WO2006075049A1 - Dispositif de determination de particules contaminantes metalliques dans une graisse lubrifiante - Google Patents

Dispositif de determination de particules contaminantes metalliques dans une graisse lubrifiante Download PDF

Info

Publication number
WO2006075049A1
WO2006075049A1 PCT/FI2006/000016 FI2006000016W WO2006075049A1 WO 2006075049 A1 WO2006075049 A1 WO 2006075049A1 FI 2006000016 W FI2006000016 W FI 2006000016W WO 2006075049 A1 WO2006075049 A1 WO 2006075049A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating grease
contaminant particles
determining
metallic contaminant
sample
Prior art date
Application number
PCT/FI2006/000016
Other languages
English (en)
Inventor
Peter Andersson
Original Assignee
Valtion Teknillinen Tutkimuskeskus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valtion Teknillinen Tutkimuskeskus filed Critical Valtion Teknillinen Tutkimuskeskus
Publication of WO2006075049A1 publication Critical patent/WO2006075049A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2858Metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil

Definitions

  • This invention relates to a device as defined in the preamble of claim 1 for determining the content of metallic contaminant particles in lubricating grease.
  • the device using this method comprises a sampling pole at which the grease sample is placed, and an electric magnet which produces the first magnetic field.
  • the device also comprises a second electric magnet which is used as a reference when the influence of the second magnetic field produced by the eddy currents induced in the sample are determined.
  • This second electric magnet is identical to the first electric magnet and is preferably supplied from the same alternating current source as the first electric magnet.
  • the device also comprises a measuring unit comprising a comparator and a amplifier.
  • this previously known device uses a second electric magnet as a reference for inductance measurements, the device needs non-standard, expensive and large sized components. Also the use of a second electric magnet as a reference increases the power consumption of the device because of the resistive losses of the coil.
  • the object of the invention is to overcome the drawbacks related to the device described above.
  • Another object of the invention is to provide a new smaller, less expensive, and less power consuming device for determining the content of contami- nating particles, especially metal particles, in a lubricating grease.
  • the device of the invention is characterized by the features defined in claim 1.
  • the dependent claims set forth preferred embodiments of the invention.
  • a sample is first taken to allow the determination to be made.
  • the device comprises a sensor which comprises a core, on which the measured grease sample is placed, and a sensor coil which is wound around the core.
  • the device also comprises an alternating current source for supplying the operating voltage.
  • the device also comprises an inductance measurement bridge for determining the change of the impedance of the sensor coil, when a sample of lubricating grease containing contaminating particles is applied on the sensor, and for outputting a differential output signal to the outputs.
  • the sensor coil is a part of the inductance measurement bridge.
  • the device may also contain a rectifier bridge and a filter capacitor for rectifying and filtering the output signal from the measurement bridge.
  • the invention has the advantage of the device being smaller sized and using less power. Another advantage of the inventions is that that the inexpensive mass produced passive components can be used instead of a comparison amplifier and a reference coil.
  • figure 1 is a schematic view of the electric circuit of the device of the invention
  • figure 2 is a view of the sensor of the device of the invention
  • figure 3 is a schematic view of one user interface circuit of the invention
  • figure 4 is a schematic view of another user interface circuit of the invention
  • figure 5 is a schematic view of yet another user interface circuit of the invention
  • figure 6 is a presentation of the voltage vectors of the circuit of the invention.
  • the device of the invention utilizes the theoretical data of the method described in the Finnish patent application FI990393.
  • a variation in the impedance of the sensor coil Ia can be measured by electric means. This is preferably carried out as follows:
  • the device of the invention presented in figure 1 preferably comprises a sensor coil Ia, a measurement bridge 2 and an alternating current source 3.
  • the sensor coil Ia is part of sensor 1, which has an electric magnet comprising a coil Ia wound around a core Ib as presented in figure 2.
  • the measurement bridge 2 used for the determination of the impedance of the sensor coil is preferably a traditional Maxwell- Wien bridge.
  • the measurement bridge is operated from an alternating current source 3.
  • the alter- nating current has stabilized mean-effective-value, frequency and wave form. Due to the positive phase shift caused by the inductance L of the sensor coil Ia, the wave of the alternating electric current at the output terminal B of the measurement bridge 2 will be behind the wave of the alternating voltage supplied to the measurement bridge 2 by the alternating current source 3.
  • the amplitude and phase shift of the output B of the measurement bridge 2 with respect to the operating voltage is defined by the sensor coil Ia (L+RL) and serial resistance R2.
  • the capacitor C and its parallel resistor RC are chosen to outbalance the positive phase shift caused by the inductance of the sensor coil Ia. They have a negative phase shift so that the al- ternating current will be ahead of voltage of alternating current source 3. These can be seen from the voltage vectors presented in figure 6.
  • the amplitude and phase shift of the output A of the measurement bridge 2 with respect to the operating voltage is defined by the capacitor C, parallel resistance RC and serial resistor Rl . If the capacitor C and the resistors RC and Rl are chosen ac- cording to the sensor coil Ia, the amplitudes and the phase shifts at both outputs A and B can be fixed to an appropriate basic level that gives a low basic output signal from the measurement bridge 2. That is the potentials at both outputs A and B are equal when the sensor coil Ia is outbalanced.
  • the polarity of the basic output signal from the measurement bridge 2 must be the same as in a measurement situation.
  • the amplitude and the phase shift at the output B changes with an increase in the apparent inductance of the sensor coil Ia when a grease sample having an amount of metal contaminating particles is placed on the core Ib, causing a potential difference between the two outputs (A-B). This increases the root-mean-square value of the output signal.
  • the output signal from the outputs A and B is then rectified in a rectifier bridge 4.
  • a filtering capacitor 6 is supplied for filtering the resulting DC current.
  • the rectified and filtered signal can then be analyzed and the result of the analyze outputted to the user with one of the several possible types of arrangements in an user inter- face circuit 7.
  • the simplest example of the user interface circuit 7 is a qualitative threshold display.
  • a LED 9 in figure 3 can be illuminated when the voltage of the output signal exceeds a pre-set level. There can be several levels each level lighting a different colored LED 9. At the same time an audible alarm can be heard.
  • the alarm level is adjusted by means of a variable resistor 8 when a calibration grease with a specific metal particle content is applied to the sensor coil Ia.
  • the user interface circuit 7 is a quantitative display.
  • This display can be a digital voltage displaying device 11 with an A/D-converter 10 as presented in figure 4, or a traditional coil instrument, or some other type of device ca- pable of displaying voltage signal levels. It indicates the metal particle content as a number that is relative to the apparent change in the inductance of a sensor coil Ia. It however does not express the metal particle content as such; the value can be compared with a given limit value for acceptable grease samples, or the value can be externally converted into a metal particle content by using a library of data ob- tained by previous or subsequent measurements on grease samples of known metal particle content.
  • the third example of the user interface circuit 7 is an analytical equipment, which by means of software converts each measurement signal into a metal particle content.
  • This equipment can for example be a microcontroller 13 having an AJO- converter input 12 as presented in figure 5.
  • the result of the measurement is then displayed for example on a digital display 14.
  • This equipment has to be calibrated by using grease samples of known metal particle content. In this calibration process a conversion table between voltage levels and metal particle contents is created and saved to be used by the software during measurements.
  • This analyzer circuit has the advantage that the software can collect several measurement results and save them to a data file for later inspection.
  • an amplifier can be added to the circuit before user interface circuit.
  • the sensor coil Ia can be de-connected from the measurement bridge 2 between measurements. This also reduces further the power consumption of the measuring device, especially in portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

