2008218579A (en) Metal base circuit board
JPWO2007077779A1 (en) Sulfate ion inorganic scavenger, inorganic scavenger composition and resin composition for encapsulating electronic components, electronic component encapsulant, electronic component, varnish, adhesive, paste and product using them
JP5077239B2 (en) Inorganic anion exchanger using bismuth compound and resin composition for encapsulating electronic parts using the same
JP5176323B2 (en) Inorganic anion exchanger with yttrium compound and resin composition for sealing electronic parts using the same
JP5176322B2 (en) Inorganic anion exchanger made of aluminum compound and resin composition for sealing electronic parts using the same
JPWO2006064568A1 (en) Anion exchanger and resin composition for sealing electronic parts using the same
TWI356807B (en) Anion exchange material and resin composition for
JP2000273284A (en) Sealing resin composition and semiconductor-sealing device
JPH04300951A (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552877

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820236

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5820236

Country of ref document: EP