TWI356807B - Anion exchange material and resin composition for - Google Patents

Anion exchange material and resin composition for Download PDF

Info

Publication number
TWI356807B
TWI356807B TW93139941A TW93139941A TWI356807B TW I356807 B TWI356807 B TW I356807B TW 93139941 A TW93139941 A TW 93139941A TW 93139941 A TW93139941 A TW 93139941A TW I356807 B TWI356807 B TW I356807B
Authority
TW
Taiwan
Prior art keywords
anion exchanger
anion
resin
composition
exchanger
Prior art date
Application number
TW93139941A
Other languages
Chinese (zh)
Inventor
Yasuharu Ono
Noriyuki Yamamoto
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to TW93139941A priority Critical patent/TWI356807B/en
Application granted granted Critical
Publication of TWI356807B publication Critical patent/TWI356807B/en

Links

Description

1356807 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種具有優良陰離子交換性之水滑石 (hydrotalcite)化合物的煅燒物。又,係有關於一種使用該 水滑石煅燒物之具有優良信賴性之電子零件封裝用樹脂組 成物及該組成物之硬化物。 【先前技術】 以往,已清楚知道水滑石具有陰離子交換性,可以吸附 屬於陰離子之氯化物離子等。其機能廣泛地被利用在醫藥 品,難燃劑、電子材料等範圍廣泛的領域。 許多LSI、1C、混合1C、電晶體 '二極體、閘流晶體管 及此等之混合零件,係使用環氧樹脂來進行封裝。如此電 子零件封裝材要求在抑制原材料中離子性不純物或是從外 部侵入的水分所引起的不良情形之同時,並具有難燃性、 高黏附性、耐龜裂性、以及高體積電阻係數等電特性等種 種特性。 電子零件封裝材大量使用的環氧樹脂,除了主成分係環 氧樹脂化合物之外,係由環氧樹脂化合物硬化劑、硬化劑 促進劑、無機塡料、難燃劑,顏料及有機矽烷偶合劑等構成。 而且,隨著近年來半導體之高積體化,由於1C晶片上 之鋁配線寬度縮小,鋁腐蝕會在早期發生。該腐蝕主要.係 水分侵入作爲封裝材的環氧樹脂中所促成。又,由於配線 寬度縮小導致使用中發生的熱增加,必須在該環氧樹脂中 調配多量的氧化銻、溴化環氧樹脂及無機氫氧化物等難燃 劑,此等難燃劑成分更加促進鋁等配線的腐蝕。 1356807 爲了防止上述的腐蝕,必須更提升對環氧樹脂耐濕信賴 性。爲了回應該提升耐濕信賴性的要求,已有提案揭示在 環氧樹脂等調配一種屬於無機陰離子的水滑石類,用以捕 捉問題所在之不純物離子、特別是鹵離子(參考例如特開昭 63-252451號公報、特開昭64-64 243號公報、及特開昭 60-40 1 24號公報等)。 水滑石化合物係如下式 M2 + aM3 + b(OH- )c(An- )« · mH2〇 所表示之層狀化合物(M2 +係表示2價金屬、M3 +係3價金 屬、及An係η價之陰離子,a'b'c'd及m係正數),具 體上,通常有 Mg4.5Ah(OH)i3C〇3. 3.5H2〇、 Mg43Al2(OH)l26C〇3· 3.5H2〇、Mg6Ah(OH)16C〇3. 4H2〇 等組 成式所表示之鎂鋁水滑石》因爲該化合物已經有氫氧離子 及碳酸離子等陰離子,無法說是充分地具有陰離子交換性 能。 藉由煅燒該水滑石化合物,構造內的陰離子脫離而成爲 下式 m2+,m3+,〇z 所表示之物質(M2 +係表示2價金屬、M3 +係3價金屬、X、 y及z係正數)。此水滑石煅燒物因爲化合物中未含有陰離 子’所以和水滑石比較時,其具有優良的陰離子交換性能。 此水滑石煅燒物吸收水後,會再次具有層狀構造。 亦有提案揭示在環氧樹脂等調配該水滑石煅燒物(例如 參照特開昭60-424 1 8號公報)。該水滑石煅燒物具有優良 的陰離子交換性能,可以有效地提升電子零件的耐濕信賴 1356807 性’但是因爲其吸濕性非常高,在空氣中亦容易吸濕,所 以會在電子零件中吸濕、並伴隨著吸濕而使體積增加。因 此,當其曝露在焊劑浴、回流焊接裝置處理等高溫時,由 於基板等熱膨脹係數不同會發生熱應力、吸濕水分氣化會 發生蒸氣壓,而有可能導致在元件、引導框架等嵌入品與 封裝用成型材料之間發生剝離、封裝龜裂、晶片損傷等。 又,陰離子交換體一般而言當周圍的環境爲偏於酸性 時,較會吸附陰離子:若是中性附近或是偏於鹼性時,則 較難吸附陰離子。所調配之添加劑取決於封裝材,其中樹 脂組成物之pH有時候會在中性附近,無法充分地發揮陰 離子交換體的效果。 有人提案,在陰離子交換體中混合屬於固體酸之陽離子 交換體,用以降低表觀pH値,提升離子交換性(例如參照 特開昭60-2390 1號公報)。但是,在樹脂中添加固體酸時, 會損害樹脂的物性。又,許多陽離子交換體含有重金屬, 最近因爲顧慮到環境問題,有時無法並用陽離子交換體。 已知有在印刷配線板使用的環氧樹脂中調配陽離子交 換體、陰離子交換體以及兩離子交換體等無機離子交換體 之物(例如參照特開平05- 140419號公報)。 已知有印刷基板,係使芳香族聚醯胺(aramid)樹脂含有 環氧樹脂或是聚二苯醚樹脂和離子捕捉劑。該離子捕捉劑 可以例示的有離子交換樹脂和無機子交換體,無機離子交 換體’所提及的有銻-鉍系之物和锆系之物(例如參照特開 平09-3 1 475 8號公報)。 已知有含有絕緣清漆之離子捕捉劑,使用該絕緣清漆來 1356807 製造多層印配線板。該離子捕捉板可以例示的有活性碳、 沸石、矽膠、活性氧化鋁、活性白土、水合五氧化銻、磷 酸鍩及水滑石等(例如參照特開平10-287830號公報)。 已知有在多層配線板用之黏著薄膜調配無機離子吸附 體之物。該無機離子吸附可以例示的有活性碳、沸石、矽 膠、活性氧化鋁、活性白土、水合五氧化銻、磷酸锆及水 滑石等(例如參照特開平1 0-3 30696號公報)。 已知有含有離子捕捉劑之環氧樹脂黏著劑,該離子捕捉 劑可以例示的有陰離子交換體或是陽離子交換體(例如參 照特開平10-13011號公報)。 已知有含有離子捕捉劑和銀粉等導電性環氧樹脂糊 料。該離子捕捉劑可以例示的有水合硝酸鉍、鎂鋁水滑石、 氧化銻等(例如參照特開平1 0-7763號公報)。 在這些提及之離子交換體·離子捕捉劑之中,有提及水 滑石的使用,此等係直接使用或是煅燒後使用。 【發明內容】 本發明之目的係提供一種陰子交換體,其吸濕性小及/ 和具有優良的耐熱性,而且在中性附近具有優良的陰離子 交換性,並提供使用它之電子零件用及電器零件用的樹脂 組成物。又,提供使用該樹脂組成物之電子零件、電器零 件及使用它們之製品。 本發明人致力硏究之結果,發現一種陰離子交換體,係 藉由使用金屬鹽溶液及/或金屬烷氧化物溶液處理下式(1) 所示之水滑石煅燒物及/或下式(2)所示之水滑石化合物而 得到,可以解決上述課題,而完成本發明: 1356807 M2\M3 + ,0: (1) 式(1)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、或 Zn2+ , M3 +係 Al3+、Fe3+、Cr3+、Co3+、或 In3+ , x、y、z 係 0.1以上的正數、2x + 3y = 2z、而且x&gt;y、x/y之値爲9以下。 Μ2+ι.χΜ3 + χ(ΟΗ&quot; )2 (Α&quot;~ )d · mH2〇 (2) 式(2)之 Μ2 +係 Mg2+、Μη2+、Fe2+、Co2+、Ni2+、Cu2+、或 Zn2+, M3 +係 Al3+、Fe3+、Cr3+、Co3+、或 In3+,An-係 OH-、 F_、Cl_、Br_、N〇r、C〇32_、SO/—、Fe(CN)63_、CHjCOO _、草酸離子、或柳酸離子之n價的陰離子,X係0.1以上 0.33以下的正數,m係0或是正數,d爲X/n。 一種陰離子交換體,其特徵爲,上述之金屬鹽溶液及金 屬烷氧化物溶液的金屬係由矽、鈦、錆、錫、及鋁組成群 中選出至少1種以上,並使用它們來處理而成之陰離子交 換體。 本發明係一種陰離子交換體,其中在上述之陰離子交換 體中另調配有2價金屬氧化物。 又,本發明之另一態樣,係一種陰離子交換體,其含有 式(2)所示水滑石化合物之煅燒物和2價金屬氧化物。使用 金屬鹽溶液及/或金屬烷氧化物溶液處理該陰離子交換體 而成之陰離子交換體。 M2 + i-xM3 + x(〇H&quot; )2 (An_ )d · mH2〇 (2) 式(2)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、或 Zn2+,M3 +係 Al3+、Fe3+、Cr3+、Co3+、或 In3+,An_ 係 OH-、 F- 、Cl_ 、Br- 、NCh-、C〇32_ 、S〇42- 、Fe(CN)63_ 、CH3C0〇 _、草酸離子、或柳酸離子之n價的陰離子,X係0.1以上 -10- 1356807 0.33以下的正數,m係0或是正數,d爲X/n。 一種陰離子交換體,其特徵爲,上述之金屬鹽溶液及金 屬烷氧化物溶液的金屬係由矽、鈦、鉻、錫、及鋁組成群 中選出至少1種以上,並使用它們進行處理而成。 本發明之另一態樣,係一種電子零件封裝用樹脂組成 物’含有上述之陰離子交換體,此時,亦可以含有無機陽 離子交換體。 本發明之另一態樣,係一種電子零件封裝用樹脂,係使 該電子零件封裝用樹脂組成物硬化而成。 本發明之另一態樣,係一種電子零件,係使用該電子零 件封裝用樹脂組成物封裝元件而成。 本發明之另一態_,係一種清漆、黏著劑、或糊料,其 含有上述陰離子交換體,亦含有無機陽離子交換體。 本發明之又另一態樣,係一種製品,含有上述清漆、黏 著劑、或糊料。 以下詳細說明本發明。 使用金屬鹽溶液及/或金屬烷氧化物溶液處理下式(1) 所示之水滑石煅燒物及/或下式(2)所示之水滑石化合物;所 謂「處理」係指以濕式或乾式之方式賦予金屬鹽及/或金屬 烷氧化物後加以煅燒: M2\M3%〇z (1) 式(1)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、或 Zn2+,M3 +係 Al3+、Fe3+、Cr3+、Co3+、或 In3+,x、y、z 係 〇·1以上的正數、2x + 3y = 2z、而且x&gt;y、x/y之値爲9以下。 Μ2 + .·χΜ3 + χ(〇Η_ )i (A0- )&lt;. · mH2〇 (2) -11- 1356807 式(2)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、或 Zn2+ , M3 +係 Al3+、Fe3+、Cr3+、Co3+、或 In3+ , An_ 係 Ol·!—、 F·、Cl—、Br_、NO;-、C〇32-、SO,、Fe(CN)63—、CHsCOO 一、草酸離子、或柳酸離子之n價的陰離子,X係0.1以上 0.33以下的正數,m係〇或是正數,d爲X/n。 式(1)所示的水滑石煅燒物及/或式(2)所示的水滑石化 合物稱爲水滑石類化合物。 〇 水滑石類化合物 本發明所使用的水滑石煅燒物係上式(1)所示之物。 式(1)之M2+可以舉出的有鎂、錳、鐵、鈷、鎳、銅、鋅 等,以鎂、鋅、鎳、及鈷爲佳,以鎂、鋅爲特佳。 式(1)之M3 +可以舉出的有鋁、鐵、鉻、鈷、銦等,以鋁、 鐵、鈷爲佳,以鋁爲特佳。 式(1)之x/y値爲9以下,以7以下爲佳,以6以下爲更 佳。又,x/y値爲2以上,以2.1以上爲佳,以2.2以上爲 更佳。 本發明所使用之水滑石煅燒物,可以藉由熘燒上式(2) 所示的水滑石化合物來得到。本發明所使用之水滑石化合 物係式(2)所示的水滑石化合物即可,沒有特別的限定。 式(2)之M2 +可以舉出的有鎂、錳、鐵、鈷、鎳、銅、鋅 等,以鎂、鋅、鎳、及鈷爲佳,以鎂'鋅爲特佳。 式(2)之M3 +可以舉出的有鋁、鐵、鉻、鈷、銦等,以鋁、 鐵、鈷爲佳,以鋁爲特佳。 式(2)之X係0.1以上0.33以下,X以(M 25以上爲佳以 0.1 4 3以上爲較佳’以0 · 1 6以上爲更佳,以〇. 2以上爲特佳; -12- 1356807 以0.33以下爲佳,以0.31以下爲更佳。 式(2)之m係0或是正數,以〇以上20以下爲佳,以〇 以上10以下爲較佳,以0以上6以下爲更佳。 式(2)之 An_ 係 OH-、F_、Cl_、Br_、N〇3-、CCh2-、 S〇42-、Fe(CN)63—、CH3COO —、草酸離子、或柳酸離子之 η價的陰離子,以經煅燒能夠被去除之物爲佳。具體上, 式(2)之 Αη_ 以 OH—、NOr、CCh2_、CHsCOO _、草酸離 子、或柳酸離子爲佳,以OH—、NOT、或(:〇32_爲更佳, 以COf爲特佳。 煅燒式(2)所示之水滑石化合物的溫度沒有特別限定, 係可以去除水滑石化合物中的陰離子之溫度。又,該煅燒 溫度係例如240~1000°C,因式(2)之X値而異。 煅燒時間可以依照水滑石類的種類、煅燒溫度及煅燒量 來設定最適合的時間。例如,熘燒時間以24小時以下爲 佳,以1 5小時以下爲較佳,以1 0小時以下爲更佳;以0.5 小時以上爲佳。 式(2)之X爲0.29以上之物,在其以240°C以上700°C以 下煅燒而成的煅燒物,因爲在中性附近之陰離子交換性能 不佳,有必要調配2價金屬氧化物。該煅燒物之煅燒溫度 以330°C以上爲佳,以400°C以上爲較佳,以430°C以上爲 較更佳,以500°C以上爲較特佳。煅燒溫度低時,因爲無 法將陰離子從水滑石化合物去除,會有離子交換性降低的 情況而不佳。 式(2)之X爲0.29以上之物,在其·以700°C以上1 000°C 以下煅燒而成的煅燒物,會生成2價金屬氧化物。此情況 -13- 1356807 之煅燒物,亦可以不添加2價金屬氧化物。該煅燒物在中 性附近之陰離子交換性能佳,未調配2價金屬氧化物亦 可,若調配時更佳》該煅燒物的煅燒溫度,以90(TC以下 較佳,以850°C以下更佳。煅燒溫度太高時會有陰離子交 換體產生分解、離子交換量降低之情形而不佳。 式(2)之X爲0.29以下之物,在其以240°C以上1000°C 以下熘燒而成的煅燒物,會生成2價金屬氧化物。此情況 之煅燒物,亦可以不添加2價金屬氧化物。該煅燒物在中 性附近之陰離子交換性能佳,未調配2價金屬氧化物亦 可,若調配時更佳。又,X値太小時,會有在中性附近之 陰離子交換性能變差的情形。該煅燒物的煅燒溫度以 330〜1000°C爲佳,以400~950°C爲較佳,以430〜950°C爲更 佳,以500〜900°C爲特佳。該煅燒溫度低時,因爲無法將 陰離子從水滑石化合物去除,會有離子交換性降低的情 況。又,相反地若煅燒溫度太高時,煅燒溫度太高時會有 陰離子交換體產生分解、離子交換量降低之情形而不佳。 2價金屬氧化物是否生成水滑石化合物,可以藉由X線 繞射來調査。 具體上,例如M2 +係Mg2 +時,先以X光繞射測定MgO 的標準品,藉由其與煅燒物的繞射角度(2 0 )之尖鋒比較, 可以確認MgO之生成。 只有煅燒式(2)所示之水滑石化合物而成之物,其氯離 子交換率以大於70%爲佳,以大於80%以上爲較佳,以大 於90%以上爲更佳。 又,氯離子交換率係將煅燒式(2)所示之水滑石化合物 -14- 1356807 而成之物一克,以0.02莫耳濃度之氯化鈉水溶液50ml處 理後,從氯離子量算出。 本發明之陰離子交換體或是陰離子交換組成物的吸濕 性,在35 °C、相對濕度90%中放置24小時後的重量增加率 以5 0 %以下爲佳,以4 0 %以下爲較佳,以2 0 %以下爲更佳。 又,將本發明之陰離子交換體之陰離子交換率和吸濕性 進行搭配,在其重量增加率在40%以上50%以下時,氯離 子交換率以80%以上時爲佳,以90%以上時爲更佳。重量 增加率在40%以下時、氯離子交換率以65 %以上時爲佳’ 以70%以上時爲較佳,以80%以上時爲更佳,以90%以上 時爲特佳。 水滑石化合物可以舉出的有Mg4.5AM〇H)l3CCh · 3.5H2〇 ' Zn4.5Al2(OH)i3C〇3 · 3.5H2〇 ' Ni4.5 A h(0 Η). 3CO 3 · 3.5H2〇 ' Mg4.5Fe2(OH)nC〇3 · 3.5H2〇 ' Mgs A1. .s(OH) 13CO3 · 3.5H2〇、Mg6Al2(OH)l6C〇3· 4H2〇、或使用鎂和鋁之比例爲 2.5:1、 2.75:1、4:1、5:1等莫耳比所合成之物。又,該等煅燒物可以舉出 的有 Mg〇.7Al〇.3〇l.l5、Ζη 0.·?Α1〇.3〇1.Ι5、Ni 0.·?Α1〇.3〇1.Ι5、Mg〇.7Fe〇.3〇l.l5、 Mg〇.sAl〇.24〇 I . I 6 ' Mg0.9Al0.3O I .35 ' Mg2.5Al 〇4 ' M g 2.7 S A 1 0 4.2 5 ' Mg〇.8Al〇.24〇1.16 ' Mgl.2Al〇2.7、Mgl.5Al〇3.0、Mg3Al〇4.5、Mg4Al〇5.5、 Mg5Al〇6.5 等。 〇金屬鹽溶液和金屬烷氧化物溶液 處理水滑石類化合物之金屬鹽溶液及金屬烷氧化物溶 液的金屬,以矽、鈦、銷、錫及鋁等爲佳,以矽、鈦、鍩、 及鋁爲更佳,以矽及鈦爲特佳》 處理水滑石類化合物之金屬鹽溶液及/或金屬烷氧化 -15- 1356807 物溶液的方法沒有特別的限定。例如有下述的處理方法。 •使水滑石類化合物在金屬鹽溶液中分散,進行過濾、洗 淨、乾燥、煅燒之方法。 •使水滑石類化合物在金屬鹽溶液中分散,添加氫氧化鈉、 氨水等鹼性物質,使水滑石類化合物的表面析出金屬氧化 物或是金屬氫氧化物後,進行過濾、洗淨、乾燥、煅燒之 方法。 •使水滑石類化合物在金屬鹽溶液中分散,添加尿素、六 亞甲四胺等胺化合物,藉由加熱來使水滑石類化合物的表 面析出金屬氧化物或是金屬氫氧化物後,進行過濾、洗淨、 乾燥、煨燒之方法。 ' •使水滑石類化合物在金屬鹽溶液中分散,藉由添加酸、 鹼、或水、或加熱來使金屬烷氧化物加水分解,在水滑石 類化合物的表面析出金屬氧化物或是金屬氫氧化物後,進 行過濾、洗淨、乾燥、煅燒之方法。 •在水滑石類化合物中添加金屬烷氧化物或是金屬烷氧化 物溶液、混合後加熱,在水滑石類化合物的表面被覆金屬 氧化物或是金屬氫氧化物,進行乾燥、煅燒之方法。 藉由使用金屬鹽溶液及/或是金屬烷氧化物溶液處理 水滑石類化合物,因爲可以得到吸濕性較少之陰離子交換 體而較佳。 爲了在電子零件封裝用樹脂組成物使用本發明之陰離 子交換體,其以盡可能不含離子性不純物者爲佳。使用金 屬鹽溶液處理水滑石類化合物時,必須充分地洗淨去除該 鹽。另一方面,使用金屬烷氧化物溶液來處理時,因爲沒 -16- 1356807 有或是只有少量的副產鹽,所以比金屬溶液佳。 金屬鹽溶液的金屬如上述,該金屬鹽溶液可以是水溶 液或是溶膠溶液。該金屬鹽可以例示的有矽、鈦、锆、錫、 或鋁之含氧酸之鹼金屬鹽、鹵化物、或氧化物等。鹼金屬 鹽以鈉鹽或是鉀鹽爲佳,鹵化物以氯化物或是溴化物爲佳。 金屬烷氧化物之金屬如上述,金屬烷氧化物溶液的溶 液可以舉出的有水溶液、含水之醇溶液、以及醇溶液等, 以含水之醇溶液或是醇溶液爲佳。 金屬烷氧化物之具體例,可以舉出的有四乙氧基矽 烷、四甲氧基矽烷、四異丙氧化鈦、三乙氧化鋁、四丙氧 化鍺、四乙氧基錫、四甲氧基錫及它們的聚合物(例如甲基 矽酸鹽寡聚物、乙基矽酸鹽寡聚物、丙基矽酸鹽寡聚物 等),因爲四乙氧基矽烷、四甲氧基矽烷、及它們的聚合物 加水分解速度不會太快而容易處理而較佳。以四乙氧基矽 烷之聚合物、四甲氧基矽烷之聚合物等爲更佳。 使用金屬鹽溶液及/或金屬烷氧化物溶液混合式(1)所 示之水滑石煅燒物而成之物的煅燒溫度,以50- 1 000 °C爲 佳,以1 00-9 00°C爲較佳,以200〜800°C爲更佳,以400~700 t爲特佳。 使用金屬鹽溶液及/或金屬烷氧化物溶液混合式(2)所 示之水滑石化合物而成之物的煅燒溫度,以400~ 1 000°C爲 佳,以500~900°C爲更佳,以500~700°C爲特佳。 亦可以使用金屬鹽溶液及/或金屬烷氧化物溶液,來對 調配有水滑石類化合物及2價金屬氧化物而成的組成物進 行處理,此等之處理條件和上述一樣。 -17- 1356807 使用金屬鹽溶液及/或金屬烷氧化物溶液來進行處理, 從在中性附近之陰離子交換性能而言,以在調配2價金屬 氧化物之前進行爲佳》 〇金屬鹽溶液或是金屬烷氧化物溶液之處理比例 對水滑石類化合物,金屬鹽溶液及/或是金屬院氧化物 溶液之處理比例沒有特別限定,較佳的比例係相對於水滑 石類化合物100重量份時,金屬鹽溶液及/或是金屬院氧化 物溶液之金屬氧化物(將金屬鹽溶液或是金屬烷氧化物溶 液之金屬換算成氧化物)爲3-100重量份,以5~50重量份 爲特佳。金屬氧化物小於3重量份時,會有無法抑制吸濕 性之情形,而且,若大於100重量份時,因爲會有離子交 換容量變小之情形而不佳。 〇 2價金屬氧化物 本發明所使用之2價金屬氧化物以Mg2+、Mn2+、Fe2+、 Co2+、Cu2+、Zn2 +等2價金屬爲佳,更佳的是與水滑石類化 合物中之2價金屬相同金屬之氧化物爲佳。 2價金屬氧化物的粒徑沒有特別限定,平均粒徑以0.0 1 Mm以上10ym以下爲佳,更佳的是0. 05/zm以上3ym 以下。粒徑爲0.01 &quot;m以下時容易凝聚,10 以上添加 在樹脂中時有時會損害到物性而不佳》 〇 2價金屬氧化物之調配比例 水滑石類化合物與2價金屬氧化物之調配比例沒有特 別限定。 相對於使用金屬鹽溶液及/或是金屬烷氧化物溶液處 理水滑石類化合物而成之物爲100重量份時,2價金屬氧 1356807 化物以10〜500重量份爲佳,以20〜200重量份爲更佳,以 40~ 100重量份爲特佳。此2價金屬氧化物小於10重量份 時,會有離子交換性無法提升之情況;大於5 00重量份時, 因爲離子交換容量變小而不佳。 式(2)中之X在0.29以上之物,在其使用24(TC以上700 °C以下煅燒而成之煅燒物爲100重量份時,2價金屬氧化 物以10〜1000重量份爲佳,以20-300重量份爲較佳,以 40 ~ 200重量份爲更佳。相對於煅燒物,2價金屬氧化物若 小於10重量份時,會有離子交換性無法提升之情況:大於 1000重量份時,因爲離子交換容量變小而不佳。 式(2)中之X在0.29以上之物,在其使用700°C以上 1 000°C以下熘燒而成之煅燒物時,在中性附近之陰離子交 換性能不佳時,可以使其含有2價金屬氧化物。此時相對 於該煅燒物爲100重量份時,2價金屬氧化物以10〜500重 量份爲佳,以20~200重量份爲較佳,以40~100重量份爲 特佳。相對於該煅燒物,2價金屬氧化物若小於10重量份 時,會有離子交換性無法提升之情況;大於500重量份時, 因爲離子交換容量變小而不佳。 式(2)中之X在0.29以下之物,在其使用240 °C以上 1 00 0°C以下煅燒而成之熘燒物,在中性附近之陰離子交換 性能不佳時,可以使其含有2價金屬氧化物。此時相對於 該煅燒物爲100重量份時,爲1〇〇重量份時,2價金屬氧 化物以10〜500重量份爲佳,以20~200重量份爲較佳,以 40~ 100重量份爲特佳。相對於煅燒物,2價金屬氧化物若 小於10重量份時,會有離子交換性無法提升之情況;大於 -19- 1356807 5 00重量份時,因爲離子交換容量變小而不佳》 〇電子零件封裝用樹脂組成物 在電子零件封裝用樹脂組成物中使用本發明之陰離子 交換體作爲樹脂時’可以使用酚樹脂、脲樹脂、三聚氰胺 樹脂、不飽和聚酯樹脂、及環氧樹脂等熱硬化性樹脂,亦 可以使用聚乙烯、聚苯乙烯、聚氯乙烯、以及聚丙烯等熱 塑性樹脂,以使用熱硬化性樹脂爲佳。本發明之電子零件 封裝用樹脂組成物所使用之熱硬化性樹脂以酚樹脂或是環 氧樹脂爲佳,以環氧樹脂爲特佳。 φ 〇電子零件封裝用環氧樹脂組成物 本發明所使用之環氧樹脂,只要是可以使用於電子零件 封裝用樹脂即可,沒有限定。例如若是1分子中具有2個 以上環氧基、能夠硬化即可而不管其種類,例如酚-酚醛清 漆樹脂型環氧樹脂、雙酚A型環氧樹脂、脂環族環氧樹脂 等都可以使用作爲成型材料。又,爲了提升本發明之組成 物的耐濕性,以環氧樹脂之氯化物離子含量爲l〇ppm以 下、且加水分解性氯含量爲lOOOppm以下之物爲佳》 _ 本發明之電子零件用環氧樹脂組成物以含有硬化劑及 硬化促進劑爲佳。 本發明所使用的硬化劑,已知可以使用作爲環氧樹脂組 成物之硬化劑都可以使用,較佳之具體例有酸酐、胺系硬 化劑及酚醛清漆樹脂系硬化劑等。 本發明所使用的硬化促進劑,已知可以使用作.爲環氧樹 脂組成物之硬化促進劑都可以使用,較佳之具體例有胺 系、磷系、及咪唑系之促進劑。 -20- 1356807 本發明之電子零件封裝用樹脂組成物,必要時可以調配 已知可以在成型用樹脂中調配之物。該成分可以例示的有 無機塡料、難燃劑、無機塡料用偶合劑、著色劑、及脫模 劑等。此等成分都可以使用已知可以在成型用環氧樹脂中 調配之成分。無機塡料之較佳具體例,可以舉出的有結晶 性二氧化矽粉、石英玻璃粉、熔融二氧化矽粉、氧化鋁粉 及滑石等,其中以結晶性二氧化矽粉、石英玻璃粉、及熔 融二氧化矽粉因爲廉價而較佳。難燃劑的例子有氧化銻、 鹵化環氧樹脂、氫氧化鎂、氫氧化鋁、紅磷系化合物,磷 酸酯系化合物等,偶合劑之例子有矽烷系及鈦系等,脫模 劑的例子有脂肪族石蠟、高級脂肪族醇等蠟。 上述成分以外,亦可以含有反應性稀釋劑、溶劑、及搖 變性賦予劑等。具體上,可以例示的反應性稀釋劑有丁基 苯基去水甘油醚、溶劑有甲基乙基酮、搖變性賦予劑有有 機改質膨土。 本發明之陰離子交換體的較佳配合比例,係每100重量 份電子零件封裝用樹脂組成物爲0.1 ~10重量份,以1〜5重 量份爲較佳。小於0.1重量份時,陰離子去除性、耐濕信 賴性等之提升效果較差,另一方面,大於10重量份時,其 效果不會更提高,反而會增加成本而不佳。 藉由本發明之陰離子交換體與無機陽離子交體並用,可 以增加本發明之陰離子交換體的陰離子捕捉能力,而且可 期望具有陽離子交換性的效果。無機陽離子交換體係無機 物而具有陽離子交換性之物質。 本發明之陰離子交換體和無機陽離子交換體之調配比 -21- 1356807 爲沒有特別限定,重量比以100: 0~ 20:80爲佳。本發明之陰 離子交換體和無機陽離子交換體之調配,可以在製造電子 零件封裝用樹脂組成物時另外調配,亦可以預先將它們均 勻混合。以使用混合物較佳。藉此,可以更發揮並用此等 成分之效果。 無機陽離子交換體的具體例,可以舉出的有銻酸(五氧 化銻水合物)、鈮酸(五氧化鈮水合物)、錳氧化物、磷酸锆、 磷酸鈦、磷酸錫、磷酸姉、沸石、及黏土礦物等。以銻酸(五 氧化銻水合物)、磷酸锆、及磷酸鈦爲佳。 鲁 本發明之電子零件封裝用樹脂組成物,可以藉由混合上 述丨眾所周知的原料可以容易地得到,例如適當地調配上述 各原料時、將該調配物置於混練機在加熱狀態下進行混 練,成爲半硬化狀樹脂組成物,在室溫下將其冷卻後,使 用眾所周知的方法粉碎、依必要壓錠而得到。 本發明之陰離子交換體可以使用於電子零件或是電器 零件之封裝、被覆、及絕緣等各種用途。 而且,氯乙烯等樹脂之安定劑、防鏽劑等亦可以使用本 _ 發明之陰離子交換體。 .調配有本發明之陰離子交換體之電子零件封裝用樹脂 組成物,可以使用於裝載有引導框架、已配線之捲帶撐體、 配線板、玻璃、矽晶圓等支撐構件、裝載有半導體晶片、 電晶體、二極體、閘流晶體管等之主動元件、電容器、電 阻元件、線圈等被動元件之物等。又,印刷電路板亦可以 有效地使用本發明之零件封裝用樹脂組成物。調配有本發 明之陰離子交換體之電子零件封裝用環氧樹脂組成物亦同 -22- 1356807 樣地可以使用。 使用本發明之電子零件封裝用樹脂組成物或是電子零 件封裝用環氧樹脂組成物,最通常的封裝方法爲低壓轉移 成型法,亦可以使用射出成型法、壓縮成型法等。 〇應用於配線板 ‘ 使用熱硬化性之環氧樹脂等作爲印刷配線基板,在其 上面黏著銅箔、對其進行蝕刻加工等來製造電路、製造配 線板。但是,近年來由於電路的高密度化、電路的層積化 及絕緣層的薄膜化等引起的腐蝕、絕緣不良等成爲問題, 因此在製造配線板時,可藉由添加本發明之陰離子交換體 來防止如此腐蝕。又,配線板用之絕緣層亦可以藉由添加 本發明的陰離子交換體來防止配線板之腐蝕等。因爲如 此,含有本發明的陰離子交換體配線板可以抑制腐蝕等所 引起的不良品發生。相對於該配線板或配線板用的絕緣層 中的樹脂固體成分100重量份,其以添加0.1〜5重量份本 發明之陰離子交換體爲佳。在此,亦可以含有無機陽離子 交換體。 〇調配在黏著劑中 在配線板等基板上使用黏著劑來組裝電子零件等。藉 由在此時所使用的黏著劑中添加本發明之陰離子交換體, 可以抑制發生起因於腐蝕等之不良品。相對於該黏著劑中 的樹脂固體成分100重量份,其以添加0.1〜5重量份本發 明之陰離子交換體爲佳。在此,亦可以含有無機陽離子交 換體。 在連接電子零件或是配線於配線板上所使用的導電性 -23- 1356807 黏著劑中添加本發明之陰離子交換體,可以抑制發生起因 於腐蝕等之不良。相對於該導電性黏著劑中的樹脂固體成 分100重量份,其以添加0.1〜5重量份本發明之陰離子交 換體爲佳。在此,亦可以含有無機陽離子交換體。 〇調配在清漆中 可以使用含有本發明之陰離子交換體之清漆來製造電 器製品、印配線板、或電子零件等。該清漆可以例示的有 以環氧樹脂等熱硬化性樹脂作爲主成分之物》相對於該樹 脂固體成分100重量份,其以添加0.1〜5重量份本發明之 陰離子交換體爲佳。在此,亦可以含有無機陽離子交換體。 〇調配在糊料中 可以在含有銀粉等糊料中添加本發明之陰離子交換 體。糊料係作爲焊接等之補助劑,用以改良連續金屬之間 的黏著之物。藉此,可以抑制發生糊料所發生腐蝕性物質。 相對於該糊料中樹脂固體成分100重量份,其以添加〇.;1~5 ^胃份本發明之陰離子交換體爲佳。在此,亦可以含有無 機陽離子交換體。 【實施方式】 &lt;實施例&gt; W下舉出實施例,更具體地說明本發明。本發明當然不 受到下述實施例之限制,在能夠符合前述、後述之意思範 圍的情況下,可以適當地變更,此等變更都包含在本發明 的技術範圍中,又,O.iMi Μ係表示莫耳濃度,%表示重 量% ’份表示重量份。 &lt;合成例1 &gt; -24- 1356807 將由組成式Mg4.5Al2(OH)l3C〇3· 3.5H2〇所表示之水滑石 化合物(稱爲MAH1),在550°C煅燒2小時,得到由 1\^〇.7八1〇.3〇丨.,5組成所表示之水滑石煅燒物(稱爲旧八111)。 〇煅燒試驗 · 進行測定加熱MAH1所引起的質量變化(熱質量分析測 定.TG-DTA、測定溫度範圍30~5 30°C、升溫速度20。(: /分、 在大氣中測定)。此結果如第1圖所示。 由第1圖可以知道在比240°C更低的溫度煅燒水滑石化 合物,無法得到煅燒效果。 &lt;合成例2 &gt; 將由組成式Ni4.5Al2(OH)l3C〇3. 3·5Η2〇所表示之水滑石 化合物(稱爲ΝΑΗ),在550°C煅燒2小時,得到由 Ni〇.7Al〇.3〇丨.15之組成所表示之水滑石熘燒物(稱爲tNAH)。 &lt;合成例3&gt; 將由組成式Zn4 5Ah(OH)l3CCh . 3·5Η2〇所表示之水滑石 化合物(稱爲ΖΑΗ),在550°C煅燒2小時,得到由 Zn〇.7AU.3Ch.15之組成所表示之水滑石煅燒物(稱爲tZAH)。 &lt;實施例1 &gt; 在2000ml之 0.1M偏矽酸鈉水溶液中添加1〇〇克之 tMAHl ’在90〇C攪拌4小時後,過濾、水洗。將其乾燥後, 在550°C煅燒2小時來得到陰離子交換體(陰離子交換體 1)。 &lt;實施例2&gt; 在160克之10%四異丙氧化鈦異丙醇溶液中添加100克 之tMAHl。在該溶液中添加水i〇mi、攪拌1整夜,過濾、 1356807 水洗。經3日風乾後,在5 5 0 °C煅燒2小時來得到陰離子 交換體(陰離子交換體2)。 &lt;實施例3&gt; 在160克之四甲氧基矽烷10%甲醇溶液中添加100克之 tMAHl,攪拌1整夜,經1日風乾後,在550〇C煅燒2小時 來得到陰離子交換體(陰離子交換體3)。 &lt;實施例4&gt; 邊使用攪拌器攪拌100克之tMAHl,邊添加16克之四 甲氧基矽烷。再次攪拌,經1日風乾後,在550°C煅燒2 小時來得到陰離子交換體(陰離子交換體4) » &lt;實施例5&gt; 在0.1M氧氯化鉻水溶液2 000ml中添加1〇〇克之tNAH, 使用0.1M氨水溶液調整爲pH 8、攪拌該溶液1整夜,過濾、 水洗。將其乾燥後,在550°C煅燒2小時來得到陰離子交 換體(陰離子交換體5)。 &lt;實施例6&gt; 在160克之四乙氧基矽烷10 %乙醇溶液中添加1〇〇克之 tZAH,攪拌1整夜,經1日風乾後,在550°C煅燒2小時 來得到陰離子交換體(陰離子交換體6)。 &lt;實施例7&gt; 在0.1M偏矽酸鈉水溶液2000ml中添加100克之 ΜΑΗ 1,在901攪拌4小時後,過濾、水洗。將其乾燥後’ 在55 (TC煅燒2小時來得到陰離子交換體(陰離子交換體 7)。 〈實施例8&gt; -26- 1356807 在160克之10%異丙氧化鈦異丙醇溶液中添加100克之 MAH1。在該溶液中添加水10rnl、攪拌1整夜,過濾、水 洗。經3日風乾後,在550°C煨燒2小時來得到陰離子交 換體(陰離子交換體8)。 &lt;實施例9&gt; 邊攪拌100克之ZAH,邊添加16克之四甲氧基矽烷10% 甲醇溶液,再次攪拌,經1日風乾後,在550°C煅燒2小 時來得到陰離子交換體(陰離子交換體9)。 〇吸濕性和氯化物離子交換性測定 鲁 對下述表1之陰離子交換體進行150°C、4小時加熱後, 將之放置在大氣中,隨著時間測定其重量來調査吸濕性。 在50ml之0.1M鹽酸中,分別添加1克下述表1之陰離 子交換體,在40 °C攪拌24小時。隨後,過濾,使用離子 色層分析測定濾液中氯化物濃度,得出每1克試料之氯化 物離子交換量。該等結果如表1所示。 -27- 1356807 [表1] No. 試料 吸濕性(重量增加%) 氯化物離子交換量 2曰後 1週後 (meq/g) 實施例1 陰離子交換體1 8 10 4.3 實施例2 陰離子交換體2 7 8 4.0 實施例3 陰離子交換體3 7 7 3.9 實施例4 陰離子交換體4 7 7 4.0 實施例5 陰離子交換體5 6 10 4.2 實施例6 陰離子交換體6 6 7 3.6 實施例7 陰離子交換體7 9 11 4.2 實施例8 陰離子交換體8 7 8 4.1 實施例9 陰離子交換體9 6 6 3.9 比較例 MAH1 3 4 0.7 比較例 tMAHl 21 45 4.7 由表1可以知道雖然本發明之陰離子交換的陰離子交 換量比水滑石煅燒物低一些,但是吸濕性低,且陰離子交 換性能較水滑石化合物優良,係使用於電子零件封裝用環 氧樹脂組成物等之優良陰離子交換體。 〈實施例10&gt; 在80份甲酚-酚醛清漆樹脂型環氧樹脂(環氧當量 235)、20份溴化酚-酚醛清漆樹脂型環氧樹脂(環氧當量 275)、50份酚-酚醛清漆樹脂(分子量700~ 1000)、2份三苯 基膦、1份巴西棕櫚蠟、1份碳黑、以及370份熔融二氧化 矽中,調配5份陰離子交換體2’將之以80°C〜90°C的熱輥 混練3〜5分鐘後冷卻、粉碎,得到粉末狀環氧樹脂組成物。 將之以100網眼的篩處理’使用通過部分的試料,設定成 -28 - 1356807 型條件爲170°C、3分鐘’來封裝連接有鋁配線之耐濕信賴 性評價用元件。 對該已封裝之元件’在125〇c實施壓力鍋試驗,測定斷 線發生時間。又,該試驗之進行係使用5〇個試樣,求其平 均數。又’使用最高溫度245 °C之IR回流爐來加熱處理該 已封裝的元件’觀察其外觀。表2係顯示該等結果。 &lt;實施例11&gt; 使用陰離子交換體3來替代實施例1〇之陰離子交換體 2,其餘進行同樣的操作來製造評價試樣。接著,進行同樣 的評價,該結果如表2。 &lt;實施例12&gt; 使用陰離子交換體4來替代實施例1〇之陰離子交換體 2’其餘進行同樣的操作來製造評價試樣。接著,進行同樣 的評價,該結果如表2。 &lt;實施例13&gt; 使用陰離子交換體5來替代實施例之陰離子交換體 2,其餘進行同樣的操作來製造評價試樣。接著,進行同樣 的評價,該結果如表2。 〈實施例14&gt; 使用陰離子父換體6來替代實施例1〇之陰離子交換體 2’其餘進行同樣的操作來製造評價試樣。接著,進行同樣 的評價,該結果如表2。 &lt;實施例15&gt; 使用陰離子交換體4以及屬於無機陽離子交換體之銻 酸(重量比爲5:5)來替代實施例1〇之陰離子交換體2,其餘 -29- l3568〇7 進行同樣的操作來製造評價試樣。接著,進行同樣的評價, 該結果如表2。 &lt;實施例16&gt; 使用陰離子交換體5以及屬於無機陽離子交換體之磷 酸鉻(重量比爲7:3)來替代實施例10之陰離子交換體2,其 餘進行同樣的操作來製造評價試樣。接著,進行同樣的評 價,該結果如表2。 〈比較例1 &gt; 使用M'AHl來替代實施例1〇之陰離子交換體2,其餘 進行同樣的操作來製造評價試樣。接著,進行同樣的評價, 該結果如表2。 &lt;比較例2 &gt; 使用tMAHl來替代實施例1〇之陰離子交換體2,其餘 進行同樣的操作來製造評價試樣。接著,進行同樣的評價, 該結果如表2。 〈比較例3&gt; 使用未使用陰離子交換體2以外,其餘與實施例1〇進 行同樣的操作來製造評價試樣。接著,進行同樣的評價, 該結果如表2。 30· 1356807 表2] No. 試料 斷線時間(小時) 加熱處理後外觀 實施例10 陰離子交換體2 500 無變化 實施例11 陰離子交換體3 520 無變化 實施例12 陰離子交換體4 600 無變化 實施例13 陰離子交換體5 500 無變化 實施例14 陰離子交換體6 530 無變化 實施例15 陰離子交換體4+銻酸 600 無變化 實施例16 陰離子交換體5+磷酸锆 600 無變化 比較例1 MAH1 250 無變化 比較例2 tMAHl 430 有裂紋 比較例3 f. UM 川、 150 無變化 &lt;實施例17&gt; 混合60份雙酚A型環氧樹脂(旭汽巴(株)製、商品 名:ARARUDAIT AER-25 02)作爲環氧樹脂、30份丁基苯基去 水甘油醚作爲反應性稀釋劑、20份環氧.胺加成反應物(環 氧·胺加成化合物)(旭化成工基(株)製、商品名:NOBAKYUA HX-372 1 )作爲硬化劑、1份有機改質膨土作爲搖變性賦予 劑、30份滑石作爲無機塡料、8份合成沸石、0.5份紅色顔 料、以及3份陰離子交換體9,使周三個輥來均勻地分散 樹脂中的固體粒子,得到表面組裝用黏著劑組成物。評估 如此調製而成之組成物的絕緣信賴性、牽絲性、塗佈形狀、 黏著性、以及膠凝時間等各項目,結果如表 &lt;比較例4&gt; 在實施例17之表面組裝用黏著劑組成物中除了未添加 -31- 1356807 陰離子交換體9以外,其餘與實施例17進行同樣的操 製造。接著,進行同樣的評估,該結果如表3。 〇絕緣信賴性 依據ns-Z-3 197進行測定實施例17及比較例4所 之表面組裝用黏著劑組成物之硬化物的表面電阻値。 亦即,在I I型梳形基板上,使用網印法塗佈膜 100~150/zm之前期組成物,在150°C加熱10分鐘來使 化。使用微小電流測定器測定所得到未處理基板之絕 阻値(A値)。接著,在水中將該基板煮沸2小時後,— °C、60%RH的環境下放置約1小時,再次測定絕緣電 (B値)。該評價爲 、A/BS 102 爲「〇」、 102&lt;A/B ^ 103 爲「△」、 103&lt;A/B 爲「X」。 該結果如表3。 〇牽絲性 使用分配器在全面印刷有防焊阻劑(並硬化)之玻 氧基板(FR-4)上,以每1點0.15毫克、塗佈速度爲每 50msec對實施例17及比較例4製造之黏著劑組成物 連續1 000點之塗佈試驗,因牽絲性所引起的基板污染 只發生1部位亦評價爲「X」,1部位都沒有發生時評 「〇」。 〇塗佈形狀 在上述牽絲性的評價所塗佈之黏著劑組成物的形 圓錐形,使用顯微鏡觀察測定該圓錐的底面直徑D和 作來 調製 厚爲 其硬 緣電 £ 25 阻値 璃環 1點 進行 即使 價爲 狀爲 圓錐 -32- 1356807 的高度Η,高度和直徑的比Η/D在 0.5以下爲「X」、 0.5~1.5範圍爲「〇」、 1.5以上爲「△」。 〇黏著性 和評價牽絲性一樣,在全面印刷有防焊阻劑(並硬化) 之玻璃環氧基板上黏著2125電阻元件晶片,藉由推-拉計 量器來測定將1個晶片拉開所需要的力量。亦即使用每1 個晶片塗佈0.3毫克實施例17及比較例4所製造之黏著劑 組成物在1 5 0 °C的烘箱中加熱3分鐘來使其硬化之物。 〇膠黏時間 使用150 °C的熱板加熱使用0.30 ± 0.05克之實施例17 及比較例4所製造的黏著劑,測定流動狀態消失至達到膠 凝化爲止所需要的時間(秒)。 -33- 1356807 表3] 環麵脂組成物 實施例17 比較例4 雙酚A型環氧樹脂 60 60 反應性稀麵 30 30 環氧.細成物 20 20 有機改質膨土 1 1 滑石 30 30 合成沸石 8 8 紅觸料 0.5 0.5 陰離子交換體9 3 — 絕緣讎性 〇 X 牽絲性 〇 〇 塗佈形狀 〇 〇 黏著性(kg) • 4.5 4.1 膠凝時間 60 60 &lt;實施例1 8 &gt; 使用如下組成來調製液晶密封材。將100份雙酚A型 環氧樹脂(旭汽巴(株)製、商品名:ARARUDAIT AER-2502) 作爲環氧樹脂、40份環氧·胺加成化合物(旭化成工基(株) 製、商品名:NOBAKYUA HX-372 1 )作爲硬化劑、60份氧化 鈦(石原產業(株)製 '商品名:DAIBEK R-630)作爲塡料、5 份膠體二氧化矽(日本阿葉洛吉魯工業(株)製、商品 名:AEROSIL R-974)、1份銻酸作爲無機陽離子交換體、以 及2份陰離子交換體6以道爾頓攪拌器在40°C加熱、攪拌 30分鐘進行混合。隨後,使用三個輥來進行硏磨5次’使 -34- 1356807 用硏磨針來確認內容物的粒徑在5/zm以下,加入1.5份粒 徑之二氧化矽間隔物並使其均勻分散,得到作爲液 晶密封材之組成物。 藉由網印刷將在此所得到的液晶密封材以保留有液晶 封入口之形式印刷在有ITO(透明電極)形成之玻璃基板·的 密封部。接著在80°C加熱、保持3分鐘,進行預備乾燥及 對基板之熔融黏著後,回復到室溫》接著與對極側的玻璃 基板合倂在一起,使用熱壓在130°C加熱10分鐘進行壓 著,來使密封材硬化。