L'invention concerne un dispositif permettant de déterminer des particules contaminantes métalliques dans une graisse lubrifiante. Dans le dispositif de cette invention, un échantillon est prélevé, dans un premier temps, pour permettre la réalisation de la détermination. Le dispositif comprend un détecteur (1) pourvu d'un noyau (1b) sur lequel est disposé l'échantillon de graisse mesuré et d'une bobine de détecteur (1a) enroulée autour du noyau. Ce dispositif présente, aussi, une alimentation en courant alternatif (3) de manière à acheminer la tension de service. Selon cette invention, le dispositif comporte, également, un pont de mesure de l'inductance (2) servant à déterminer le changement de l'impédance de la bobine du détecteur (1), lorsqu'un échantillon de graisse lubrifiante contenant des particules contaminantes est appliqué sur le détecteur (1), et à émettre un signal de sortie différentiel au niveau des sorties A et B.
PCT/FI2006/000016 2005-01-14 2006-01-13 Dispositif de determination de particules contaminantes metalliques dans une graisse lubrifiante WO2006075049A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20050044A FI20050044A (fi) 2005-01-14 2005-01-14 Laite voitelurasvan metallisten epäpuhtaushiukkasten määrittämiseksi
FI20050044 2005-01-14

Publications (1)

Publication Number Publication Date
WO2006075049A1 true WO2006075049A1 (fr) 2006-07-20

Family

ID=34112597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2006/000016 WO2006075049A1 (fr) 2005-01-14 2006-01-13 Dispositif de determination de particules contaminantes metalliques dans une graisse lubrifiante

Country Status (2)

