WO2006071203A2 - Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee - Google Patents

Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee Download PDF

Info

Publication number
WO2006071203A2
WO2006071203A2 PCT/TN2005/000005 TN2005000005W WO2006071203A2 WO 2006071203 A2 WO2006071203 A2 WO 2006071203A2 TN 2005000005 W TN2005000005 W TN 2005000005W WO 2006071203 A2 WO2006071203 A2 WO 2006071203A2
Authority
WO
WIPO (PCT)
Prior art keywords
activity
strain
arabinose isomerase
galactose
tagatose
Prior art date
Application number
PCT/TN2005/000005
Other languages
English (en)
Other versions
WO2006071203A3 (fr
Inventor
Moez Rhimi
Hichem Chouayekh
Mamdouh Ben Ali
Belgacem Naili
Sonia Jemli
Samir Bejar
Original Assignee
Centre De Biotechnologie De Sfax - Cbs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre De Biotechnologie De Sfax - Cbs filed Critical Centre De Biotechnologie De Sfax - Cbs
Priority to US11/794,510 priority Critical patent/US20100173366A1/en
Priority to EP05762170A priority patent/EP1841873A2/fr
Publication of WO2006071203A2 publication Critical patent/WO2006071203A2/fr
Publication of WO2006071203A3 publication Critical patent/WO2006071203A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)