在此所得到之空面板經真空吸引後, 將液晶(梅魯克社製、ZL 1 1 636)注入,使用密封材將封入口 密封,使其硬化而得到液晶面板。 評價該液晶面板之液晶配向性、以及記憶性(相對於剛 施加脈衝電壓後透過光強度,其強度能夠隨時間經過而保 持的比率,有不純物存在時強度會下降)》液晶電配向性係 不施加電壓下將該液晶板加熱至80t,藉由目視透過偏光 板觀察時發生在密封材附近之黑帶寬度來評價。寬度爲 0.5mm以下爲「〇」、0.5〜1mm爲「△」、大於1mm爲 「X」。 結果如表4所不。 &lt;比較例5 &gt; 在實施例18的組成物不添加銻酸及陰離子交換體6, 同樣地製造液密封材組成物。並且和實施例1 8同樣地進行 評價。結果如表4。 -35- 1356807 [表4] 環氧樹脂組成物 實施例18 比較例5 雙酚A型環賴脂 100 100 環輸脂·胺加成物 40 40 氧化鈦 60 60 膠體二氧化矽 5 5 銻酸 1 — 陰離子交換體6 2 一 液晶配向性 〇 X 記憶性(%) 95 421356807 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a calcined product of a hydrotalcite compound having excellent anion exchangeability. Further, there is a resin composition for electronic component encapsulation which is excellent in reliability using the hydrotalcite calcined product, and a cured product of the composition. [Prior Art] Conventionally, it has been known that hydrotalcite has anion exchange property and can adsorb chloride ions belonging to anions. Its functions are widely used in a wide range of fields such as pharmaceuticals, flame retardants, and electronic materials. Many LSI, 1C, hybrid 1C, transistor 'diodes, thyristors, and hybrid parts of these are encapsulated using epoxy. Such an electronic component packaging material is required to have a flame retardancy, a high adhesion, a crack resistance, and a high volume resistivity while suppressing an ionic impurity in a raw material or an intrusion of moisture from the outside. Various characteristics such as characteristics. Epoxy resins used in large quantities in electronic component packaging materials, in addition to the main component epoxy resin compounds, are epoxy resin hardeners, hardener accelerators, inorganic materials, flame retardants, pigments and organic decane coupling agents. And so on. Moreover, with the recent high integration of semiconductors, aluminum corrosion occurs at an early stage due to the reduction in the width of the aluminum wiring on the 1C wafer. This corrosion is mainly caused by moisture intrusion into the epoxy resin as a packaging material. Further, since the heat generated during use is increased due to the reduction in the wiring width, it is necessary to mix a large amount of a flame retardant such as cerium oxide, brominated epoxy resin or inorganic hydroxide in the epoxy resin, and these flame retardant components are further promoted. Corrosion of wiring such as aluminum. 1356807 In order to prevent the above corrosion, it is necessary to improve the moisture resistance of the epoxy resin. In order to reinforce the requirement of improving the moisture resistance, it has been proposed to formulate a hydrotalcite which is an inorganic anion in an epoxy resin or the like to capture the impurity ions, particularly halide ions, where the problem lies (refer to, for example, JP-A-63). Japanese Patent Publication No. -252451, JP-A-64-64, No. 243, and JP-A-60-40 No. 1-24, etc.). The hydrotalcite compound is a layered compound represented by the following formula M2 + aM3 + b(OH- )c(An- )« · mH2〇 (M2 + means a divalent metal, an M3 + trivalent metal, and an An η The anion of the valence, a'b'c'd and the positive number of the m), specifically, usually Mg4.5Ah(OH)i3C〇3. 3.5H2〇, Mg43Al2(OH)l26C〇3·3.5H2〇, Mg6Ah( MH) 16C〇3. Magnesium-aluminum hydrotalcite represented by the composition formula of 4H2〇, because the compound already has anions such as hydroxide ions and carbonate ions, it cannot be said that it has sufficient anion exchange performance. By calcining the hydrotalcite compound, the anion in the structure is desorbed to become a substance represented by the following formula m2+, m3+, 〇z (M2 + means a divalent metal, an M3 + system of a trivalent metal, and X, y, and z are positive numbers) ). This hydrotalcite calcined product has excellent anion exchange performance when compared with hydrotalcite because it does not contain an anion. After the hydrotalcite calcined material absorbs water, it has a layered structure again. There is also a proposal to prepare a hydrotalcite-fired product in an epoxy resin or the like (for example, see JP-A-60-424-18). The hydrotalcite calcined product has excellent anion exchange performance and can effectively improve the moisture resistance of electronic parts. 1356807 'but because it is very hygroscopic, it is also easy to absorb moisture in the air, so it will absorb moisture in electronic parts. And with the absorption of moisture to increase the volume. Therefore, when it is exposed to high temperatures such as flux bath and reflow soldering equipment, thermal stress may occur due to different thermal expansion coefficients of the substrate, and vapor pressure may occur due to vaporization of moisture absorbing moisture, which may cause inclusions such as components and guide frames. Peeling, package cracking, wafer damage, and the like occur with the molding material for packaging. Further, an anion exchanger generally absorbs anions more when the surrounding environment is more acidic: if it is near neutral or alkaline, it is more difficult to adsorb anions. The additive to be formulated depends on the packaging material, and the pH of the resin composition is sometimes near neutral, and the effect of the anion exchanger cannot be sufficiently exerted. It has been proposed to mix a cation exchanger belonging to a solid acid in an anion exchanger to lower the apparent pH and enhance the ion exchange property (for example, see JP-A-60-2390 No. 1). However, when a solid acid is added to the resin, the physical properties of the resin are impaired. Further, many cation exchangers contain heavy metals, and cation exchangers may not be used in combination due to environmental concerns. In the epoxy resin used for the printed wiring board, an inorganic ion exchanger such as a cation exchange body, an anion exchanger, or a two ion exchanger is known (for example, see JP-A-2005-140419). A printed substrate is known in which an aromatic polyimide resin contains an epoxy resin or a polydiphenyl ether resin and an ion scavenger. The ion scavenger can be exemplified by an ion exchange resin and an inorganic sub-exchanger, and the inorganic ion exchangers include yttrium-lanthanide and zirconium-based substances (for example, refer to JP-A-09-3 1 475 8). Bulletin). An ion scavenger containing an insulating varnish is known, and a multilayer printed wiring board is manufactured using the insulating varnish 1356807. The ion trapping plate may, for example, be activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated pentoxide, strontium sulphate or hydrotalcite (see, for example, JP-A-10-287830). It is known that an inorganic ion adsorbing body is prepared by an adhesive film for a multilayer wiring board. Examples of the inorganic ion adsorption include activated carbon, zeolite, phthalocyanine, activated alumina, activated clay, hydrated pentoxide, zirconium phosphate, and hydrotalcite (see, for example, JP-A-10-30-30696). An epoxy resin adhesive containing an ion scavenger is known, and an ion exchanger or a cation exchanger can be exemplified as the ion scavenger (for example, see JP-A-10-13011). A conductive epoxy paste containing an ion trapping agent and silver powder is known. Examples of the ion scavenger include hydrated cerium nitrate, magnesium aluminum hydrotalcite, cerium oxide, and the like (see, for example, JP-A-10-7773). Among the ion exchangers and ion scavengers mentioned above, mention is made of the use of hydrotalcite, which is used as it is or after calcination. SUMMARY OF THE INVENTION An object of the present invention is to provide a negative exchange body which has low hygroscopicity and/or excellent heat resistance, and has excellent anion exchangeability in the vicinity of neutrality, and provides electronic parts using the same. And resin composition for electrical parts. Further, electronic parts, electrical parts, and articles using the resin composition are provided. As a result of intensive studies, the present inventors have found an anion exchanger which is treated with a metal salt solution and/or a metal alkoxide solution to treat a hydrotalcite calcined product of the following formula (1) and/or the following formula (2) The hydrotalcite compound shown can solve the above problems and complete the present invention: 1356807 M2\M3 + , 0: (1) M2 + of the formula (1) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ Or Zn2+ , M3 + is Al3+, Fe3+, Cr3+, Co3+, or In3+, x, y, z is a positive number of 0.1 or more, 2x + 3y = 2z, and x is less than or equal to 9 or less. Μ2+ι.χΜ3 + χ(ΟΗ&quot; )2 (Α&quot;~ )d · mH2〇(2) Μ2 + of the formula (2) is Mg2+, Μη2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+, M3 + Al3+, Fe3+, Cr3+, Co3+, or In3+, An-line OH-, F_, Cl_, Br_, N〇r, C〇32_, SO/-, Fe(CN)63_, CHjCOO _, oxalate ion, or salicylic acid The n-valent anion of the ion, X is a positive number of 0.1 or more and 0.33 or less, m is 0 or a positive number, and d is X/n. An anion exchanger in which the metal salt solution and the metal alkoxide solution are selected from at least one selected from the group consisting of niobium, titanium, tantalum, tin, and aluminum, and are treated with them. Anion exchanger. The present invention is an anion exchanger in which a divalent metal oxide is additionally formulated in the above anion exchanger. Further, another aspect of the invention is an anion exchanger comprising a calcined product of a hydrotalcite compound represented by formula (2) and a divalent metal oxide. The anion exchanger is treated with a metal salt solution and/or a metal alkoxide solution to treat the anion exchanger. M2 + i-xM3 + x(〇H&quot; )2 (An_ )d · mH2〇(2) M2 + of the formula (2) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+, M3 + system Al3+ , Fe3+, Cr3+, Co3+, or In3+, An_ is OH-, F-, Cl_, Br-, NCh-, C〇32_, S〇42-, Fe(CN)63_, CH3C0〇_, oxalate ion, or willow The n-valent anion of the acid ion, X is a positive number of 0.1 or more and 10 1356807 0.33 or less, m is 0 or a positive number, and d is X/n. An anion exchanger characterized in that the metal salt solution and the metal alkoxide solution are selected from at least one selected from the group consisting of ruthenium, titanium, chromium, tin, and aluminum, and are treated with them. . According to another aspect of the invention, the resin composition for electronic component encapsulation contains the anion exchanger described above, and in this case, an inorganic cation exchanger may be contained. According to another aspect of the invention, there is provided a resin for electronic component encapsulation which is obtained by curing a resin composition for encapsulating an electronic component. Another aspect of the present invention is an electronic component obtained by using the resin composition for packaging an electronic component. Another aspect of the present invention is a varnish, an adhesive, or a paste containing the above anion exchanger and an inorganic cation exchanger. Still another aspect of the invention is an article comprising the above varnish, adhesive, or paste. The invention is described in detail below. The hydrotalcite calcined product represented by the following formula (1) and/or the hydrotalcite compound represented by the following formula (2) are treated with a metal salt solution and/or a metal alkoxide solution; the so-called "treatment" means wet or The metal salt and/or metal alkoxide is calcined in a dry manner: M2\M3%〇z (1) M2 + of the formula (1) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+, M3 + is Al3+, Fe3+, Cr3+, Co3+, or In3+, x, y, z is a positive number of 1 or more, 2x + 3y = 2z, and x is equal to or less than x and y. Μ2 + .·χΜ3 + χ(〇Η_ )i (A0- ) &lt;. · mH2〇(2) -11- 1356807 M2 + of the formula (2) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+, M3+ is Al3+, Fe3+, Cr3+, Co3+, or In3+, An_ is an n-valent anion of Ol·!—, F·, Cl—, Br_, NO; —, C〇32-, SO,, Fe(CN)63—, CHsCOO I, oxalic acid ion, or salicylic acid ion, X is a positive number of 0.1 or more and 0.33 or less, m is 〇 or a positive number, and d is X/n. The hydrotalcite calcined product represented by the formula (1) and/or the hydrotalcite compound represented by the formula (2) are referred to as hydrotalcite compounds. 〇 Hydrotalcite-based compound The hydrotalcite-calcined product used in the present invention is a compound represented by the formula (1). Examples of the M2+ of the formula (1) include magnesium, manganese, iron, cobalt, nickel, copper, and zinc. Magnesium, zinc, nickel, and cobalt are preferred, and magnesium and zinc are particularly preferred. The M3 + of the formula (1) may, for example, be aluminum, iron, chromium, cobalt or indium, preferably aluminum, iron or cobalt, and particularly preferably aluminum. The x/y 式 of the formula (1) is 9 or less, preferably 7 or less, and more preferably 6 or less. Further, x/y 値 is 2 or more, preferably 2.1 or more, and more preferably 2.2 or more. The hydrotalcite calcined product used in the present invention can be obtained by calcining a hydrotalcite compound represented by the above formula (2). The hydrotalcite compound represented by the formula (2) used in the present invention is not particularly limited. The M2 + of the formula (2) may, for example, be magnesium, manganese, iron, cobalt, nickel, copper or zinc, preferably magnesium, zinc, nickel or cobalt, and magnesium 'zinc is particularly preferred. The M3 + of the formula (2) may, for example, be aluminum, iron, chromium, cobalt or indium, preferably aluminum, iron or cobalt, and particularly preferably aluminum. X of the formula (2) is 0.1 or more and 0.33 or less, and X is preferably (M 25 or more is preferably 0.14 3 or more), more preferably 0. 16 or more, and most preferably 〇. 2 or more; -12 - 1356807 is preferably 0.33 or less, more preferably 0.31 or less. The m of the formula (2) is 0 or a positive number, preferably 20 or more, more preferably 10 or more, and 0 or more and 6 or less. More preferably. An_ of formula (2) is OH-, F_, Cl_, Br_, N〇3-, CCh2-, S〇42-, Fe(CN)63-, CH3COO-, oxalic acid ion, or salicylic acid ion The η-valent anion is preferably removed by calcination. Specifically, Αη_ of the formula (2) is preferably OH-, NOr, CCh2_, CHsCOO_, oxalate ion or salicylic acid, and OH-, NOT, or (: 〇32_ is more preferable, and COf is particularly preferable. The temperature of the hydrotalcite compound represented by the calcination formula (2) is not particularly limited, and the temperature of the anion in the hydrotalcite compound can be removed. The calcination temperature is, for example, 240 to 1000 ° C, which varies depending on the X 値 of the formula (2). The calcination time can be set according to the type of hydrotalcite, the calcination temperature, and the calcination amount. For example, the calcination time is preferably 24 hours or less, preferably 15 hours or less, more preferably 10 hours or less, more preferably 0.5 hours or more, and X of the formula (2) is 0.29 or more. The calcined product obtained by calcining at 240 ° C or higher and 700 ° C or lower has a poor anion exchange performance in the vicinity of neutrality, and it is necessary to prepare a divalent metal oxide. The calcination temperature of the calcined product is 330 ° C or higher. Preferably, it is preferably 400 ° C or more, more preferably 430 ° C or more, and more preferably 500 ° C or more. When the calcination temperature is low, there is ion exchange because the anion cannot be removed from the hydrotalcite compound. The case where the property is lowered is not preferable. The X of the formula (2) is 0.29 or more, and the calcined product obtained by firing at 700 ° C to 1 000 ° C or lower generates a divalent metal oxide. The calcined product of -13- 1356807 may not be added with a divalent metal oxide. The calcined product has good anion exchange property in the vicinity of neutrality, and may not be formulated with a divalent metal oxide, and if it is formulated, it is more preferable. The calcination temperature is preferably 90 or less, preferably 850 ° C or less. Calcined When the temperature is too high, the anion exchanger may be decomposed and the amount of ion exchange may be lowered. The X of the formula (2) is 0.29 or less, and it is calcined at 240 ° C or more and 1000 ° C or less. The calcined product may form a divalent metal oxide. In this case, the calcined product may not be added with a divalent metal oxide. The anion exchange property of the calcined product in the vicinity of neutrality is good, and the divalent metal oxide may not be formulated. Better when blending. Further, when X is too small, there is a case where the anion exchange performance in the vicinity of neutrality is deteriorated. The calcination temperature of the calcined product is preferably 330 to 1000 ° C, more preferably 400 to 950 ° C, more preferably 430 to 950 ° C, and particularly preferably 500 to 900 ° C. When the calcination temperature is low, since the anion cannot be removed from the hydrotalcite compound, the ion exchange property may be lowered. Further, conversely, if the calcination temperature is too high, when the calcination temperature is too high, the anion exchanger may be decomposed and the amount of ion exchange may be lowered. Whether or not a divalent metal oxide forms a hydrotalcite compound can be investigated by X-ray diffraction. Specifically, for example, in the case of M2 +-based Mg2+, the standard of MgO is first measured by X-ray diffraction, and the formation of MgO can be confirmed by comparison with the sharpness of the diffraction angle (20) of the calcined product. Only the hydrotalcite compound represented by the formula (2) is calcined, and the chlorine ion exchange rate is preferably more than 70%, more preferably more than 80%, more preferably more than 90%. Further, the chloride ion exchange rate was obtained by calcining one gram of the hydrotalcite compound -14-1356807 represented by the formula (2), and treating it with 50 ml of a 0.02 molar aqueous solution of sodium chloride, and then calculating the amount of chlorine ions. The hygroscopicity of the anion exchanger or the anion exchange composition of the present invention is preferably 50% or less after being left at 35 ° C and 90% relative humidity for 24 hours, and is preferably 40% or less. Preferably, it is better to use less than 20%. Further, when the anion exchange ratio and the hygroscopicity of the anion exchanger of the present invention are matched, when the weight increase rate is 40% or more and 50% or less, the chloride ion exchange rate is preferably 80% or more, and more preferably 90% or more. Time is better. When the weight increase rate is 40% or less, the chloride ion exchange rate is preferably 65% or more, which is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more. The hydrotalcite compound may be exemplified by Mg4.5AM〇H)l3CCh · 3.5H2〇' Zn4.5Al2(OH)i3C〇3 · 3.5H2〇' Ni4.5 A h(0 Η). 