Country Link
FI (1) FI20050044A (fr)
WO (1) WO2006075049A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181036A (ja) * 2016-03-28 2017-10-05 東京電力ホールディングス株式会社 超微量グリースの劣化評価方法
DE102017211604A1 (de) 2016-08-02 2018-02-08 Aktiebolaget Skf Lageranordnung mit einem Verunreinigungssensor
CN110567860A (zh) * 2019-08-28 2019-12-13 广东工业大学 新型微粒计数器及微粒计数方法
CN112986077A (zh) * 2021-02-05 2021-06-18 大连海事大学 一种用于机械设备健康监控的新型电桥油液测量装置
CN113325047A (zh) * 2021-05-14 2021-08-31 大连海事大学 一种基于多参数电桥法的润滑油清洁度监测装置
CN113640185A (zh) * 2021-08-03 2021-11-12 中国科学院兰州化学物理研究所 快速测定在用润滑油脂铁磁性磨损颗粒含量的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731578A (en) * 1985-05-02 1988-03-15 Aeroquip Corporation Electrical sensing system for measuring ferrous particles within a fluid
JPH06331600A (ja) * 1993-05-26 1994-12-02 New Cosmos Electric Corp 磁性粉濃度計
WO2000050883A1 (fr) * 1999-02-24 2000-08-31 Valtion Teknillinen Tutkimuskeskus Procede et dispositif de determination de particules metalliques contaminantes dans une graisse lubrifiante

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731578A (en) * 1985-05-02 1988-03-15 Aeroquip Corporation Electrical sensing system for measuring ferrous particles within a fluid
JPH06331600A (ja) * 1993-05-26 1994-12-02 New Cosmos Electric Corp 磁性粉濃度計
WO2000050883A1 (fr) * 1999-02-24 2000-08-31 Valtion Teknillinen Tutkimuskeskus Procede et dispositif de determination de particules metalliques contaminantes dans une graisse lubrifiante

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181036A (ja) * 2016-03-28 2017-10-05 東京電力ホールディングス株式会社 超微量グリースの劣化評価方法
DE102017211604A1 (de) 2016-08-02 2018-02-08 Aktiebolaget Skf Lageranordnung mit einem Verunreinigungssensor
US10378585B2 (en) 2016-08-02 2019-08-13 Aktiebolaget Skf Bearing assembly with contamination sensor
CN110567860A (zh) * 2019-08-28 2019-12-13 广东工业大学 新型微粒计数器及微粒计数方法
CN112986077A (zh) * 2021-02-05 2021-06-18 大连海事大学 一种用于机械设备健康监控的新型电桥油液测量装置
CN112986077B (zh) * 2021-02-05 2022-11-29 大连海事大学 一种用于机械设备健康监控的新型电桥油液测量装置
CN113325047A (zh) * 2021-05-14 2021-08-31 大连海事大学 一种基于多参数电桥法的润滑油清洁度监测装置
CN113325047B (zh) * 2021-05-14 2022-12-06 大连海事大学 一种基于多参数电桥法的润滑油清洁度监测装置
CN113640185A (zh) * 2021-08-03 2021-11-12 中国科学院兰州化学物理研究所 快速测定在用润滑油脂铁磁性磨损颗粒含量的装置

Also Published As

Publication number Publication date
FI20050044A (fi) 2006-07-15
FI20050044A0 (fi) 2005-01-14

Similar Documents

Publication Publication Date Title
RU2645787C2 (ru) Устройство и способ для регистрации электропроводных частиц в жидкости
CN104697905B (zh) 一种油液磨粒检测传感器的设计方法及油液磨粒检测装置
WO2006075049A1 (fr) Dispositif de determination de particules contaminantes metalliques dans une graisse lubrifiante
KR100218653B1 (ko) 전자유도형 검사장치
Ren et al. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit
CN101981442B (zh) 用于涡电流测量的相敏检测的方法和设备
CN104697910A (zh) 一种润滑油液中铁磁性磨粒含量的在线检测传感器
CN106537113A (zh) 粒子计数器和分类系统
JP2010271318A (ja) 誘導測定用の装置ならびに方法
CN204461949U (zh) 一种油液磨粒检测装置
JP2002022708A (ja) 渦流探傷信号の評価方法及びその装置
CN105717191A (zh) 磁巴克豪森噪声信号和磁性参数的检测方法和装置
CN105866234B (zh) 电涡流和巴克豪森相融合的铁磁材料无损检测仪器和方法
CA2629408A1 (fr) Systeme de detection a equilibre par induction
CN103163183A (zh) 一种润滑油中铁或水含量的检测方法
Wang et al. Condition monitoring on grease lubrication of rolling bearing using AE technology
US12092627B2 (en) Signal processing system and method for inductive oil abrasive particle sensor
Davis et al. Instrumentation circuitry for an inductive wear debris sensor
CN205538817U (zh) 磁巴克豪森噪声信号和磁性参数的检测装置
CN115078755A (zh) 一种分析金属颗粒速度对电感电桥中电压信号影响的方法
CN203216901U (zh) 一种应力检测装置
JP3223991U (ja) 非破壊検査装置
Gonçalves et al. Predictive maintenance of a worm reducer with an unbalanced load
CN214097266U (zh) 一种碳刷裂纹涡电流检测系统
WO2000050883A1 (fr) Procede et dispositif de determination de particules metalliques contaminantes dans une graisse lubrifiante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06701069

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6701069

Country of ref document: EP