Definitions

  • L-arabinose isomerase having a minimal dependence on metal ions for its activity and for its thermosolvation, encoded by a newly isolated and characterized nucleotide sequence.
  • This patent concerns the production and exploitation of enzymes of industrial interest in the agri-food or other fields. More particularly, the invention relates to an L-arabinose isomerase having interesting physico-chemical properties that can be exploited on an industrial scale.
  • the subject of the invention is the screening, cloning and sequencing of the gene coding for a new L-AI, as well as the analysis of the aa sequence of the corresponding enzyme. It also relates to the characterization and use of an L-arabinose isomerase with original characteristics.
  • L-arabinose isomerases are also known as D-galactose isomerases since, in vitro, they are capable of bio-converting D-galactose to D-tagatose. It is in fact this characteristic which is of industrial interest since it is exploited for the production of D-tagatose.
  • D-tagatose is a naturally occurring ceto-hexose, stereoisomer of D-fructose. It has a sucrose power similar to that of sucrose and a zero calorific value. This ketosis is used as a sweetener, or in combination with other compounds having strong sweetening powers in agri-food products. Thanks to its anti-hyperglycemic power. D-tagatose is important for diabetic subjects. In the pharmaceutical field this sugar is used for the preservation of organs in addition to its "anti-biofilm" power.
  • L-arabinose isomerases are metalloproteins which require fairly high concentrations of metal ions for their optimal functioning. However, these ions are not allowed in the final products and must be eliminated which requires an additional separation step thus increasing the final production cost. It follows from the foregoing that it is interesting to screen new L-arabinose isomerases thermoactive, thermostable and having a low requirement for metal ions.
  • the L-arabinose isomerase of the strain US100 which we describe in this document, has the originality of having both a high optimum temperature (80 0 C), a high catalytic efficiency, an independence vis-à-vis the ions metal for its thermoactivity and a very low requirement in these ions for its thermostability.
  • this invention is characterized by the following steps:
  • FIG. 1 shows the restriction maps of the expression vectors pMR1 (A) and pMR6 (B) containing the gene arci US L OO of L-AI US100, object of this invention.
  • Amp gene coding for ampicillinc resistance
  • T7 T7 promoter
  • SP6 SP6 promoter.
  • FIG. 2 shows the nucleotide sequence of the aruA gene of the liacillus Slearothermophilus US 100 strain encoding the L-arabinose isomerase of the invention.
  • the ATG (translation initiation) and TAA (stop) coding are represented in bold.
  • FIG. 3 shows the amino acid sequence of the L-AI US 100 s object of this invention encoded by araA US 100 gene.
  • FIG. 4 shows the effects of temperature (A) and pH (B) on the purified L-arabinose isomerase activity of the invention using L-arabinose as substrate in the presence of 0.2 mM Co 2+ and 1 mM Mn 2+ .
  • the activity defined at 100% is that measured under the optimal operating conditions of the enzyme and corresponds to a specific activity of 185 U / mg.
  • Table 1 shows the effect of metal ions on L-AI activity US100.
  • the activity defined at 100% is that measured under the optimum operating conditions of the enzyme and corresponds to a specific activity of 185 U / mg.
  • the Co 2+ and Mn 2 ⁇ ions are added at a rate of 0.1 mM.
  • FIG. 5 illustrates the effect of the concentration of metal ions Mn 2+ and Co 2+ on the thermostability of L-AI US100.
  • A effect of Co 2+ : 0 mM ( ⁇ ), 0.1 mM ()), 0.2 mM ( ⁇ ), 0.4 mM ( ⁇ ) and
  • B Mn 2+ effect: 0 mM (*), 0.8 mM (•), 1 mM (a), 1.2 mM (A).
  • the activity defined at 100% is that measured under the optimal operating conditions of the enzyme and corresponds to a specific activity of 185 U / mg.
  • Table 2 shows the catalytic characteristics of the purified L-arabinose isomerase of the invention in comparison with other cataloged bacterial L-arabinose isomers, nd: not determined.
  • Figure 6 shows the Lineweaver and Burck representations of the purified L-arabinose isomerase of the invention using L-arabinose and D-galactose as substrates.
  • FIG. 7 shows the conversion efficiencies of D-galactose to D-tagatose obtained with the purified L-arabinose isomerase of the invention and in the presence of 0.2 mM Co 2+ and 1 mM Mn 2+ at various temperatures: 65 ° C ( ⁇ ), 70 ° C (a) and 75 ° C (•).
  • 65 ° C
  • 70 ° C 70 ° C
  • 75 ° C
  • Step (a) consisted of screening several thc ⁇ nophilic strains for their ability to grow on a minimum selection medium containing L-arabinose as a single source of carbon. Preliminary studies of the L-AI activities of these different strains prompted us to retain the strain of Bacillus stearolhermophihis (strain US 100), which was already identified in a previous work, as an original alpha-amylase producing strain (Patent 0 17236 N invention INNORPI TUNISIA May 2001; Mamdouh Ben Ali and Samir Bejar Monia Mezghani Enz Microb Technol 24: 584-589, 1999).....
  • Step (b) consisted in amplifying the gene coding for this activity by means of the genomic DNA of the US 100 strain as a template.
  • the fragment of interest was cloned into a suitable vector, the ligation product was used to transform E. coli competent cells.
  • the selection of the recombinant clones was made on MacConkey -L-arabinose medium supplemented with Ampicillin.
  • the activity tests carried out on the recombinant strains have shown that the latter possess an L-arabinose isomerase activity proving the cloning and the expression of the ara A US 100 gene.
  • Step (c) consisted in determining the nucleotide sequence of the ara A US100 gene via the commonly used sequencing techniques. This sequence consists of 1491 bp encoding a polypeptide composed of 496 aa having a significant homology with the other sequences of L-AIs already cataloged in the databases.
  • Step (d) consisted of over-expressing and purifying the L-AI US100.
  • the recombinant strain was used for the purification of the enzyme.
  • the purification process developed consists of a heat treatment of the crude extracts, fractional precipitation with ammonium sulfate followed by ion exchange chromatography (FPLC technique).
  • FPLC technique ion exchange chromatography
  • the purity of the protein was verified by denaturing gel migration showing a single homogeneous band of size 56 kDa. On native gel the protein migrates as a single band of 225 kDa.
  • Step (e) consisted in studying the biochemical characteristics of the recombinant enzyme, in particular its pH, temperature and thermostability profiles, as well as its requirements for metal ions. This study revealed among other things a very original feature of the enzyme, namely its independence from metal ions, including Mn 2+ and Co 21 , for its activity and its low requirement for its thermostability. Indeed this enzyme requires only 0.2 mM Co 2 and 1 mM Mn 24 for maximum stability which is in contrast with most of the L-AI already described.
  • Step (f) consisted in studying the bioconversion of an aqueous solution of D-galactose to a solution rich in D-tagatose using the purified L-Al US100. This study was conducted at different temperatures.
  • Example 1 Identification of a Nucleotide Sequence Encoding L-arabinose isomerase of Bacillus stearothennophilus (strain US100) and its heterologous expression in E. coli.
  • thermophilic strain Bacillus stearothennophilus (strain US 10O) was cultured on a suitable medium overnight at 55 ° C. This culture was used for the preparation of genomic DNA.
  • accession number: AAD45718 ' accession number: AAD45718 '
  • two oligonucleotides namely; Ol 5 GTGAACGGGGAGGAGCAATG 11 and 02 5 'GAAATCTTACCGCCCCCGCC 3' so as to amplify the entire ara.
  • a USlOO gene encoding L-arabinose isomerase from Bacillus stearothermophilus (strain USlOO).
  • L-AI activity was tested on protein extracts prepared from liquid cultures of the HB101 / pMR1 and HB101 / pGEMT-easy vector strains. The latter is determined in the presence of 50 .mu.l of enzymatic extract, 100 mM MOPS (pH 7.5) and 5 mM of L-arabinose or D-galactose for 1 and 10 min at 80.degree. C. respectively.
  • the L-ribulose or D-tagatose formed is detected by the cysteine carbazole method (Dische, Z. and Borenfreund, E., J. Biol Chem, 192: 583-587, 1951).
  • L-AI US 100 consists of 496 aa ( Figure 3). The analysis of the latter showed that it has a strong identity with those of other L-AIs up to 98% (Table 1). Indeed, L-AI US100 has only 8 and 11 aa different with the L-AIs of Thermus sp (accession number: AAO72082) and B.
  • the HB101 / pMR6 strain was cultured overnight at 37 ° C. in LB medium supplemented with ampicillin.
  • the cell pellet was recovered by centrifugation and the crude enzyme extract was prepared following the lysozyme and sonication operations.
  • the crude extracts were treated at 70 ° C. for 30 min in the presence of 0.2 ⁇ M Co 2+ and 1 mM Mn 2+ and then centrifuged at 25,000 rpm for 30 min in order to remove the majority of thermolabile proteins from the host strain. . After fractional precipitation with ammonium sulphate, the pellet containing the L-Al activity was resuspended in 100 mM MOPS buffer and desalted.
  • biochemical and kinetic characteristics of the enzyme under the operating conditions used are given as a nonlimiting indication.
  • the recombinant enzyme was purified according to Example 2; the determination and measurement of the activity are made according to Example 1.
  • the following of the activity as a function of temperature is shown in FIG. 4A. This study has proved that the L-AI US100 has a wide range of activity from 60 to 90 ° C with an optimum of about 80 ° C. Similarly, the study of the activity at different pHs revealed that the operating pH is between 7 and 8.5 with an optimum at 7.5 ( Figure 4B)
  • L-AI US 100 The study of the effect of the concentration of Mn 2+ and Co 2+ ions on the thermostability of L-AI US 100 has proved that the optimal concentrations are of the order of 1 mM and 0.2 mM respectively (FIG. ).
  • the thermal stability of L-AI US 10O was studied after incubation of the enzyme for 30, 60, 90 and 120 min at 65, 70, 75 and 80 ° C. in the presence and absence of metal ions. . In the total absence of ions, L-Al US100 retains its activity completely at 65 ° C., whereas it has a half-life time of 10, 60 and 120 min at 80, 75 and 70 ° C., respectively.
  • L-Al US 100 retains more than 90% of its initial activity at 70 ° C. after 120 min of incubation. In addition, the half-life time is 20 and 15 minutes at 80 and 75 ° C, respectively. The study of the effect of each one of these ions on the stability gives results practically similar.
  • L-Al US100 has only a minimal dependence for metal ions for its thermostability.
  • the L-AI US100 needs only 1 mM Mn 2+ and 0.2 mM Co 2+ for its optimal functioning (Table 2).
  • other previously reported L-AIs require concentrations 5 times higher in these ions (1 mM Co 2+ and 5 mM Mn 2+ ) (Kim et al, Biotechnol Lett 2003 Jun; 25 (12) 963-7, Lee et al., Appl Environ Microbiol, 2004 Mar; 70 (3): 1397-404 and Kim et al., FEMS Microbiol Lett., 2002, 18: 212 (1): 121-6),
  • L-AI US 100 has a K 1n estimated at 28.57 mM for L-arabinose and 52.63 mM for D-galactose.
  • Vmox are 40 U / mg and 8.7 U / mg for L-arabinose and D-galactose respectively.
  • catalytic efficiency (K ca / K n ) of this enzyme for L-arabinose is 71.4 mmol -1 and 8.46 mm -1min -1 for D-galactose.
  • Example 4 Conversion rate of D-galactose to D-tagatose at different temperatures.
  • the study of the degree of conversion of D-galactose to D-tagatose using L-AI US100 is given as a non-limiting indication.
  • the conversion rate of D-galactosc D-tagatosc was determined at different temperatures and at regular time intervals.
  • the reaction mixture is composed of 5 mM D-galactose, 100 mM MOPS (pl 7.5) and pure enzyme at 3 mg / ml.
  • the D-tagatosc appeared is assayed by the Cysteine-carbazole method (as reported in Example 1).
  • thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga marilima. Appl Environ Microbiol. 2004 Mar; 70 (3): 1397-404.
  • thermostable amylase activity producing maltohexaose characterization of the activity, the protein and the corresponding gene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

La présente invention concerne, l'identification d'un gène codant pour une nouvelle L-arabinose isomérase de la souche Bacillus stearother

Description

TITRE :
Une L-arabinose isomérase ayant une dépendance minime en ions métalliques pour son activité et pour sa thermoslabilité, codée par une séquence nucléotidique nouvellement isolée et caractérisée.
DESCRIPTION DETAILLEE
Contexte de l'invention
Ce brevet concerne la production et l'exploitation des enzymes d'intérêts industriels dans les domaines agro-alimentaires ou autres. Plus particulièrement, l'invention concerne une L- arabinose isomérase ayant des propriétés physico-chimiques intéressantes pouvant être exploitée à l'échelle industrielle.
L'invention a pour objet le criblage, le clonage et le séquençage du gène codant une nouvelle L-AI, ainsi que l'analyse de la séquence en aa de l'enzyme correspondante. Elle concerne également Ia caractérisation et l'utilisation d'une L-arabinose isomérase ayant des caractéristiques originales.
Les L-arabinose isomérases sont également connues sous le nom de D-galactose isomérases puisque, Ui vitro, elles sont capables de bio-convertir le D-galactose en D-tagatose. C'est en fait cette caractéristique qui présente un intérêt industriel puisqu'elle est exploitée pour la production du D-tagatose.
Le D-tagatose est un ceto-hexose naturel, stéréo-isomère du D-fructose. Il possède un pouvoir sucrant similaire à celui du sucrose et un pouvoir calorifique nul. Ce cétose est utilisé en tant qu'édulcorant, ou en association avec d'autres composés ayant des pouvoirs sucrant intenses dans les produits agro-alimentaires. Grâce à son pouvoir anti-hyperglycémiant. le D- tagatose est d'un apport important essentiellement pour les sujets diabétiques. Dans le domaine pharmaceutique ce sucre est employé pour la conservation des organes en plus de son pouvoir «anti-biofilm».
Néanmoins, la production de ce sucre à l'échelle industrielle demeure contingentée par le coût élevé de sa production. Afin de surmonter cette limite, un nouveau processus a été mis au point. Ce dernier se base sur l'usage de la L-arabinose isomérase, qui est capable de transformer le D-galactose en D-tagatose. Dans ce cadre, plusieurs brevets tels que : USPA N0 : 20030022844; USP N° : 6, 057, 135; USPA N0 : 20040058419 et USPA N0 : 20030175909 ont prouvé la faisabilité de ce procédé. Au cours de ce processus de bio- conversion, il y a formation d'un mélange équilibré de D-galactose el de D-tagalose. Pour déplacer cet équilibre en faveur du D-tagatose, il faudrait opérer à haute température. Par ailleurs, les L-arabinosc isomerases sont des métallo-protéines qui exigent des concentrations assez élevées d'ions métalliques pour leurs fonctionnements optimaux. Or, ces ions ne sonl pas autorisés dans les produits finaux et doivent être éliminés ce qui nécessite une étape supplémentaire de séparation augmentant ainsi le coût de production final. Il s'en suit d'après ce qui précède qu'il est intéressant de cribler de nouvelles L-arabinose isomerases thermoactives, thermostables et ayant une faible exigence en ions métalliques.
La L-arabinose isomérase de la souche USlOO que nous décrivons dans ce document, a l'originalité d'avoir à la fois une température optimale élevée (800C), une efficacité catalytique importante, une indépendance vis-à-vis des ions métallique pour sa thermoactivité et une très faible exigence en ces ions pour sa thermostabilité .
Résumé de l'invention
Sous sa forme spécifique, cette invention est caractérisée par les étapes suivantes :
a) Le criblage de l'activité L-arabinose isomérase de Bacillus stearothermophilus (souche US lOO). b) Le clonage du gène codant pour cette activité dans une souche modèle d'£ coll. c) La détermination de la séquence nucléotidique de ce gène ainsi que la déduction et l'analyse de la séquence en aa de l'enzyme correspondante. d) La sur-expression et purification de la protéine recombinante. e) La caractérisation biochimique et cinétique de l'enzyme recombinante. f) L'utilisation de cette enzyme purifiée pour la bioconversion d'une solution de D-galactose en une solution riche en D-tagatose.
Brève description des figures
Les caractéristiques de la présente invention vont ressortir à partir des descriptions suivantes fournies en conjonction avec les figures et les tableaux ci-joints et qui sont données à titre indicatif et non limitatif. - La figure 1 montre les cartes de restriction des vecteurs d'expression pMRl (A) et pMR6 (B) contenant le gène arci US l OO de la L-AI US100, objet de cette invention. Amp : gène codant pour la résistance à l'ampicillinc, T7 : promoteur T7, SP6 : promoteur SP6.
- La figure 2 montre la séquence nucléotidique du gène aruA de la souche liacillus Slearothermophilυs US 100 codant la L-arabinose isomérase de l'invention. Les codants ATG (initiation de la traduction) et TAA (stop) sont représentés en gras.
- La figure 3 montre la séquence en acides aminés de la L-AI US 100s objet de cette invention codée par le gène araA US 100.
- La figure 4 montre les effets de la température (A) et du pH (B) sur l'activité de la L- arabinose isomérase purifiée de l'invention en utilisant le L-arabinose comme substrat en présence de 0.2 raM Co2+ et 1 mM Mn2+. L'activité définie à 100 % est celle mesurée dans les conditions optimales de fonctionnement de l'enzyme et elle correspond à une activité spécifique de 185 U/mg.
- Le tableau 1 montre l'effet des ions métalliques sur l'activité L-AI US100. (A) L'activité définie à 100 % est celle mesurée dans les conditions optimales de fonctionnement de l'enzyme et elle correspond à une activité spécifique de 185 U/mg. (B) les ions Co2+ et Mn sont ajoutés à raison de 0.1 mM.
- La figure 5 illustre l'effet de la concentration des ions métalliques Mn2+ et Co2+ sur la thermostabilité de la L-AI USlOO. (A) effet du Co2+: 0 mM (Φ), 0.1 mM (©), 0.2 mM(π), 0.4 mM (Δ) et (B) effet du Mn2+: 0 mM (*), 0.8 mM (•), 1 mM (a), 1.2 mM (À).. L'activité définie à 100 % est celle mesurée dans les conditions optimales de fonctionnement de l'enzyme et elle correspond à une activité spécifique de 185 U/mg.
- Le tableau 2 montre les caractéristiques catalytiques de la L-arabinose isomérase de l'invention purifiée en comparaison avec d'autres L-arabinose isomérases bactériennes cataloguées, nd : non déterminé.
- La figure 6 montre les représentations de Lineweaver et Burck de la L-arabinose isomérase de l'invention purifiée en utilisant le L-arabinose et le D-galactose comme substrats.
- La figure 7 montre les rendements de conversion du D-galactose en D-tagatose obtenus avec la L-arabinose isomérase purifiée de l'invention et en présence de 0.2 mM Co2+ et 1 mM Mn2+ à différentes températures : 65 °C (Δ), 7O0C (a) et 75 0C (•). Description détaillée de l'invention
L'étape (a) a consiste au criblage de plusieurs souches thcπnophilcs pour leurs capacités de pousser sur milieu minimum de sélection contenant le L-arabinose en tant que source unique de carbone. Les études préliminaires des activités L-AI de ces différentes souches nous ont incité à retenir la souche de Bacillus stearolhermophihis (souche US lOO) qui a été déjà identifiée dans un travail antérieur, comme souche productrice d'alpha-amylase originale (Brevet d'invention N0 17236 INNORPI TUNISIE5 2001 ; Mamdouh Ben Ali, Monia Mezghani and Samir Bejar. Enz. Microb. Technol. 24: 584-589, 1999).
L'étape (b) a consisté à amplifier le gène codant pour cette activité moyennant l'ADN génomique de la souche US lOO en tant que matrice. Le fragment d'intérêt a été clone dans un vecteur approprié, le produit de la ligation a servi pour transformer des cellules compétentes d'£ coll. La sélection des clones recombinants a été faite sur milieu MacConkey -L-arabinose additionné d'Ampicilline. Les tests d'activité réalisés sur les souches recombinantes ont montré que ces dernières possèdent une activité L-arabinose isomérase prouvant le clonage et l'expression du gène ara A US 100.
L'étape (c) a consisté à déterminer la séquence nucléotidique du gène ara A US100 via les techniques de séquençage couramment utilisées. Cette séquence, est constituée de 1491 pb codant pour un polypeptide composé de 496 aa présentant une homologie significative avec les autres séquences des L-AIs déjà cataloguées dans les banques de données.
L'étape (d) a consisté à sur-exprimer et purifier la L-AI US100. La souche recombinante a été utilisée pour la purification de l'enzyme. Le processus de purification mis au point consiste en un traitement à la chaleur des extraits bruts, une précipitation fractionnée au sulfate d'ammonium suivie d'une chromatographie échangeuse d'ions (technique FPLC). La pureté de la protéine a été vérifiée par migration sur gel dénaturant montrant une bande unique homogène de taille 56 kDa. Sur gel natif la protéine migre sous forme d'une seule bande de 225 kDa.
L'étape (e) a consisté à étudier les caractéristiques biochimiques de l'enzyme recombinante notamment ses profils de pH, de température et de thermostabilité ainsi que ses besoins en ions métalliques. Cette étude a révélé entre autre une caractéristique très originale de l'enzyme, à savoir son indépendance vis-à-vis des ions métalliques, y compris le Mn2+ et le Co21, pour son activité et sa faible exigence en ces ions pour sa thermostabilité. En effet cette enzyme requiert uniquement 0.2 mM de Co2^ et 1 mM de Mn24 pour une stabilité maximale ce qui se contraste avec la plus part des L-AI déjà décrites. L'étude cinétique menée sur la L-Al US lOO nous a permis de déterminer ses paramètres cinétiques à savoir : K1n, Vmax, Kcaι et Kn/KCai et ce pour les deux substrats ; le L-arabinose et le D-galactose.
L'étape (f) a consisté à étudier la bioconversion d'une solution aqueuse de D-galactose en une solution riche en D-tagatose en utilisant la L-Al USlOO purifiée. Cette étude a été menée à différentes températures.
EXEMPLES
Les personnifications de la présente invention seront illustrées dans les exemples suivants, qui ne doivent pas être pris comme limite des capacités de l'invention
Exemple 1 : Identification d'une séquence nucléotidique codant la L- arabinose isomérase dε Baciîhis stearothennophilus (souche USlOO) et son expression hétérologue chez E. coli.
Dans cet exemple, sont données à titre indicatif et non limitatif l'identification d'une séquence nucléotidique de la L-arabinose isomérase de Bacillus stearothennophilus (souche USlOO) et son expression hétérologue chez E. coli.
La souche thermophile Bacillus stearothennophilus (souche US l OO) a été cultivée sur milieu approprié pendant une nuit à 55°C. Cette culture a servi pour la préparation de l' ADN génomique. En se référant à la séquence de l'opéron arabinose de Bacillus stearothennophilus T6 (numéro d'accession : AAD45718') déjà existante dans la banque de données Genbank, nous avons conçu deux oligonucléotides, à savoir ; Ol 5 GTGAACGGGGAGGAGCAATG11 et 02 5'GAAATCTTACCGCCCCCGCC3' de façon à amplifier la totalité du gène ara.A USlOO codant pour la L-arabinose isomérase de Bacillus stearothennophilus (souche USlOO). Moyennant ces oligonucléotides, et en utilisant l'ADN génomique de la souche US100 en tant que matrice, nous avons amplifié un fragment d'ADN ayant une taille de 1.5 kb environ. Ce fragment d'intérêt a été purifié et clone dans un vecteur de clonage en l'occurrence le pGEMT-Easy Vcctor (Promega). Le produit de la ligation a servi pour transformer des cellules compétentes de la souche HBl Ol d'E coli. La sélection des clones recombinants a été réalisée sur milieu Mac-conkey-L-arabinose additionné d'Ampicillinc. Plusieurs colonies rouges ont été obtenues, celles ci devraient contenir le gène araA USl OO fonctionnel complémentant la mutation ara-] de HBl Ol , preuve de l'utilisation du L-arabinose. L'une de ces colonies hébergeant le plasmide baptisé pMRl et portant le gène araA US100 sous le contrôle du promoteur T 7 a été retenue pour la suite du travail (figure IA).
L'activité L-AI a été testée sur des extraits protéiques préparés à partir des cultures liquides des souches HBlOl/pMRl et HBlOl/pGEMT-easy Vector. Cette dernière est déterminée en présence de 50 μl d'extrait enzymatique, 100 mM MOPS (pH 7.5) et 5 mM de L-arabinose ou D-galactose pendant 1 et 10 min à 80°C respectivement. Le L-ribulose ou D- tagatose formé est détecté par la méthode à la cystéine carbazole (Dische, Z., and. Borenfreund, E., J. Biol. Chem., 192:583-587, 1951). Cette étude montre bien la présence d'une activité L-Al dans l'extrait issu de la souche HBlOl/pMRl contrairement à la souche HBlOl/pGEMT-easy Vector qui est dépourvue de cette activité. Ce faisant confirme le clonage et l'expression de la L-AI US 100 chez E. coli.
Exemple 2 : Séquençage du gène araA US100 et analyse de Ia séquence en aa correspondante
Dans cet exemple, sont donnés à titre indicatif et non limitatif le séquençage du gène araA US lOO et l'analyse de la séquence en aa correspondante.
Moyennant le plasmide pMRl nous avons déterminé la séquence nucléotidique du gène araA US 100 grâce aux techniques de séquençage couramment utilisées. L'étude de cette séquence révèle la présence d'une unique phase de lecture ouverte (Open Reading Frame : ORF) de 1491 pb débutant par un ATG initiateur et se teπninant par un codon stop TAA (Figure 2). La séquence en aa déduite à partir de la séquence nucléotidique montre que la L- AI US 100 est constituée de 496 aa (Figure 3). L'analyse de cette dernière a montré qu'elle présente une forte identité avec celles d'autres L-AIs allant jusqu'à 98 % (Tableau 1). En effet, la L-AI US100 présente uniquement 8 et 11 aa différents avec les L-AIs de Thermus sp (numéro d'accession : AAO72082) et de B. stearothermophilus T6 (numéro d'accession : AAD45718) respectivement. Néanmoins, ces dernières présentent des propriétés physico- chimiques assez différentes tant du point de vue température optimale et thermostat)]*] ité que" du point de vue exigence en ions métalliques.
Exemple 3 : Sur-production et purification de la L-Al USlOO
Dans cet exemple, sont données à titre indicatif et non limitatif, la sur-expression et la purification de la L-Al US100.
Afin d'augmenter la production de la L-AI USl OO, le gène ara A US100 a été clone sous le contrôle d'un promoteur fort à savoir le Vtac porté par le vecteur pTrc99a générant le plasmide pMR6 (Figure IB). La comparaison des activités des souches de E. coîi abritant les plasmides pMRl ou pMR6 a montré que la meilleure activité a été obtenue avec la construction Ϋtac-araA US100 avec une activité spécifique de l'ordre de 51 U/mg contre 38.6 U/mg pour la construction VT7-araA US100. '
Dans le but de purifier la L-AI US100, la souche HB101/pMR6 a été cultivée durant une nuit à 370C dans le milieu LB additionné d'ampicilline. Le culot cellulaire a été récupéré par centrifugation et l'extrait enzymatique brut a été préparé suite aux opérations de traitement au lysozyme et de sonication. Les extraits bruts ont été traités à 7O0C durant 30 min en présence de 0.2 raM de Co2+ et 1 mM de Mn2+ puis centrifugés à 25000 rpm pendant 30 min afin d'enlever la majorité des protéines thermolabiles de la souche hôte. Après précipitation fractionnée au sulfate d'ammonium, le culot contenant l'activité L-AI a été resuspendu dans le tampon MOPS 100 mM puis dessalé. Enfin, la purification de l'enzyme a été achevée par la technique de cliromatographie échangeuse d'ions (FPLC) moyennant une colonne UNOQ-12. La fraction contenant l'activité L-AI a été concentrée puis conservée à - 200C en présence de glycérol à 15%. Cette préparation est d'une homogénéité importante puisqu'elle a montré une seule bande de 56 kDa sur gel dénaturant SDS-PAGE (sodium dodecyl sulfate polyacrylamid gel electrophoresis) ; alors que dans les conditions natives, la L-AI US100 paraît sous forme d'une bande unique ayant une taille de l'ordre de 225 kDa ce qui prouve qu'il s'agit d'une holoenzyme constituée de 4 monomères identiques. Exemple 4 : Etudes biochimique et cinétique de Ia L-arabinose isomérase de la souche USlOO
Dans cet exemple sont données à titre indicatif cl non limitatif, les caractéristiques biochimiques et cinétiques de l'enzyme dans les conditions opératoires utilisées.
A- Effet de la température et du pH sur l'activité L-AI USlOO
L'enzyme recombinante a été purifiée selon l'exemple 2 ; la détermination et la mesure de l'activité sont faite selon l'exemple 1. La suivie de l'activité en fonction de la température est montrée sur la figure 4A. Cette étude a prouvé que la L-AI US100 possède une large gamme d'activité de 60 à 90°C avec un optimum de l'ordre de 80°C. De même, l'étude de l'activité à différents pH a révélé que le pH de fonctionnement se situe entre 7 et 8.5 avec un optimum à 7.5 (Figure 4B)
B- Effet des ions métalliques sur l'activité
L'élude de l'effet des ions métalliques sur l'activité de la L-AI US lOO a été menée sur r enzyme purifiée selon l'exemple 3 sans ajout d'ions métalliques lors la culture et de la purification. En plus, l'extrait enzymatique pure a été dialyse contre le tampon MOPS (100 m M) contenant de l'EDTA à raison de 10 mM et ce pendant 48 heures. La détermination de l'effet de divers ions métalliques a été testée suite à l'addition de ces derniers à raison de 0.1 mM dans le milieu réactionnel. Le résultat figurant dans le tableau 1 prouve qu'a 65°C ces ions ne possèdent aucun effet sur l'activité de l'enzyme, alors qu'a 8O0C seules les ions Mn2" et Co2+ augmente apparemment l'activité de la L-AI US100 jusqu'à atteindre 140% (tableau 1). Ce faisant suggère le rôle stabilisateur du Mn2+ et Co2+.
C- Thermostabilité en absence et en présence des ions Mn2+ et Co2+
L'étude de l'effet de la concentration des ions Mn2+ et Co2+ sur la thermostabilité de la L-AI US lOO a prouvé que les concentrations optimales sont de l'ordre de 1 mM et 0.2 mM respectivement (figure 5). La stabilité thermique de la L-AI US l OO a été étudiée après incubation de l'enzyme pendant 30, 60, 90 et 120 min à 65, 70, 75 et 8O0C et ce en présence et en absence d'ions métalliques. En absence totale d'ions, la L-Al US100 conserve totalement son activité à 65 °C, alors qu'elle possède un temps de demi-vie de 10, 60 et 120 min à 80, 75 et 7O0C respectivement. Hn présence de 1 mM Mn2H et 0.2 mM Co2^, la L-Al US 100 retient plus que 90 % de son activité initiale à 7O0C après 120 min d'incubation. De plus, le temps de demi- vie atteint 20 et 1 15 min à 80 et 75°C respectivement. L'étude de l'effet de chacun ces ions sur la stabilité donne des résultats pratiquement similaires.
Ainsi il parait clairement, d'après l'étude de l'activité et de la thermostabilté, que la L-Al US100 possède, uniquement, une dépendance minime pour les ions métalliques pour sa thermostabilité. En effet, la L-AI US100 n'a besoin que de 1 mM Mn2+ et 0.2 mM Co2+ pour son fonctionnement optimal (tableau 2). Alors que les autres L-AIs déjà rapportées exigent des concentrations 5 fois plus élevée en ces ions (1 mM de Co2+ et de 5 mM de Mn2+) (Kim et al, Biotechnol Lett. 2003 Jun;25(12) : 963-7; Lee et al, Appl Environ Microbiol. 2004 Mar ; 70(3) : 1397-404 et Kim et al, FEMS Microbiol Lett. 2002 J un 18 ; 212 (1) : 121-6),
D- Détermination des paramètres cinétiques :
Pour déterminer les paramètres cinétiques de la L-AI US100 pour le L-arabinose et le D- galactose, les représentations de Lineweaver-Burck ont été réalisées (Figure 6). D'après ces représentations, nous déduisons que la L-AI US 100 possède une K1n évaluée à 28.57 mM pour le L-arabinose et 52.63 mM pour le D-galactose. De plus, les valeurs de Vmox sont de 40 U/mg et 8.7 U/mg pour le L-arabinose et le D-galactose respectivement. Il s'en suit que l'efficacité catalytique (Kca/Kιn) de cette enzyme pour le L-arabinose est de 71.4 rmVr'.min" 1 et 8.46 mM^.min"1 pour le D-galactose.
Exemple 4 : Taux de conversion du D-galactose en D-tagatose à différentes températures.
Dans cet exemple, est donnée à titre indicatif et non limitatif l'étude du taux de conversion du D-galactose en D-tagatose en utilisant la L-AI US100. Moyennant la L-Al USl OO, objet de la présente invention, le taux de conversion du D- galactosc en D-tagatosc a été déterminé à différentes températures et à des intervalles de temps réguliers. Lc mélange réactionnel est composé de 5 mM de D-galactose, 100 mM MOPS (pl i 7.5) et de l'enzyme pure à raison de 3 m g/ml. Le D-tagatosc apparu est dosé par la méthode à la Cysteine-carbazole (tel qu'il a été rapporté dans l'exemple 1). En présence de 1 mM Mn2+ et 0.2 mM Co2"1 le rendement maximal de bioconversion du D-galactose en D- tagatose atteint 48 % après 7h d'incubation à 70°C (figure 7). Ainsi, l'efficacité catalytique de l'enzyme et son indépendance vis-à-vis des ions métalliques pour son activité, rend la L- AlUSlOO très probante pour une application industrielle en vue de la production du D- tagatose.
Références citées :
1- Kim JW, Kim YW, Roh MJ, Kim HY, Cha JH, Park KH, Park CS. Production of lagatosc by a recombinant Ihcrmoslablc L-arabinosc isomerase from Thermu.s sp.IM6501.Biolechnol Lett. 2003 Jun; 25(12): 963-7.
2- Lee DW, Jang HJ, Choe EA, Kim BC, Lee SJ, Kim SB, Hong YH, Pyun YR. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga marilima. Appl Environ Microbiol. 2004 Mar; 70(3): 1397-404.
3- Kim BC, Lee YH, Lee HS, Lee DW, Choe EA1 Pyun YR. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana : bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol Lett. 2002 Jun 18; 212(1): 121-6.
4- Dische, Z., and Borenfreund, E. A New Spectrophotometric Method for the Détection and Détermination of Keto Sugars and Trioses. J. Biol. Chem., 192:583-587, 1951 .
5- Mamdouh Ben Ali, Monia Mezghani, and Samir Bejar. A thermostable α-amylasε producing maltohexaose from a new isolated bacillus sp. US100: study of activity and molecular cloning of the corresponding gène. Enz. Microb. Technol. 24: 584-589, 1999.
6- Mamdouh Ben Ali, Monia Mezghani, lotfi Mallouli, Sonda Mhiri, Radhouane Ellouze et Samir Bejar. Une nouvelle activité amylase thermostable et productrice de maltohexaose : caractérisation de l'activité, de la protéine et du gène correspondant. Brevet d'invention N0 : 17236, INNORPI TUNISIE, 2001.

Claims

Revendications
1 - Un polynucléolidc codant pour un polypcptide ayant une activité L-arabinosc isomerase de la souche Bacillus slearothermophilus (souche US 100) et ayant la séquence en aa annotée dans Ia figure 3.
2 - Un polypeptide codé par le polynucléotide selon la revendication I , isolée à partir de la souche Bacillus slearothermophilus (souche USlOO), ayant la séquence nucléotidique annotée dans la figure 2 et possédant une activité L-arabinose isomerase capable de bio-convertir le D- galactose en D-tagatose.
3- Une L-arabinose isomerase selon la revendication 2 ayant une indépendance en ions métallique pour son activité et une exigence minime en ces ions pour sa thermostabilité.
4- Des vecteurs d'expression hébergeant le polynucléotide de la revendication 1.
5- Des souches recombinantes susceptibles de produire le polypeptide selon la revendication 2.
6- Un protocole de production de la L-arabinose isomerase. Cette méthode comporte la culture de la souche hébergeant le vecteur d'expression de la L-AI US100 selon les revendications 4 et 5, dans un milieu de culture ainsi que la purification du polypeptide.
7- Une méthode de production du D-tagatose consistant à convertir une solution de galactose, ou riche en galactose, en une solution riche en D-tagatose moyennant la L-AI US lOO produite suivant la revendication 6.
8- Une méthode conformément à la revendication 7, où la réaction de bioconversion est menée à un pH compris entre 6.5 et 8.5 et une température entre 60 et 900C préférentiellement à 75 0C.
9- Une L-arabinose isomerase, L-AI US100, incluant l'utilisation du polypeptide de la revendication 2 sous toutes formes possibles, y compris les cellules entières ou le polypeptide sous leurs formes libres ou immobilisées.
PCT/TN2005/000005 2004-12-29 2005-06-28 Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee WO2006071203A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/794,510 US20100173366A1 (en) 2004-12-29 2005-06-28 Polypeptides Having L-Arabinose Isomerase Activity Exhibiting Minimum Dependence on Metal Ions for Its Activity and for Thermostability and Nucleic Acids Encoding the Same
EP05762170A EP1841873A2 (fr) 2004-12-29 2005-06-28 Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TN04264 2004-12-29
TNSN04264 2004-12-29

Publications (2)

Publication Number Publication Date
WO2006071203A2 true WO2006071203A2 (fr) 2006-07-06
WO2006071203A3 WO2006071203A3 (fr) 2006-10-05

Family

ID=35501064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TN2005/000005 WO2006071203A2 (fr) 2004-12-29 2005-06-28 Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee

Country Status (3)

Country Link
US (1) US20100173366A1 (fr)
EP (1) EP1841873A2 (fr)
WO (1) WO2006071203A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211643B1 (fr) * 2007-11-23 2015-04-15 Institut National De La Recherche Agronomique (INRA) L-arabinose isomérase pour convertir du d-galactose en d-tagatose dans un produit laitier qui contient du d-galactose

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143889A1 (fr) 2007-05-14 2008-11-27 Research Foundation Of State University Of New York Induction d'une réponse de dispersion physiologique dans des cellules bactériennes présentes dans un biofilm
WO2013150069A1 (fr) 2012-04-04 2013-10-10 Nutrilab N.V. Galactose isomérases améliorées et utilisation de celles-ci dans la production de tagatose
EP3115453B1 (fr) 2014-03-05 2018-06-27 CJ Cheiljedang Corporation Variant de l-arabinose isomérase pour la production de d-tagatose
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALI MAMDOUH BEN ET AL: "A thermostable alpha-amylase producing maltohexaose from a new isolated Bacillus sp. US100: Study of activity and molecular cloning of the corresponding gene" ENZYME AND MICROBIAL TECHNOLOGY, vol. 24, no. 8-9, juin 1999 (1999-06), pages 584-589, XP002387926 ISSN: 0141-0229 cité dans la demande *
DATABASE EMBL 1 février 2005 (2005-02-01), H. TAKAMI ET AL: "L-arabinose isomerase(Ec 5.3.1.4) from Geobacillus kaustophilus HTA426" XP002387932 extrait de EBI, HINXTON, UK Database accession no. Q5KYP7 -& TAKAMI HIDETO ET AL: "Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus" NUCLEIC ACIDS RESEARCH, vol. 32, no. 21, 1 décembre 2004 (2004-12-01), pages 6292-6303, XP002387928 ISSN: 0305-1048 *
KIM BYOUNG-CHAN ET AL: "Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: Bioconversion of D-galactose to D-tagatose using the enzyme" FEMS MICROBIOLOGY LETTERS, vol. 212, no. 1, 18 juin 2002 (2002-06-18), pages 121-126, XP002387930 ISSN: 0378-1097 cité dans la demande *
KIM JUNG-WOO ET AL: "Production of tagatose by a recombinant thermostable L-arabinose isomerase from Thermus sp. IM6501." BIOTECHNOLOGY LETTERS, vol. 25, no. 12, juin 2003 (2003-06), pages 963-967, XP002387925 ISSN: 0141-5492 cité dans la demande *
LEE D W ET AL: "A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic l-arabinose isomerases: The effects of divalent metal ions on protein stability at elevated temperatures" FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 579, no. 5, 26 janvier 2005 (2005-01-26), pages 1261-1266, XP004745639 ISSN: 0014-5793 *
LEE DONG-WOO ET AL: "Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima." APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 70, no. 3, mars 2004 (2004-03), pages 1397-1404, XP002387929 ISSN: 0099-2240 cité dans la demande *
LEE DONG-WOO ET AL: "Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus" ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 434, no. 2, 2 décembre 2004 (2004-12-02), pages 333-343, XP002387927 ISSN: 0003-9861 *
RHIMI ET AL: "Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive l-arabinose isomerase from the Bacillus stearothermophilus US100 strain" BBA - GENERAL SUBJECTS, ELSEVIER SCIENCE PUBLISHERS, NL, vol. 1760, no. 2, 13 décembre 2005 (2005-12-13), pages 191-199, XP005320125 ISSN: 0304-4165 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211643B1 (fr) * 2007-11-23 2015-04-15 Institut National De La Recherche Agronomique (INRA) L-arabinose isomérase pour convertir du d-galactose en d-tagatose dans un produit laitier qui contient du d-galactose

Also Published As

Publication number Publication date
WO2006071203A3 (fr) 2006-10-05
US20100173366A1 (en) 2010-07-08
EP1841873A2 (fr) 2007-10-10

Similar Documents

Publication Publication Date Title
US11371065B2 (en) Genetically engineered strain
EP2470668B1 (fr) Immobilisation de psicose-épimérase et procédé de production de d-psicose au moyen de celle-ci
DK2749645T3 (en) D-psicosis 3-epimerase mutant with improved thermal stability and continuous production of D-psychosis
CN110791484B (zh) 一种草铵膦脱氢酶突变体及其在生产l-草铵膦中的应用
Kataoka et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound
WO2012113120A1 (fr) Molécule d'acide nucléique codant pour la xylose isomérase et xylose isomérase ainsi codée
Guo et al. Efficient (3R)-acetoin production from meso-2, 3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2, 3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin
JP2009136285A (ja) ピルビン酸デカルボキシラーゼ(pdc)遺伝子の細菌からのクローニングおよび配列決定、ならびにその用途
WO2021185039A1 (fr) Procédé de construction d'une souche produisant de l'ergothionéine
EP1841873A2 (fr) Une l-arabinose isomerase ayant une dependance minime en ions metalliques pour son activite et sa thermostabilite, sa sequence nucleotidique isolee et caracterisee
CN112930402A (zh) 改性啤酒花产品的酶法生产
US20170267989A1 (en) Method of Production of Rare Disaccharides
TWI327596B (fr)
JP2022544085A (ja) プシコース3-エピメラーゼミュータント、それを発現するための遺伝子工学菌、その固定化酵素及び固定化方法
Gao et al. High-yield production of D-1, 2, 4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system
WO2021103234A1 (fr) Mutant de d-psicose 3-épimérase et son application
Liu et al. Rapid production of l‐DOPA by Vibrio natriegens, an emerging next‐generation whole‐cell catalysis chassis
CN109593739B (zh) 重组酮酸还原酶突变体、基因、工程菌及其应用
EA035000B1 (ru) Эукариотическая клетка, содержащая белок с ксилозоизомеразной активностью, и ее применение
WO2006022239A1 (fr) Sequence d'un gene de l-rhamnose isomerase thermotolerante et utilisation de celle-ci
CN113913317A (zh) 一种重组酿酒酵母及提高重组酿酒酵母表面展示葡萄糖脱氢酶的酶活性的方法
JP2007068424A (ja) 二機能性ホルムアルデヒド固定酵素遺伝子
CN114317510A (zh) 一种马来酸顺反异构酶突变体
US20100151529A1 (en) Engineered phosphite dehydrogenase mutants
JP2009207372A (ja) 糖類の脱水素酵素及びその利用方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005762170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11794510

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005762170

Country of ref document: EP