3CO 3 · 3.5H2〇 'Mg4.5Fe2(OH)nC〇3 · 3.5H2〇' Mgs A1. .s(OH) 13CO3 · 3.5H2〇, Mg6Al2(OH)l6C〇3· 4H2〇, or the ratio of magnesium to aluminum is 2.5: 1, 2.75: 1, 4: 1, 5: 1 and other products synthesized by the molar ratio. Further, the calcined materials may be exemplified by Mg〇.7Al〇.3〇l.l5, Ζη0.·?Α1〇.3〇1.Ι5, Ni 0.·?Α1〇.3〇1.Ι5 , Mg〇.7Fe〇.3〇l.l5, Mg〇.sAl〇.24〇I . I 6 'Mg0.9Al0.3O I .35 'Mg2.5Al 〇4 ' M g 2.7 SA 1 0 4.2 5 ' Mg〇.8Al〇.24〇1.16 'Mgl.2Al〇2.7, Mgl.5Al〇3.0, Mg3Al〇4.5, Mg4Al〇5.5, Mg5Al〇6.5, and the like. The metal salt solution of the hydrotalcite compound and the metal alkoxide solution are treated with a ruthenium metal salt solution and a metal alkoxide solution, preferably ruthenium, titanium, pin, tin and aluminum, and the like, ruthenium, titanium, ruthenium, and The aluminum is more preferable, and the method of treating the metal salt solution of the hydrotalcite compound and/or the metal alkoxylation-15-1356807 solution is not particularly limited. For example, there are the following processing methods. • A method in which a hydrotalcite compound is dispersed in a metal salt solution and subjected to filtration, washing, drying, and calcination. • Disperse the hydrotalcite compound in a metal salt solution, add an alkaline substance such as sodium hydroxide or ammonia, and precipitate a metal oxide or a metal hydroxide on the surface of the hydrotalcite compound, then filter, wash, and dry. , the method of calcination. • The hydrotalcite compound is dispersed in a metal salt solution, and an amine compound such as urea or hexamethylenetetramine is added, and a metal oxide or a metal hydroxide is precipitated on the surface of the hydrotalcite compound by heating, followed by filtration. , washing, drying, and burning. ' • Dispersing a hydrotalcite compound in a metal salt solution, adding a acid, a base, or water, or heating to hydrolyze the metal alkoxide to precipitate a metal oxide or a metal hydrogen on the surface of the hydrotalcite compound. After the oxide, the method of filtration, washing, drying, and calcination is carried out. A method in which a metal alkoxide or a metal alkoxide solution is added to a hydrotalcite compound, followed by heating, and a metal oxide or a metal hydroxide is coated on the surface of the hydrotalcite compound to be dried and calcined. It is preferred to treat the hydrotalcite compound by using a metal salt solution and/or a metal alkoxide solution because an anion exchanger having less hygroscopicity can be obtained. In order to use the anion exchanger of the present invention in the resin composition for electronic component encapsulation, it is preferred that the ionic impurities are not contained as much as possible. When the hydrotalcite compound is treated with a metal salt solution, it must be sufficiently washed and removed to remove the salt. On the other hand, when a metal alkoxide solution is used for treatment, it is better than a metal solution because there is no -16-1356807 or only a small amount of by-product salt. The metal of the metal salt solution is as described above, and the metal salt solution may be an aqueous solution or a sol solution. The metal salt may, for example, be an alkali metal salt, a halide or an oxide of an oxo acid of ruthenium, titanium, zirconium, tin or aluminum. The alkali metal salt is preferably a sodium salt or a potassium salt, and the halide is preferably a chloride or a bromide. The metal of the metal alkoxide is as described above, and the solution of the metal alkoxide solution may, for example, be an aqueous solution, an aqueous alcohol solution, an alcohol solution or the like, preferably an aqueous alcohol solution or an alcohol solution. Specific examples of the metal alkoxide include tetraethoxydecane, tetramethoxydecane, titanium tetraisopropoxide, triethylaluminum oxide, tetrapropoxide, tetraethoxytin, and tetramethoxy. Base tin and their polymers (eg methyl phthalate oligomers, ethyl phthalate oligomers, propyl phthalate oligomers, etc.) because of tetraethoxy decane, tetramethoxy decane And their polymer hydrolysis rate is not too fast and easy to handle and is preferred. More preferably, a polymer of tetraethoxysilane or a polymer of tetramethoxydecane is used. The calcination temperature of the hydrotalcite calcined product represented by the formula (1) using a metal salt solution and/or a metal alkoxide solution is preferably 50 to 1 000 ° C, and 1 to 100 00 ° C. Preferably, it is preferably 200 to 800 ° C, and particularly preferably 400 to 700 t. The calcination temperature of the hydrotalcite compound represented by the formula (2) using a metal salt solution and/or a metal alkoxide solution is preferably 400 to 1 000 ° C, more preferably 500 to 900 ° C. It is especially good at 500~700 °C. A metal salt solution and/or a metal alkoxide solution may also be used to treat a composition in which a hydrotalcite compound and a divalent metal oxide are formulated, and the treatment conditions are the same as described above. -17- 1356807 is treated with a metal salt solution and/or a metal alkoxide solution, preferably from the anion exchange performance near neutral, before the preparation of the divalent metal oxide or The treatment ratio of the metal alkoxide solution is not particularly limited to the treatment ratio of the hydrotalcite compound, the metal salt solution and/or the metal oxide solution, and the preferred ratio is 100 parts by weight relative to the hydrotalcite compound. The metal salt solution and/or the metal oxide of the metal oxide solution (converting the metal salt solution or the metal of the metal alkoxide solution into an oxide) is 3-100 parts by weight, and is 5 to 50 parts by weight. good. When the amount of the metal oxide is less than 3 parts by weight, the hygroscopicity may not be suppressed, and if it is more than 100 parts by weight, the ion exchange capacity may be small. 〇2 valent metal oxide The divalent metal oxide used in the present invention is preferably a divalent metal such as Mg2+, Mn2+, Fe2+, Co2+, Cu2+ or Zn2+, and more preferably a divalent metal in the hydrotalcite compound. The oxide of the same metal is preferred. The particle diameter of the divalent metal oxide is not particularly limited, and the average particle diameter is preferably 0.01 μm or more and 10 μm or less, more preferably 0. 05/zm or more and 3 μm or less. When the particle size is 0.01 &quot;m or less, it is easy to agglomerate, and when it is added to the resin at 10 or more, the physical properties may be impaired." The ratio of the bismuth metal oxide is adjusted. The hydrotalcite compound and the divalent metal oxide are blended. The ratio is not particularly limited. When the hydrotalcite compound is treated with a metal salt solution and/or a metal alkoxide solution in an amount of 100 parts by weight, the divalent metal oxygen 1356807 compound is preferably 10 to 500 parts by weight, and is 20 to 200 parts by weight. The serving is better, preferably 40 to 100 parts by weight. When the amount of the divalent metal oxide is less than 10 parts by weight, the ion exchange property may not be improved. When the amount is more than 500 parts by weight, the ion exchange capacity may become small. When the X in the formula (2) is 0.29 or more, when the calcined product obtained by calcining 24 (TC or more and 700 ° C or less) is 100 parts by weight, the divalent metal oxide is preferably 10 to 1000 parts by weight. It is preferably 20-300 parts by weight, more preferably 40-200 parts by weight, and if the amount of the divalent metal oxide is less than 10 parts by weight relative to the calcined product, there is a case where the ion exchange property cannot be improved: more than 1000 parts by weight. In the case of a part, since the ion exchange capacity becomes small, the X in the formula (2) is 0.29 or more, and when it is calcined by using 700 ° C or more and 1 000 ° C or less, it is neutral. When the anion exchange performance in the vicinity is not good, the divalent metal oxide may be contained. When the amount is 100 parts by weight relative to the calcined product, the divalent metal oxide is preferably 10 to 500 parts by weight, and 20 to 200. The amount by weight is preferably from 40 to 100 parts by weight. When the amount of the divalent metal oxide is less than 10 parts by weight, the ion exchange property may not be improved, and when it is more than 500 parts by weight, It is not preferable because the ion exchange capacity becomes small. The X in the formula (2) is 0.29 or less, in which The calcined material calcined at 240 ° C or higher and 100 ° C or lower may contain a divalent metal oxide when the anion exchange performance in the vicinity of neutral is not good. At this time, it is 100 wt% with respect to the calcined product. In the case of 1 part by weight, the divalent metal oxide is preferably 10 to 500 parts by weight, more preferably 20 to 200 parts by weight, particularly preferably 40 to 100 parts by weight, relative to the calcined product. When the amount of the divalent metal oxide is less than 10 parts by weight, the ion exchange property may not be improved; when the amount is more than -19 - 1356807 5 00 parts by weight, the ion exchange capacity becomes small. When the anion exchanger of the present invention is used as a resin in the resin composition for electronic component encapsulation, a thermosetting resin such as a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, or an epoxy resin may be used. A thermoplastic resin such as polyethylene, polystyrene, polyvinyl chloride, or polypropylene is used, and a thermosetting resin is preferably used. The thermosetting resin used in the resin composition for electronic component packaging of the present invention is Resin or epoxy resin is preferable, and epoxy resin is particularly preferable. φ 环氧树脂 Epoxy resin composition for electronic component encapsulation The epoxy resin used in the present invention may be used as a resin for electronic component encapsulation. It is not limited. For example, if it has two or more epoxy groups in one molecule, it can be cured regardless of its kind, for example, a phenol-novolac resin type epoxy resin, a bisphenol A type epoxy resin, an alicyclic epoxy resin. For the purpose of improving the moisture resistance of the composition of the present invention, it is preferred that the chloride ion content of the epoxy resin is 1 〇 ppm or less and the water-decomposable chlorine content is 1000 ppm or less. The epoxy resin composition for electronic parts of the present invention preferably contains a curing agent and a hardening accelerator. The curing agent used in the present invention is known to be used as a curing agent for an epoxy resin composition, and preferred examples thereof include an acid anhydride, an amine-based hardener, and a novolac resin-based curing agent. The hardening accelerator used in the present invention is known to be used as a curing accelerator for an epoxy resin composition, and preferred examples thereof are an amine-based, phosphorus-based, and imidazole-based accelerator. -20- 1356807 The resin composition for electronic component encapsulation of the present invention can be blended with a material which is known to be blended in a molding resin, if necessary. The component may, for example, be an inorganic cerium, a flame retardant, a coupling agent for inorganic cerium, a coloring agent, a releasing agent or the like. As the components, those which are known to be blended in the epoxy resin for molding can be used. Preferred examples of the inorganic cerium material include crystalline cerium oxide powder, quartz glass powder, molten cerium oxide powder, alumina powder, and talc, among which crystalline cerium oxide powder and quartz glass powder are used. And molten cerium oxide powder is preferred because it is inexpensive. Examples of the flame retardant include cerium oxide, halogenated epoxy resin, magnesium hydroxide, aluminum hydroxide, a red phosphorus compound, a phosphate compound, and the like, and examples of the coupling agent include a decane system and a titanium system, and examples of the release agent There are waxes such as aliphatic paraffin and higher aliphatic alcohol. In addition to the above components, a reactive diluent, a solvent, a shake imparting agent and the like may be contained. Specifically, the reactive diluent which can be exemplified is butylphenyl diglycidyl ether, methyl ethyl ketone in a solvent, and an organically modified bentonite in a rheological property imparting agent. The preferred mixing ratio of the anion exchanger of the present invention is 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight, per 100 parts by weight of the resin composition for electronic component encapsulation. When the amount is less than 0.1 part by weight, the effect of improving anion removal property, moisture resistance, and the like is inferior. On the other hand, when it is more than 10 parts by weight, the effect is not improved, and the cost is not preferable. By using the anion exchanger of the present invention in combination with an inorganic cation, the anion-capturing ability of the anion exchanger of the present invention can be increased, and the effect of cation exchange property can be expected. The inorganic cation exchange system is inorganic and has cation exchange properties. The compounding ratio of the anion exchanger and the inorganic cation exchanger of the present invention is not particularly limited, and the weight ratio is preferably from 100:0 to 20:80. The preparation of the anion exchanger and the inorganic cation exchanger of the present invention may be additionally carried out in the production of a resin composition for electronic component encapsulation, or they may be uniformly mixed in advance. It is preferred to use the mixture. In this way, the effects of these components can be further utilized. Specific examples of the inorganic cation exchanger include citric acid (ruthenium pentoxide hydrate), citric acid (ruthenium pentoxide hydrate), manganese oxide, zirconium phosphate, titanium phosphate, tin phosphate, strontium phosphate, and zeolite. And clay minerals, etc. Preferably, citric acid (ruthenium pentoxide hydrate), zirconium phosphate, and titanium phosphate are preferred. The resin composition for electronic component encapsulation of the invention can be easily obtained by mixing the above-mentioned known materials. For example, when the above-mentioned respective raw materials are appropriately blended, the preparation is placed in a kneading machine and kneaded in a heated state. The semi-hardened resin composition is cooled at room temperature, and then pulverized by a known method and obtained by ingot pressing. The anion exchanger of the present invention can be used for various applications such as encapsulation, coating, and insulation of electronic components or electrical components. Further, an anion exchanger of the present invention can also be used as a stabilizer for a resin such as vinyl chloride or a rust inhibitor. The resin composition for electronic component packaging in which the anion exchanger of the present invention is prepared can be used for supporting members such as a guide frame, a wound web support, a wiring board, a glass, a tantalum wafer, and the like, and a semiconductor wafer. Active components such as transistors, diodes, thyristors, capacitors, resistors, coils, and the like. Further, the printed circuit board can also effectively use the resin composition for component encapsulation of the present invention. The epoxy resin composition for electronic component encapsulation in which the anion exchanger of the present invention is formulated can also be used as in the case of -22- 1356807. In the resin composition for electronic component packaging of the present invention or the epoxy resin composition for electronic component packaging, the most common packaging method is a low pressure transfer molding method, and an injection molding method, a compression molding method, or the like can also be used. 〇Applied to a wiring board ‘ A thermosetting epoxy resin or the like is used as a printed wiring board, and a copper foil is adhered to the surface of the printed wiring board to etch the substrate to fabricate a wiring board. However, in recent years, corrosion due to high density of circuits, lamination of circuits, thinning of an insulating layer, and the like have become a problem. Therefore, when an electric wiring board is manufactured, the anion exchanger of the present invention can be added. To prevent such corrosion. Further, the insulating layer for the wiring board can be prevented from being corroded or the like of the wiring board by adding the anion exchanger of the present invention. Therefore, the anion exchanger wiring board of the present invention can suppress the occurrence of defective products caused by corrosion or the like. It is preferable to add 0.1 to 5 parts by weight of the anion exchanger of the present invention to 100 parts by weight of the resin solid content in the insulating layer for the wiring board or the wiring board. Here, an inorganic cation exchanger may also be contained. 