WO2006072231A2 - Luftbrille, nasenstück, y-stück sowie verfahren - Google Patents

Luftbrille, nasenstück, y-stück sowie verfahren Download PDF

Info

Publication number
WO2006072231A2
WO2006072231A2 PCT/DE2005/002335 DE2005002335W WO2006072231A2 WO 2006072231 A2 WO2006072231 A2 WO 2006072231A2 DE 2005002335 W DE2005002335 W DE 2005002335W WO 2006072231 A2 WO2006072231 A2 WO 2006072231A2
Authority
WO
WIPO (PCT)
Prior art keywords
piece
air
fork tube
goggles
fork
Prior art date
Application number
PCT/DE2005/002335
Other languages
English (en)
French (fr)
Other versions
WO2006072231A3 (de
Inventor
Ulla Bauer
Silvio Kilz
Ingo Müller
Martin Baecke
Heiko Krause
Original Assignee
Seleon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seleon Gmbh filed Critical Seleon Gmbh
Priority to JP2007549791A priority Critical patent/JP5026281B2/ja
Priority to US11/920,100 priority patent/US20090025723A1/en
Priority to DE502005001679T priority patent/DE502005001679D1/de
Priority to EP05850200A priority patent/EP1715909B1/de
Priority to DE112005003491T priority patent/DE112005003491A5/de
Priority to CN2005800461666A priority patent/CN101098726B/zh
Publication of WO2006072231A2 publication Critical patent/WO2006072231A2/de
Publication of WO2006072231A3 publication Critical patent/WO2006072231A3/de
Priority to US11/879,027 priority patent/US7775210B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • A61M16/1095Preparation of respiratory gases or vapours by influencing the temperature in the connecting tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0808Condensation traps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • A61M2205/3372Temperature compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise

Definitions

  • the invention relates to the technical field of goggles according to the preamble of claim 1, of nose pieces therefor according to the preambles of claims 12 to 15, of Y-pieces according to the preamble of claim 16 and of methods according to the preamble of claim 19.
  • the invention relates to design changes that facilitate the use of air goggles in the pneumatic upper airway splinting.
  • CPAP continuous positive airway pressure
  • CPAP therapy In CPAP therapy, a patient is given a constant positive pressure via a nasal mask to appear in the upper airway. If the overpressure is properly selected, it will ensure that the upper airways remain fully open throughout the night, preventing obstructive respiratory disorders. Among other things, to improve comfort BiLevel devices were developed, which lower the pressure during the breather. As generic term for devices for the pneumatic splinting of the upper respiratory tract the term PAP devices is used here.
  • Snoring and apneas may have the same cause, namely flabby palate and tongue tissue.
  • Oxygen glasses for oxygen treatment are also known from the prior art. With the oxygen goggles, the patient is air with an increased oxygen partial pressure (> 210 mbar) or pure oxygen in the Nose applied.
  • oxygen treatment occurs in acute or chronic hypoxemia due to respiratory or cardiovascular disorder (myocardial infarction, shock) or certain poisoning, for example, carbon monoxide, carbon dioxide, fluorescent gas or smoke.
  • WO 02/062413 A2 discloses the use of oxygen spectacles in an anti-snoring device. Oxygen goggles are referred to in this context as air goggles.
  • Vapotherm 200Oi is a humidification system that delivers air flows in the range of 8 to 40 l / min via nasal cannula to patients.
  • the extracted air is humidified and heated.
  • Air can be enriched with oxygen.
  • the heating of a forked tube by means of a heating wire can prevent the compensation of moisture in the forked tube.
  • a laying of the heating wire inside the fork tube is easy to manufacture. Due to the heat dissipation to the environment of the fork tube, the temperature in the fork tube drops approximately linearly with the distance from the compressor. This temperature drop can be compensated by a constant heat output per unit length, as they just created a heating wire. Due to the construction of the hose, the required heat output for the entire air-rollover can be kept below 15 watts. Otherwise, due to legal requirements, the use of fire-retardant plastics would be required, which are generally not biocompatible and whose use is therefore problematic in medical devices.
  • a measurement of the temperature of the applied air makes it possible to control the heat output of a heating wire or a heater in a compressor housing in such a way that that the temperature is perceived by the user as pleasant. Without compensation for the temperature drop in the forked tube, the application openings in the tines would be the coldest places. Consequently, air humidity will most likely condense here. For this reason, a heat output control, due to a temperature measurement near the application ports, is best suited to prevent condensation in the entire goggle.
  • a triangular cross-section of the elevations advantageously ensures that the contact area between the insulation of the heating wire and the inside of the fork tube remains small both in normal operation and when bent.
  • the overall star-shaped cross-section of the insulation advantageously increases the surface of the insulation and thus provides for a reduction of the thermal resistance between the insulation and the passing air.
  • Also extending in the longitudinal direction of the fork tube projections provide in an advantageous manner that even then sufficient air flow is ensured inter alia for cooling the heating wire, if the fork tube kinks.
  • Stabilization threads serve to reduce a longitudinal expansion of the tubes.
  • the mechanical connection of two pieces of the fork tube at its plug-side end makes it possible to save a Y-piece or to integrate this into the plug. This advantageously leads to a reduction of the acoustic emission because the Y-piece integrated in the plug is further away from the application openings.
  • Inner radius stages at different connection points can just compensate for the hose thickness, so that after attachment of a hose, the transition between the hose and the corresponding component is smooth. A smooth transition creates less vortex and therefore less noise.
  • transition areas between a tine and the central connector and a tine and the connector on the side of the tine are rounded to prevent vortex formation and thus a noise emission in an advantageous manner.
  • an optimal flow resistance of the connector can be adjusted.
  • FIG. 1 shows a goggle according to the invention with a first embodiment of a nosepiece
  • FIG. 2 shows a Y-piece with a temperature sensor
  • FIG. 3 shows a goggle according to the invention with a double lumen tube
  • FIG. 5 shows the cross section of a heating wire.
  • FIG. 6 shows the cross section of a hose with heating wire.
  • FIG. 7 is a perspective view of a second embodiment of a
  • FIG. 8 shows a section through a prong along ZZ.
  • 9 is a perspective view of the second embodiment of the nosepiece from a second direction;
  • Fig. 10 is a section along M-M
  • Fig. 11 is a perspective view of the second embodiment of the nosepiece from a third direction.
  • Fig. 12 is a Y-piece for a goggle according to the invention.
  • Fig. 1 shows an inventive goggles 1 with a first embodiment of a nose piece 2.
  • Nose piece 2 is supplied via a fork hose 3, a Y-piece 4, a supply hose 5, and a plug 6 with compressed air.
  • Nose piece 2 has two prongs 12 for the application of air in the two nostrils of a user.
  • Inner radius stages 16 compensate for the difference between the inner and outer radius of the fork tubes and thus prevent sudden changes in the cross section of the airways.
  • Plug 6 has a pneumatic connector part 10, an electrical connector part 9 and a bracket 11. From the electrical connector part 9 performs a heating wire 8 through supply hose 5, Y-piece 4, the right piece of fork hose 3, the right part of the nose piece 2 to a temperature sensor 7 and from there through the left part of the nose piece 2, the left piece of forked hose 3, Y-piece 4 and supply hose 5 to the electrical connector part 9 back.
  • Feed hose 5 has a larger cross-section than fork hose 3, because feed hose 5 typically has to transport twice the air flow, the distance to be bridged is greater and the loss of comfort with a large hose thickness is lower.
  • the word forked hose was chosen only because supply hose 5 "aufgabelt" at Y-piece 4.
  • heating wire 8 runs in the area of nose piece 2 in an additional lumen 17th
  • the component 7 can be a temperature switch 19, which can be understood as a temperature sensor with a poor resolution of one bit.
  • the temperature switch can be realized for example by a bimetallic contact, for example, with a triggering temperature in the range of 30 0 C to 50 0 C, in particular of 40 0 C. If the temperature of the temperature switch exceeds the trip temperature, the heating circuit is interrupted.
  • a temperature sensor or switch 19 may be accommodated in the Y-piece 4, as shown in FIG.
  • An additional temperature switch for example a bimetallic contact with a triggering temperature of (50 ⁇ 10) ° C, can represent a further safeguard against overheating, for example if the delivery hose 3 and / or the supply hose 5 are bent accidentally. Above the trip temperature, the heating circuit is interrupted.
  • the temperature switch 19 shown in FIG. 2 represents a schematic bimetallic contact.
  • a temperature sensor or switch 19 alone can effectively prevent condensation since the Y-piece does not end the supply hose 5 heated by the patient's body. Insofar is located in the supply hose 5 of the coldest and thus most susceptible to condensation point between the compressor and nose piece 2. Is the Temperature of the coldest point held above the dew point, no condensation takes place. A displacement of the temperature sensor or switch in the Y-piece 4 can increase the wearing comfort of the air rims 1, because the nose piece 2 can be made lighter and smaller.
  • approximately the air temperature in the prongs 12 can be calculated from the temperature in the Y-piece, the heating power and the set flow, a displacement of the temperature sensor from the nosepiece 2 into the Y-piece Piece 4 to no significant loss of comfort.