〇In the adhesive, use an adhesive on a substrate such as a wiring board to assemble electronic parts. By adding the anion exchanger of the present invention to the adhesive used at this time, it is possible to suppress occurrence of defective products due to corrosion or the like. It is preferred to add 0.1 to 5 parts by weight of the anion exchanger of the present invention to 100 parts by weight of the resin solid content in the adhesive. Here, an inorganic cation exchange body may also be contained. By adding the anion exchanger of the present invention to the conductive -23- 1356807 adhesive used for connecting electronic components or wiring to the wiring board, it is possible to suppress the occurrence of defects due to corrosion or the like. The anion exchange body of the present invention is preferably added in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the resin solid content in the conductive adhesive. Here, an inorganic cation exchanger may also be contained. In the varnish, an enamel containing the anion exchanger of the present invention can be used to manufacture an electric appliance, a printed wiring board, or an electronic component. The varnish may be exemplified by a thermosetting resin such as an epoxy resin as a main component, and preferably 0.1 to 5 parts by weight of the anion exchanger of the present invention, based on 100 parts by weight of the solid component of the resin. Here, an inorganic cation exchanger may also be contained. The hydrazine is blended in the paste. The anion exchanger of the present invention can be added to a paste containing silver powder or the like. The paste is used as a supplement for welding and the like to improve adhesion between continuous metals. Thereby, it is possible to suppress the occurrence of corrosive substances which occur in the paste. The anion exchanger of the present invention is preferably added in an amount of from 1 to 5 parts by weight based on 100 parts by weight of the resin solid content in the paste. Here, an inorganic cation exchanger may also be contained. [Embodiment] &lt;Examples&gt; The present invention will be more specifically described by way of examples. The present invention is of course not limited to the following embodiments, and can be appropriately changed in accordance with the above-described meaning range, which is included in the technical scope of the present invention, and further, O.iMi Indicates the molar concentration, and % indicates the weight % 'parts means parts by weight. &lt;Synthesis Example 1 &gt; -24- 1356807 A hydrotalcite compound (referred to as MAH1) represented by a composition formula of Mg4.5Al2(OH)l3C〇3·3.5H2〇 was calcined at 550 ° C for 2 hours to obtain 1 \^〇.7八一〇.3〇丨.,5 Composition of the hydrotalcite calcined material (referred to as the old eight 111). 〇 calcination test · Measurement of mass change caused by heating MAH1 (thermal mass analysis, TG-DTA, measurement temperature range 30 to 5 30 ° C, temperature increase rate 20 ((: / min, measured in the atmosphere). As shown in Fig. 1, it can be seen from Fig. 1 that the hydrotalcite compound is calcined at a temperature lower than 240 ° C, and the calcination effect cannot be obtained. &lt;Synthesis Example 2 &gt; A hydrotalcite compound (referred to as ruthenium) represented by the composition formula Ni4.5Al2(OH)l3C〇3.3·5Η2〇 was calcined at 550 ° C for 2 hours to obtain Ni〇.7Al. Hydrotalcite smoldering (referred to as tNAH) represented by the composition of 〇.3〇丨.15. &lt;Synthesis Example 3&gt; A hydrotalcite compound (referred to as ruthenium) represented by the composition formula Zn4 5Ah(OH)l3CCh . 3 ·5Η2〇 was calcined at 550 ° C for 2 hours to obtain Zn〇.7AU.3Ch.15. The hydrotalcite calcined product (referred to as tZAH) represented by the composition. &lt;Example 1&gt; 1 gram of tMAHl was added to 2000 ml of a 0.1 M sodium metasilicate aqueous solution. After stirring at 90 ° C for 4 hours, it was filtered and washed with water. After drying this, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 1). &lt;Example 2&gt; 100 g of tMAH1 was added to 160 g of a 10% tetraisopropoxide titanium oxide isopropanol solution. Water i〇mi was added to the solution, stirred for 1 night, filtered, and washed with 1356807 water. After air drying on the 3rd, it was calcined at 550 °C for 2 hours to obtain an anion exchanger (anion exchanger 2). &lt;Example 3&gt; 100 g of tMAH1 was added to a solution of 160 g of tetramethoxynonane in 10% methanol, stirred for 1 night, and air-dried at 1 day, and calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchange). Body 3). &lt;Example 4&gt; While stirring 100 g of tMAH1 using a stirrer, 16 g of tetramethoxydecane was added. After stirring again, after air drying on the 1st, calcination at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 4) » &lt;Example 5&gt; 1 gram of tNAH was added to 2 000 ml of a 0.1 M aqueous chromium oxychloride solution, adjusted to pH 8 with a 0.1 M aqueous ammonia solution, and the solution was stirred overnight, filtered, and washed with water. After drying, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 5). &lt;Example 6&gt; 1 gram of tZAH was added to a solution of 160 g of tetraethoxy decane in 10% ethanol, stirred for 1 night, and air-dried at 1 day, and calcined at 550 ° C for 2 hours to obtain an anion exchanger ( Anion exchanger 6). &lt;Example 7&gt; 100 g of hydrazine 1 was added to 2000 ml of a 0.1 M sodium metasilicate aqueous solution, and the mixture was stirred at 901 for 4 hours, and then filtered and washed with water. After drying it, it was calcined at 55 (TC for 2 hours to obtain an anion exchanger (anion exchanger 7). <Example 8> -26- 1356807 100 g of a solution of 160 g of 10% titanium isopropoxide isopropanol was added. To the solution, 10 rnl of water was added thereto, and the mixture was stirred for 1 night, filtered, and washed with water. After air drying for 3 days, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 8). &lt;Example 9&gt; While stirring 100 g of ZAH, 16 g of tetramethoxy decane 10% methanol solution was added thereto, stirred again, air-dried at 1 day, and calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchange). Body 9). 〇 Hygroscopicity and chloride ion exchangeability measurement Lu The anion exchanger of the following Table 1 was heated at 150 ° C for 4 hours, placed in the atmosphere, and the weight was measured over time to investigate the hygroscopicity. 1 g of the anion exchanger of the following Table 1 was added to 50 ml of 0.1 M hydrochloric acid, and the mixture was stirred at 40 ° C for 24 hours. Subsequently, filtration was carried out, and the chloride concentration in the filtrate was measured by ion chromatography to obtain the chloride ion exchange amount per 1 g of the sample. These results are shown in Table 1. -27- 1356807 [Table 1] No. Sample hygroscopicity (% by weight increase) Chloride ion exchange amount 2 weeks after 1 week (meq/g) Example 1 Anion exchanger 1 8 10 4.3 Example 2 Anion exchange Body 2 7 8 4.0 Example 3 Anion exchanger 3 7 7 3.9 Example 4 Anion exchanger 4 7 7 4.0 Example 5 Anion exchanger 5 6 10 4.2 Example 6 Anion exchanger 6 6 7 3.6 Example 7 Anion exchange Body 7 9 11 4.2 Example 8 Anion exchanger 8 7 8 4.1 Example 9 Anion exchanger 9 6 6 3.9 Comparative example MAH1 3 4 0.7 Comparative example tMAH1 21 45 4.7 It can be seen from Table 1 that although the anion exchanged anion of the present invention The exchange amount is lower than that of the hydrotalcite calcined product, but the hygroscopicity is low, and the anion exchange performance is superior to that of the hydrotalcite compound, and it is an excellent anion exchanger used for an epoxy resin composition for electronic component encapsulation. <Example 10> In 80 parts of cresol-novolac resin type epoxy resin (epoxy equivalent 235), 20 parts of brominated phenol-novolac resin type epoxy resin (epoxy equivalent 275), 50 parts of phenol-phenolic aldehyde 5 parts of anion exchanger 2' at 80 ° C in varnish resin (molecular weight 700~1000), 2 parts triphenylphosphine, 1 part carnauba wax, 1 part carbon black, and 370 parts of molten cerium oxide The hot roll of ~90 ° C was kneaded for 3 to 5 minutes, and then cooled and pulverized to obtain a powdery epoxy resin composition. This was treated with a 100-mesh sieve. The moisture-resistant reliability evaluation element to which the aluminum wiring was connected was packaged by using a part of the sample and setting the -28 - 1356807 type condition to 170 ° C for 3 minutes. The packaged component was subjected to a pressure cooker test at 125 〇c to measure the occurrence time of the disconnection. Further, in the test, 5 samples were used, and the average number was obtained. Further, the packaged element was heat treated using an IR reflow oven having a maximum temperature of 245 ° C to observe its appearance. Table 2 shows these results. &lt;Example 11&gt; An anion exchanger 3 was used instead of the anion exchanger 2 of Example 1 except that the same operation was carried out to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. &lt;Example 12&gt; An anion exchanger 4 was used instead of the anion exchanger 2' of Example 1 to carry out the same operation to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. &lt;Example 13&gt; An anion exchanger 5 was used instead of the anion exchanger 2 of the example, and the same operation was carried out to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. <Example 14> An anion parent exchanger 6 was used instead of the anion exchanger 2' of Example 1 and the same operation was carried out to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. &lt;Example 15&gt; An anion exchanger 4 and a citric acid belonging to an inorganic cation exchanger (weight ratio of 5:5) were used instead of the anion exchanger 2 of Example 1 except that the remaining -29-l3568〇7 was carried out in the same manner. The operation was performed to manufacture an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. &lt;Example 16&gt; An anion exchanger 5 and chromium phosphate (in a weight ratio of 7:3) belonging to an inorganic cation exchanger were used instead of the anion exchanger 2 of Example 10, and the same operation was carried out to produce an evaluation sample. Next, the same evaluation was performed, and the results are shown in Table 2. <Comparative Example 1 &gt; The anion exchanger 2 of Example 1 was replaced with M'AH1, and the same operation was carried out to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. &lt;Comparative Example 2 &gt; The anion exchanger 2 of Example 1 was replaced with tMAH1, and the same operation was carried out to produce an evaluation sample. Next, the same evaluation was carried out, and the results are shown in Table 2. <Comparative Example 3> An evaluation sample was produced in the same manner as in Example 1 except that the anion exchanger 2 was not used. Next, the same evaluation was carried out, and the results are shown in Table 2. 30· 1356807 Table 2] No. Sample breaking time (hours) Appearance after heat treatment Example 10 Anion exchanger 2 500 No change Example 11 Anion exchanger 3 520 No change Example 12 Anion exchanger 4 600 No change implementation Example 13 Anion exchanger 5 500 No change Example 14 Anion exchanger 6 530 No change Example 15 Anion exchanger 4 + tannic acid 600 No change Example 16 Anion exchanger 5 + Zirconium phosphate 600 No change Comparative example 1 MAH1 250 No change Comparative Example 2 tMAHl 430 cracked comparison example 3 f. UM Chuan, 150 no change &lt;Example 17&gt; 60 parts of bisphenol A type epoxy resin (manufactured by Asahi Kadaku Co., Ltd., trade name: AARUDDAIT AER-25 02) was mixed as an epoxy resin and 30 parts of butylphenyl dehydrated ether as Reactive diluent, 20 parts of epoxy-amine addition reaction product (epoxy-amine addition compound) (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: NOBAKYUA HX-372 1 ) as a hardener, 1 part organically modified The metamorphic soil is used as a shake imparting agent, 30 parts of talc as an inorganic tantalum, 8 parts of a synthetic zeolite, 0.5 parts of a red pigment, and 3 parts of an anion exchanger 9, so that the three rolls are uniformly dispersed in the resin to obtain solid particles in the resin. Adhesive composition for surface assembly. Evaluation of the insulation reliability, the stringiness, the coating shape, the adhesion, and the gelation time of the composition thus prepared, and the results are shown in the table. &lt;Comparative Example 4&gt; The same procedure as in Example 17 was carried out except that the -10-1356807 anion exchanger 9 was not added to the surface-mounting adhesive composition of Example 17. Next, the same evaluation was performed, and the results are shown in Table 3. 〇Insulation reliability The surface resistance 硬化 of the cured product of the surface-mounting adhesive composition of Example 17 and Comparative Example 4 was measured in accordance with ns-Z-3197. Namely, on the I I type comb-shaped substrate, the composition of the film of the previous period of 100 to 150 / zm was applied by screen printing, and heated at 150 ° C for 10 minutes. The absolute enthalpy (A 値) of the obtained untreated substrate was measured using a minute current measuring device. Next, the substrate was boiled in water for 2 hours, and then left in an environment of - ° C and 60% RH for about 1 hour, and the insulating electricity (B 値) was measured again. The evaluation is , A/BS 102 is "〇", 102 &lt;A/B ^ 103 is "△", 103 &lt;A/B is "X". The results are shown in Table 3. 〇Wire-stretching using a dispenser on a glass-oxygen plate (FR-4) fully printed with a solder resist (and hardened), 0.15 mg per 1 point, and a coating speed of 50 msec for Example 17 and Comparative Example (4) The coating composition of the adhesive was manufactured in a continuous coating test of 1,000 points. The substrate contamination caused by the stringiness was evaluated as "X" only when one part of the substrate was contaminated, and "〇" was not observed when one part was not present. The crucible coating shape is a conical shape of the adhesive composition applied by the above-mentioned evaluation of the stringiness, and the diameter D of the bottom surface of the conical is measured by a microscope observation and the thickness is adjusted to be a hard edge. At the 1st point, even if the price is the height 圆锥 of the cone-32-1356807, the ratio 高度/D of the height and the diameter is "X" below 0.5, "〇" in the range of 0.5 to 1.5, and "△" in 1.5 or more. 〇 Adhesiveness is the same as the evaluation of the stringiness. A 2125 resistive element wafer is adhered to a glass epoxy substrate which is printed with a solder resist (and hardened), and a wafer is pulled apart by a push-pull gauge. The power needed. That is, 0.3 mg of the adhesive composition prepared in Example 17 and Comparative Example 4 was applied per 1 wafer to heat it in an oven at 150 ° C for 3 minutes to harden it. 〇 Adhesive time The adhesive prepared in Example 17 and Comparative Example 4 was heated with a hot plate at 150 °C using 0.30 ± 0.05 g of the adhesive prepared in Example 17 and Comparative Example 4, and the time (seconds) required until the flow state disappeared until the gelation was reached was measured. -33- 1356807 Table 3] Toroidal fat composition Example 17 Comparative Example 4 Bisphenol A type epoxy resin 60 60 Reactive diluted side 30 30 Epoxy. Fine product 20 20 Organically modified bentonite 1 1 Talc 30 30 Synthetic zeolite 8 8 Red contact 0.5 0.5 Anion exchanger 9 3 — Insulating inert 〇X Threading 〇〇 Coating shape 〇〇 Adhesion (kg) • 4.5 4.1 Gel time 60 60 &lt;Example 1 8&gt; A liquid crystal sealing material was prepared using the following composition. 100 parts of a bisphenol A type epoxy resin (manufactured by Asahi Kasho Co., Ltd., trade name: ARARUDAIT AER-2502) as an epoxy resin and 40 parts of an epoxy-amine addition compound (Asahi Kasei Kogyo Co., Ltd., Product name: NOBAKYUA HX-372 1 ) As a curing agent, 60 parts of titanium oxide (trade name: DAIBEK R-630, manufactured by Ishihara Sangyo Co., Ltd.) as a dip, 5 parts of colloidal cerium oxide (Ayellogiru, Japan) Industrial Co., Ltd., trade name: AEROSIL R-974), 1 part of citric acid as an inorganic cation exchanger, and 2 parts of anion exchanger 6 were heated at 40 ° C with a Dalton stirrer and stirred for 30 minutes. Subsequently, three rolls were used for honing 5 times. '-34- 1356807 was used to confirm the particle size of the content below 5/zm with a honing needle, and 1.5 parts of the particle size of the ceria spacer was added and made uniform. Dispersion was obtained as a composition of a liquid crystal sealing material. The liquid crystal sealing material obtained here was printed on the sealing portion of the glass substrate formed of ITO (transparent electrode) in the form of a liquid crystal sealing inlet by screen printing. Then, it was heated at 80 ° C for 3 minutes, pre-dried and melted to the substrate, and then returned to room temperature. Then, it was combined with the glass substrate on the opposite side, and heated at 130 ° C for 10 minutes using hot pressing. Pressing is performed to harden the sealing material. After the vacuum panel obtained in this manner was vacuum-sucked, liquid crystal (manufactured by Meluk Corporation, ZL 1 1 636) was injected, and the sealing member was sealed with a sealing material to be cured to obtain a liquid crystal panel. The liquid crystal alignment and memory of the liquid crystal panel were evaluated (the ratio of the intensity of the transmitted light immediately after the application of the pulse voltage was maintained over time, and the intensity decreased when there was an impurity). The liquid crystal panel was heated to 80 t under application of a voltage, and was evaluated by visually observing the width of the black strip which occurred in the vicinity of the sealing material when observed through the polarizing plate. The width is 0.5 mm or less, "〇", 0.5 to 1 mm is "△", and greater than 1 mm is "X". The results are shown in Table 4. &lt;Comparative Example 5 &gt; The liquid sealing material composition was produced in the same manner as in the composition of Example 18, without adding citric acid and an anion exchanger 6. Further, evaluation was carried out in the same manner as in Example 18. The results are shown in Table 4. -35- 1356807 [Table 4] Epoxy Resin Composition Example 18 Comparative Example 5 Bisphenol A type cycloalilin 100 100 cycloaliphatic amine amine adduct 40 40 Titanium oxide 60 60 colloidal cerium oxide 5 5 citric acid 1 — Anion exchanger 6 2 Liquid crystal alignment 〇X Memory (%) 95 42

&lt;實施例19&gt;&lt;Example 19&gt;

對100份環氧當量450〜500之雙酚A型環氧樹脂(旭汽 巴(株)製、商品名:ARARUDAIT AER-2502)添加5份陰離子 交換體9,更添加4份雙氰胺作爲環氧硬化劑、〇·4份苄二 胺作爲硬化促進劑、60份溶劑(甲基乙基酮),攪拌混合製 造成含浸用樹脂清漆。接著使厚度0.2mm之低鹼電器用玻 璃布含浸前所製造之樹脂清漆。隨後,在160 °C乾燥5分 鐘來製造預浸片。將該預浸片裁切成50mm X 50mm之尺 寸、6片重疊在一起,以初期條件爲30kg/cm2、160°C、15 分鐘,隨後爲70kg/cm2、165°C、1小時加熱、加壓,得到 樹脂和玻璃布基材的體積分率爲50:50、厚度爲1.6mm之 積層板》 使用網印刷法在積層板上塗佈銀糊料(藤倉化成株式會 社製DODAIT XA208),藉由在130°C加熱硬化1小時,形 成2相向梳形印刷配線導體(電極)。該電極間的最短距離 都爲1mm,厚度約爲20//m。爲了評價防止電遷移現象發 -36- 1356807 生的效果,對該2梳形電極間施加100V的直流電壓,同時 保持在40°C、95%RH,測定電極間的絕緣電阻値成爲106Ω 以下時間作爲到達短路之時間β 結果,到達短路時間爲3000小時以上》 &lt;比較例6 &gt; 在實施例19的樹脂清漆中未添加陰離子交換體9,進 行同樣的操作來製造樹脂清漆,並製造積層板。對該積層 板與實施例19同樣地進行評價結果,到達短路時間爲160 小時。 〈實施例20&gt; 以1:2的重量比例充分地混合tMAHl和氧化鎂(岩谷化 學工業製、MTK-30、以下之氧化鎂係使用相同之物),作 爲陰離子交換組成物1-0。 &lt;實施例21&gt; 以1:1的重量比例充分地混合tMAHl和氧化鎂,作爲 陰離子交換組成物1-1。 &lt;實施例22&gt; 以3:2的重量比例充分地混合tMAHl和氧化鎂,作爲 陰離子交換組成物1-2。 &lt;實施例23&gt; 以2:1的重量比例充分地混合tMAHl和氧化鎂,作爲 陰離子交換組成物1-3 » &lt;實施例24&gt; 以700°C、2小時煅燒MAH1,作爲陰離子交換體a-ι , 測定該陰離子交換體 A-1的組成時,其組成係 -37- 1356807 M g。. 7 A 1 β . 3 Ο 1 . I 5 所表示之物。 &lt;實施例25&gt; 在實施例24除了使煅燒溫度爲8〇〇。(:以外,進行相同 的操作得到陰離子交換體Α·2。測定該陰離子交換體A-2 之X線繞射,結果如第2圖所示。又,亦測定tMAHl和 MAH1之X線繞射,結果如第4、5圖所示。 &lt;實施例26&gt; 在實施例24除了使煅燒溫度爲900°C以外,進行相同 的操作得到陰離子交換體A-3。 · &lt;實施例27&gt; 在實施例24除了使煅燒溫度爲1〇〇〇°C以外,進行相同 的操作得到陰離子交換體A-4。測定該陰離子交換體A-4 之X線繞射,結果如第3圖所示。 在第2~4圖’折射角42.9度之尖鋒係表示MgO。第5 圖(MAH1)無法確認2價金屬氧化物(MgO)的尖鋒,但是將 A-2(第2圖)及A-4(第3圖)與tMAHl (第4圖)比較時可以 確認生成較多的2價金屬氧化物。又,在l〇〇〇°C煅燒MAH1 φ 而成之A-4,在19.0度、31.3度、36.85度、44.8度出現尖 鋒。此等可以認爲是MgAhOs之尖鋒。該MgAh〇3係煅燒 物之陰離子交換性能下降的原因。 &lt;實施例28&gt; 以550°C、2小時煅燒鎂離子和鋁離子之比爲2.5:1之水 滑石化合物,作爲陰離子交換體B-1,測定該陰離子交換 體B-1的組成時,其組成係Mg2_5Al〇4所表示之物。 〈實施例29&gt; -38- 1356807 以550°C、2小時煅燒鎂離子和鋁離子之比爲2.75:1之 水滑石化合物,作爲陰離子交換體B-2,測定該陰離子交 換體B-2的組成時,其組成係MgmAlOm所表示之物。 &lt;實施例30&gt; 以5 50°C、2小時煅燒Mg6Al2(〇H)16C〇3 · 4H2〇所表示之 水滑石化合物,作爲陰離子交換體B-3,測定該陰離子交 換體B-3的組成時,其組成係Mg3AlCK.5所表示之物。 &lt;實施例31&gt; 以5 50°C、2小時煅燒鎂離子和鋁離子之比爲4:1之水 滑石化合物,作爲陰離子交換體B-4,測定該陰離子交換 體B-4的組成時,其組成係Mg4Al〇5.5所表示之物。 &lt;實施例32&gt; 以5 5 0t、2小時锻燒鎂離子和鋁離子之比爲5:1之水 滑石化合物,作爲陰離子交換體B-5,測定該陰離子交換 體B-5的組成時,其組成係Mg5Al〇6.5所表示之物。 &lt;實施例33&gt; 以8 00°C、2小時锻燒鎂離子和鋁離子之比爲3: 1之水 滑石化合物,作爲陰離子交換體B-6,測定該陰離子交換 體B-6的組成時,其組成係Mg3Al〇4.5所表示之物。 〈實施例34&gt; 以800°C、2小時煅燒鎂離子和鋁離子之比爲4:1之水 滑石化合物,作爲陰離子交換體B-7,測定該陰離子交換 體B-7的組成時,其組成係Mg4Al〇5.5所表示之物。 〈實施例35&gt; 以8 00°C、2小時煅燒鎂離子和鋁離子之比爲5 :1之水 -39- 1356807 滑石化合物’作爲陰離子交換體B-8,測定該陰離子交換 體B-8的組成時,其組成係Mg5Al〇6.5所表示之物。 &lt;實施例36&gt; 〇離子交換率測定試驗 分別將1.0克下述表5之陰離子交換體及陰離子交換組 成物放入100 ml的聚乙烯瓶中,再加入50ml之0.02M的氯 化鈉水溶液並密拴,在40°C振盪24小時。隨後,使用孔 大小爲0.IV m之膜濾器過濾溶液,使用離子色層分析測定 濾液的氯離子濃度。與沒有加入任何試料而進行同樣操 作、並測定氯離子濃度之物比較,來求得離子交換率。此 等結果如表5所示。又,所使用陰離子交換組成物及陰離 子交換體之濾液的pH値爲鹼性。5 parts of an anion exchanger 9 were added to 100 parts of a bisphenol A type epoxy resin (manufactured by Asahi Kadaku Co., Ltd., trade name: ARARUDAIT AER-2502) having an epoxy equivalent of 450 to 500, and 4 parts of dicyandiamide was further added as An epoxy curing agent, 4 parts of benzyl diamine as a curing accelerator, and 60 parts of a solvent (methyl ethyl ketone) were stirred and mixed to prepare a resin varnish for impregnation. Next, a resin varnish prepared before impregnation with a glass cloth of a low alkali electric appliance having a thickness of 0.2 mm was used. Subsequently, the prepreg was manufactured by drying at 160 ° C for 5 minutes. The prepreg was cut into a size of 50 mm X 50 mm, and 6 pieces were overlapped, and the initial conditions were 30 kg/cm 2 , 160 ° C, 15 minutes, followed by 70 kg/cm 2 , 165 ° C, 1 hour heating, and addition. Pressed to obtain a laminate having a resin and a glass cloth substrate having a volume fraction of 50:50 and a thickness of 1.6 mm. A silver paste (DODAIT XA208 manufactured by Fujikura Kasei Co., Ltd.) was applied to the laminate by a screen printing method. The two-phase comb printed wiring conductor (electrode) was formed by heat curing at 130 ° C for 1 hour. The shortest distance between the electrodes is 1 mm and the thickness is about 20/m. In order to evaluate the effect of preventing the electromigration phenomenon, a DC voltage of 100 V was applied between the two comb-shaped electrodes while maintaining the temperature at 40 ° C and 95% RH, and the insulation resistance 电极 between the electrodes was measured to be 106 Ω or less. As a result of the time β when the short circuit was reached, the short-circuit time was 3,000 hours or more. <Comparative Example 6 &gt; The anion exchanger 9 was not added to the resin varnish of Example 19, and the same operation was carried out to produce a resin varnish, and a laminate was produced. board. The laminated board was evaluated in the same manner as in Example 19, and the short-circuit time was 160 hours. <Example 20> tMAH1 and magnesium oxide (manufactured by Iwatani Chemical Co., Ltd., MTK-30, and the following magnesium oxide series) were sufficiently mixed in a weight ratio of 1:2 to obtain an anion exchange composition 1-0. &lt;Example 21&gt; tMAH1 and magnesium oxide were sufficiently mixed in a weight ratio of 1:1 as anion exchange composition 1-1. &lt;Example 22&gt; tMAH1 and magnesium oxide were sufficiently mixed in a weight ratio of 3:2 to serve as anion exchange composition 1-2. &lt;Example 23&gt; tMAH1 and magnesium oxide were sufficiently mixed in a weight ratio of 2:1 as anion exchange composition 1-3 » &lt;Example 24&gt; MAH1 was calcined at 700 ° C for 2 hours as an anion exchanger A-ι , when the composition of the anion exchanger A-1 was measured, its composition was -37-1356807 M g. . 7 A 1 β . 3 Ο 1 . &lt;Example 25&gt; In Example 24, the calcination temperature was 8 Torr. The same operation was carried out to obtain an anion exchanger Α·2. The X-ray diffraction of the anion exchanger A-2 was measured, and the results are shown in Fig. 2. Further, the X-ray diffraction of tMAH1 and MAH1 was also measured. The results are shown in Figures 4 and 5. &lt;Example 26&gt; The same procedure as in Example 24 except that the calcination temperature was 900 ° C was carried out to obtain an anion exchanger A-3. &lt;Example 27&gt; In the same manner as in Example 24 except that the calcination temperature was 1 ° C, the same operation was carried out to obtain an anion exchanger A-4. The X-ray diffraction of the anion exchanger A-4 was measured, and the results are shown in Fig. 3. In Figure 2~4, the sharp point of the refraction angle of 42.9 degrees indicates MgO. Figure 5 (MAH1) cannot confirm the tip of the divalent metal oxide (MgO), but A-2 (Fig. 2) and When A-4 (Fig. 3) is compared with tMAH1 (Fig. 4), it is confirmed that a large amount of divalent metal oxide is formed. Further, A-4 obtained by calcining MAH1 φ at 1 °C is at 19.0. Degree, 31.3 degrees, 36.85 degrees, 44.8 degrees, sharp spikes. These can be considered as the tip of MgAhOs. The reason for the decrease in anion exchange performance of the MgAh〇3 calcined product &lt;Example 28&gt; When a hydrotalcite compound having a ratio of magnesium ion to aluminum ion of 2.5:1 was calcined at 550 ° C for 2 hours, and the composition of the anion exchanger B-1 was measured as an anion exchanger B-1, The composition is represented by Mg2_5Al〇4. <Example 29> -38- 1356807 A hydrotalcite compound having a ratio of magnesium ion to aluminum ion of 2.75:1 was calcined at 550 ° C for 2 hours as an anion exchanger B- 2. When the composition of the anion exchanger B-2 was measured, the composition thereof was represented by MgmAlOm. <Example 30> Calcination of Mg6Al2(〇H)16C〇3 · 4H2〇 at 5 50 ° C for 2 hours When the hydrotalcite compound is represented as an anion exchanger B-3 and the composition of the anion exchanger B-3 is measured, the composition thereof is represented by Mg3AlCK.5. &lt;Example 31&gt; 5 50 ° C, 2 The hourly calcined hydrotalcite compound having a ratio of magnesium ion to aluminum ion of 4:1, and the composition of the anion exchanger B-4 as an anion exchanger B-4, the composition of which is represented by Mg4Al〇5.5. Example 32&gt; A 5:1 water-sliding petrochemical ratio of calcined magnesium ion to aluminum ion at 550 ton for 2 hours When the composition of the anion exchanger B-5 was measured as the anion exchanger B-5, the composition was represented by Mg5Al〇6.5. <Example 33> Magnesium calcination at 800 ° C for 2 hours A hydrotalcite compound having a ratio of ions to aluminum ions of 3:1, and an anion exchanger B-6, when the composition of the anion exchanger B-6 is measured, is a composition represented by Mg3Al〇4.5. <Example 34> When a hydrotalcite compound having a ratio of magnesium ion to aluminum ion of 4:1 was calcined at 800 ° C for 2 hours, and the composition of the anion exchanger B-7 was measured as an anion exchanger B-7, The composition is represented by Mg4Al〇5.5. <Example 35> The anion exchanger B-8 was measured at 800 ° C for 2 hours by calcining a ratio of magnesium ion to aluminum ion of 5:1 to -39-1356807 talc compound as an anion exchanger B-8. In the composition, the composition is represented by Mg5Al〇6.5. &lt;Example 36&gt; 〇Ion exchange rate measurement test 1.0 g of the anion exchanger and the anion exchange composition of Table 5 below were respectively placed in a 100 ml polyethylene bottle, and 50 ml of a 0.02 M sodium chloride aqueous solution was further added thereto. It was shaken and shaken at 40 ° C for 24 hours. Subsequently, the solution was filtered using a membrane filter having a pore size of 0. IV m, and the chloride ion concentration of the filtrate was measured using ion chromatography. The ion exchange rate was determined by comparison with a product which was subjected to the same operation without adding any sample and measuring the chloride ion concentration. These results are shown in Table 5. Further, the pH of the filtrate of the anion exchange composition and the anion exchanger used was basic.