  • FIG. 3 shows a second embodiment of a pair of air goggles in which supply hose 5 and Y-piece 4 are replaced by a double-lumen hose 13.
  • the double lumen tube consists of two forked tube pieces, which are mechanically connected to each other.
  • the Y-piece 4 is omitted or is integrated according to another view in the connector 6.
  • a clamp 14 may be provided which prevents further splicing of the double lumen tube.
  • the division of an air flow on two forked tube pieces can be done in the plug 6 and is thus further away from the tines 12, so that the noise emission is lower.
  • Fig. 4 shows a way to read a temperature sensor over only two heating wires.
  • the two heating wires 8 are represented in the equivalent circuit shown in Figure 4 by the two resistors RH.
  • R ⁇ represents a two-terminal with temperature-dependent terminal behavior.
  • the resistor R ⁇ is only a temperature-dependent resistor such as a PtIOO or PtIOOO.
  • R T is big compared to R H.
  • the heating wires typically have a resistance of 15 ⁇ with large ones
  • Heating voltage UH applied the temperature sensor is short-circuited by the parallel diode D, so that essentially only the heating wires are heated. If a negative or a small measuring voltage U M is applied to the three series-connected resistors, then the majority of the
  • Example in the form of the integrated circuit AD592 is present as two-pole R ⁇ use.
  • the diode D serves to provide the integrated circuit for the
  • the direction of the measuring current is directed counter to the heating current. Its amount depends on the temperature and the integrated circuit used and is a few 100 ⁇ A.
  • the special advantage of this solution is that the
  • the conversion of the temperature signal by modulating on the heating current is possible. This can be done both analog and digital and realized in customer-specific circuits. Such circuits are known, for example, from telephones or baby monitors for modulating audio frequency signals to the operating voltage.
  • the polarity or magnitude of the applied voltage can be switched much faster than the thermal inertia of the system, so that the switching between the heating voltage U H and measurement voltage U M has virtually no temperature change.
  • a metal wire 21 is embedded in an insulation 22.
  • the insulation has a star-shaped cross section with five triangular rays and is therefore invariant with respect to rotations by 72 °.
  • the metal wire 21 may have a star-shaped cross-section. Each ray forms an elevation running along the wire.
  • the bumps can also run helically around the lateral surface, wherein the length of a circulation is typically a multiple of the extent of the insulation.
  • the purpose of the star-shaped insulation is to increase the surface area of the wire and thus reduce the thermal resistance to the surrounding air. In addition, even when kinked hose of the heating wire should be circulated as possible on all sides of air, not to overheat and melt into the surrounding tube.
  • the triangular rays of the cross section spread the kink of a hose whereby the contact area between the hose and the insulation is small and thus the thermal resistance remains high.
  • the metal wire 21 may have a diameter of about 0.3 mm and a circle that just encloses the tips of the cross section have a diameter of 1 mm.
  • Fig. 6 shows a section through a hose, which may be a fork hose 3 or a supply hose 5. Both types of tubes typically differ mainly by their diameter.
  • the inner circumferential surface of the hose has projections 32, which serve to spread the jacket of the hose at kinks in order not to completely cut off the air flow despite kink.
  • stabilizing threads 31 and 33 are on or introduced to reduce a longitudinal expansion of the hose.
  • the stabilizing threads 31 and 33 can be introduced into the tubing during the manufacturing process, in particular into protrusions 32.
  • the stabilizing threads 31 and 33 may be made of artificial or natural fiber material, plastic or metal.
  • the reason for the stabilization threads is that heat-resistant PVC is too stiff and therefore, for example, TPE or silicone must be used.
  • TPE thermoplastic polyurethane
  • the latter materials are highly elastic, which may be undesirable in the longitudinal direction, because then occurring tensile forces must be absorbed by the heating wire and mechanically stress this and its connections. Since the hoses are operated at maximum pressures of a few 100 millibars, stabilization in the radial direction does not appear necessary.
  • the stabilization threads in particular those in projections 32, consist of an electrically conductive material, in particular of metal, possibly surrounded by a thermally stable, not necessarily biocompatible, electrical insulation, these can be used for heating and replace heating wire 8. In this way, problems with non-biocompatible insulation materials can be circumvented.
  • fork tube 3 and / or supply hose 5 may be surrounded by a thermal insulation 34. This should not be too thick, since in particular a thin fork tube comfort and a thick insulation means a loss of comfort. On the other hand, insulation can make the surface of the hoses soft and thus more comfortable. From a technical point of view, the insulation has the advantage of reducing the heating power.
  • Figures 7, 9 and 11 show three perspective views of a second embodiment of a nose piece 42.
  • Figures 8 and 10 show sections along the lines Z-Z and M-M, respectively.
  • the second embodiment of the nose piece 42 differs only qualitatively from the embodiment of the nose piece 2.
  • To reduce the noise emission nose piece 2 is bulbous, d. H. the clear cross-sectional area increases more strongly from the hose connections to the tines. As a result, the flow velocity of the air is reduced in order to keep the noise emission low.
  • the reduction of the flow resistance by increasing the cross-sectional area in the nosepiece is negligible because the flow resistance is largely determined by the thickness of forked tube 3.
  • three prototypes are being prepared, each with a different increase in cross-sectional area. Measurement results are not available yet.
  • Nose piece 42 comprises hose connections 44, hose transition regions 45, connecting pieces 47, tines 52 with annular nubs 53 and a central connecting piece 48.
  • an inner radius step 46 is located between hose transition regions 45 and hose connections 44, which just the difference between Inner and outer radius of fork tube 3 compensated to achieve the smoothest possible transition between the inner surface of fork tube 3 and nose piece 42.
  • the projections 32 may be removed or corresponding projections may be integrally formed on the inner surface of the nose piece 42.
  • the clear cross-sectional area in the hose transition region 45 widens.
  • the transition regions 54 between tines 52 and connecting pieces 47 are generously rounded in order to reduce noise emission.
  • this radius outside is 4.3 mm.
  • the outer diameter of the tines is 5.5 mm near the connector and 5 mm near the aperture.
  • the wall thickness is about 0.5 mm.
  • transition region between the central connector 48 and the tines 52 is also rounded, wherein the outer radius is also in the range between 4 and 5 mm.
  • the indentation 43 in the central connecting piece 48 is shown in section in FIGS. 8 and 10 and in a plan view in FIG. 9. It serves to set a defined flow resistance between the left and right side of the nasal goggles.
  • the goggles are mirror symmetric. This is also true in most cases for the user. As long as mirror symmetry is given, no air flows through the central connector 48.
  • the symmetry can be broken, for example, that either the left or right forked tube 3 is bent or the user has runny nose and therefore a nostril swollen. In the former case, it is desirable on the one hand that both tines are supplied via the still open hose. On the other hand, the kinked fork hose is not completely closed.
  • a pressure drop at the central connector 48 may be desirable. If a nostril is swollen, it is desirable to apply more air over the other prongs. Also in this case, air flow through the central connector 48 is desirable.
  • FIGS. 9, 10 and 11 also show the temperature sensor 7.
  • the Y-piece 4 is shown enlarged. It can be seen above the two fork hose connections 91 and below the supply hose connection 93.
  • the Transition region 95 between the two fork tube connections is rounded and in one embodiment has a radius of 1 mm.
  • the fork tubes and the supply hose have an inner radius (without protrusions 32) of 3 and 5 mm, respectively.
  • the rounding of transition region 95 is particularly important if, for example, due to bending of a fork tube asymmetric flow conditions exist.
  • All ports have inner radius stages 92 and 94 to compensate for the difference between inner radius and outer radius of the connected hoses.
  • the inner radius stages may either have projections corresponding to the projections 32 in the connected hoses and / or the projections 32 may be removed at the hose ends.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Eye Examination Apparatus (AREA)
  • External Artificial Organs (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Die Erfindung betrifft eine Luftbrille für ein Antischnarchgerät mit einem Gabelschlauch (3), der mit Öffnungen (12; 52) pneumatisch verbunden ist, die so ausgestaltet und positioniert sind, dass über diese Öffnungen Luft in die Nase eines Benutzers appliziert werden kann. Die Luftbrille umfasst ferner einen Heizdraht (8) , der im Inneren des Gabelschlauches verläuft, so dass der Heizdraht die durch den Gabelschlauch zugeführte Luft erwärmen kann. Darüber hinaus betrifft die Erfindung ein Nasen- (2) und ein Y-Stück (4) für Luftbrillen, die Innenradius stufen an Schlauchanschlussstellen aufweisen. Ferner betrifft die Erfindung ein Nasen- und ein Y-Stück, die abgerundete Übergangsbereiche aufweisen. Schließlich betrifft die Erfindung ein Verfahren zur Vermeidung von Kondensation in einer Luftbrille. Zu diesem Zweck wird das Gas geheizt, während es durch die Schläuche der Luftbrille strömt.