-40- 1356807 表5 ] No. 試 料 離子交換率 實施例20 陰離子交換組成物1-0 90% 實施例21 陰離子交換組成物1-1 98% 實施例22 陰離子交換組成物1-2 99% 實施例23 陰離子交換組成物1-3 98% 實施例24 陰離子交換體A-1 80% 實施例25 陰離子交換體A-2 98% 實施例26 陰離子交換體A-3 95% 實施例27 陰離子交換體A-4 71% 實施例28 陰離子交換體B-1 71% 實施例29 陰離子交換體Β·2 75% 實施例30 陰離子交換體Β-3 98% 實施例31 陰離子交換體Β-4 99% 實施例32 陰離子交換體Β-5 98% 實施例33 陰離子交換體Β-6 98% 實施例34 陰離子交換體Β-7 95% 實施例35 陰離子交換體Β-8 77% 比較例 ΜΑΗ1 0% 比較例 tMAHl 70% 比較例 Mg6Al2(OH).6C〇3 · 4H2〇 0% 比較例 氧化鎂 0% &lt;實施例37&gt; 如下述調配電子零件用封裝材所使用之樹脂等和陰離 子交換組成物1-2,使用80°C ~90°C熱輥將其混練3~5分鐘。 1356807 甲酚-酚醛清漆樹脂型環氧樹脂(環氧當量23 5) 80份 溴化酚-酚醛清漆樹脂型環氧樹脂(環氧當量275) 20份 酣-酣醒清漆樹脂(分子量700〜1〇〇〇) 50份 2份 1份 1份 三苯基膦 巴西棕櫚蠟 碳黑 溶融二氧化砂. 370份· 陰離子交換體1-2 2 ^ 隨後’冷卻、粉碎,得到粉末狀環氧樹脂組成物A _丨_ 2。 隨後,將此組成物A-1-2以1〇〇網眼進行篩分,來製造通 過100網眼的試料。 使用該通過100網眼的試料,在17〇 〇c使其硬化來製造 樹脂混練體A-1-2。將該樹脂混練體α-1·2粉碎成2〜3mm 大小。使用該粉碎試料進行氯離子溶出試驗。 &lt;實施例38&gt; 除了使用陰離子交換體A-2替代實施例37之陰離子交 換組成物1 _2以外,和實施例37進行同樣的操作,來製造 樹脂混練體A-2-2。隨後,和實施例37同樣地進行粉碎來 製造粉碎試料。 &lt;實施例39&gt; 除了使用陰離子交換體B-3替代實施例37之陰離子交 換組成物1-2以外’和實施例37進行同樣的操作’來製造 樹脂混練體A-3· 3。隨後,和實施例37同樣地進行粉碎來 製造粉碎試料^ &lt;比較例7&gt; -42- 1356807 除了使用MAH1替代實施例37之陰離子交換組成物1-2 以外,和實施例37進行同樣的操作,來製造比較樹脂混練 體A-1。隨後,和實施例37同樣地進行粉碎來製造粉碎試 料。 &lt;比較例8&gt; 除了使用tMAHl替代實施例37之陰離子交換組成物 1-2以外,和實施例37進行同樣的操作,來製造比較樹脂 混練體A-2。隨後,和實施例37同樣地進行粉碎來製造粉 碎試料。 &lt;比較例9 &gt; 除了使用MgeAl2(OH)i6C〇3. 4H2O之水滑石化合物替代 實施例37之陰離子交換組成物1-2以外,和實施例37進 行同樣的操作,來製造比較樹脂混練體A-3。隨後,和實 施例37同樣地進行粉碎來製造粉碎試料》 &lt;比較例1 0 &gt; 除了未使用陰離子交換組成物1-2以外,和實施例37 進行同樣的操作,來製造比較樹脂混練體A。隨後,和實 施例37同樣地進行粉碎來製造粉碎試料。亦即,比較樹脂 混練體A係未含有煅燒組成物之物。 &lt;實施例40&gt; 如下述調配電子零件用封裝材所使用之樹脂等和陰離 子交換組成物1-2,使用80°C ~90°C熱輥將其混練3〜5分鐘。 -43- 1356807 甲酣-酚醛清漆樹脂型環氧樹脂(環氧當量235) go份 溴化酚·酚醛清漆樹脂型環氧樹脂(環氧當量275)、 20份 酣-酣醒清漆樹脂(分子量700~1〇〇〇) 50份 DBU 3 份 胺系砂院偶合劑(3 -胺基丙基三甲氧基砂院 3份 巴西棕櫚蠟 1份 碳黑 1份 熔融二氧化矽 370份-40- 1356807 Table 5] No. Sample ion exchange rate Example 20 Anion exchange composition 1-0 90% Example 21 Anion exchange composition 1-1 98% Example 22 Anion exchange composition 1-2 99% Implementation Example 23 Anion exchange composition 1-3 98% Example 24 Anion exchanger A-1 80% Example 25 Anion exchanger A-2 98% Example 26 Anion exchanger A-3 95% Example 27 Anion exchanger A-4 71% Example 28 Anion exchanger B-1 71% Example 29 Anion exchanger Β·2 75% Example 30 Anion exchanger Β-3 98% Example 31 Anion exchanger Β-4 99% Implementation Example 32 Anion exchanger Β-5 98% Example 33 Anion exchanger Β-6 98% Example 34 Anion exchanger Β-7 95% Example 35 Anion exchanger Β-8 77% Comparative example ΜΑΗ1 0% Comparative example tMAH1 70% Comparative Example Mg6Al2(OH).6C〇3 · 4H2〇0% Comparative Example Magnesium Oxide 0% &lt;Example 37&gt; The resin or the like used for the package for electronic parts and the anion exchange composition 1- 2, use 80 ° C ~ 90 ° C hot roller to mix it for 3 to 5 minutes. 1356807 Cresol-phenol novolac resin epoxy resin (epoxy equivalent 23 5) 80 parts brominated phenol-novola resin epoxy resin (epoxy equivalent 275) 20 parts 酣-酣 awake varnish resin (molecular weight 700~1 〇〇〇) 50 parts 2 parts 1 part 1 part triphenylphosphine carnauba wax carbon black melted silica sand. 370 parts · anion exchanger 1-2 2 ^ Subsequently 'cooling, pulverization, to obtain a powdery epoxy resin composition A _丨_ 2. Subsequently, this composition A-1-2 was sieved in a 1 〇〇 mesh to produce a sample passing through 100 mesh. The resin kneaded material A-1-2 was produced by hardening it at 17 〇c using the sample which passed through 100 mesh. The resin kneaded body α-1·2 was pulverized to a size of 2 to 3 mm. The pulverized sample was used for the chloride ion elution test. &lt;Example 38&gt; The resin kneaded body A-2-2 was produced in the same manner as in Example 37 except that the anion exchanger A-2 was used instead of the anion exchange composition 1_2 of Example 37. Subsequently, the powder was pulverized in the same manner as in Example 37 to produce a pulverized sample. &lt;Example 39&gt; The resin kneaded body A-3·3 was produced except that the anion exchanger B-3 was used instead of the anion exchange composition 1-2 of Example 37 to perform the same operation as in Example 37. Subsequently, pulverization was carried out in the same manner as in Example 37 to produce a pulverized sample. &lt;Comparative Example 7&gt; -42-1356807 The same operation as in Example 37 was carried out except that MAH1 was used instead of the anion exchange composition 1-2 of Example 37. To make a comparative resin kneaded body A-1. Subsequently, pulverization was carried out in the same manner as in Example 37 to produce a pulverized sample. &lt;Comparative Example 8&gt; A comparative resin kneaded material A-2 was produced in the same manner as in Example 37 except that tMAH1 was used instead of the anion exchange composition 1-2 of Example 37. Subsequently, the powder was pulverized in the same manner as in Example 37 to produce a pulverized sample. &lt;Comparative Example 9 &gt; The same operation as in Example 37 was carried out except that the hydrotalcite compound of MgeAl2(OH)i6C〇3.4H2O was used instead of the anion exchange composition 1-2 of Example 37 to produce a comparative resin kneading. Body A-3. Subsequently, pulverization was carried out in the same manner as in Example 37 to produce a pulverized sample. &lt;Comparative Example 10 &gt; A comparative resin kneaded body was produced in the same manner as in Example 37 except that the anion exchange composition 1-2 was not used. A. Subsequently, the powder was pulverized in the same manner as in Example 37 to produce a pulverized sample. That is, the comparative resin kneaded material A was not contained in the calcined composition. &lt;Example 40&gt; The resin or the like used for the package for electronic parts and the anion exchange composition 1-2 were mixed as described below, and kneaded by a hot roll at 80 ° C to 90 ° C for 3 to 5 minutes. -43- 1356807 Formaldehyde-phenol novolac resin epoxy resin (epoxy equivalent 235) go part brominated phenol·novolac resin resin epoxy resin (epoxy equivalent 275), 20 parts 酣-酣 awake varnish resin (molecular weight 700~1〇〇〇) 50 parts DBU 3 parts amine sand yard coupling agent (3 -aminopropyl trimethoxy sand pot 3 parts carnauba wax 1 part carbon black 1 part molten cerium oxide 370 parts

陰離子交換體1-2 2 B 隨後’冷卻.、粉碎,得到粉末狀環氧樹脂組成物B -1 - 2。 隨後,將此組成物B-1-2以1〇〇網眼進行篩分,來製造通 過100網眼的試料。 使用該通過100網眼的試料,在170 °c使其硬化來製造 樹脂混練體B-1-2。將該樹脂混練體Β·1*2粉碎成2~3mm 大小。使用該粉碎試料進行氯離子溶出試驗。 &lt;實施例41&gt; 除了使用陰離子交換體A-2替代實施例40之陰離子交 換組成物1-2以外,和實施例40進行同樣的操作,來製造 樹脂混練體B-2-2。隨後,和實施例.40同樣地進行粉碎來 製造粉碎試料。 &lt;實施例42&gt; 除了使用陰離子交換體B-3替代實施例40之陰離子交 換組成物1 -2以外,和實施例40進行同樣的操作,來製造 樹脂混練體B-3-3。隨後,和實施例40同樣地進行粉碎來 製造粉碎試料。 -44 - 1356807 &lt;比較例1 ι&gt; 一除了使用陰離子交換體MAH1替代實施例4〇之陰離子 父換組成物1-2以外,和實施例4〇進行同樣的操作來製 造比較樹脂混練體B_i。隨後,和實施例4〇同樣地進行粉 碎來製造粉碎試料。 &lt;比較例12&gt; 除了使用陰離子交換體tMAHl替代實施例4〇之陰離子 父換組成物1-2以外’和實施例4〇進行同樣的操作,來製 造比較樹脂混練體B-2。隨後,和實施例4〇同樣地進行粉 碎來製造粉碎試料。 &lt;比較例1 3 &gt; 除了使用Mg6Ah(〇H)i6C〇3· 4H2〇之水滑石化合物替代 實施例40之陰離子交換組成物丨_2以外,和實施例4〇進 行同樣的操作,來製造比較樹脂混練體B-3。隨後,和實 施例40同樣地進行粉碎來製造粉碎試料。 &lt;比較例1 4 &gt; 除了未使用陰離子交換組成物1-2以外,和實施例4〇 進行同樣的操作,來製造比較樹脂混練體Β。隨後,和實 施例40同樣地進行粉碎來製造粉碎試料。亦即,比較樹脂 混練體Β係未含有煅燒組成物之物。 〈實施例43&gt; 〇從樹脂混練體萃取氯離子試驗 在聚四氟乙嫌製耐壓容器中加入上述製造之各樹脂混 練體或是比較樹脂混練體5克、以及純水50ml並密閉,在 1 25 °C加熱1 00小時。冷卻後將水取出,使用離子色層分析 測定在水中溶出的氯離子濃度。此等結果如表6所示。 -45- 1356807 [表6]The anion exchanger 1-2 2 B was subsequently cooled and pulverized to obtain a powdery epoxy resin composition B -1 - 2. Subsequently, this composition B-1-2 was sieved in a 1 〇〇 mesh to prepare a sample passing through 100 mesh. Using the 100-mesh sample, it was cured at 170 ° C to produce a resin kneaded body B-1-2. The resin kneaded body Β·1*2 was pulverized to a size of 2 to 3 mm. The pulverized sample was used for the chloride ion elution test. &lt;Example 41&gt; The resin kneaded body B-2-2 was produced in the same manner as in Example 40 except that the anion exchanger A-2 was used instead of the anion exchange composition 1-2 of Example 40. Subsequently, pulverization was carried out in the same manner as in Example 40 to produce a pulverized sample. &lt;Example 42&gt; The resin kneaded body B-3-3 was produced in the same manner as in Example 40 except that the anion exchanger B-3 was used instead of the anion exchange composition 1-2 of Example 40. Subsequently, pulverization was carried out in the same manner as in Example 40 to produce a pulverized sample. -44 - 1356807 &lt;Comparative Example 1 ι&gt; A comparative resin kneaded material B_i was produced in the same manner as in Example 4 except that the anion exchanger MAH1 was used instead of the anion parent composition 1-2 of Example 4A. . Subsequently, pulverization was carried out in the same manner as in Example 4 to produce a pulverized sample. &lt;Comparative Example 12&gt; The comparative resin kneaded body B-2 was produced by performing the same operation as in Example 4 except that the anion exchanger tMAH1 was used instead of the anion parent composition 1-2 of Example 4A. Subsequently, pulverization was carried out in the same manner as in Example 4 to produce a pulverized sample. &lt;Comparative Example 1 3 &gt; The same operation as in Example 4 was carried out except that the hydrotalcite compound of Mg6Ah(〇H)i6C〇3·4H2〇 was used instead of the anion exchange composition 丨_2 of Example 40. Comparative resin kneaded body B-3 was produced. Subsequently, the powder was pulverized in the same manner as in Example 40 to produce a pulverized sample. &lt;Comparative Example 1 4 &gt; A comparative resin kneaded body was produced in the same manner as in Example 4 except that the anion exchange composition 1-2 was not used. Subsequently, the powder was pulverized in the same manner as in Example 40 to produce a pulverized sample. That is, the comparative resin kneaded body tethered product did not contain the calcined composition. <Example 43> 萃取Extraction of chloride ion from resin kneaded material The resin kneaded body prepared above or a comparative resin kneaded material of 5 g and 50 ml of pure water were sealed and sealed in a polytetrafluoroethylene pressure-resistant container. Heat at 1 25 °C for 100 hours. After cooling, the water was taken out, and the concentration of chloride ions eluted in water was measured by ion chromatography. These results are shown in Table 6. -45- 1356807 [Table 6]

No. 試料 氯離子濃度(ppm) pH 實施例37 樹脂讎體A-1-2 19 4.6 實施例38 棚旨讎體A-2-2 19 4.6 實施例39 樹脂讎體A-3-3 20 4.6 比較例7 比較樹脂讎體A-1 56 4.3 比較例8 比較樹脂混練體A-2 25 4.5 比較例9 比較樹脂混練體A-3 55 4.3 比較例10 比較樹脂混練體A 60 _ 4.2 實施例40 樹脂混練體B-1-2 20 6.8 . 實施例41 樹脂混練體B-2-2 22 6.8 實施例42 樹脂讎體B-3-3 22 6.8 比較例11 比較樹脂混練體B-1 61 6.7 比較例12 比較樹脂混練體B-2 55 6.8 比較例13 比較樹脂混練體B-3 60 6.7 比較例14 比較樹脂混練體B 62 ________ —---- 6.8 從表5及表6可以知道,本發明之陰離子交換體在中性 附近的離子交換率高,即使添加封裝材樹脂,無論封裝材 組成物萃取液之pH値是偏酸性或是偏中性,都具有能夠 抑制氯離子的溶出之效果。藉此,能夠在—大範圍內提供 信賴性高的封裝組成物。 &lt;實施例44&gt; 在200克甲基矽酸鹽單體(多摩化學製)之1〇 %甲醇溶液 中,添加100克tMAHl’攪拌1夜後,風乾1日。隨後, 以5 5 0 °C將其锻燒2小時,得到陰離子交換體(陰離子交換 -46- 1356807 體 ίο)。 &lt;實施例45&gt; 在160克甲基矽酸鹽寡聚物(多摩化學製、商品名 METHYLSILICATE 51,以下使用相同物)之10 %甲醇溶液 中,添加100克tMAHl,攪拌1夜後,風乾1曰。隨後, 以5 50°C將其煅燒2小時,得到陰離子交換體(陰離子交換 體 11)。 &lt;實施例46&gt; 在200克甲基矽酸鹽單體(多摩化學製)之10 %甲醇溶液 中,添加100克陰離子交換體B-3,攪拌1夜後,風乾1 曰。隨後,以550°C將其煅燒2小時,得到陰離子交換體(陰 離子交換體B-9)。 &lt;實施例47&gt; 在160克甲基矽酸鹽寡聚物(多摩化學製)之10 %甲醇溶 液中,添加100克陰離子交換體B-3,攪拌1夜後,風乾1 曰。隨後,以550°C將其煅燒2小時,得到陰離子交換體(陰 離子交換體B-10)。 〈實施例48&gt; 藉由混合60克陰離子交換體1〇和40克屬於2價金屬 氧化物之氧化鎂,得到陰離子交換體(陰離子交換組成物 1-5)。 &lt;實施例4 9 &gt; 藉由混合60克陰離子交換體π和40克屬於2價金屬 氧化物之氧化鎂,得到陰離子交換體(陰離子交換組成物 1 -6)。 -47- 1356807 &lt;實施例50&gt; 藉由混合60克tM AH 1和40克屬於2價金屬氧化物之 氧化鎂,得到陰離子交換體(陰離子交換組成物1-4)。 &lt;實施例5 1 &gt; 在2 00克甲基矽酸鹽寡聚物(多摩化學製)之10 %甲醇溶· 液中,添加100克陰離子交換組成物1-4,攪拌1夜後,風 乾1曰。隨後,以550°C將其煅燒2小時,得到陰離子交 換體(陰離子交換組成物1-7)。 〈實施例52&gt; φ 在160克甲基矽酸鹽寡聚物(多摩化學製)之10%甲醇溶 液中,添加100克陰離子交換組成物1-4,攪拌1夜後,風 乾1日。隨後,以550°C將其熘燒2小時,得到陰離子交 換體(陰離子交換組成物1-8)。 &lt;實施例53&gt; 藉由混合60克陰離子交換體B-3和40克屬於2價金屬 氧化物之氧化鎂,得到陰離子交換體(陰離子交換組成物 2-1)。 · &lt;實施例54&gt; 藉由混合60克陰離子交換體B-9和40克屬於2價金屬 氧化物之氧化鎂,得到陰離子交換體(陰離子交換組成物 2-2)。 &lt;實施例55&gt; 藉由混合60克陰離子交換體B-10和40克屬於2價金 屬氧化物之氧化鎂,得到陰離子交換體(陰離子交換組成物 2-3)。 -48- 1356807 &lt;實施例56&gt; 在200克·甲基矽酸鹽單體(多摩化學製)之10 %甲醇溶液 中,添加100克陰離子交換組成物2-1,攪拌1夜後,風乾 1曰。隨後,以550°C將其煅燒2小時,得到陰離子交換體 (陰離子交換體2-4)。 &lt;實施例57&gt; 在 160 克甲基矽酸鹽寡聚物(多摩化學製、 METHYLSILICATE 51)之10 %甲醇溶液中,添加100克陰離 子交換組成物2-1,攪拌1夜後,風乾1日。隨後,以550 °C將其煅燒2小時,得到陰離子交換體(陰離子交換組成物 2-5)。 &lt;實施例58&gt; 〇吸濕性試驗 分別在150°C對下記表7之陰離子交換體及陰離子交換 組成物等加熱4小時後,將之放置在濕度90%、35 °C中, 隨奢時間測定其重量來調査吸濕性(重量增加率)。它們在 24小時後的重量增加率的結果如表7所示。 〇離子交換率測定試驗 分別將1.0克下述表7之陰離子交換體及陰離子交換組 成物放入100ml的聚乙烯製瓶中,更加入50ml之0.02M的 氯化鈉水溶液並密拴,在40°C振盪24小時。隨後,使用 孔大小爲0.1# m之膜濾器過濾溶液,使用離子色層分析測 定濾液的氯離子濃度》其與沒有加入任何試料而進行同樣 操作、測定氯離子濃度之物比較,來求得離子交換率。其 結果如表7所示。 -49- 1356807 [表7] No. 重量增加率 離子交換率 實施例44 陰離子交換體10 8% 70% 實施例45 陰離子交換體11 4% 67% 實施例30 陰離子交換體B-3 47% 97% 實施例46 陰離子交換體B-9 11% 71% 實施例47 陰離子交換體B-10 7% 70% 實施例50 陰離子交換組成物1-4 43% 98% 實施例48 陰離子交換組成物1-5 12% 95% 實施例49 陰離子交換組成物1-6 6% 95% 實施例51 陰離子交換組成物1-7 11% 71% 實施例52 陰離子交換組成物1-8 5% 66% 實施例53 陰離子交換組成物2-1 45% 99% 實施例54 陰離子交換組成物2-2 12% 96% 實施例55 陰離子交換組成物2-3 8% 96% 實施例56 陰離子交換組成物2-4 10% 67% 實施例57 陰離子交換組成物2-5 6% 65% 比較例 tMAHl 45% 70% 比較例 MAH1 1% 0% &lt;實施例59&gt; 如下調配使用於電子零件用封裝材之組成和陰離子交 換組成物1-5,使用80°C〜90°C之熱輥混練該調配物3~5分。 1356807 甲酚-酚醛清漆樹脂型環氧樹脂(環氧樹脂當量235) 80份 溴化酚-酚醛清漆樹脂型環氧樹脂(環氧樹脂當量275) 20份 酚-酚醛清漆樹脂型環氧樹脂(分子量700〜1000 ) 50份 三苯基膦 2份 巴西棕櫚蠟 1份 碳黑 1份 熔融二氧化矽 370份 陰離子交換組成物1-5 2份 隨後,冷卻、粉碎’得到粉末狀環氧樹脂組成物A-Z-1。 接著,使用100網眼的篩對該組成物A-Z-1進行篩分,製 造通過100網眼的試料。 使用該通過100網眼的試料,在170 °C使其硬化來製造 樹脂混練體A-Z-1。將該樹脂混練體Ai-i粉碎成最大徑爲 2〜3mm大小。使用該粉碎試料來進行氯離子的溶出試驗。 &lt;實施例60&gt; 除了使用陰離子交換組成物1_6來替代在製造樹脂混 練體A-Z-1所使用之陰離子交換組成物ι_5以外,和實施 例59進行同樣的操作’製造樹脂混練體a_Z_2。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;比較例1 5 &gt; 除了使用tMAHl來替代在製造樹脂混練體A-z—丨所使 用之陰離子父換組成物1 _5以外,和實施例59進行同樣的 操作,製造比較樹脂混練體A _ H _丨。將其同樣地進行粉碎, 製造粉碎試料。使用該粉碎試料來進行氯離子之溶出試驗。 1356807 &lt;實施例6 1 &gt; 除了使用陰離子交換體1〇來替代在製造樹脂混練體 A-Z-1所使用之陰離子交換組成物ι_5以外,和實施例59 進行同樣的操作’製造樹脂混練體A-Z-3。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例62&gt; 除了使用陰離子交換體U來替代在製造樹脂混練體 A-Z-1所使用之陰離子交換組成物i-5以外,和實施例59 進行同樣的操作’製造樹脂混練體A-Z-4。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 〈比較例1 6 &gt; 除了使用MAH1來替代在製造樹脂混練體所使用 之陰離子交換組成物1 -5以外’和實施例59進行同樣的操 作’製造比較樹0曰混練體A-H-3。將其同樣坤進行粉碎, 製造粉碎試料。使用該粉碎試料來進行氯離子之溶出試驗。 〈實施例63&gt; 除了使用陰離子父換組成物1_4來替代在製造樹脂混 練體A-Z-1所使用之陰離子交換組成物ι_5以外,和實施 例59進行同樣的操作,製造樹脂混練體Az_5。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 〈實施例64&gt; 除了使用陰離子交換組成物來b7替代在製造樹脂混 -52- 1356807 練體A-Z-l所使用之陰離子交換組成物l_5以外,和實施 例59進frR樣的操作’製造樹脂混練體a_z-6。將宜同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例6 5 &gt; 除了使用陰離子交換組成物1-8來替代在製造樹脂混 練體A-Z-1所使用之陰離子交換組成物丨_5以外,和實施 例59進行同樣的操作’製造樹脂混練體a-Z-7。將其同樣 地進行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例6 6 &gt; 除了使用陰離子交換體B-9來替代在製造樹脂混練體 A-Z-1所使用之陰離子交換組成物i_5以外,和實施例59 進行同樣的操作’製造樹脂混練體A-Z-8。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例67&gt; 除了使用陰離子交換體B_10來替代在製造樹脂混練體 A-Z-1所使用之陰離子交換組成物1_5以外,和實施例59 進行同樣的操作’製造樹脂混練體A-Z-9 »將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例6 8 &gt; 除了使用陰離子交換組成物2_2來替代在製造樹脂混 練體A-Z-1所使用之陰離子交換組成物ι·5以外,和實施 -53- 1356807 例59進行同樣的操作’製造樹脂混練體A-Z-10。將其鬥 樣地進行粉碎,製造粉碎試料。使用該粉碎試料來進'/ • J -S3 離子之溶出試驗。 &lt;實施例6 9 &gt; 除了使用陰離子交換組成物2-3來替代在製造樹脂海 練體A-Z-1所使用之陰離子交換組成物以外,和 萬5¾ 例59進行同樣的操作’製造樹脂混練體a_z_u。將 樣地進行粉碎’製造粉碎試料。使用該粉碎試料來進行 離子之溶出試驗。No. Sample chloride ion concentration (ppm) pH Example 37 Resin carcass A-1-2 19 4.6 Example 38 Shelf carcass A-2-2 19 4.6 Example 39 Resin carcass A-3-3 20 4.6 Comparative Example 7 Comparative resin steroid A-1 56 4.3 Comparative Example 8 Comparative resin kneaded body A-2 25 4.5 Comparative Example 9 Comparative resin kneaded body A-3 55 4.3 Comparative Example 10 Comparative resin kneaded body A 60 _ 4.2 Example 40 Resin kneaded body B-1-2 20 6.8 . Example 41 Resin kneaded body B-2-2 22 6.8 Example 42 Resin carcass B-3-3 22 6.8 Comparative Example 11 Comparative resin kneaded body B-1 61 6.7 Comparison Example 12 Comparative resin kneaded body B-2 55 6.8 Comparative Example 13 Comparative resin kneaded body B-3 60 6.7 Comparative Example 14 Comparative resin kneaded body B 62 ________ —--- 6.8 As can be seen from Tables 5 and 6, the present invention The anion exchanger has a high ion exchange rate in the vicinity of neutrality, and even if the encapsulating resin is added, the pH of the extract of the encapsulating composition is acidic or neutral, and the effect of suppressing elution of chloride ions is obtained. Thereby, it is possible to provide a highly reliable package composition in a wide range. &lt;Example 44&gt; 100 g of tMAHl' was added to a solution of 200 g of methyl phthalate monomer (manufactured by Tama Chemical Co., Ltd.) in a methanol solution for 1 night, and then air-dried for 1 day. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchange - 46 - 1356807 ίο). &lt;Example 45&gt; 100 g of tMAH1 was added to a 10% methanol solution of 160 g of a methyl phthalate oligomer (manufactured by Tama Chemical Co., Ltd., trade name METHYLSILICATE 51, the same using the same), stirred for 1 night, and air-dried. 1曰. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 11). &lt;Example 46&gt; 100 g of an anion exchanger B-3 was added to a solution of 200 g of methyl phthalate monomer (manufactured by Tama Chemical Co., Ltd.) in 10% methanol, and the mixture was stirred for 1 night, and then air-dried at 1 Torr. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger B-9). &lt;Example 47&gt; 100 g of an anion exchanger B-3 was added to a solution of 160 g of methyl phthalate oligomer (manufactured by Tama Chemical Co., Ltd.) in 10% methanol, stirred for 1 night, and air-dried at 1 Torr. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger B-10). <Example 48> An anion exchanger (anion exchange composition 1-5) was obtained by mixing 60 g of an anion exchanger 1 〇 and 40 g of magnesium oxide belonging to a divalent metal oxide. &lt;Example 4 9&gt; An anion exchanger (anion exchange composition 1 - 6) was obtained by mixing 60 g of an anion exchanger π and 40 g of magnesium oxide belonging to a divalent metal oxide. -47-1356807 &lt;Example 50&gt; An anion exchanger (anion exchange composition 1-4) was obtained by mixing 60 g of tM AH 1 and 40 g of magnesium oxide belonging to a divalent metal oxide. &lt;Example 5 1 &gt; 100 g of anion exchange composition 1-4 was added to a 10% methanol solution of 200 mM methyl phthalate oligomer (manufactured by Tama Chemical Co., Ltd.), and after stirring for 1 night, Air dried 1 inch. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchange body (anion exchange composition 1-7). <Example 52> φ 100 g of anion exchange composition 1-4 was added to a 10% methanol solution of 160 g of methyl phthalate oligomer (manufactured by Tama Chemical Co., Ltd.), stirred for 1 night, and air-dried for 1 day. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchange body (anion exchange composition 1-8). &lt;Example 53&gt; An anion exchanger (anion exchange composition 2-1) was obtained by mixing 60 g of an anion exchanger B-3 and 40 g of magnesium oxide belonging to a divalent metal oxide. &lt;Example 54&gt; An anion exchanger (anion exchange composition 2-2) was obtained by mixing 60 g of an anion exchanger B-9 and 40 g of magnesium oxide belonging to a divalent metal oxide. &lt;Example 55&gt; An anion exchanger (anion exchange composition 2-3) was obtained by mixing 60 g of an anion exchanger B-10 and 40 g of magnesium oxide belonging to a divalent metal oxide. -48-1356807 &lt;Example 56&gt; 100 g of anion exchange composition 2-1 was added to a solution of 200 g of methyl phthalate monomer (manufactured by Tama Chemical Co., Ltd.) in 10% methanol, stirred for 1 night, and air-dried. 1曰. Subsequently, it was calcined at 550 ° C for 2 hours to obtain an anion exchanger (anion exchanger 2-4). &lt;Example 57&gt; 100 g of anion exchange composition 2-1 was added to a solution of 160 g of methyl phthalate oligomer (manufactured by Tama Chemical Co., METHYLSILICATE 51) in 10% methanol, stirred for 1 night, and air-dried 1 day. Subsequently, it was calcined at 550 °C for 2 hours to obtain an anion exchanger (anion exchange composition 2-5). &lt;Example 58&gt; The moisture absorption test was carried out by heating the anion exchanger and the anion exchange composition of Table 7 below at 150 ° C for 4 hours, and then placing them in a humidity of 90% and 35 ° C, with luxury. Time was measured for its weight to investigate hygroscopicity (weight gain rate). The results of their weight increase rate after 24 hours are shown in Table 7. 〇Ion exchange rate measurement test 1.0 g of the anion exchanger and the anion exchange composition of the following Table 7 were placed in a 100 ml polyethylene bottle, and 50 ml of a 0.02 M sodium chloride aqueous solution was further added and sealed. Shake at °C for 24 hours. Subsequently, the solution was filtered using a membrane filter having a pore size of 0.1 # m, and the chloride ion concentration of the filtrate was measured by ion chromatography. The same procedure was carried out without adding any sample, and the chloride ion concentration was measured to obtain an ion. Exchange rate. The results are shown in Table 7. -49- 1356807 [Table 7] No. Weight increase rate Ion exchange rate Example 44 Anion exchanger 10 8% 70% Example 45 Anion exchanger 11 4% 67% Example 30 Anion exchanger B-3 47% 97 % Example 46 Anion exchanger B-9 11% 71% Example 47 Anion exchanger B-10 7% 70% Example 50 Anion exchange composition 1-4 43% 98% Example 48 Anion exchange composition 1- 5 12% 95% Example 49 Anion exchange composition 1-6 6% 95% Example 51 Anion exchange composition 1-7 11% 71% Example 52 Anion exchange composition 1-8 5% 66% Example 53 Anion exchange composition 2-1 45% 99% Example 54 Anion exchange composition 2-2 12% 96% Example 55 Anion exchange composition 2-3 8% 96% Example 56 Anion exchange composition 2-4 10 % 67% Example 57 Anion exchange composition 2-5 6% 65% Comparative Example tMAH1 45% 70% Comparative Example MAH1 1% 0% &lt;Example 59&gt; The composition and anion used for the package for electronic parts were formulated as follows The composition 1-5 was exchanged, and the formulation was kneaded by a hot roll at 80 ° C to 90 ° C for 3 to 5 minutes. 1356807 Cresol-phenol novolac resin epoxy resin (epoxy equivalent 235) 80 parts brominated phenol-novola resin epoxy resin (epoxy equivalent 275) 20 parts phenol-novola resin epoxy resin ( Molecular weight 700~1000) 50 parts of triphenylphosphine 2 parts of carnauba wax 1 part of carbon black 1 part of molten cerium oxide 370 parts of anion exchange composition 1-5 2 parts, then cooled, pulverized 'to obtain a powdery epoxy resin composition AZ-1. Next, the composition A-Z-1 was sieved using a 100 mesh sieve to prepare a sample passing through 100 mesh. The resin kneaded material A-Z-1 was produced by hardening it at 170 °C using the sample which passed through 100 mesh. The resin kneaded body Ai-i was pulverized to have a maximum diameter of 2 to 3 mm. The pulverization sample was used to carry out a chloride ion elution test. &lt;Example 60&gt; The resin kneaded body a_Z_2 was produced in the same manner as in Example 59 except that the anion exchange composition 1_6 was used instead of the anion exchange composition ι_5 used for the production of the resin kneaded material A-Z-1. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Comparative Example 1 5 &gt; A comparative resin kneaded body A _ H was produced in the same manner as in Example 59 except that tMAH1 was used instead of the anion parent composition 1_5 used for the production of the resin kneaded material Az-丨. _丨. This was pulverized in the same manner to produce a pulverized sample. The pulverization sample was used to carry out a chloride ion elution test. 1356807 &lt;Example 6 1 &gt; The same operation as in Example 59 was carried out except that an anion exchanger 1 〇 was used instead of the anion exchange composition ι_5 used for the production of the resin kneaded body AZ-1. -3. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 62&gt; The same operation as in Example 59 was carried out except that the anion exchanger U was used instead of the anion exchange composition i-5 used for the production of the resin kneaded material AZ-1. . This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. <Comparative Example 1 6 &gt; In comparison with Example 59, except that the MAH1 was used instead of the anion exchange composition 1 -5 used for the production of the resin kneaded body, the comparative tree 0 曰 kneaded body A-H-3 was produced. The same kink was pulverized to produce a pulverized sample. The pulverization sample was used to carry out a chloride ion elution test. <Example 63> A resin kneaded material Az_5 was produced in the same manner as in Example 59 except that the anion-communication composition 1_4 was used instead of the anion exchange composition ι_5 used for the production of the resin kneaded material A-Z-1. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. <Example 64> In addition to the use of an anion exchange composition to b7 instead of the anion exchange composition 1-5 used in the production of resin-mixed -52-1356807 literate AZ1, the operation of Example 59 was performed in the frR-like process to manufacture a resin kneaded body a_z -6. It is preferable to pulverize in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 6 5 &gt; The same operation as in Example 59 except that the anion exchange composition 1-8 was used instead of the anion exchange composition 丨_5 used in the production of the resin kneaded body AZ-1 Mix the body aZ-7. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 6 6 &gt; The same operation as in Example 59 was carried out except that the anion exchanger B-9 was used instead of the anion exchange composition i_5 used for the production of the resin kneaded body AZ-1. -8. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 67&gt; The same operation as in Example 59 was carried out except that the anion exchanger B_10 was used instead of the anion exchange composition 1_5 used for the production of the resin kneaded body AZ-1. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 6 8 &gt; The same operation as in Example-53-1356807 Example 59 was carried out except that the anion exchange composition 2_2 was used instead of the anion exchange composition ι·5 used in the production of the resin kneaded body AZ-1. A resin kneaded body AZ-10 was produced. This was pulverized to produce a pulverized sample. The pulverized sample was used to carry out the dissolution test of the '/J-S3 ion. &lt;Example 6 9 &gt; In addition to using anion exchange composition 2-3 instead of the anion exchange composition used in the production of resin sea broth AZ-1, the same operation as in the case of Example 59 was carried out. Body a_z_u. The sample was pulverized to produce a pulverized sample. The pulverization sample was used to carry out an ion dissolution test.

&lt;實施例70&gt; 除了使用陰離子交換組成物2-4來替代在製造樹^ 練體A-Z-1所使用之陰離子交換組成物1-5以外, ^ _ 和實施 例59進行同樣的操作,製造樹脂混練體a-Z-12。臉# 將其同 樣地進行粉碎,製造粉碎試料。使用該粉碎試料來進行 離子之溶出試驗。 &lt;實施例71&gt; 除了使用陰離子交換組成物2-5來替代在製造樹月匕、&lt;Example 70&gt; The same operation as in Example 59 was carried out except that anion exchange composition 2-4 was used instead of anion exchange composition 1-5 used in the production of AZ-1. Resin kneaded body aZ-12. Face # This was pulverized in the same manner to produce a pulverized sample. The pulverization sample was used to carry out an ion dissolution test. &lt;Example 71&gt; In addition to using anion exchange composition 2-5 instead of manufacturing tree sap,

練體A-Z-1所使用之陰離子交換組成物1-5以外,斯 b 1 和實施 例59進行同樣的操作,製造樹脂混練體a_Z_13。 将其同 樣地進行粉碎’製造粉碎試料。使用該粉碎試料决%/ , &amp;付米進行氣 離子之溶出試驗。 &lt;實施例72&gt; 除了使用陰離子交換體B-3來替代在製造樹 1J a曰琨練體 A-Z-1所使用之陰離子交換組成物1-5以外,和實施% 進行同樣的操作,製造樹脂混練體A-Z-14。將其同极 55 ^升Μ樣地進 -54 - 1356807 行粉碎,製造粉碎試料β使田亏於_ ^ 便用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例73&gt; 除了使用陰離子交換組成物 155 m w怕2 -1來替代在製造樹脂混 練體A-Z-1所使用之陰離子交換組成物15以外,和實施 例59進行同樣的操作,製造樹脂混練體A Z l5e將其同 樣地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯 離子之溶出試驗。 &lt;比較例1 7 &gt; 除了未使用陰離子交換組成物1-5以外,和實施例59 進行同樣的操作’製造比較樹脂混練體Α。將其同樣地進 行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例74&gt; 如下調配使用於電子零件用封裝材之組成和陰離子交 換組成物1-5,使用80°C〜90°C之熱輥混練該調配物3~5分。 甲酚-酚醛清漆樹脂型環氧樹脂(環氧樹脂當量235) 80份 溴化酚-酚醛清漆樹脂型環氧樹脂(環氧樹脂當量 20份 275) 酚-酚醛清漆樹脂型環氧樹脂(分子量7〇〇~1〇〇〇 ) 50份 DBU 3 份 胺系矽烷偶合劑(3-胺基丙基三甲氧基矽烷) 3份 巴西棕櫚蠟 1份 碳黑 1份 熔融二氧化矽 370份 -55- 1356807 陰離子交換組成物1-5 2份 隨後,冷卻、粉碎,得到粉末狀環氧樹脂組成物B-Z-1。 接著,使用100網眼的篩對該組成物B-Z-1進行篩分,·製 造通過100網眼的試料。 使用該通過100網眼的試料,在17〇°C使其硬化來製造 樹脂混練體B-Z-1。將該樹脂混練體B-Z-1粉碎成最大徑爲 2~3mm大小。使用該粉碎試料來進行氯離子的溶出試驗。 &lt;實施例7 5 &gt; 除了使用陰離子交換組成物1-6來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物以外,和實施 例74進行同樣的操作,製造樹脂混練體β-Ζ·2。將其同樣 地進行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;比較例1 8 &gt; 除了使用tMAHl來替代在製造樹脂混練體B-Z-丨所使 用之陰離子交換組成物以外,和實施例74進行同樣的 操作’製造樹脂混練體。將其同樣地進行粉碎,製 造粉碎試料。使用該粉碎試料來進行氯離子之溶出試驗。 &lt;實施例7 6 &gt; 除了使用陰離子交換體1〇來替代在製造樹脂混練體 B-Z-1所使用之陰離子交換組成物1_5以外,和實施例 進行同樣的操作’製造樹脂混練體B_z_3。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 〈實施例77&gt; -56- 1356807 除了使用陰離子交換體n來替代在製造樹脂混練體 B-Z-1所使用之陰離子交換組成物1-5以外,和實施例74 進行同樣的操作’製造樹脂混練體B-Z-4。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例78&gt; 除了使用陰離子交換組成物1-4來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物以外,和實施 例74進行同樣的操作’製造樹脂混練體B-Z_5。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例7 9 &gt; 除了使用陰離子父換組成物1-7來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1-5以外,和實施 例74進行同樣的操作’製造樹脂混練體B-Z-6。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例80&gt; 除了使用陰離子交換組成物I-8來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1-5以外,和實施 例74進行同樣的操作’製造樹脂混練體B-Z-7。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗° &lt;比較例19&gt; 除了使用MAH1來替代在製造樹脂混練體B-Z-1所使用 -57- 1356807 之陰離子交換組成物丨.5以外,和實施例74進行同樣的操 作’製造樹脂混練體B-H-3。將其同樣地進行粉碎,製造 粉碎試料。使用該粉碎試料來進行氯離子之溶出試驗。 &lt;實施例81&gt; 除了使用陰離子交換體B-9來替代在製造樹脂混練體 B-Z-1所使用之陰離子交換組成物N5以外,和實施例74 進行同樣的操作’製造樹脂混練體B_z_8。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例82&gt; 除了使用陰離子交換體B-10來替代在製造樹脂混練體 B-Z-1所使用之陰離子交換組成物ι_5以外,和實施例74 進行同樣的操作’製造樹脂混練體B-Z-9。將其同樣地進 行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離子之 溶出試驗。 &lt;實施例8 3 &gt; 除了使用陰離子交換組成物2-2來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1-5以外,和實施 例74進行同樣的操作’製造樹脂混練體B-Z-1〇。將其同樣 地進行粉碎,製造粉碎試料》使用該粉碎試料來進行氯離 子之溶出試驗。 〈實施例84&gt; 除了使用陰離子交換組成物2-3來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物丨_5以外,和實施 例74進fj冋樣的操作’製造樹脂.混練體將其同樣 -58- 1356807 地進行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例85&gt; 除了使用陰離子交換組成物2-4來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1-5以外,和實施 例74進行同樣的操作’製造樹脂混練體Β-Ζ-12»將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例86&gt; 除了使用陰離子交換組成物2-5來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1-5以外,和實施 例74進行同樣的操作’製造樹脂混練體B-Z-13。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 〈實施例87&gt; , 除了使用陰離子交換組成物B-3來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物1.5以外,和實施 例74進行同樣的操作’製造樹脂混練體B_z.14。將其同樣 地進行粉碎’製造粉碎試料。使用該粉碎試料來進行氯離 子之溶出試驗。 &lt;實施例88&gt; 除了使用陰離子交換組成物2-1來替代在製造樹脂混 練體B-Z-1所使用之陰離子交換組成物ι·5以外,和實施 例74進行同樣的操作,製造樹脂混練體Β·ζ_15。將其同樣 地進行粉碎,製造粉碎試料。使用該粉碎試料來進行氯離 -59- 1356807 子之溶出試驗。 〈比較例2 0 &gt; 以外,和實施例74In the same manner as in Example 59 except that the anion exchange composition 1-5 used in the cultivar A-Z-1 was used, the resin kneaded body a_Z_13 was produced. This was similarly pulverized to produce a pulverized sample. The pulverization sample was used to determine the %/, &amp;&lt;Example72&gt; A resin was produced in the same manner as in Example % except that the anion exchanger B-3 was used instead of the anion exchange composition 1-5 used in the production of the tree 1J a 曰琨 体 AZ-1 Blended body AZ-14. The 55-liter sample of the same electrode was pulverized in -54 - 1356807 to produce a pulverized sample β, and the pulverized sample was used to carry out a chloride ion elution test. &lt;Example 73&gt; Resin kneading was carried out in the same manner as in Example 59 except that the anion exchange composition 155 mw was used instead of 2-1 instead of the anion exchange composition 15 used for the production of the resin kneaded body AZ-1. The body AZ l5e was similarly pulverized to produce a pulverized sample. The pulverization sample was used to carry out a chlorine ion elution test. &lt;Comparative Example 1 7 &gt; The same procedure as in Example 59 was carried out except that the anion exchange composition 1-5 was not used, and a comparative resin kneaded body was produced. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 74&gt; The composition for an electronic component package and the anion exchange composition 1-5 were blended as follows, and the formulation was kneaded by a hot roll at 80 ° C to 90 ° C for 3 to 5 minutes. Cresol-novolak resin epoxy resin (epoxy equivalent 235) 80 parts brominated phenol-novola resin epoxy resin (epoxy equivalent 20 parts 275) phenol-novola resin epoxy resin (molecular weight 7〇〇~1〇〇〇) 50 parts DBU 3 parts amine decane coupling agent (3-aminopropyltrimethoxy decane) 3 parts carnauba wax 1 part carbon black 1 part molten cerium oxide 370 parts -55 - 1356807 Anion exchange composition 1-5 2 parts, followed by cooling and pulverization to obtain a powdery epoxy resin composition BZ-1. Next, the composition B-Z-1 was sieved using a 100 mesh sieve to prepare a sample passing through 100 mesh. The resin kneaded material B-Z-1 was produced by hardening it at 17 °C using the sample which passed through 100 mesh. The resin kneaded material B-Z-1 was pulverized to a maximum diameter of 2 to 3 mm. The pulverization sample was used to carry out a chloride ion elution test. &lt;Example 7 5 &gt; In the same manner as in Example 74 except that the anion exchange composition 1-6 was used instead of the anion exchange composition used for the production of the resin kneaded body BZ-1, the resin kneaded body β was produced. -Ζ·2. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Comparative Example 1 8&gt; A resin kneaded body was produced in the same manner as in Example 74 except that tMAH1 was used instead of the anion exchange composition used for producing the resin kneaded material B-Z-丨. This was pulverized in the same manner to prepare a pulverized sample. The pulverization sample was used to carry out a chloride ion elution test. &lt;Example 7 6&gt; The resin kneaded body B_z_3 was produced in the same manner as in the Example except that the anion exchange body 1 was used instead of the anion exchange composition 1_5 used for the production of the resin kneaded body B-Z-1. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. <Example 77> -56- 1356807 The same operation as in Example 74 was carried out except that the anion exchanger n was used instead of the anion exchange composition 1-5 used for the production of the resin kneaded body BZ-1. BZ-4. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 78&gt; The same operation as in Example 74 was carried out except that the anion exchange composition 1-4 was used instead of the anion exchange composition used for the production of the resin kneaded body BZ-1, and the resin kneaded body B-Z_5 was produced. . This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 7 9 &gt; The same operation as in Example 74 was carried out except that the anion-parent composition 1-7 was used instead of the anion exchange composition 1-5 used in the production of the resin kneaded body BZ-1. Resin kneaded body BZ-6. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 80&gt; The same operation as in Example 74 was carried out except that the anion exchange composition I-8 was used instead of the anion exchange composition 1-5 used for the production of the resin kneaded body BZ-1. BZ-7. This was pulverized in the same manner to produce a pulverized sample. The pulverization sample was used for the elution test of chloride ions. <Comparative Example 19> Except that MAH1 was used instead of the anion exchange composition 丨.5 of -57-1356807 used for the production of the resin kneaded body BZ-1, and Examples 74 The same operation was carried out to manufacture a resin kneaded body BH-3. This was pulverized in the same manner to produce a pulverized sample. The pulverization sample was used to carry out a chloride ion elution test. &lt;Example 81&gt; The resin kneaded material B_z_8 was produced in the same manner as in Example 74 except that the anion exchanger B-9 was used instead of the anion exchange composition N5 used for the production of the resin kneaded material B-Z-1. This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 82&gt; The same operation as in Example 74 was carried out except that the anion exchanger B-10 was used instead of the anion exchange composition ι_5 used for the production of the resin kneaded body BZ-1. . This was similarly pulverized to produce a pulverized sample. The pulverized sample was used to carry out a chloride ion elution test. &lt;Example 8 3&gt; The same operation as in Example 74 was carried out except that the anion exchange composition 2-2 was used instead of the anion exchange composition 1-5 used for the production of the resin kneaded body BZ-1. Blended body BZ-1〇. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a chlorine ion elution test. <Example 84> An operation was carried out except that the anion exchange composition 2-3 was used instead of the anion exchange composition 丨_5 used in the production of the resin kneaded body BZ-1, and the operation of Example 74 was carried out. The kneaded body was pulverized by the same -58 - 1356807 to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 85&gt; The same operation as in Example 74 was carried out except that the anion exchange composition 2-4 was used instead of the anion exchange composition 1-5 used for the production of the resin kneaded body BZ-1. Β-Ζ-12» This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 86&gt; The same operation as in Example 74 was carried out except that the anion exchange composition 2-5 was used instead of the anion exchange composition 1-5 used for the production of the resin kneaded body BZ-1. BZ-13. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. <Example 87>, the same operation as in Example 74 was carried out except that the anion exchange composition B-3 was used instead of the anion exchange composition 1.5 used for the production of the resin kneaded body BZ-1, and the resin kneaded body B_z was produced. 14. This was pulverized in the same manner to produce a pulverized sample. The pulverized sample was used to carry out a dissolution test of chlorine ions. &lt;Example 88&gt; A resin kneaded body was produced in the same manner as in Example 74 except that the anion exchange composition 2-1 was used instead of the anion exchange composition ι·5 used for the production of the resin kneaded body BZ-1. Β·ζ_15. This was pulverized in the same manner to produce a pulverized sample. The pulverization sample was used to carry out a dissolution test of chlorine from -59 to 1356807. <Comparative Example 2 0 &gt; and Example 74