Description

Luftbrille, Nasenstück, Y-Stück sowie Verfahren
Die Erfindung bezieht sich auf das technische Gebiet von Luftbrillen gemäß dem Oberbegriff des Patentanspruchs 1 , von Nasenstücken hierfür gemäß den Oberbegriffen der Patentansprüche 12 bis 15, von Y-Stücken gemäß dem Oberbegriff des Patentanspruchs 16 sowie von Verfahren gemäß dem Oberbegriff von Patentanspruch 19. Insbesondere bezieht sich die Erfindung auf konstruktive Änderungen, die den Einsatz von Luftbrillen bei der pneumatischen Schienung der oberen Atemwege erleichtern.
Obstruktive Atmungsstörungen führen zu Apnoen (Atemstillstand), durch die der Schlafende erwacht. Häufige Apnoen verhindern, dass der Schlafende in den erholsamen Tiefschlaf fällt. Menschen, die Apnoen während des Schlafens erleiden, sind deshalb tagsüber unausgeschlafen, was zu sozialen Problemen am Arbeitsplatz und im schlimmsten Fall zu tödlichen Unfällen, beispielsweise bei Berufskraftfahrern, führen kann.
Im Stand der Technik sind Geräte zur Durchführung der CPAP (continuous positive airway pressure)-Therapie bekannt. Die CPAP-Therapie wird in Chest. Vol. 110, Seiten 1077 bis 1088, Oktober 1996 und Sleep, Vol. No. 19, Seiten 184 bis 188 näher beschrieben.
In der CPAP-Therapie wird einem Patienten ein konstanter positiver Druck über eine Nasenmaske zugeführt, um die oberen Atemwege zu schienen. Bei richtiger Wahl des Überdrucks gewährleistet dieser, dass die oberen Atemwege während der gesamten Nacht vollständig geöffnet bleiben und somit keine obstruktiven Atemstörungen auftreten. Unter anderem zur Komfortsteigerung wurden BiLevel- Geräte entwickelt, die den Druck während der aus Atempause absenken. Als Oberbegriff für Geräte zur pneumatischen Schienung der oberen Atemwege wird hier der Begriff PAP-Geräte verwendet.
Schnarchen und Apnoen können die gleiche Ursache haben, nämlich zu schlaffes Gaumen- und Zungengewebe.
Aus dem Stand der Technik sind ferner Sauerstoffbrillen für die Sauerstoffbehandlung bekannt. Mit der Sauerstoffbrille wird dem Patienten Luft mit einem erhöhten Sauerstoffpartialdruck (> 210 mbar) oder reiner Sauerstoff in die Nase appliziert. Eine Sauerstoffbehandlung findet zum Beispiel bei akuter oder chronischer Hypoxämie infolge Atem- oder Herz-Kreislaufstörung (Myokardinfarkt, Schock) oder bestimmten Vergiftungen, zum Beispiel durch Kohlenmonoxid, Kohlendioxid, Leuchtgas oder Rauch statt.
Aus der WO 02/062413 A2 (H EW01) ist der Einsatz von Sauerstoff brillen in einem Antischnarchgerät bekannt. Sauerstoffbrillen werden in diesem Zusammenhang als Luftbrillen bezeichnet.
Vapotherm 200Oi ist ein Befeuchtungssystem, das Luftflüsse im Bereich von 8 bis 40 l/min über Luftbrillen (nasal cannula) an Patienten liefert. Die geförderte Luft wird befeuchtet und beheizt. Luft kann mit Sauerstoff angereichert werden.
Es ist Aufgabe der Erfindung, eine Luftbrille, ein Nasenstück, ein Y-Stück sowie ein Verfahren anzugeben, die besonders gut zur pneumatischen Schienung der oberen Atemwege geeignet sind.
Diese Aufgabe wird durch die Lehre der unabhängigen Ansprüche gelöst.
Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
Das Beheizen eines Gabelschlauches mittels eines Heizdrahtes kann die Kompensation von Feuchtigkeit im Gabelschlauch verhindern. Eine Verlegung des Heizdrahtes im Inneren des Gabelschlauches ist fertigungstechnisch einfach. Aufgrund der Wärmeabgabe an die Umgebung des Gabelschlauches sinkt die Temperatur im Gabelschlauch näherungsweise linear mit dem Abstand vom Kompressor. Dieser Temperaturabfall kann durch eine konstante Heizleistung pro Längeneinheit, wie sie eben ein Heizdraht erzeugt, ausgeglichen werden. Bedingt durch die Konstruktion des Schlauches lässt sich die erforderliche Heizleistung für die gesamte Luftbrille kleiner als 15 Watt halten. Andernfalls wären aufgrund von gesetzlichen Vorgaben der Einsatz von brandhemmenden Kunststoffen erforderlich, die in der Regel nicht biokompatibel sind und deren Einsatz deshalb in medizintechnischen Produkten problematisch ist.
Eine Messung der Temperatur der applizierten Luft erlaubt es, die Heizleistung eines Heizdrahtes oder einer Heizung in einem Kompressorgehäuse so zu steuern, dass die Temperatur vom Benutzer als angenehm empfunden wird. Ohne Kompensation des Temperaturabfalls im Gabelschlauch wären die Applikationsöffnungen in den Zinken die kältesten Orte. Folglich wird hier am ehesten Luftfeuchtigkeit kondensieren. Aus diesem Grund ist eine Heizleistungssteuerung aufgrund einer Temperaturmessung in der Nähe der Applikationsöffnungen am besten geeignet, Kondensation in der gesamten Luftbrille zu verhindern.
Aus Gründen der Materialeinsparung ist es wünschenswert, den Temperatursensor auch über den Heizdraht auszulesen. Aufgrund der Fortschritte der Integration von Schaltkreisen ist es möglich, digitale Temperatursensoren mit einer akzeptablen Baugröße herzustellen, die ihr Sensorsignal auf den Heizdraht aufmodulieren.
Das Abweichen der äußeren Mantelfläche der Isolierung des Heizdrahts von der üblichen Zylinderform durch Erhöhungen und Vertiefungen verhindert, dass bei einem Abknicken des Gabelschlauches der Luftstrom durch den Gabelschlauch zu stark reduziert wird. In so einem Fall besteht die Gefahr, dass der Heizdraht an der Knickstelle überhitzt und in den Gabelschlauch einschmilzt, weil der Heizdraht an der Knickstelle unzureichend gekühlt wird.
Besonders geeignet zur Sicherstellung eines ausreichenden Luftflusses, falls der Gabelschlauch abknickt, sind entlang des Heizdrahtes verlaufende Erhöhungen und Vertiefungen. Ein dreieckförmiger Querschnitt der Erhöhungen sorgt in vorteilhafter Weise dafür, dass die Berührungsfläche zwischen Isolierung des Heizdrahtes und Innenseite des Gabelschlauches sowohl im normalen Betrieb als auch beim Abknicken klein bleibt. Der insgesamt sternförmige Querschnitt der Isolierung vergrößert vorteilhafterweise die Oberfläche der Isolierung und sorgt damit für eine Verringerung des thermischen Widerstands zwischen der Isolierung und der vorbeiströmenden Luft.
Auch in Längsrichtung des Gabelschlauches verlaufende Vorsprünge sorgen in vorteilhafter Weise dafür, dass selbst dann ein ausreichender Luftstrom unter anderem zur Kühlung des Heizdrahtes sichergestellt ist, falls der Gabelschlauch abknickt.
Stabilisierungsfäden dienen dazu, eine Längsdehnung der Schläuche zu reduzieren. Die mechanische Verbindung zweier Stücke des Gabelschlauches an ihrem steckerseitigen Ende erlaubt es, ein Y-Stück einzusparen oder dies in den Stecker zu integrieren. Dies führt in vorteilhafter Weise zu einer Reduzierung der Schallemission, weil das in den Stecker integrierte Y-Stück weiter von den Applikationsöffnungen entfernt ist.
Innenradiusstufen an unterschiedlichen Verbindungsstellen können gerade die Schlauchstärke kompensieren, sodass nach Befestigung eines Schlauches der Übergang zwischen Schlauch und dem entsprechenden Bauteil glatt ist. An einem glatten Übergang entstehen weniger Wirbel und damit weniger Schall.
Auch die Übergangsbereiche zwischen einem Zinken und dem zentralen Verbindungsstück sowie einem Zinken und dem Verbindungsstück auf der Seite des Zinkens sind abgerundet, um einer Wirbelbildung und damit einer Geräuschemission in vorteilhafter Weise vorzubeugen.
Durch eine Einbuchtung im zentralen Verbindungsstück kann ein optimaler Strömungswiderstand des Verbindungsstücks eingestellt werden.
Im Folgenden wird eine bevorzugte Ausführungsform der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Dabei zeigen:
Fig. 1 eine erfindungsgemäße Luftbrille mit einer ersten Ausführungsform eines Nasenstücks;
Fig. 2 ein Y-Stück mit einem Temperatursensor;
Fig. 3 eine erfindungsgemäße Luftbrille mit einem Doppellumenschlauch;
Fig. 4 eine Schaltung zur Temperaturmessung;
Fig. 5 den Querschnitt eines Heizdrahtes;
Fig. 6 den Querschnitt eines Schlauches mit Heizdraht;
Fig. 7 eine perspektivische Ansicht einer zweiten Ausführungsform eines
Nasenstücks aus einer ersten Richtung;
Fig. 8 einen Schnitt durch eine Zinke entlang Z-Z; Fig. 9 eine perspektivische Ansicht der zweiten Ausführungsform des Nasenstücks aus einer zweiten Richtung;
Fig. 10 einen Schnitt entlang M-M;
Fig. 11 eine perspektivische Ansicht der zweiten Ausführungsform des Nasenstücks aus einer dritten Richtung; und
Fig. 12 ein Y-Stück für eine erfindungsgemäße Luftbrille.
Fig. 1 zeigt eine erfindungsgemäße Luftbrille 1 mit einer ersten Ausführungsform eines Nasenstücks 2. Nasenstück 2 wird über einen Gabelschlauch 3, ein Y-Stück 4, einen Zuleitungsschlauch 5, sowie einen Stecker 6 mit komprimierter Luft versorgt. Nasenstück 2 weist zwei Zinken 12 zur Applikation von Luft in die beiden Nasenlöcher eines Benutzers auf. Innenradiusstufen 16 kompensieren den Unterschied zwischen Innen- und Außenradius der Gabelschläuche und verhindern damit sprunghafte Änderungen des Querschnitts der Luftwege.
Stecker 6 weist ein pneumatisches Steckerteil 10, ein elektrisches Steckerteil 9 auf sowie eine Klammer 11 auf. Vom elektrischen Steckerteil 9 führt ein Heizdraht 8 durch Zuleitungsschlauch 5, Y-Stück 4, das rechte Stück von Gabelschlauch 3, den rechten Teil vom Nasenstück 2 zu einem Temperatursensor 7 und von dort durch den linken Teil vom Nasenstück 2, das linke Stück von Gabelschlauch 3, Y-Stück 4 und Zuleitungsschlauch 5 zum elektrischen Steckerteil 9 zurück.
Die Klammer 11 rastet an einer für Stecker 6 vorgesehenen Buchse ein und sichert Stecker 6 gegen unabsichtliches Herausziehen. Ein möglicher Querschnitt von Gabelschlauch 3 und Zuleitungsschlauch 5 wird im Zusammenhang mit Fig. 6 erläutert. Zuleitungsschlauch 5 weist einen größeren Querschnitt als Gabelschlauch 3 auf, weil Zuleitungsschlauch 5 typischerweise den doppelten Luftfluss transportieren muss, die zu überbrückende Entfernung größer ist und die Komforteinbußen bei großer Schlauchdicke geringer sind. Das Wort Gabelschlauch wurde lediglich deshalb gewählt, weil sich Zuleitungsschlauch 5 bei Y-Stück 4 "aufgabelt".
Aus zulassungsrechtlicher Sicht kann es erforderlich werden, im Bereich des Nasenstücks 2 die Isolation von Heizdraht 8 durch eine zusätzliche Trennwand 18 von Zinken 12 abzuschirmen. Heizdraht 8 verläuft dann im Bereich von Nasenstück 2 in einem zusätzlichen Lumen 17.
Sollen Luftbrillen zur pneumatischen Schienung der oberen Atemwege benutzt werden, so besteht ein Problem in der Geräuschentwicklung aufgrund der hohen Luftflüsse durch die im Vergleich zu Beatmungsschläuchen dünnen Zuleitungsschläuche und Gabelschläuche. Hieraus resultiert eine hohe Strömungsgeschwindigkeit der Luft, die an Kanten zur Entstehung von Geräuschen führt. Deshalb wurde bei der in Figur 1 dargestellten Luftbrille darauf geachtet, dass die Innenwände des Zuleitungsschlauchs 5, des Y-Stücks 4, der beiden Stücke des Gabelschlauches 3, des Nasenstücks 2 sowie der Zinken 12 keine scharfen Kanten aufweisen und insbesondere die Innenseite der Übergänge zwischen diesen Bauteilen keine Stufen oder Kanten bilden.
Das Bauteil 7 kann in einer weiteren Ausführungsform ein Temperaturschalter 19 sein, den man als Temperatursensor mit schlechter Auflösung von einem Bit verstehen kann. Der Temperaturschalter kann beispielsweise durch einen Bimetallkontakt beispielsweise mit einer Auslösetemperatur im Bereich von 300C bis 5O0C, insbesondere von 400C, realisiert werden. Falls die Temperatur des Temperaturschalters die Auslösetemperatur übersteigt, wird der Heizkreis unterbrochen.
Zusätzlich oder alternativ zu Bauteil 7 kann ein Temperatursensor oder -Schalter 19 im Y-Stück 4 untergebracht sein, wie dies in Fig. 2 dargestellt ist. Ein zusätzlicher Temperaturschalter, beispielsweise ein Bimetallkontakt mit einer Auslösetemperatur von (50±10)°C, kann eine weitere Sicherung gegen Überhitzen beispielsweise beim versehentlichen Abknicken des Gabeischlauchs 3 und/oder des Zuleitungsschlauchs 5 darstellen. Oberhalb der Auslösetemperatur wird der Heizkreis unterbrochen. Der in Fig. 2 dargestellte Temperaturschalter 19 stellt einen schematisierten Bimetallkontakt dar.
Falls im Nasenstück kein Temperatursensor 7 vorgesehen ist, kann ein Temperatursensor oder -Schalter 19 allein Kondensation effektiv verhindern, da beim Y-Stück der nicht vom Körper des Patienten erwärmte Zuleitungsschlauch 5 endet. Insofern befindet sich im Zuleitungsschlauch 5 der kälteste und damit für Kondensation anfälligste Punkt zwischen Kompressor und Nasenstück 2. Wird die Temperatur des kältesten Punkts über dem Tau-Punkt gehalten, findet keine Kondensation statt. Eine Verlagerung des Temperatursensors oder Schalters in das Y-Stück 4 kann den Tragekomfort der Luftbrille 1 erhöhen, weil das Nasenstück 2 leichter und kleiner ausgeführt werden kann.
Da bei vorgegebener Geometrie der Luftbrille, insbesondere vorgegebenen Schlauchlängen und Durchmessern, aus der Temperatur im Y-Stück, der Heizleistung und dem eingestelltem Fluss näherungsweise die Lufttemperatur in den Zinken 12 berechnet werden kann, führt eine Verlagerung des Temperatursensors vom Nasenstück 2 in das Y-Stück 4 zu keinen nennenswerten Komforteinbussen.
Fig. 3 zeigt eine zweite Ausführungsform einer Luftbrille, bei der Zuleitungsschlauch 5 und Y-Stück 4 durch einen Doppellumenschlauch 13 ersetzt sind. Der Doppellumenschlauch besteht aus zwei Gabelschlauchstücken, die mechanisch miteinander verbunden sind. Bei dieser Ausführungsform entfällt das Y-Stück 4 oder ist gemäß einer anderen Sichtweise in den Stecker 6 integriert. Dort, wo die beiden Gabelschlauchstücke auseinander laufen, gibt es keine scharfen Kanten, sondern nur weite Radien. An dieser Stelle kann eine Schelle 14 vorgesehen sein, die ein weiteres aufspleißen des Doppellumenschlauchs verhindert. Die Aufteilung eines Luftstroms auf zwei Gabelschlauchstücke kann im Stecker 6 erfolgen und ist damit weiter von den Zinken 12 entfernt, sodass die Geräuschemission geringer ausfällt.
Fig. 4 zeigt eine Möglichkeit, einen Temperatursensor über nur zwei Heizdrähte auszulesen. Die beiden Heizdrähte 8 werden in dem in Figur 4 gezeigten Ersatzschaltbild durch die beiden Widerstände RH dargestellt. Rτ stellt einen Zweipol mit temperaturabhängigem Klemmenverhalten dar.
Im einfachsten Fall ist der Widerstand Rτ lediglich ein temperaturabhängiger Widerstand wie beispielsweise ein PtIOO oder PtIOOO. RT ist groß gegenüber RH.
Die Heizdrähte haben typischerweise einen Widerstand von 15Ω mit großen
Toleranzen. Wird an den drei in Serie geschalteten Widerständen eine positive
Heizspannung UH angelegt, so wird der Temperatursensor durch die parallel geschaltete Diode D kurz geschlossen, so dass im Wesentlichen nur die Heizdrähte beheizt werden. Wird an den drei in Serie geschalteten Widerständen eine negative oder eine kleine Messspannung UM angelegt, so fällt der überwiegende Teil der
Messspannung am Temperatursensor Rτ ab. Hieraus kann die Temperatur des Temperatursensors bestimmt werden. Die verbleibenden Spannungsabfälle an den Heizwiderständen können herausgerechnet werden.
Es ist aber auch möglich, eine temperaturabhängige Stromquelle, wie sie zum
Beispiel in Form der integrierten Schaltung AD592 vorliegt, als Zweipol Rτ einzusetzen. In diesem Fall dient die Diode D dazu, die integrierte Schaltung für den
Heizstrom zu überbrücken und damit zu schützen. Beispielsweise kann für die Diode
D eine Schottky-Diode wegen ihrer geringen Durchlassspannung eingesetzt werden.
Die Richtung des Messstroms ist dem Heizstrom entgegen gerichtet. Sein Betrag ist abhängig von der Temperatur und der eingesetzten integrierten Schaltung und beträgt wenige 100μA. Der besondere Vorteil dieser Lösung besteht darin, dass der
Drahtwiderstand das Messergebnis praktisch nicht beeinflusst.
Neben den direkt analog übertragenden Sensoren ist auch die Umsetzung des Temperatursignals durch Aufmodulation auf den Heizstrom möglich. Dies kann sowohl analog als auch digital erfolgen und in kundenspezifischen Schaltkreisen realisiert werden. Solche Schaltungen sind beispielsweise von Telefonen oder Babyphonen zur Modulation von Tonfrequenzsignalen auf die Betriebsspannung bekannt.
Die Polarität oder Höhe der angelegten Spannung kann weitaus schneller als die thermische Trägheit des Systems umgeschaltet werden, sodass das Umschalten zwischen Heizspannung UH und Messspannung UM praktisch keine Temperaturänderung zur Folge hat.
Fig. 4 zeigt einen Schnitt durch die Ausführungsform eines Heizdrahtes 8. Ein Metalldraht 21 ist in eine Isolation 22 eingebettet. Die Isolierung hat einen sternförmigen Querschnitt mit fünf dreieckförmigen Strahlen und ist damit invariant gegenüber Drehungen um 72°. Auch der Metalldraht 21 kann einen sternförmigen Querschnitt aufweisen. Jeder Strahl bildet eine Erhebung die längs des Drahtes entlang läuft. Die Erhebungen können auch schraubenförmig um die Mantelfläche herumlaufen, wobei die Länge eines Umlaufs typischerweise ein mehrfaches des Umfangs der Isolierung beträgt. Zweck der sternförmigen Isolierung ist, die Oberfläche des Drahtes zu vergrößern und so den Wärmewiderstand zur umgebenden Luft zu verringern. Außerdem soll selbst bei abgeknicktem Schlauch der Heizdraht möglichst auf allen Seiten von Luft umströmt werden, um nicht zu überhitzen und in den umgebenden Schlauch einzuschmelzen. Die dreieckförmigen Strahlen des Querschnitts spreizen dabei die Knickstelle eines Schlauches wobei die Berührungsfläche zwischen Schlauch und Isolierung klein ist und damit der Wärmewiderstand groß bleibt. Der Metalldraht 21 kann einen Durchmesser von etwa 0,3 mm und ein Kreis, der die Spitzen des Querschnitts gerade umschließt, einen Durchmesser von 1 mm haben.
Fig. 6 zeigt einen Schnitt durch einen Schlauch, wobei es sich um einen Gabelschlauch 3 oder einen Zuleitungsschlauch 5 handeln kann. Beide Schlaucharten unterscheiden sich typischerweise hauptsächlich durch ihren Durchmesser. Die innere Mantelfläche des Schlauches weist Vorsprünge 32 auf, die dazu dienen, den Mantel des Schlauches auch an Knickstellen zu spreizen, um trotz Knick den Luftfluss nicht völlig abzuschnüren. Am äußeren Umfang des Schlauches und/oder im Schlauchmaterial selbst, insbesondere in Vorsprüngen 32 sind Stabilisierungsfäden 31 bzw. 33 an- bzw. eingebracht, um eine Längsdehnung des Schlauches zu reduzieren. Die Stabilisierungsfäden 31 und 33 können während des Herstellungsprozesses in das Schlauchmaterial, insbesondere in Vorsprünge 32 eingebracht werden. Die Stabilisierungsfäden 31 und 33 können aus künstlichem oder natürlichem Faserwerkstoff, Kunststoff oder Metall bestehen. Der Grund für die Stabilisierungsfäden liegt darin, dass wärmebeständiges PVC zu steif ist und deswegen beispielsweise TPE oder Silicon eingesetzt werden müssen. Letztere Materialien sind stark dehnbar, was in Längsrichtung unerwünscht sein kann, weil dann auftretende Zugkräfte vom Heizdraht aufgenommen werden müssen und diesen und seine Anschlüsse mechanisch beanspruchen. Da die Schläuche bei Maximaldrücken von wenigen 100 Millibar betrieben werden, erscheint eine Stabilisierung in radialer Richtung nicht erforderlich.
Wenn die Stabilisierungsfäden, insbesondere die in Vorsprüngen 32, aus einem elektrisch leitfähigem Material, insbesondere aus Metall, evt. umgeben von einer thermisch beständigen, nicht notwendigerweise biokompatiblen, elektrischen Isolation, bestehen, können diese zur Beheizung eingesetzt werden und Heizdraht 8 ersetzen. Auf diese Weise können Probleme mit nicht-biokompatiblen Isolationsmaterialien umgangen werden. Schließlich können Gabelschlauch 3 und/oder Zuleitungsschlauch 5 von einer thermischen Isolation 34 umgeben sein. Diese sollte nicht zu dick sein, da insbesondere ein dünner Gabelschlauch Komfort und eine dicke Isolation eine Komforteinbuße bedeutet. Andererseits kann eine Isolation die Oberfläche der Schläuche weich und damit angenehmer machen. Aus technischer Sicht hat die Isolation den Vorteil, dass sie die Heizleistung reduziert. Diese muss auch im Fehlerfall bei Ausfall der Leistungsregelung und bei Anliegen der gesamten Versorgungsspannung unter 15W bleiben. Ein Absenken der Heizleistung macht deshalb den Einsatz weniger genau tolerierter und damit billigerer Heizdrähte oder längerer Schläuche möglich. Die im Augenblick angedachten Nasenbrillen benötigen tatsächlich fast 15W maximale Heizleistung.
Die Figuren 7, 9 sowie 11 zeigen drei perspektivische Ansichten einer zweiten Ausführungsform eines Nasenstücks 42. Die Figuren 8 und 10 zeigen Schnitte entlang der Linien Z-Z bzw. M-M. Die zweite Ausführungsform des Nasenstücks 42 unterscheidet sich lediglich qualitativ von der Ausführungsform des Nasenstücks 2. Um die Geräuschemission zu reduzieren ist Nasenstück 2 bauchiger, d. h. die lichte Querschnittfläche nimmt von den Schlauchanschlüssen zu den Zinken hin stärker zu. Hierdurch wird die Strömungsgeschwindigkeit der Luft verringert, um die Geräuschemission gering zu halten. Die Verringerung des Strömungswiderstands durch die Vergrößerung der Querschnittfläche im Nasenstück ist vernachlässigbar, weil der Strömungswiderstand maßgeblich durch die Dicke von Gabelschlauch 3 bestimmt wird. Derzeit werden drei Prototypen mit einer jeweils unterschiedlichen Zunahme der Querschnittfläche vorbereitet. Messergebnisse liegen noch nicht vor.
Nasenstück 42 umfasst Schlauchanschlüsse 44, Schlauchübergangsbereiche 45, Verbindungsstücke 47, Zinken 52 mit ringförmigen Noppen 53 sowie einem zentralen Verbindungsstück 48. Wie man in Fig. 11 erkennt, befindet sich zwischen Schlauchübergangsbereichen 45 und Schlauchanschlüssen 44 je eine Innenradiusstufe 46, die gerade den Unterschied zwischen Innen- und Außenradius von Gabelschlauch 3 kompensiert, um einen möglichst glatten Übergang zwischen der Innenfläche von Gabelschlauch 3 und Nasenstück 42 zu erzielen. Zu diesem Zweck können an den Enden von Gabelschlauch 3 die Vorsprünge 32 entfernt sein oder entsprechende Vorsprünge an der Innenfläche von Nasenstück 42 angeformt sein. Wie ebenfalls in Fig. 11 zu erkennen ist, weitet sich die lichte Querschnittfläche im Schlauchϋbergangsbereich 45.
Wie in Fig. 9 gut zu erkennen ist, sind die Übergangsbereiche 54 zwischen Zinken 52 und Verbindungsstücken 47 großzügig ausgerundet, um Geräuschemission zu reduzieren. Bei dem Prototypen beträgt beispielsweise dieser Radius außen 4,3 mm. Der Außendurchmesser der Zinken beträgt in der Nähe des Verbindungsstücks 5,5 mm und in der Nähe der Öffnung 5 mm. Die Wandstärke beträgt etwa 0,5 mm.
Der Übergangsbereich zwischen dem zentralen Verbindungsstück 48 und den Zinken 52 ist ebenfalls abgerundet, wobei der Außenradius ebenfalls im Bereich zwischen 4 und 5 mm liegt.
Die Einbuchtung 43 im zentralen Verbindungsstück 48 ist in den Fig. 8 und 10 im Schnitt und in Fig. 9 in einer Draufsicht dargestellt. Sie dient dazu, zwischen der linken und rechten Seite der Nasebrille einen definierten Strömungswiderstand einzustellen. Wie in Figur 1 gezeigt, ist die Luftbrille spiegelsymmetrisch. Dies trifft auch in den meisten Fällen für den Benutzer zu. Solange Spiegelsymmetrie gegeben ist, strömt durch das zentrale Verbindungsstück 48 keine Luft. Die Symmetrie kann beispielsweise dadurch gebrochen werden, dass entweder der linke oder rechte Gabelschlauch 3 abgeknickt ist oder der Benutzer Schnupfen hat und deshalb ein Nasenloch zugeschwollen ist. Im ersteren Fall ist es einerseits wünschenswert, dass beide Zinken über den noch offenen Schlauch versorgt werden. Andererseits ist ja der abgeknickte Gabelschlauch nicht vollständig verschlossen. Je höher der Druckabfall am abgeknickten Gabelschlauch, desto größer der Kühlluftfluss für Heizdraht 8. Um den Druckabfall am abgeknickten Gabelschlauch leicht zu erhöhen, kann ein Druckabfall am zentralen Verbindungsstück 48 wünschenswert sein. Falls ein Nasenloch zugeschwollen ist, ist es wünschenswert, mehr Luft über den anderen Zinken zu applizieren. Auch in diesem Fall ist ein Luftfluss durch das zentrale Verbindungsstück 48 wünschenswert.
In den Figuren 9, 10 sowie 11 ist auch der Temperatursensor 7 dargestellt.
In Fig. 12 ist das Y-Stück 4 vergrößert dargestellt. Man erkennt oben die beiden Gabelschlauchanschlüsse 91 und unten den Zuleitungsschlauchanschluss 93. Der Übergangsbereich 95 zwischen den beiden Gabelschlauchanschlüssen ist abgerundet und weist bei einer Ausführungsform einen Radius von 1mm auf. Zum Vergleich weisen bei dieser Ausführungsform die Gabelschläuche und der Zuleitungsschlauch einen Innenradius (ohne Vorsprünge 32) von 3 bzw. 5 mm auf. Die Abrundung von Übergangsbereich 95 ist insbesondere dann wichtig, wenn beispielsweise wegen Abknicken eines Gabelschlauches unsymmetrische Strömungsverhältnisse vorliegen. Alle Anschlüsse weisen Innenradiusstufen 92 und 94 auf, um den Unterschied zwischen Innenradius und Außenradius der angeschlossenen Schläuche zu kompensieren. Die Innenradiusstufen können entweder den Vorsprüngen 32 in den angeschlossenen Schläuchen entsprechende Vorsprünge aufweisen und/oder die Vorsprünge 32 können an den Schlauchenden entfernt sein.
Obwohl die Erfindung oben im Zusammenhang mit dem Gas Luft erläutert wurde, kann natürlich auch jedes andere, atembare Gasgemisch verwendet werden. Ganz abgesehen davon ist die Zusammensetzung von Luft beispielsweise hinsichtlich ihres Wasser- und Sauerstoffanteils nicht exakt festgelegt.
Die Erfindung wurde zuvor anhand von bevorzugten Ausführungsformen näher erläutert. Für einen Fachmann ist jedoch offensichtlich, dass verschiedene Abwandlungen und Modifikationen gemacht werden können, ohne vom Geist der Erfindung abzuweichen. Deshalb wird der Schutzbereich durch die nachfolgenden Ansprüche und ihre Äquivalente festgelegt.
Bezugszeichenliste
1 Luftbrille
2 Nasenstück
3 Gabelschlauch
5 4 Y-Stück
5 Zuleitungsschlauch
6 Stecker
7 Temperatursensor
8 Heizdraht
10 9 elektrisches Steckerteil
10 pneumatisches Steckerteil
11 Klammer
12 Zinke
13 Doppellumenschlauch
15 14 Schelle
16 Innenradiusstufe
17 zusätzliches Lumen
18 Trennwand
19 Temperaturschalter
20 21 Metalldraht
22 Isolation
31 Stabilisierungsfaden
32 Vorsprung
33 Stabilisierungsfaden
25 34 thermische Isolation
42 Nasenstück
43 Einbuchtung
44 Schlauchanschluss
45 Schlauchübergangsbereich
30 46 Innenradiusstufe
47 Verbindungsstück
48 zentrales Verbindungsstück
52 Zinke
53 Noppe Zinkenübergangsbereich
Gabelschlauchanschluss lnnenradiusstufe
Zuleitungsschlauchanschluss lnnenradiusstufe
Übergangsbereich

Claims

Patentansprüche
1. Luftbrille für ein Antischnarch- oder PAP-Gerät mit:
einem Gabelschlauch (3), der mit Öffnungen (12; 52) pneumatisch verbunden ist, die so ausgestaltet und positioniert sind, dass über diese Öffnungen (12; 52) Luft in die Nase eines Benutzers appliziert werden kann,
gekennzeichnet durch:
einen Heizdraht (8, 31 , 33), der im Gabelschlauch (3) verläuft, so dass der Heizdraht (8) die durch den Gabelschlauch (3) zugeführte Luft erwärmen kann.
2. Luftbrille gemäß Anspruch 1, dadurch gekennzeichnet, dass ein Temperatursensor (7) in der Nähe der Öffnungen (12; 52) angebracht ist, sodass der Temperatursensor (7) die Temperatur der über die Öffnungen (12; 52) applizierten Luft messen kann.
3. Luftbrille gemäß Anspruch 2, dadurch gekennzeichnet, dass der Temperatursensor (7) mit dem Heizdraht (8) so verbunden ist, dass er über den Heizdraht (8) mit elektrischer Energie versorgt werden kann und das
Temperatursignal des Temperatursensors (7) auch über den Heizdraht (8) ausgelesen werden kann.
4. Luftbrille gemäß Anspruch 3, dadurch gekennzeichnet, dass der Temperatursensor (7) ein digitaler Temperatursensor ist, der sein Temperatursignal auf die Spannung aufmoduliert, die dem Temperatursensor
(7) über den Heizdraht (8) zugeführt wird.
5. Luftbrille gemäß einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Heizdraht (8) einen drahtförmigen Metallkern (21) aufweist, der von einer Isolierung (22) umgeben ist, deren äußere Mantelfläche Erhöhungen und Vertiefungen aufweist.
6. Luftbrille gemäß Anspruch 5, dadurch gekennzeichnet, dass die Mantelfläche der Isolierung (22) etwa in Längsrichtung des Heizdrahtes (7) verlaufende Erhöhungen mit dreieckförmigen Querschnitten aufweist, sodass die Isolierung (22) insgesamt einen sternförmigen Querschnitt aufweist.
7. Luftbrille gemäß Anspruch 5 oder 6, dadurch gekennzeichnet, dass auch der Metallkern (21) auf seiner Mantelfläche Erhöhungen und Vertiefungen aufweist.
8. Luftbrille gemäß einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Gabelschlauch (3) Stabilisierungsfäden (31 , 33) aufweist.
9. Luftbrille gemäß einem der obigen Ansprüche, dadurch gekennzeichnet, dass zwei Stücke des Gabelschlauches (3) an einem steckerseitigen Ende mechanisch zu einem Doppellumenschlauch (13) verbunden sind.
10. Luftbrille gemäß einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Gabelschlauch (3) pneumatisch mit einem pneumatischen Steckerteil (10) eines Steckers (6) und der Heizdraht (8) elektrisch mit einem elektrischen Steckerteil (9) des Steckers (6) verbunden sind.
11. Luftbrille gemäß einem der obigen Ansprüche, dadurch gekennzeichnet, dass die Öffnungen durch Zinken (12, 52) etwa in der Mitte eines Nasenstücks (2, 42) gebildet werden, wobei ein linkes Stück des Gabelschlauches (3) an der linken Seite des Nasenstücks (2, 42) und ein rechtes Stück des Gabelschlauches (3) an der rechten Seite des Nasenstücks (2, 42) pneumatisch angeschlossen sind und der Heizdraht (8, 31 , 33) vom linken Stück des Gabelschlauches (3) durch das Innere des Nasenstücks (2, 42) zum rechten Stück des Gabelschlauches (3) verläuft.
12. Nasenstück für eine Luftbrille insbesondere gemäß einem der obigen Ansprüche, mit:
einer Verbindungsstelle (44) zum Anbringen eines Gabelschlauches (3);
dadurch gekennzeichnet, dass die Verbindungsstelle eine Innenradiusstufe (46) an einem Ende der Verbindungsstelle (44) aufweist, deren Höhe gerade der halben Differenz zwischen Innen- und Außendurchmesser des
Gabelschlauches (3) entspricht, sodass sich bei Anbringen eines
Gabelschlauches (3) an der Verbindungsstelle (44) ein glatter Übergang zwischen dem Inneren des Gabelschlauches (3) und dem Inneren des Nasenstücks ergibt.
13. Nasenstück, insbesondere gemäß Anspruch 10, für eine Luftbrille insbesondere gemäß einem der Ansprüche 1 bis 9, mit:
einem Zinken (12; 52) zum Applizieren von Luft in ein Nasenloch eines Benutzers;
einer Verbindungsstelle (44) zum Anbringen eines Gabelschlauches (3); und
einem Verbindungsstück (47), das den Zinken (12; 52) mit der Verbindungsstelle (44) mechanisch und pneumatisch verbindet,
dadurch gekennzeichnet, dass der Übergangsbereich (54) zwischen dem Zinken (12; 52) und dem Verbindungsstück (47) einen Radius in einer durch den Zinken und das Verbindungsstück (47) festgelegten Ebene aufweist, der größer als der Radius des Zinken (12; 52) ist.
14. Nasenstück, insbesondere gemäß Anspruch 12 oder 13, für eine Luftbrille insbesondere gemäß einem der Ansprüche 1 bis 9, mit:
zwei Zinken (12; 52) zum Applizieren von Luft in je ein Nasenloch eines Benutzers;
einem zentralen Verbindungsstück (48), das die beiden Zinken (12; 52) mechanisch und pneumatisch verbindet;
zwei Schlauchanschlüsse (44); und
zwei Verbindungsstücke (47), wobei jedes Verbindungsstück je einen Zinken (12; 52) mit einem Schlauchanschluss (44) mechanisch und pneumatisch verbindet,
dadurch gekennzeichnet, dass
das zentrale Verbindungsstück (48) eine Einbuchtung (43) aufweist, so dass die Fläche des lichten Querschnitts des zentralen Verbindungsstücks (48) kleiner als die Fläche der lichten Querschnitte der beiden Verbindungsstücke
(47) ist.
15. Nasenstück, insbesondere gemäß einem der Ansprüche 12 bis 14, für eine Luftbrille insbesondere gemäß einem der Ansprüche 1 bis 9, mit:
zwei Zinken (12; 52) zum Applizieren von Luft in je ein Nasenloch eines Benutzers;
einem zentralen Verbindungsstück (48), das die beiden Zinken (12; 52) mechanisch und pneumatisch verbindet;
dadurch gekennzeichnet, dass
der Übergangsbereich zwischen dem zentralen Verbindungsstück (48) in einer durch die beiden Zinken (12; 52) definierten Ebene abgerundet ist, wobei der Radius dieses Übergangsbereichs größer als der Radius der Zinken ist.
16. Y-Stück für eine Luftbrille insbesondere gemäß einem der Ansprüche 1 bis 8, mit:
zwei Gabelschlauchanschlüssen (91); und
einem Zuleitungsschlauchanschluss (93), wobei das Y-Stück alle drei Schlauchanschlüsse mechanisch und pneumatisch verbindet,
dadurch gekennzeichnet, dass
jeder der beiden Gabelschlauchanschlüsse (91) eine Innenradiusstufe (92) an einem Ende des Gabelschlauchanschlusses (91) aufweist, deren Höhe gerade der halben Differenz zwischen Innen- und Außendurchmesser des Gabelschlauches (3) entspricht, sodass sich bei Anbringen eines
Gabelschlauches (3) an einem Gabelschlauchanschluss (91) ein glatter Übergang zwischen dem Inneren des Gabelschlauches (3) und dem Inneren des Y-Stücks (4) ergibt.
17. Y-Stück gemäß Anspruch 16, dadurch gekennzeichnet, dass der Zuleitungsschlauchanschluss (93) eine Innenradiusstufe (94) an einem Ende des Zuleitungsschlauchanschlusses (93) aufweist, deren Höhe gerade der halben Differenz zwischen Innen- und Außendurchmesser des Zuleitungsschlauches (5) entspricht, so dass sich bei Anbringen eines Zuleitungsschlauches (5) am Zuleitungsschlauchanschluss (93) ein glatter Übergang zwischen dem Inneren des Zuleitungsschlauches (5) und dem Inneren des Y-Stücks (4) ergibt.
18. Y-Stück gemäß Anspruch 16 oder 17, dadurch gekennzeichnet, dass der 5 Übergangsbereich (95) zwischen den beiden Gabelschlauchanschlüssen (91) im Inneren des Y-Stücks (4) abgerundet ist, wobei der Radius in diesem Übergangsbereich (95) in einer durch die beiden Gabelschlauchanschlüsse (91) definierten Ebene größer als ein Zehntel des lichten Querschnitts eines Gabelschlauchanschlusses (91 ) ist.
io 19. Verfahren zur Vermeidung von Kondensation in einer Luftbrille mit:
Zuführen (6) eines Gases zur Luftbrille; und
Applizieren des Gases durch Öffnungen (12; 52) in der Luftbrille;
gekennzeichnet durch:
Heizen (8) des Gases während es durch die Schläuche der Luftbrille strömt.
15 20. Verfahren gemäß Anspruch 19, gekennzeichnet durch:
Messen (7) der Temperatur in der Nähe der Öffnungen (12; 52) zum Applizieren des Gases; und
Steuern der Heizleistung, so dass eine Kondensation in der Luftbrille vermieden wird.
20 21. Verfahren gemäß Anspruch 19 oder 20, dadurch gekennzeichnet, dass ein Temperatursensor (7), der die Temperatur in der Nähe der Öffnungen (12; 52) misst, über Heizdrähte (8) zum Heizen des Gases mit elektrische Energie versorgt wird und die Heizdrähte (8) zur Übertragung des Sensorsignals verwendet werden.
25
PCT/DE2005/002335 2005-01-07 2005-12-30 Luftbrille, nasenstück, y-stück sowie verfahren WO2006072231A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007549791A JP5026281B2 (ja) 2005-01-07 2005-12-30 鼻カニューレ、鼻当て、y型エレメントおよび対応する方法
US11/920,100 US20090025723A1 (en) 2005-01-07 2005-12-30 Nasal cannula
DE502005001679T DE502005001679D1 (de) 2005-01-07 2005-12-30 Luftbrille
EP05850200A EP1715909B1 (de) 2005-01-07 2005-12-30 Luftbrille
DE112005003491T DE112005003491A5 (de) 2005-01-07 2005-12-30 Luftbrille, Nasenstück, Y-Stück sowie Verfahren
CN2005800461666A CN101098726B (zh) 2005-01-07 2005-12-30 鼻套管
US11/879,027 US7775210B2 (en) 2005-01-07 2007-07-13 Nasal cannula

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005000922.0 2005-01-07
DE102005000922A DE102005000922A1 (de) 2005-01-07 2005-01-07 Luftbrille, Nasenstück, Y-Stück sowie Verfahren

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/879,027 Continuation US7775210B2 (en) 2005-01-07 2007-07-13 Nasal cannula

Publications (2)

Publication Number Publication Date
WO2006072231A2 true WO2006072231A2 (de) 2006-07-13
WO2006072231A3 WO2006072231A3 (de) 2006-11-16

Family

ID=36127291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/002335 WO2006072231A2 (de) 2005-01-07 2005-12-30 Luftbrille, nasenstück, y-stück sowie verfahren

Country Status (9)

Country Link
US (2) US20090025723A1 (de)
EP (3) EP1859831B1 (de)
JP (1) JP5026281B2 (de)
CN (1) CN101098726B (de)
AT (2) ATE495779T1 (de)
DE (4) DE102005000922A1 (de)
ES (3) ES2297769T3 (de)
PT (1) PT2374494T (de)
WO (1) WO2006072231A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060587A2 (en) * 2006-11-15 2008-05-22 Vapotherm, Inc. Nasal cannula with reduced heat loss to reduce rainout
JP2009056304A (ja) * 2007-08-29 2009-03-19 Smiths Medical Asd Inc 鼻カニューレ
DE102008010475A1 (de) 2008-02-21 2009-08-27 Seleon Gmbh Applikatoren für eine Luftbrille
US8196579B2 (en) * 2007-08-29 2012-06-12 Smiths Medical Asd, Inc. Nose cannula heated/humidified gas delivery system
US9408988B2 (en) 2007-10-10 2016-08-09 Parion Sciences, Inc. Inhaled hypertonic saline delivered by a heated nasal cannula
US10300236B2 (en) 2012-10-31 2019-05-28 Vapotherm, Inc. Quiet nasal cannula

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481219B2 (en) * 2004-06-18 2009-01-27 Mergenet Medical, Inc. Medicine delivery interface system
WO2007019628A1 (en) 2005-08-15 2007-02-22 Resmed Ltd Low cost cpap flow generator and humidifier assembly
DE102006019402A1 (de) * 2006-04-24 2007-10-25 Seleon Gmbh Verfahren zur Steuerung eines TNI-Geräts sowie TNI-Gerät
GB0610171D0 (en) 2006-05-23 2006-06-28 Robitaille Jean Pierre Valved nasal canula
JP5443991B2 (ja) 2006-11-08 2014-03-19 レスメド・リミテッド 呼吸装置に用いるための導管
MX2010008200A (es) * 2008-01-25 2011-03-15 Salter Labs Sistema para terapia respiratoria que incluye un ensamble de cánula nasal.
US9802022B2 (en) 2008-03-06 2017-10-31 Resmed Limited Humidification of respiratory gases
DE102009047246A1 (de) 2008-12-01 2010-06-10 Fisher & Paykel Healthcare Ltd., East Tamaki Nasenkanüle
AU2015203493B2 (en) * 2008-12-01 2017-08-17 Fisher & Paykel Healthcare Limited Nasal cannula
AU2010206053B2 (en) 2009-07-31 2014-08-07 ResMed Pty Ltd Wire Heated Tube with Temperature Control System, Tube Type Detection, and Active Over Temperature Protection for Humidifier for Respiratory Apparatus
US20110282248A1 (en) * 2010-03-04 2011-11-17 Martin Ruth E Portable high frequency air pulse delivery device
US20110315148A1 (en) * 2010-06-12 2011-12-29 Widgerow Alan D Skin adherent medical devices
US20110303224A1 (en) * 2010-06-12 2011-12-15 Widgerow Alan D Skin adherent medical devices
US20120203127A1 (en) * 2011-02-07 2012-08-09 Slp Ltd. Nasal cannula with integrated thermal flow sensing
AU2012267938B2 (en) 2011-06-07 2017-05-04 Parion Sciences, Inc. Methods of treatment
US9308341B2 (en) * 2011-08-04 2016-04-12 Travis Ray NEELY Oxygen delivery apparatus, system, and method
EP2760390B1 (de) 2011-09-29 2019-06-12 Trudell Medical International Nasaleinsatz
US8733348B2 (en) 2011-09-30 2014-05-27 Carefusion 207, Inc. Humidifying respiratory gases
US10168046B2 (en) 2011-09-30 2019-01-01 Carefusion 207, Inc. Non-metallic humidification component
US9212673B2 (en) 2011-09-30 2015-12-15 Carefusion 207, Inc. Maintaining a water level in a humidification component
US9289572B2 (en) 2011-09-30 2016-03-22 Carefusion 207, Inc. Humidifying gas for respiratory therapy
US9067036B2 (en) * 2011-09-30 2015-06-30 Carefusion 207, Inc. Removing condensation from a breathing circuit
CN102688547A (zh) * 2011-11-22 2012-09-26 河南科技大学 一种空气调节单元及由该单元组成的微型空气调节器
TWD149376S1 (zh) * 2011-12-06 2012-09-21 崇仁科技事業股份有限公司; 呼吸鼻管
JP6352240B2 (ja) * 2012-03-30 2018-07-04 フィッシャー アンド ペイケル ヘルスケア リミテッド 加湿システム
US9272113B2 (en) 2012-03-30 2016-03-01 Carefusion 207, Inc. Transporting liquid in a respiratory component
GB2571443B (en) 2012-06-25 2019-11-20 Fisher & Paykel Healthcare Ltd A component for a medical circuit comprising a liquid dispenser
KR101449920B1 (ko) 2012-09-12 2014-10-08 (주)유 바이오메드 호흡가스를 이용한 체온 조절용 호흡마스크
BR112015012307A2 (pt) * 2012-11-27 2017-07-11 Univ Rice William M pressão positiva contínua nas vias aéreas de bolhas
CN108355219B (zh) * 2012-12-04 2021-04-02 马林克罗特医疗产品知识产权公司 用于在氧化氮递送期间对给药的稀释最小化的套管
US9795756B2 (en) 2012-12-04 2017-10-24 Mallinckrodt Hospital Products IP Limited Cannula for minimizing dilution of dosing during nitric oxide delivery
WO2014097145A1 (en) * 2012-12-20 2014-06-26 Koninklijke Philips N.V. Inline adapter for a respiratory therapy device
RU2015133209A (ru) 2013-01-08 2017-02-15 Кэпниа, Инк. Выбор дыхательного цикла для анализа
NZ727820A (en) 2013-02-01 2018-06-29 Resmed Ltd Wire heated tube with temperature control system for humidifier for respiratory apparatus
JP2016510107A (ja) 2013-02-12 2016-04-04 キャプニア, インク.Capnia, Inc. 呼気分析のためのサンプリングおよび格納レジストリ・デバイス
EP2968830B1 (de) 2013-03-14 2019-03-06 Fisher & Paykel Healthcare Limited Befeuchterkammer mit mikrostrukturierter oberfläche
CN109701135A (zh) * 2013-03-15 2019-05-03 费雪派克医疗保健有限公司 鼻套管组件和相关部件
US9561341B2 (en) * 2013-05-17 2017-02-07 Katarina Short Humidification of ventilator gases
EP3030299B1 (de) 2013-08-09 2020-07-01 Fisher & Paykel Healthcare Limited Asymmetrische nasale verabreichungselemente und kupplungen für nasale schnittstellen
SG11201601439QA (en) * 2013-08-30 2016-03-30 Capnia Inc Columnar flow gas sampling and measurement system
MX2016002627A (es) 2013-08-30 2016-12-09 Capnia Inc Sistema de medicion de dioxido de carbono de neonatos.
CA3176936A1 (en) 2013-10-16 2015-04-23 Fisher & Paykel Healthcare Limited Patient interface having hinged regions for enhanced stability
DE102013017348B3 (de) * 2013-10-18 2014-11-13 Tni Medical Ag Multifunktionaler, mobil einsatzfähiger Applikator
AU2015318732B2 (en) 2014-09-19 2020-07-30 Fisher & Paykel Healthcare Limited A patient interface
AU2014411010B2 (en) * 2014-11-13 2018-04-12 Tni Medical Ag Multifunctional applicator which can be used in a mobile manner
EP3341510B1 (de) 2015-08-26 2020-03-04 Picanol Antriebsmechanismus für den antrieb eines webschafts einer webmaschine
US11766537B2 (en) * 2016-07-22 2023-09-26 Fisher & Paykel Healthcare Limited Sensing for respiratory circuits
USD870269S1 (en) 2016-09-14 2019-12-17 Fisher & Paykel Healthcare Limited Nasal cannula assembly
DE202017001233U1 (de) 2017-03-07 2017-05-22 Norbert Neubauer Gesichts - und Atemschale
US11110306B2 (en) * 2018-01-05 2021-09-07 Carlos Alberto Estrada Montoya Portable device for heating the air that enters the nose of a user
DE202020001147U1 (de) 2020-03-24 2020-04-15 Norbert Neubauer Filteraufnahme mit Augenschutz
DE202020001359U1 (de) 2020-04-03 2020-04-22 Norbert Neubauer Atemmaske
DE202020001511U1 (de) 2020-04-11 2020-05-07 Norbert Neubauer Schutzmaske

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062413A2 (de) * 2001-02-06 2002-08-15 Seleon Gmbh Antischnarchgerät, verfahren zur verringerung des schnarchens sowie luftbrille
US20030079749A1 (en) * 2001-10-25 2003-05-01 Roger Strickland Nasal cannula
US20040182392A1 (en) * 2003-03-22 2004-09-23 Henning Gerder Breathing gas tube for a respirator
WO2004105848A1 (en) * 2003-05-30 2004-12-09 E.M.E. (Electro Medical Equipment) Limited Heaters for breathing tubes

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2104266A (en) * 1935-09-23 1938-01-04 William J Mccormick Means for the production and inhalation of tobacco fumes
US4682010A (en) * 1983-03-07 1987-07-21 Safeway Products, Inc. In-line electric heater for an aerosol delivery system
GB2173274B (en) * 1985-04-04 1989-02-01 Boc Group Plc Improvements in inhalation apparatus
AU581986B2 (en) * 1985-05-22 1989-03-09 Fisher & Paykel Healthcare Limited Improvements in or relating to methods of and/or apparatus for humidifying gases
DD238922B1 (de) * 1985-07-03 1989-10-04 Schwarze Pumpe Gas Veb Vorrichtung zur atemgasklimatisierung bei der intensivtherapie
US4738401A (en) * 1987-02-24 1988-04-19 Spraying Systems Co. Quick disconnect nozzle assembly with twist-on spray tip
JPH034248Y2 (de) * 1987-09-16 1991-02-04
JPH041954Y2 (de) * 1988-09-09 1992-01-23
US4967744A (en) * 1988-11-03 1990-11-06 Airoflex Medical, Inc. Flexible breathing circuit
US4989599A (en) * 1989-01-26 1991-02-05 Puritan-Bennett Corporation Dual lumen cannula
JPH0340731U (de) * 1989-08-29 1991-04-18
JPH04164458A (ja) * 1990-10-26 1992-06-10 Aika:Kk 呼吸器用加温加湿装置
JP2582720Y2 (ja) * 1991-08-15 1998-10-08 いすゞ自動車株式会社 NOxセンサ
US5477852A (en) * 1991-10-29 1995-12-26 Airways Ltd., Inc. Nasal positive airway pressure apparatus and method
JPH05296676A (ja) * 1992-04-15 1993-11-09 Ntc Kogyo Kk 蓄熱装置
JPH0623051A (ja) * 1992-07-06 1994-02-01 Toransumedo Kk 加温加湿装置
JPH06114003A (ja) * 1992-10-07 1994-04-26 Olympus Optical Co Ltd 形状記憶合金を使用した長尺体湾曲駆動装置
US5392770A (en) * 1993-06-29 1995-02-28 Clawson; Burrell E. Tubing circuit systems for humidified respiratory gas
GB2284356B (en) * 1993-11-22 1997-10-29 Fisher & Paykel Respiratory humidifier conduit
US5465728A (en) * 1994-01-11 1995-11-14 Phillips; Michael Breath collection
US5513635A (en) * 1995-02-02 1996-05-07 Bedi; Shan Nasal cannula anchoring apparatus
DE19617095C1 (de) * 1996-04-29 1997-12-04 Ruesch Willy Ag Beheizbarer Beatmungsschlauch
DE19746742A1 (de) * 1997-10-23 1999-05-06 Messer Austria Gmbh Gasversorgungssystem für spontanatmende Patienten
CA2278053C (en) * 1997-01-17 2010-03-23 Messer Griesheim Austria Ges.Mbh Controlled gas supply system
US6167883B1 (en) * 1998-01-23 2001-01-02 Respiratory Support Products, Inc. Medical air hose internal flow heater
AU4687600A (en) * 1999-04-27 2000-11-10 Loma Linda University Medical Center Device and method for the administration of oxygen
WO2000072905A1 (en) * 1999-05-28 2000-12-07 Euromedico Ltd. Gas-supplying device
DE19942748A1 (de) * 1999-09-08 2001-03-15 Konrad Wirsich Sauerstoffkateter mit Biegung im Nasenbereich
DE10007506B4 (de) * 2000-02-18 2006-02-02 Map Medizin-Technologie Gmbh Atemgasschlauchanordnung zur Zufuhr eines Atemgases
BR0102116B1 (pt) * 2000-05-10 2010-09-21 componente para um membro de circuito de respiração.
TW453865B (en) * 2000-05-23 2001-09-11 Optovent Ab Apparatus and method for monitoring a patient's breath and supplying a gas or gases different from ambient air to the patient, and nose adapter for the apparatus
KR20020004630A (ko) 2000-07-06 2002-01-16 정강훈 코러패드형 골판지 제조장치
JP3420186B2 (ja) * 2000-08-07 2003-06-23 株式会社東京興業貿易商会 医療用マスク
US6431172B1 (en) * 2000-10-20 2002-08-13 Mallinckrodt Inc. Nasal cannula with inflatable plenum chamber
FR2827778B1 (fr) * 2001-07-30 2004-05-28 Vygon Appareil nasal d'assistance respiratoire
WO2003041780A2 (en) * 2001-11-16 2003-05-22 Fisher & Paykel Healthcare Limited A nasal positive pressure device
EP1453524A2 (de) * 2001-12-04 2004-09-08 Minnesota High-Tech Resources, LLC Atembare gasgemische zur regelung der körpertemperatur
AU2003207984A1 (en) * 2002-02-15 2003-09-04 Oridion Medical 1987 Ltd. Dual function nasal cannula
US7140367B2 (en) * 2002-02-20 2006-11-28 Fisher & Paykel Healtcare Limited Conduit overheating detection system
US7024235B2 (en) * 2002-06-20 2006-04-04 University Of Florida Research Foundation, Inc. Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same
JP4162126B2 (ja) * 2002-09-13 2008-10-08 宗行 石塚 酸素吸入装置
DE10322964B4 (de) * 2003-05-21 2006-03-23 Seleon Gmbh Steuergerät für Antischnarchgerät sowie Antischnarchgerät
US7493902B2 (en) * 2003-05-30 2009-02-24 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
WO2005011556A2 (en) * 2003-07-28 2005-02-10 Salter Labs Respiratory therapy system including a nasal cannula assembly
US8196579B2 (en) * 2007-08-29 2012-06-12 Smiths Medical Asd, Inc. Nose cannula heated/humidified gas delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062413A2 (de) * 2001-02-06 2002-08-15 Seleon Gmbh Antischnarchgerät, verfahren zur verringerung des schnarchens sowie luftbrille
US20030079749A1 (en) * 2001-10-25 2003-05-01 Roger Strickland Nasal cannula
US20040182392A1 (en) * 2003-03-22 2004-09-23 Henning Gerder Breathing gas tube for a respirator
WO2004105848A1 (en) * 2003-05-30 2004-12-09 E.M.E. (Electro Medical Equipment) Limited Heaters for breathing tubes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171935B2 (en) 2006-11-15 2012-05-08 Vapotherm, Inc. Nasal cannula with reduced heat loss to reduce rainout
WO2008060587A3 (en) * 2006-11-15 2008-10-09 Vapotherm Inc Nasal cannula with reduced heat loss to reduce rainout
WO2008060587A2 (en) * 2006-11-15 2008-05-22 Vapotherm, Inc. Nasal cannula with reduced heat loss to reduce rainout
AU2008203393B2 (en) * 2007-08-29 2013-10-10 Smiths Medical Asd, Inc. Nose cannula heated/humidifed gas delivery system
US8196579B2 (en) * 2007-08-29 2012-06-12 Smiths Medical Asd, Inc. Nose cannula heated/humidified gas delivery system
US8215301B2 (en) * 2007-08-29 2012-07-10 Smiths Medical Asd, Inc. Nose cannula heated/humidified gas delivery system
US8448639B2 (en) 2007-08-29 2013-05-28 Smiths Medical Asd, Inc. Nose cannula heated/humidified gas delivery system
JP2009056304A (ja) * 2007-08-29 2009-03-19 Smiths Medical Asd Inc 鼻カニューレ
US9408988B2 (en) 2007-10-10 2016-08-09 Parion Sciences, Inc. Inhaled hypertonic saline delivered by a heated nasal cannula
US9987443B2 (en) 2007-10-10 2018-06-05 Parion Sciences, Inc. Inhaled hypertonic saline delivered by a heated nasal cannula
WO2009103288A1 (de) 2008-02-21 2009-08-27 Seleon Gmbh Applikatoren für eine luftbrille
DE102008010475A1 (de) 2008-02-21 2009-08-27 Seleon Gmbh Applikatoren für eine Luftbrille
US10300236B2 (en) 2012-10-31 2019-05-28 Vapotherm, Inc. Quiet nasal cannula
US11439784B2 (en) 2012-10-31 2022-09-13 Vapotherm, Inc. Quiet nasal cannula

Also Published As

Publication number Publication date
US20070283957A1 (en) 2007-12-13
CN101098726A (zh) 2008-01-02
DE502005010895D1 (de) 2011-03-03
JP2008526328A (ja) 2008-07-24
EP2374494A2 (de) 2011-10-12
ATE375178T1 (de) 2007-10-15
EP1859831B1 (de) 2011-01-19
EP1859831A1 (de) 2007-11-28
CN101098726B (zh) 2010-08-11
DE502005001679D1 (de) 2007-11-22
DE112005003491A5 (de) 2007-12-06
ES2621654T3 (es) 2017-07-04
EP2374494B1 (de) 2017-03-01
PT2374494T (pt) 2017-03-24
DE102005000922A1 (de) 2006-07-20
EP2374494A3 (de) 2012-02-22
US20090025723A1 (en) 2009-01-29
EP1715909B1 (de) 2007-10-10
ES2297769T3 (es) 2008-05-01
ES2359995T3 (es) 2011-05-30
EP1715909A2 (de) 2006-11-02
JP5026281B2 (ja) 2012-09-12
WO2006072231A3 (de) 2006-11-16
US7775210B2 (en) 2010-08-17
ATE495779T1 (de) 2011-02-15

Similar Documents

Publication Publication Date Title
EP2374494B1 (de) Nasenstück für Luftbrille
US20220072259A1 (en) Breathing tube
DE10322964B4 (de) Steuergerät für Antischnarchgerät sowie Antischnarchgerät
JP2022122868A (ja) 医療用チューブおよびその製造方法
DE112008003064T5 (de) Nasenolive mit hochvolumiger Bypassströmung und Verfahren zu deren Verwendung
DE112011101485T5 (de) Gerät zur Zuführung von Gasen zu einem Patienten
US20130255677A1 (en) Disposable respiratory circuit coupled with a disposable temperature sensor
DE3435565A1 (de) Verfahren und vorrichtung zum behandeln einer obturierenden schlafatemnot
DE202007019688U1 (de) Atemhilfsgerät
DE10331837B3 (de) Gesichtsmaske für Beatmungsgeräte
EP0806217A2 (de) Beheizbarer Beatmungsschlauch und Verfahren zu seiner Herstellung
DE10021782B4 (de) Vorrichtung zur Zufuhr eines Atemgases unter Überdruck
EP1491226B1 (de) Verfahren zur Befeuchtung eines Atemgases sowie Vorrichtung zur Beatmung
EP3852853B1 (de) System zur unterstützung der atmung
DE112022002439T5 (de) Patientenschnittstelle
DE102010051079A1 (de) Beheiztes Beatmungsschlauchsystem
CN218391830U (zh) 一种围手术期专用的呼吸回路组合
CN217187332U (zh) 一种吸氧装置
EP3539604B1 (de) Sauerstofftherapiegerät
US20120060836A1 (en) Patient circuit for improved support delivery
Shangold et al. CPAP, APAP
JP2024501639A (ja) 呼吸コネクタアセンブリ及び呼吸補助システム
DE102014012792A1 (de) Beatmungsgerät und Verfahren für ein Beatmungsgerät

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005850200

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005850200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007549791

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580046166.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11879027

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050034917

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 2005850200

Country of ref document: EP

REF Corresponds to

Ref document number: 112005003491

Country of ref document: DE

Date of ref document: 20071206

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 11879027

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11920100

Country of ref document: US