除了未使用陰離子交換組成物1_5 進行同樣的操作,製造比 行粉碎,製造粉碎試料。 溶出試驗。 &lt;實施例8 9 &gt; 〇從樹脂混練體萃取氯離子試驗 在聚四氟乙烯製耐壓容器中分別加入下述表8及表9 之樹脂混練體5克、以及純水50ml並密閉,在125 °C加熱 1 00小時。冷卻後將水取出’測定水之PH之同時使用離子 色層分析測定在水中溶出的氯離子濃度。此等結果如表8 及表9所示。 1356807 [表8] No. 試料 氯離子濃度(ppm) pH 實施例59 樹脂讎體A-Z-l 18 4.4 實施例J 60 樹脂讎體A-Z-2 19 4.4 實施例61 樹脂讎體A-Z-3 19 4.4 實施例62 樹脂混練體A-Z-4 19 4.5 實施例63 樹脂讎體A-Z-5 17 4.4 實施例64 樹脂讎體A-Z-6 18 4.4 實施例65 樹脂混練體A-Z-7 19 4.4 實施例66 樹脂混練體A-Z-8 18 4.3 實施例67 樹脂混練體A-Z-9 19 4.3 實施例68 樹脂混練體A-Z-10 17 4.5 實施例69 樹脂混練體A-Z-11 17 4.5 實施例70 樹脂混練體A-Z-12 18 4.3 實施例Ή 樹脂混練體A-Z-13 19 4.4 實施例72 樹脂混練體A-Z-14 17 4.5 實施例73 樹脂混練體A-Z-15 16 4.4 比較例15 比較樹脂混練體A-H-1 19 4.4 比較例16 比較樹脂混練體A-H-3 55 4.3 比蚁例w 比較樹脂混練體A 60 4.2 1356807 [表9]The same operation was carried out except that the anion exchange composition 1_5 was not used, and the production was pulverized to produce a pulverized sample. Dissolution test. &lt;Example 8 9&gt; 萃取 Extraction of chloride ion from resin kneaded material In a pressure-resistant container made of polytetrafluoroethylene, 5 g of the resin kneaded body of the following Tables 8 and 9 and 50 ml of pure water were respectively placed and sealed. Heat at 125 °C for 100 hours. After cooling, the water was taken out to determine the pH of the water while measuring the concentration of chloride ions eluted in water using ion chromatography. These results are shown in Tables 8 and 9. 1356807 [Table 8] No. Sample chloride ion concentration (ppm) pH Example 59 Resin carcass AZl 18 4.4 Example J 60 Resin carcass AZ-2 19 4.4 Example 61 Resin carcass AZ-3 19 4.4 Example 62 Resin kneaded body AZ-4 19 4.5 Example 63 Resin carcass AZ-5 17 4.4 Example 64 Resin carcass AZ-6 18 4.4 Example 65 Resin kneaded body AZ-7 19 4.4 Example 66 Resin kneaded body AZ-8 18 4.3 Example 67 Resin kneaded body AZ-9 19 4.3 Example 68 Resin kneaded body AZ-10 17 4.5 Example 69 Resin kneaded body AZ-11 17 4.5 Example 70 Resin kneaded body AZ-12 18 4.3 Example 树脂 Resin Kneaded body AZ-13 19 4.4 Example 72 Resin kneaded body AZ-14 17 4.5 Example 73 Resin kneaded body AZ-15 16 4.4 Comparative Example 15 Comparative resin kneaded body AH-1 19 4.4 Comparative Example 16 Comparative resin kneaded body AH- 3 55 4.3 Comparison of ant case w Resin kneaded body A 60 4.2 1356807 [Table 9]

No. 試料 氯離子濃度(ppm) pH 實施例74 樹脂讎體B-Z-1 19 6.8 實施例75 樹脂讎體B-Z-2 20 6.8 實施例76 樹脂混練體B-Z-3 41 6.7 實施例77 樹脂混練體B-Z-4 45 6.7 實施例78 樹脂讎體B-Z-5 18 6.8 實施例79 樹脂混練體B-Z-6 39 6.8 實施例80 樹脂混練體B-Z-7 40 6.8 實施例81 測旨混練體B-Z-8 40 6.8 實施例82 樹脂混練體B-Z-9 41 6.7 實施例83 樹脂混練體B-Z-10 20 6.8 實施例84 測旨混練體B-Z-11 20 6.8 實施例85 樹脂混練體B-Z-12 41 6.8 實施例86 樹脂混練體B-Z-13 42 6.7 實施例87 樹脂混練體B-Z-14 40 6.8 實施例88 樹脂混練體B-Z-15 18 6.9 比較例18 比較樹脂混練體B-H-1 40 6.8 比較例19 比較樹脂混練體B-H-3 58 6.8 比較例20 比較樹脂混練體B 62 6.8 從表7、表8以及表9可以知道本發明之陰離子交換 •體,在中性附近的離子交換率高。而且,亦有吸濕性低之 物。又,在電子零件等封裝材樹脂添加本發明之陰離子交 換體時,無論封裝材組成物萃取液之pH値在偏酸性或是 偏中性都具有抑制氯離子的溶出之效果。藉此,能夠在一 -62- 1356807 大範圍內提供信賴性高的封裝組成物。 本發明之陰離子交換體吸濕性低及/或具有優良的耐熱 性,而且在中性附近的離子交換率高。又,即使在樹脂中 調配本發明之陰離子交換體,亦具有抑制陰離子溶出的效 果。因此,本發明之陰離子交換體可以大範圍地使用於信 賴性高之電子零件或是電器零件的封裝、被覆、及絕緣等 各種用途。又,本發明之陰離子交換體可以使用於氯乙烯 等樹脂之安定劑、防鏽劑等。 【圖式簡單說明】 第 1 圖係水滑石化合 MguAldOHhCOrS.SHzO (MAH1) 之熱質量分析測定(TG-DTA)的結果,橫軸係表示溫度。C, 左縱軸係表示減少率,右縱軸係表示熱減量曲線a之微分 曲線b的任意値,a係表示熱減量曲線,b係表示熱減量曲 線a的微分曲線。. 第2圖係陰離子交換體A - 2之X線繞射圖,橫軸係X 線繞射之繞射角度(2 0 ),縱軸係X線繞射之繞射強度値。 第3圖係陰離子交換體A- 4之X線繞射圖,橫軸係X 線繞射之繞射角度(2 0 ),縱軸係X線繞射之繞射強度値。 第4圖係以550 °C煅燒MAH1而成之物(tMAHl)的X線 繞射圖’橫軸係X線繞射之繞射角度(2 0 ),縱軸係X線繞 射之繞.射強度値。 第5圖係ΜΑΗ 1的X線繞射圖,橫軸係X線繞射之繞射 角度(20),縱軸係X線繞射之繞射強度値。No. Sample chloride ion concentration (ppm) pH Example 74 Resin carcass BZ-1 19 6.8 Example 75 Resin carcass BZ-2 20 6.8 Example 76 Resin kneaded body BZ-3 41 6.7 Example 77 Resin kneaded body BZ -4 45 6.7 Example 78 Resin carcass BZ-5 18 6.8 Example 79 Resin kneaded body BZ-6 39 6.8 Example 80 Resin kneaded body BZ-7 40 6.8 Example 81 Measurement of kneaded body BZ-8 40 6.8 Implementation Example 82 Resin kneaded body BZ-9 41 6.7 Example 83 Resin kneaded body BZ-10 20 6.8 Example 84 Kneading body BZ-11 20 6.8 Example 85 Resin kneaded body BZ-12 41 6.8 Example 86 Resin kneaded body BZ-13 42 6.7 Example 87 Resin kneaded body BZ-14 40 6.8 Example 88 Resin kneaded body BZ-15 18 6.9 Comparative Example 18 Comparative resin kneaded body BH-1 40 6.8 Comparative Example 19 Comparative resin kneaded body BH-3 58 6.8 Comparative Example 20 Comparative resin kneaded body B 62 6.8 From Table 7, Table 8, and Table 9, the anion exchange body of the present invention has a high ion exchange rate in the vicinity of neutral. Moreover, there are also low hygroscopic substances. Further, when the anion exchange body of the present invention is added to a package resin such as an electronic component, the effect of suppressing elution of chloride ions is exhibited regardless of whether the pH of the extract of the package composition is acidic or neutral. Thereby, it is possible to provide a highly reliable package composition in a wide range from -62 to 1356807. The anion exchanger of the present invention has low hygroscopicity and/or excellent heat resistance, and has a high ion exchange rate in the vicinity of neutral. Further, even if the anion exchanger of the present invention is formulated in a resin, it has an effect of suppressing anion elution. Therefore, the anion exchanger of the present invention can be used in a wide range of applications such as electronic components having high reliability or packaging, coating, and insulation of electrical components. Further, the anion exchanger of the present invention can be used as a stabilizer for a resin such as vinyl chloride or a rust inhibitor. [Simple description of the drawing] Fig. 1 shows the results of thermal mass spectrometry (TG-DTA) of water-slip petrochemical and MguAldOHhCOrS.SHzO (MAH1), and the horizontal axis indicates temperature. C, the left vertical axis represents the reduction rate, the right vertical axis represents any enthalpy of the differential curve b of the thermal decrement curve a, a represents the thermal decrement curve, and b represents the differential curve of the thermal decrement curve a. Fig. 2 is an X-ray diffraction diagram of the anion exchanger A-2, the horizontal axis is the diffraction angle of the X-ray diffraction (20), and the vertical axis is the diffraction intensity of the X-ray diffraction. Fig. 3 is an X-ray diffraction diagram of the anion exchanger A-4, the horizontal axis is the diffraction angle of the X-ray diffraction (20), and the vertical axis is the diffraction intensity of the X-ray diffraction. Figure 4 is a diffraction diagram of the X-ray diffraction pattern of the X-ray diffraction of the horizontal axis X-ray diffraction of the material (tMAHl) obtained by calcining MAH1 at 550 °C, and the longitudinal axis is the diffraction of the X-ray diffraction. The intensity of the shot is 値. Fig. 5 is an X-ray diffraction diagram of ΜΑΗ 1, the horizontal axis is the diffraction angle of the X-ray diffraction (20), and the vertical axis is the diffraction intensity of the X-ray diffraction.

Claims (1)

1356807 6 0年ί 〇月/7曰修正本 修正本 第093 13 9941號「陰離子交換體及使用它之電子零件封 裝用樹脂組成物」專利案 t (2011年10月17日修正) 十、申請專利範圍: - 1.—種陰離子交換體,其係藉由使用金、屬鹽溶液及/或金屬 烷氧和物瘠液處理下式(1)所示之水滑石(hydrotalcite)煅 燒物及/或下式(2 )所示之水滑石.化合物而得到: M2 + xM3 + y〇z (1) 式(1)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2 + 或 Zn2+; M3 +係 Al3+、Fe3+、Cr3+、Co3 +或 In3+; x、y、z 係0.1以上的正數,2x + 3y = 2z,而且x&gt;y、x/y之値爲9 以下; Μ2 + ι-χΜ3 + χ(ΟΗ~ )2 (An&quot; )d · mH20 (2) 式(2)之M2 + 係Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2 + 或Zn2+; M3 +係 Al3+、Fe3+、Cr3+、Co3 +或 In3+; An_ 係 0H_、F_、Cl—、 Br—、NO,、C032-、S042_、Fe(dN)63-、CH3COO-、草酸 離子或柳酸離子之n價的陰離子;X係0.1以上0.33以 下的t數;m係0或是正數;d爲X/n。 2 .如申請專利範圍第1項之陰離子交換體,其係藉由使用 金屬鹽溶液及/或金屬烷氧化物溶液處理式(1)所示之水 滑石煅燒物而得到, (1) y〇z 式(1)之 M2 +係 Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2 + 或 Zn2+ : M3 +係 Al3+、Fe3+、Cr3+、Co3 +或 In3+ ; x、y、z 1356807 修正本 係〇·1以上的正數,2x + 3y = 2z,而且x&gt;y,x/y之値爲9 以下》 3.如申請專利範圍第2項之陰離子交換體,其係將式(1)所 示之水滑石煅燒物以及金屬鹽溶液及/或金屬烷氧化物溶 液混合後,在lOOt〜900 °C煅燒而成。 4·如申請專利範圍第1項之陰離子交換體,其中式(1)及式 (2)中,M2 +係 Mg2+、Ni2 +或 Zn2+ ; M3 +係 Al3+。 5. 如申請專利範圍第1項之陰離子交換體,其中該金屬鹽 溶液及金屬烷氧化物溶液的金屬係由矽、鈦、鉻、錫、 及鋁組成群中選出之至少1種以上。 6. 如申請專利範圍第1項之陰離子交換體’其中另調配有2 價金屬氧化物。 7. 如申請專利範圍第5項之陰離子交換體’其中另調配有2 價金屬氧化物。 8. —種陰離子交換體,其係含有式(2)所示之水滑石化合物 之煅燒物和2價金屬氧化物: Μ2、-ΧΜ3 + χ(〇Η -)2(An-)d-mH2〇 (2) 式(2)之 M2 +係 Mg2+、Mn2+、Fe2+、C〇2+、Ni2+、Cu2 +或 Zn2+ ; M3 +係 Al3+、Fe3+、Cr3+、C〇3 +或 In3+ ’ An—係 〇H—、F-、Cl 、 Br_、NO「、C032' S〇42-、Fe(CN)63_、CH3CO〇 、草酸離 子或柳酸離子之n價的陰離子;X係0·1以上〇·33以下 的正數,m係0或是正數,d爲X/n° 1356807 修正本 9. 一種陰離子交換體,其特徵爲使用金屬鹽溶液及/或金屬 烷氧化物溶液處理如申請專利範圍第8項之陰離子交換 maa 體。 10. —種電子零件封裝用樹脂組成物,其含有如申請專利範 圍第1至9項中任一項之陰離子交換體,亦含有無機陽 離子交換體。 1 1 . 一種電子零件封裝用樹脂,其係使如申請專利範圍第1 〇 項之電子零件封裝用樹脂組成物硬化而成。 12. —種電子零件’其係使用如申請專利範圍第10項之電 子零件封裝用樹脂組成物封裝元件而成。 13. —種清漆,其含有如申請專利範圍第!至9項中任一項 之陰離子交換體,亦含有無機陽離子交換體。 1 4 . 一種含有如申請專利範圍第1 3項之清漆的製品。 1 5 . —種黏著劑,其係含有如申請專利範圍第1至9項中任 一項之陰離子交換體,亦含有無機陽離子交換體。 1 6 · —種含有如申請專利範圍第1 5項之黏著劑的製品。 1 7 . —種糊料,其係含有如申請專利範圍第1至9項中任一 項之陰離子交換體,亦含有無機陽離子交換體。 1 8 ·—種含有如申請專利範圍第1 7項之糊料的製品。1356807 60 0 ί 〇月/7曰 Amendment to this 093 13 9941 "Anion exchanger and resin composition for electronic parts packaging using it" Patent case t (Amended on October 17, 2011) X. Application Patent range: - 1. An anion exchanger which is treated with a hydrotalcite calcined product of the following formula (1) by using gold, a salt solution and/or a metal alkoxide solution. Or a hydrotalcite compound represented by the following formula (2): M2 + xM3 + y〇z (1) M2 + of the formula (1) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2 + or Zn2+; M3 + is Al3+, Fe3+, Cr3+, Co3 + or In3+; x, y, z are positive numbers of 0.1 or more, 2x + 3y = 2z, and x &gt;y, x/y are 9 or less; Μ2 + ι-χΜ3 + χ(ΟΗ~ )2 (An&quot; )d · mH20 (2) M2 + of formula (2) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2 + or Zn2+; M3 + is Al3+, Fe3+, Cr3+, Co3 + Or In3+; An_ is an n-valent anion of 0H_, F_, Cl-, Br-, NO, C032-, S042_, Fe(dN)63-, CH3COO-, oxalic acid ion or salicylic acid ion; X system is 0.1 or more and 0.33 The following t number; m 0 or a positive number; d is X / n. 2. An anion exchanger according to claim 1, which is obtained by treating a hydrotalcite calcined product represented by the formula (1) with a metal salt solution and/or a metal alkoxide solution, (1) y〇 z M2 + of the formula (1) is Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2 + or Zn2+ : M3 + is Al3+, Fe3+, Cr3+, Co3 + or In3+; x, y, z 1356807 Revision of the system 〇·1 The above positive number, 2x + 3y = 2z, and x &gt; y, x / y is 9 or less. 3. 3. The anion exchanger of claim 2, which is a hydrotalcite represented by formula (1) The calcined product and the metal salt solution and/or the metal alkoxide solution are mixed and then calcined at 100 to 900 °C. 4. An anion exchanger according to claim 1, wherein in the formulas (1) and (2), M2 + is Mg2+, Ni2 + or Zn2+; and M3 + is Al3+. 5. The anion exchanger according to claim 1, wherein the metal salt solution and the metal alkoxide solution are at least one selected from the group consisting of ruthenium, titanium, chromium, tin, and aluminum. 6. The anion exchanger of claim 1 is additionally formulated with a divalent metal oxide. 7. An anion exchanger as claimed in claim 5, wherein a divalent metal oxide is additionally formulated. 8. An anion exchanger comprising a calcined product of a hydrotalcite compound represented by formula (2) and a divalent metal oxide: Μ2, -ΧΜ3 + χ(〇Η -)2(An-)d-mH2 〇(2) M2 + of the formula (2) is Mg2+, Mn2+, Fe2+, C〇2+, Ni2+, Cu2+ or Zn2+; M3+ is Al3+, Fe3+, Cr3+, C〇3 + or In3+ 'An—system H-, F-, Cl, Br_, NO", C032' S〇42-, Fe(CN)63_, CH3CO〇, oxalate ion or salicylic acid n-valent anion; X-system 0·1 or more 〇·33 The following positive number, m is 0 or a positive number, d is X/n° 1356807. 9. An anion exchanger characterized by treatment with a metal salt solution and/or a metal alkoxide solution as in claim 8 An anion exchange maa body. 10. A resin composition for encapsulating an electronic component, comprising the anion exchanger according to any one of claims 1 to 9 and an inorganic cation exchanger. 1 1 . A resin for encapsulating a part, which is obtained by hardening a resin composition for encapsulating an electronic component according to the first aspect of the patent application. A varnish comprising the anion exchanger of any one of the above claims; And an inorganic cation exchanger. 1 4. A product containing the varnish as claimed in claim 13 of the patent application. 1 5 - an adhesive containing any one of items 1 to 9 of the patent application scope An anion exchanger, which also contains an inorganic cation exchanger. 1 6 · A product containing an adhesive as claimed in claim 15 of the patent application. 1 7 - a paste containing the first to the scope of the patent application The anion exchanger according to any one of the items 9 further contains an inorganic cation exchanger. The article contains a product of the paste of claim 17 of the patent application.
TW93139941A 2004-12-22 2004-12-22 Anion exchange material and resin composition for TWI356807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93139941A TWI356807B (en) 2004-12-22 2004-12-22 Anion exchange material and resin composition for

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93139941A TWI356807B (en) 2004-12-22 2004-12-22 Anion exchange material and resin composition for

Publications (1)

Publication Number Publication Date
TWI356807B true TWI356807B (en) 2012-01-21

Family

ID=46728123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93139941A TWI356807B (en) 2004-12-22 2004-12-22 Anion exchange material and resin composition for

Country Status (1)

Country Link
TW (1) TWI356807B (en)

Similar Documents

Publication Publication Date Title
TWI439420B (en) Hydrotalcite compound and method for producing it, inorganic ion trapping agnet, resin composition for electric members seal, electric members sealing material, and electric members
KR101478690B1 (en) Novel lamellar zirconium phosphate
KR102040351B1 (en) Amorphous inorganic anion exchanger, resin composition for sealing electronic component, and method for producing amorphous bismuth compound
TW201136834A (en) Spherical hydrotalcite compound and resin composition for sealing electronic component
JP4337411B2 (en) Inorganic anion exchanger and epoxy resin composition for sealing electronic parts using the same
JPWO2006064568A1 (en) Anion exchanger and resin composition for sealing electronic parts using the same
US20090267024A1 (en) Inorganic Sulfate Ion Scavenger, Inorganic Scavenging Composition, and Electronic Component-Sealing Resin Composition, Electronic Component-Sealing Material, Electronic Component, Varnish, Adhesive, Paste, and Product Employing Same
TWI356807B (en) Anion exchange material and resin composition for
TWI399243B (en) Inorganic anionic exchanger made of ammonium compound and resin compound for sealing electrical parts by using it
TWI481565B (en) An inorganic anion exchanger for bismuth compound and a resin composition for packaging an electronic component using the compound
TWI378827B (en) Inorganic anionic exchanger made of yttrium compound and resin compound for sealing electrical parts by using it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees