WO2006070595A1 - Piezoelectric ceramic actuator and portable device - Google Patents

Piezoelectric ceramic actuator and portable device Download PDF

Info

Publication number
WO2006070595A1
WO2006070595A1 PCT/JP2005/022894 JP2005022894W WO2006070595A1 WO 2006070595 A1 WO2006070595 A1 WO 2006070595A1 JP 2005022894 W JP2005022894 W JP 2005022894W WO 2006070595 A1 WO2006070595 A1 WO 2006070595A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
ceramic element
vibration
stator
reinforcing plate
Prior art date
Application number
PCT/JP2005/022894
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Sasaki
Yasuharu Oonishi
Ukyou Mori
Yukio Murata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006550664A priority Critical patent/JP4830858B2/en
Publication of WO2006070595A1 publication Critical patent/WO2006070595A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Definitions

  • the present invention relates to a piezoelectric ceramic actuator suitable as a thin and highly reliable mechanical vibration source used in a portable device and a portable device equipped with the piezoelectric ceramic actuator.
  • the device In order to improve portability and convenience, the device is required to be small and thin. On the other hand, an increase in the number of functional components mounted impedes the downsizing of the device. In addition, the importance of mounting layout and space design that takes into account the prevention of component destruction due to contact between components and other components or the case when the device is dropped is increasing. The development of technology for manufacturing and mounting parts at low cost is indispensable for the further spread of portable devices.
  • Various movable parts are used in portable devices. Examples include acoustic elements, vibrators, camera zoom mechanisms, and liquid cooling pumps. Batteries are used as energy supply sources for portable devices, and they can be driven at a low voltage of about 3 to 5 V and are inexpensive.
  • a mechanical drive source a DC motor called an electromagnetic type and magnetic force / mechanical conversion The mechanism is used. Since electromagnetic coils and permanent magnets are used, there are high technical barriers to maintain drive performance and reduce size. Electromagnetic noise generated by the electromagnetic drive source can also cause equipment malfunction. Therefore, a drive source using a piezoelectric ceramic that does not use electromagnetic action, has high electro-mechanical energy conversion efficiency, and is advantageous for thinning and miniaturization has attracted attention.
  • Non-Patent Document 1 and Non-Patent Document 2 describe bending elements using the piezoelectric transverse effect and details of their operation.
  • a battery of 3 to 5 V output is used as an energy supply source. It is generally known that a piezoelectric ceramic element has a higher operating voltage than an electromagnetic type. As a means for solving this problem, there has been proposed a laminated piezoelectric ceramic vibrator that can be driven at a low voltage by alternately laminating piezoelectric ceramic thin plates and electrodes and increasing the electric field strength applied to the ceramic plate. The structure of this multilayer piezoelectric ceramic vibrator is shown in Non-Patent Document 3, for example.
  • FIG. FIG. 21 shows a conventional piezoelectric ceramic element 110 (piezoelectric vibrator).
  • a pair of piezoelectric ceramic plates 111 and 112 subjected to polarization treatment are joined with a constant elastic body 113 disposed therebetween, and the piezoelectric ceramic plates 111 and 112 are joined to the piezoelectric ceramic plates 111 and 112.
  • electrodes are formed with electrodes.
  • the piezoelectric ceramic plate 111 arranged on the upper side when the voltage is applied to the piezoelectric ceramic plates 111, 112 The piezoelectric ceramic plate 112 arranged below extends in the length direction and, as a result, bends in the thickness direction of the piezoelectric ceramic plates 111 and 112 (thickness direction of the piezoelectric ceramic element 110) as shown in FIG. exercise.
  • the direction of voltage application is changed, it bends in the opposite direction. Therefore, when a sine wave AC voltage is applied, the piezoelectric ceramic element 110 causes bending vibration in the thickness direction.
  • a stator 114 is provided between the piezoelectric ceramic element 110 and the elastic body 115, and the stator 114 The piezoelectric ceramic element 110 and the elastic body 115 may be mechanically joined via
  • Non-patent document 1 "Ultrasonic electronics vibration theory", pp. 104, edited by Yoshiro Tomikawa, Asakura Shop, 1998
  • Non-Patent Document 2 "Electromechanical vibrator as an electric circuit element and its application", pp. 192, pp. 212, Kenzo Nagai, Tadashi Masano, Corona, 1974
  • Patent Contribution 3 Mechanical quality factor of multilayer piezoelectric ceramic trans du cers "(Jpn. J. Appl. Phys., Vol.40, Part 1, No.5B, pp.3549-3551, May2001)
  • Patent Document 1 JP 2004-254417
  • Patent Document 2 JP 2000-333480 A
  • the reinforcing plate 116 is bonded to the entire surface of the piezoelectric ceramic element 110, with a strong impact force such as a metal plate having high rigidity.
  • the piezoelectric ceramic element 110 is mechanically constrained by the joining of the reinforcing plate 116 and its expansion and contraction is suppressed by the joining of the reinforcing plate 116, the amount of vibration becomes small, and it is practically used. There is a problem that it cannot be provided.
  • Patent Documents 1 and 2 disclose a piezoelectric actuator in which a reinforcing plate is laminated on a piezoelectric element.
  • the present invention has been made in view of the problems that may occur, and even when subjected to a drop impact force, structural defects such as cracking and chipping of the piezoelectric ceramic element do not occur, and the compressive force is piezoelectric.
  • An object of the present invention is to provide a piezoelectric ceramic actuator capable of securing a large vibration amount as a vibration amount of the ceramic element and a portable device incorporating the piezoelectric ceramic actuator.
  • the piezoelectric ceramic actuator according to the present invention includes a piezoelectric ceramic element that vibrates when a voltage is applied thereto, a reinforcing material that is superposed on the entire surface of the piezoelectric ceramic element, and the piezoelectric ceramic that is fixed to the reinforcing material.
  • a stator for transmitting the vibration of the element to the outside, and the piezoelectric ceramic element and the reinforcing member are joined at one or more local sites.
  • the piezoelectric ceramic element has, for example, a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates.
  • the reinforcing material is stacked on the entire surface of one piezoelectric ceramic plate, for example, and has the same or larger shape as the piezoelectric ceramic plate.
  • the stator is disposed at a joint portion between the piezoelectric ceramic element and the reinforcing material. Furthermore, it is preferable that the piezoelectric ceramic element and the reinforcing material are bonded by an adhesive. Furthermore, by providing an organic resin base material coated with a bonding material between the piezoelectric ceramic element and the reinforcing material, the piezoelectric ceramic element and the reinforcing material can be bonded.
  • Another piezoelectric ceramic actuator includes a pair of piezoelectric ceramic elements that vibrate when a voltage is applied, and a reinforcing material disposed between the pair of piezoelectric ceramic elements and stacked on the entire surface thereof. And a stator that is fixed to one of the piezoelectric ceramic elements and transmits a signal of the piezoelectric ceramic element to the outside, and each of the piezoelectric ceramic elements and the reinforcing material is one or a plurality of local parts. It is characterized by being joined at various parts.
  • each of the piezoelectric ceramic elements has, for example, a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates.
  • the reinforcing material is stacked on the entire surface of one of the piezoelectric ceramic plates of both piezoelectric ceramic elements, and has the same or larger shape as the piezoelectric ceramic plate.
  • the stator is disposed at a joint portion between the piezoelectric ceramic element to which the stator is fixed and the reinforcing material. Furthermore, it is preferable that the piezoelectric ceramic element and the reinforcing material are joined by an adhesive. Furthermore, the piezoelectric ceramic element and the reinforcing material can be joined by providing an organic resin base material coated with a joining material between the piezoelectric ceramic element and the reinforcing material.
  • a portable device is characterized in that the piezoelectric ceramic actuator described above is used as a vibration source.
  • the above-described piezoelectric ceramic actuator can be used as a vibration source, and a part of the housing can be vibrated to generate sound. The invention's effect
  • the piezoelectric ceramic element is joined to the reinforcing material at one or more local sites, when the piezoelectric ceramic element is incorporated into a portable device as a vibration source, the portable device is Even if impact stress is applied when dropped, the piezoelectric ceramic element can be destroyed.
  • the piezoelectric ceramic element and the reinforcing material are joined locally, a sufficiently large vibration amount can be obtained even if the reinforcing material is provided, and a mechanical vibration source having a large vibration amount can be obtained. Obtainable.
  • the reinforcing material is stacked on the entire surface of the piezoelectric ceramic element, it is possible to reliably suppress the impact force on the piezoelectric ceramic element, to prevent breakage due to the impact stress, and to obtain high reliability. Can do.
  • the reinforcing material is the same size as the piezoelectric ceramic element, in addition to preventing damage by covering one surface of the piezoelectric ceramic element with a reinforcing plate, useless protrusions protruding from the piezoelectric ceramic element, etc. It is possible to reduce the size of the device.
  • FIG. 1 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a second embodiment of the present invention.
  • FIG. 3 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a third embodiment of the present invention.
  • FIG. 4 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a fourth embodiment of the present invention.
  • FIG. 5 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a fifth embodiment of the present invention.
  • FIG. 6 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a sixth embodiment of the present invention.
  • FIG. 7 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a seventh embodiment of the present invention.
  • FIG. 8 A perspective view showing a modification of the piezoelectric ceramic element of the present invention.
  • FIG. 9 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to an eighth embodiment of the present invention.
  • FIG. 10 A perspective view showing a method of assembling a piezoelectric ceramic actuator according to a ninth embodiment of the present invention.
  • FIG. 11 (a) and (b) are views showing a state in which the actuator of the embodiment of the present invention is incorporated in a portable device.
  • Example 12 A perspective view showing a piezoelectric ceramic element of Example 1 of the present invention.
  • FIG. 13 (a) to (d) are views showing a reinforcing plate and a reinforcing plate-joining substrate of Example 1 of the present invention.
  • FIG. 14 is a perspective view showing a method for assembling the piezoelectric ceramic actuator according to the first embodiment of the present invention.
  • FIG. 15 (a) and (b) are diagrams showing a method of attaching the actuator of the first embodiment to the casing.
  • FIG. 16 A perspective view showing a piezoelectric ceramic actuator according to a second embodiment of the present invention.
  • FIG. 17 (a) and (b) are diagrams showing a method of attaching the actuator of the second embodiment to the casing.
  • FIG. 18 A perspective view showing a piezoelectric ceramic actuator according to a third embodiment of the present invention.
  • FIG. 20 (a) and (b) show the piezoelectric ceramic actuator of Example 4 of the present invention in a portable device. It is a figure which shows the state accommodated in.
  • FIG. 21 is a perspective view showing a conventional piezoelectric ceramic element.
  • FIG. 22 is a diagram showing the operation.
  • FIG. 23 is a perspective view showing a conventional piezoelectric ceramic actuator.
  • FIG. 24 is a perspective view showing a conventional piezoelectric ceramic actuator.
  • FIG. 1 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a first embodiment of the present invention.
  • the piezoelectric ceramic element 1 is configured such that a constant elastic body 3 is sandwiched between a pair of piezoelectric ceramic plates 2 and 4, and a voltage is applied to electrodes (not shown) formed on the piezoelectric ceramic plates 2 and 4.
  • the piezoelectric ceramic plates 2 and 4 are deformed so that either the piezoelectric ceramic plate 2 side or the piezoelectric ceramic plate 4 side is inward depending on the direction of the voltage. Therefore, by applying an AC voltage, the piezoelectric ceramic plates 2 and 4 are alternately deformed so as to be inward (bending motion), and the piezoelectric ceramic element 1 vibrates.
  • the reinforcing plate 5 various materials such as a metal plate or a resin plate can be used.
  • the reinforcing plate 5 is overlaid on the entire surface of the piezoelectric ceramic plate 4 of the piezoelectric ceramic element 1 and has the same force as or larger than the piezoelectric ceramic plate 4.
  • the reinforcing plate 5 and the piezoelectric ceramic plate 4 are formed by applying an adhesive such as an organic adhesive to the three local portions 7a, 7b, and 7c of the reinforcing plate 5 and bringing them into close contact with each other. Joined at 7a to 7c.
  • the reinforcing plate 5 is not fixed to the entire surface of the piezoelectric ceramic plate 4, but the reinforcing plate 5 and the piezoelectric ceramic plate 4 are fixed at one or a plurality of local and mutually independent portions. .
  • the size and number of the joining sites are arbitrary.
  • the stator 6 is bonded to the surface (back surface) of the reinforcing plate 5 where the piezoelectric ceramic plate 4 is not bonded.
  • the joint portion of the stator 6 is a position that matches with any one of the joint portions 7 a to 7 c on the back surface of the reinforcing plate 5. That is, the attachment position of the stator 6 on the reinforcing plate 5 is a position corresponding to a portion (the portion 7b in the illustrated example) where the reinforcing plate 5 is joined to the piezoelectric ceramic plate 4.
  • the stator 6 is used to transmit the vibration of the piezoelectric ceramic element 1 to the outside.
  • the piezoelectric ceramic element 1 is arranged so that the stator 6 comes into contact with the casing of the portable device.
  • the reinforcing plate 5 since the reinforcing plate 5 overlaps the entire surface of the piezoelectric ceramic element 1, even if the portable device is dropped, the reinforcing plate 5 protects the piezoelectric ceramic element 1 and the impact load is applied to the piezoelectric ceramic element 1. Application to the element 1 can be prevented, and destruction of the piezoelectric ceramic element 1 can be prevented.
  • the reinforcing plate 5 is made of the piezoelectric ceramic element 1 (piezoelectric ceramic). It is bonded to the cover plate 4) by bonding at three local parts 7a to 7c, and the reinforcing plate is not bonded and integrated on the entire surface of the piezoelectric ceramic element. The portion of the ceramic element 1 where the reinforcing plate 5 is not joined can be freely deformed. Therefore, the piezoelectric ceramic element 1 can vibrate greatly and becomes a vibration source with a large amount of vibration.
  • the impact vibration generated when the portable device is dropped propagates to the piezoelectric ceramic element 1 through the stator 6, and the piezoelectric ceramic element 1 is destroyed by the collision between the reinforcing plate 5 and the piezoelectric ceramic element 1 at the unjoined portion. Is likely to occur. If the stator 6 is provided in a portion where the piezoelectric ceramic element 1 and the reinforcing plate 5 are joined, the above-described problems at the time of impact can be prevented.
  • the piezoelectric ceramic element 1 and the reinforcing plate 5 are provided with three joining parts (parts 7a to 7c), but the joining part is one place or a plurality of two or more places. Moyo. This is because the impact destruction of the piezoelectric ceramic element 1 when the electronic device is dropped as described above occurs in the vicinity of the joint portion of the stator 6, and the joint portion of the stator 6 is reinforced by the reinforcing plate 5. If this is the case, the same effect can be obtained regardless of the number of joints between the piezoelectric ceramic element 1 and the reinforcing plate 5.
  • a second embodiment of the present invention will be described with reference to FIG. However, the stator is not shown in FIG.
  • three substrates 17a, 17b, 17c made of organic resin such as polyethylene terephthalate, acrylic, polyimide, or silicon rubber are spaced between the piezoelectric ceramic element 11 and the reinforcing plate 17. Is placed.
  • the base materials 17a to 17c are thin plate-like, and adhesives or adhesives are applied to the front and back surfaces thereof, and the base materials 17a to 17c are respectively connected to the piezoelectric ceramic element 11 by this adhesive or adhesive. It is joined to the reinforcing plate 17. Thereby, the piezoelectric ceramic element 11 and the reinforcing plate 15 are joined via the three base materials 17a to 17c.
  • the base materials 17a to 17c have flexibility, the base materials 17a to 17c are easily deformed according to the bending vibration of the piezoelectric ceramic element 11. As a result, the mechanical restraint force between the piezoelectric ceramic element 11 and the reinforcing plate 15 is greatly relaxed, and the piezoelectric ceramic actuator can perform a large bending vibration. Further, by joining the piezoelectric ceramic element 11 and the reinforcing plate 15 with the organic resin base materials 17a to 17c, the piezoelectric ceramic actuator can be easily manufactured industrially.
  • FIG. 3 is a perspective view showing a third embodiment of the present invention.
  • the stator is not shown in FIG.
  • five resin base materials 27a, 27b, 27c, 27d, and 27e for reinforcing plate bonding are arranged between the piezoelectric ceramic element 21 and the reinforcing plate 25 with an interval between them.
  • the base materials 27a to 27e, the piezoelectric ceramic element 21 and the reinforcing plate 25 are joined together by an adhesive or an adhesive.
  • the reinforcing plate 25 follows the flexural vibration of the piezoelectric ceramic element 21 more flexibly. Therefore, vibration suppression of the piezoelectric ceramic element 21 due to the joining of the reinforcing plate 25 hardly occurs.
  • the present embodiment has a practical form as in the second embodiment.
  • FIG. 4 is a perspective view showing a fourth embodiment of the present invention.
  • the stator is not shown in FIG.
  • the reinforcing plates 35a and 35b are provided on the front and back surfaces of the piezoelectric ceramic element 31, respectively, and the reinforcing plate bonding resin base materials 37a to 37c and 38a, respectively. Joined through ⁇ 38c.
  • the reinforcing plate 35a is as in the present embodiment.
  • 35b is provided on both the front and back surfaces of the piezoelectric ceramic element 31 and has little effect on the vibration of the piezoelectric ceramic element 31.
  • FIG. 5 and 6 are perspective views showing a fifth embodiment of the present invention.
  • one reinforcing plate 45 is joined between the two piezoelectric ceramic elements 41a and 41b.
  • the reinforcing plate 45 has three reinforcing plate bonding substrates 47a, 47b, 47c and 48a, 48b, 48 on its front and back surfaces, and is applied to both the front and back surfaces of this substrate 47a, etc.
  • the piezoelectric ceramic elements 41a and 41b are joined to the reinforcing plate 45 via the base material 47a and the like.
  • a stator 49 is fixed at the center of the back surface of the piezoelectric ceramic element 41b, that is, at a position aligned with the central base materials 47b and 48b.
  • the excitation force of the piezoelectric ceramic element is doubled. Therefore, the amount of vibration of the elastic body that propagates vibration through the stator 49 can be doubled.
  • the joining position of the stator 49 is not limited to the center of the piezoelectric ceramic element, and as shown in FIG. 7, the stator 49 may be joined to a position aligned with the base materials 47a and 48a at the end portions. Good. In this case, the same effect as in FIG. 6 is obtained.
  • the members constituting the piezoelectric ceramic element that undergoes flexural vibration are not limited to specific ones.
  • the piezoelectric ceramic element is composed of piezoelectric ceramic plates 2, 4 and a constant elastic body 3.
  • piezoelectric active layers 52 and 54 are disposed between the upper insulating protective layer 51 and the lower insulating protective layer 55, and further, the piezoelectric A piezoelectric ceramic element having a structure in which an intermediate insulating layer 53 is disposed between the active layers 52 and 54 can also be used.
  • the piezoelectric active layers 52 and 54 have been subjected to polarization treatment, and are expanded and contracted by applying a voltage to become a driving unit for element bending vibration.
  • the intermediate insulating layer 53 electrically isolates the piezoelectric active layers 52 and 54 disposed above and below the intermediate insulating layer 53.
  • This piezoelectric ceramic element is fired as a whole to form an integral structure.
  • This piezoelectric ceramic element also achieves the same effect by joining the reinforcing plate as described above.
  • bonding is performed using adhesives or bonding base materials 63a, 63b, 63c at a plurality of sites.
  • the size of the bonding part or the size of the bonding base materials 63a, 63b, 63c may be different from each other.
  • the bending vibration amount of the piezoelectric ceramic element 61 is small at the joining position of the stator 64. The width of has little effect on flexural vibration.
  • a reinforcing plate joining base material 73 may be provided only at one place in the vicinity of the stator 74. Good. Even in this case, since the impact stress when the device is dropped concentrates in the vicinity of the stator 74, the function of preventing the destruction of the piezoelectric ceramic element 71 by the reinforcing plate 72 has the same reinforcing effect as the joining at a plurality of locations.
  • FIG. 11 (a) is a perspective view showing the appearance of the mobile device casing 70
  • FIG. 11 (b) is a cross-sectional view taken along the line AA in FIG. 11 (a).
  • a piezoelectric ceramic element 71 and a reinforcing plate 7 2 and the reinforcing plate bonding base material 73a, 73b, and 73c are housed in the piezoelectric ceramic actuator.
  • the stator 74 of the piezoelectric ceramic actuator contacts the inner surface of the housing 70. It is provided to do.
  • the housing 70 is provided to hold electronic components such as an electronic circuit board and a liquid crystal display that constitute a portable device, such as a transparent plastic provided for protecting the liquid crystal display.
  • an internal structure mechanically joined to a box-like structure appearing on the exterior of the device is also included.
  • the piezoelectric ceramic actuator of the present invention when provided as a vibration source, when an AC electric field is applied to the piezoelectric actuator, the piezoelectric actuator causes flexural vibration and passes through the stator 74. Vibration propagates to the housing 70. Mechanical vibration is excited throughout the entire casing 70, and the air in contact with the casing 70 is oscillated to be radiated and used as a sounding body.
  • a piezoelectric ceramic element 81 shown in FIG. 12 was produced.
  • a material for the piezoelectric ceramic plates 82 and 83 a lead zirconate titanate perovskite composite was used.
  • the green sheet method used for the production of ceramic capacitors and the like was applied.
  • the piezoelectric ceramic plates 82 and 83 had a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm, and were fired in the atmosphere at 1100 ° C for 2 hours. Ag electrodes were formed on both main surfaces of the piezoelectric ceramic plate and then polarized. A phosphor bronze plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.12 mm was prepared as the constant elastic body 84 and bonded to the piezoelectric ceramic plates 82 and 83 with an epoxy adhesive. This constant elastic body 84 is used as an electrode and does not affect vibration, so it is not always necessary if the electrical connection is devised. Further, three electrical lead terminals 85a, 85b, and 85c were brought into contact with a constant elastic body 84 made of piezoelectric ceramic plates 82 and 83 and a phosphor bronze plate.
  • FIG. 13 (a) As an example of the prior art, an adhesive coated on the entire surface 87a of the reinforcing plate 86 was prepared. Further, as an example of the present invention, as shown in FIG. 13 (b), an epoxy adhesive was applied to three independent parts 6b of width 6mm on the reinforcing plate 86, 13 As shown in (c), a reinforcing plate bonding base material 87c having a width of 6 mm and a thickness of 0.1 mm was bonded to three portions on the reinforcing plate 86 by applying an epoxy adhesive on both sides thereof. As shown in Fig.
  • a reinforcing plate joining base material 87d with a width of 4mm and a thickness of 0.1mm was coated with epoxy adhesive on both sides. Prepared one joined to the part. At this time, one joining base material is arranged at the joining position of the stator.
  • the thickness of the bonding base material used was set to 0.1 mm.
  • the present invention limits the thickness of the base material, and when mounted on a portable device, the thickness of the piezoelectric ceramic actuator is limited. What is necessary is just to select suitably according to the thickness dimension which has a desired vibration characteristic.
  • a stator 88 having a length of 5 mm, a width of 5 mm, and a thickness of 1 mm is manufactured using ABS resin, and is placed in the center of the reinforcing plate 86 to obtain a piezoelectric ceramic element.
  • a joining base material 87c, etc., a reinforcing plate 86, and a stator 88 were joined.
  • the role of the stator 88 is to propagate the vibration of the piezoelectric ceramic element to the elastic body.
  • ABS resin is used as the stator material, but the material of the stator is not limited.
  • a simulated housing 90 having a length of 90 mm, a width of 45 mm, and a thickness of 20 mm, which simulates the housing of an electronic device is Made of acrylic material.
  • the four types of reinforcing plates shown in Fig. 13 (a) to (d) the piezoelectric ceramic actuator with the piezoelectric ceramic element and the stator, and the center position of the bottom surface of the stator
  • the inner surface of the 90 was joined at a position 20 mm from one end in the longitudinal direction and 22 mm from the left end in the width direction.
  • the broken line indicates the arrangement position of the piezoelectric ceramic actuator.
  • the piezoelectric ceramic actuator according to the embodiment of the present invention has a vibration amount of 2.5 times or more as compared with the conventional example of FIG. 13 (a). Has improved.
  • the piezoelectric ceramic actuator of this embodiment does not change in characteristics before and after the drop test. Also in the appearance inspection after the drop test, chipping, cracking, and peeling of the joint portion of the piezoelectric ceramic element were not observed. Therefore, according to this example, it was proved that the present invention can prevent the impact destruction and can greatly improve the vibration amount.
  • a piezoelectric ceramic element similar to the piezoelectric ceramic element described in Example 1 was used, except that a stainless steel plate was used as the reinforcing plate and the stator was fixed to the end of the reinforcing plate. . That is, a stainless steel plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm was prepared as the reinforcing plate 86 in FIG.
  • an epoxy adhesive is applied to the entire surface of the reinforcing plate (Fig. 13 (a)), and an epoxy adhesive is applied to both sides of a 6mm wide and 0.1mm thick substrate to reinforce the base material.
  • Two types of piezoceramic elements were fabricated, one bonded to three locations on the top surface of the plate (Fig. 13 (c)).
  • a stator having a length of 5 mm, a width of 5 mm, and a thickness of 1 mm is manufactured using an ABS resin material, arranged at the end of the piezoelectric ceramic element, and each component is joined as shown in FIG. did.
  • a pseudo housing 90 of an electronic device having a length of 90 mm, a width of 45 mm, and a thickness of 20 mm was made of an acrylic material having a thickness of 2 mm.
  • two types of piezoelectric ceramic elements were joined to each other at a position of one end force in the longitudinal direction (bending direction) on the inner surface of the pseudo casing 90, 20 mm, and 10 mm from the left end in the width direction via the stator.
  • each piezoelectric ceramic element has an alternating current of lVrms and 500 Hz.
  • a sinusoidal voltage was applied to vibrate the ceramic element, and the effective vibration velocity at the center of the transmitted acrylic plate was measured using a laser vibration system.
  • the vibration amount when using the conventional piezoelectric element shown in Fig. 13 (a) was taken as 1, and the measured value ratio was taken as the standard vibration speed.
  • the pseudo casing 90 was dropped onto the floor concrete from a height of 200 cm, and an impact force was applied to the outer surface of the casing where the piezoelectric ceramic elements on the inner surface of the pseudo casing were joined.
  • the amount of vibration is improved by a factor of 3.3 in the piezoelectric ceramics according to the present invention as compared with the conventional example shown in FIG. 13 (a).
  • the actuator of the present invention has no change in characteristics before and after the drop test. An appearance inspection was conducted after the drop test, but no chipping, cracking, or peeling of the piezoelectric ceramic was observed. According to the present embodiment, it was proved that the present invention can prevent impact destruction and greatly improve the vibration amount.
  • Embodiment 3 of the present invention will be described with reference to FIG. 18 and FIG.
  • the piezoelectric ceramic element of Example 1 shown in FIG. 12 was used.
  • a stainless steel plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm was prepared as the reinforcing plate 86.
  • an epoxy resin was applied to the entire surface 87a of both sides of the reinforcing plate 86, and a pair of piezoelectric ceramic elements 81 were bonded to the front and back surfaces of the reinforcing plate 86.
  • the stator 88 was joined to the lower surface of the lower piezoelectric ceramic element 81.
  • FIG. 18 (conventional example)
  • the stator 88 was manufactured using an ABS resin material so as to have a length of 5 mm, a width of 5 mm, and a thickness of 1 mm. This stator 88 was placed in the center of the lower surface of the piezoelectric ceramic element 81, and the components were joined.
  • a pseudo housing 90 made of acrylic material having a length of 90 mm, a width of 45 mm, a thickness of 2 Omm, and a thickness of 2 mm
  • the ceramic element was fixed via a stator 86.
  • the joining position of the stator 86 on the inner surface of the pseudo housing 90 is a position of one end force of the pseudo housing 90, 20 mm, and 22 mm from the left end in the width direction.
  • an AC sine wave voltage of lVrms and 500Hz is applied to each piezoelectric ceramic element to vibrate the ceramic element, and the effective vibration velocity amount at the center of the acrylic plate to be transmitted is determined by laser vibration. Measurement was performed using a system. At this time, in the actuator provided with the two piezoelectric ceramic elements of FIGS. 18 and 19, a voltage was applied to each piezoelectric ceramic element so that the vibrations were in the same direction (in phase). The vibration amount when using the piezoelectric ceramic actuator shown in Fig. 14 was set as 1, and the amount of change was set as the standard vibration speed.
  • Examples 1 to 3 the effect of the present invention is tested using a pseudo case imitating an electronic device.
  • a mobile phone device was fabricated as a portable electronic device, and the effect of the present invention was tested.
  • FIG. 20 shows the structure of a mobile phone as an example of the electronic apparatus of the present invention.
  • the upper housing 101 of the mobile phone is 90 mm long, 45 mm wide, 15 mm thick
  • the lower housing 103 is 90 mm long, 45 mm wide, 15 mm thick.
  • the upper casing 101 and the lower casing 103 are foldably connected by a hinge mechanism 105.
  • An antenna 102 is attached to the upper housing 101.
  • a liquid crystal display 108, a circuit board 106, and a piezoelectric ceramic element 109 are accommodated.
  • a circuit board 107 and a battery pack 104 are accommodated in the lower housing 103.
  • the piezoelectric ceramic element provided with the reinforcing plate of Figs. 13 (a) to (d) described in Example 1 was used, and the length was 5mm and the width was 5mm.
  • a lmm-thick stator was placed in the center of the piezoelectric ceramic element, and the parts were joined as shown in FIG.
  • the center position of the stator is aligned with the position 20 mm from the lower end surface in the longitudinal direction of the casing, and the longitudinal force of the piezoelectric ceramic element is parallel to the width direction of the casing. Bonded to the housing with an adhesive.
  • the connection location of the piezoelectric ceramic element of the present invention is not limited to a specific position of the electronic device casing, but may be provided on, for example, a liquid crystal display or a display protective material.
  • an AC sine wave voltage of lVrms and 500Hz is applied to each piezoelectric ceramic element to vibrate the ceramic element and transmit the center of the acrylic plate to be transmitted.
  • the amount of effective vibration velocity was measured using a laser vibration system.
  • the vibration amount when using the conventional piezoelectric ceramic element in Fig. 13 (a) was set to 1, and the vibration speed ratio of the elastic body by each piezoelectric ceramic element was taken as the standard vibration speed.
  • the casing was dropped onto the floor concrete from a height of 200 cm, and an impact force was applied to the joint surface where the piezoelectric ceramic element of the casing was joined. Then, an AC sine wave voltage of lVrms and 500Hz is applied to the piezoelectric ceramic element to vibrate the ceramic element, and the amount of effective vibration velocity at the center of the transmitted tantalum plate is measured using a laser vibration system.
  • the piezoelectric ceramic element of the present invention was evaluated with the vibration amount when using the conventional piezoelectric ceramic element of FIG. 13 (a) before dropping as the reference 1 and the measured value ratio as the normalized vibration speed.
  • a microphone was placed at a distance of 10 cm from the outside of the housing where the piezoelectric element was placed, and an AC sine wave voltage of lVrms and 500 Hz was applied to each piezoelectric ceramic element in the same manner as the vibration velocity measurement described above. The sound pressure was measured. Then, the sound pressure when using the conventional piezoelectric ceramic element of FIG. 13 (a) is set to 1, and the ratio of the measured values is expressed as the normalized sound pressure. The results are shown in Table 4 below.
  • the piezoelectric ceramic element of the present invention has a vibration amount improved 2.3 times or more. Also, there is no change in characteristics before and after the drop test. In the appearance inspection after the drop test, no chipping, cracking, peeling of the joint, etc. were observed. According to this example, it was proved that the present invention can prevent impact destruction and can greatly improve the vibration amount. In addition, the same effect as the amount of vibration is recognized in the sound pressure, and the effect of the present invention is effective not only as a vibration source but also as a sound generating element, and the use method of the present invention is greatly expanded. Therefore, its industrial value is great. Industrial applicability
  • the present invention is useful as a mechanical vibration source having a thin shape and high reliability for portable equipment.

Abstract

A reinforcing plate is placed on the entire surface of a piezoelectric ceramic element which oscillates upon application of a voltage, and then the piezoelectric ceramic element and the reinforcing plate are locally bonded at one or more positions. A stator is bonded to a part of the reinforcing plate corresponding to the bonded portion, and oscillation of the piezoelectric ceramic element is transmitted to the outside. Consequently, a structural defect such as cracking or chipping does not take place in the piezoelectric ceramic element even if it is subjected to falling impact, and a significant oscillation of the piezoelectric ceramic element can be ensured.

Description

明 細 書  Specification
圧電セラミックァクチユエータ及び携帯機器  Piezoelectric ceramic actuator and portable device
技術分野  Technical field
[0001] 本発明は、携帯機器に用いられる薄型'高信頼性を有する機械的振動源として好 適の圧電セラミックァクチユエータ及びそれを搭載した携帯機器に関する。  TECHNICAL FIELD [0001] The present invention relates to a piezoelectric ceramic actuator suitable as a thin and highly reliable mechanical vibration source used in a portable device and a portable device equipped with the piezoelectric ceramic actuator.
背景技術  Background art
[0002] 昨今、携帯電話、ノート型パーソナルコンピュータ、及び PDA (Personal Data Assis tance携帯情報端末)等の小型携帯電子機器が盛んに利用されるようになった。これ らの装置は、ネットワークシステム及びソフトウェアの進展とともに、その応用に広がり を見せ、利用者の利便性が高まっている。これにともない搭載される機能部品の数量 は増大傾向にある。例えば、スピーカ、マイクロホン、レシーバ、バイブレータ、カメラ 、液晶ディスプレイ、電池、カードメモリー、 LSI,赤外通信モジュールなどがその一 例である。  Recently, small portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistant personal digital assistants) have come to be actively used. These devices are expanding their applications with the development of network systems and software, increasing the convenience for users. Along with this, the number of functional parts to be mounted is increasing. Examples include speakers, microphones, receivers, vibrators, cameras, liquid crystal displays, batteries, card memories, LSIs, and infrared communication modules.
[0003] 携帯性及び利便性を高めるため、装置の小型 ·薄型が求められる一方で、搭載さ れる機能部品の増加により、装置の小型化に対して障害が生じている。また、装置落 下時における部品と他の部品又は筐体との接触による部品破壊防止を考慮した実 装配置、空間設計の重要性が高まっている。更に一層の携帯機器の普及のために、 安価に部品を製作 ·実装する技術の開発も、欠かすことができない状況にある。  [0003] In order to improve portability and convenience, the device is required to be small and thin. On the other hand, an increase in the number of functional components mounted impedes the downsizing of the device. In addition, the importance of mounting layout and space design that takes into account the prevention of component destruction due to contact between components and other components or the case when the device is dropped is increasing. The development of technology for manufacturing and mounting parts at low cost is indispensable for the further spread of portable devices.
[0004] 携帯機器には様々な可動部品が用いられる。音響素子、ノ イブレータ、カメラズー ム機構、液冷ポンプ等が挙げられる。携帯機器には、そのエネルギー供給源として 電池が使用されており、 3〜5V程度の低電圧駆動が可能で安価であることから機械 的駆動源として、電磁型と呼ばれる DCモータ及び磁力 ·機械変換機構が用いられて いる.電磁コイル及び永久磁石などが使用されているため、駆動性能を維持し、小型 化を図るために技術的な障壁は高い。電磁型駆動源力 発する電磁ノイズも機器の 誤動作を生じる。そこで、電磁作用を利用せず、高い電気 ·機械エネルギー変換効 率を有し、薄型及び小型化に有利な圧電セラミックを利用した駆動源が注目されて いる。 [0005] これは、小型ながら、直流電圧を印加すると、圧電セラミック素子が変位し、対象物 を可動する力が強いためである。また、所望の周波数の交流電圧を印加すると、その 周波数で振動し、対象物を振動させることが可能な素子である。 [0004] Various movable parts are used in portable devices. Examples include acoustic elements, vibrators, camera zoom mechanisms, and liquid cooling pumps. Batteries are used as energy supply sources for portable devices, and they can be driven at a low voltage of about 3 to 5 V and are inexpensive. As a mechanical drive source, a DC motor called an electromagnetic type and magnetic force / mechanical conversion The mechanism is used. Since electromagnetic coils and permanent magnets are used, there are high technical barriers to maintain drive performance and reduce size. Electromagnetic noise generated by the electromagnetic drive source can also cause equipment malfunction. Therefore, a drive source using a piezoelectric ceramic that does not use electromagnetic action, has high electro-mechanical energy conversion efficiency, and is advantageous for thinning and miniaturization has attracted attention. [0005] This is because the piezoelectric ceramic element is displaced when a DC voltage is applied in spite of its small size, and the force to move the object is strong. In addition, when an AC voltage having a desired frequency is applied, the element vibrates at that frequency and can vibrate an object.
[0006] このように機械的駆動源として、薄型化が可能な圧電セラミック素子には、数々の形 態が提案され実用化がなされている。例えば、非特許文献 1及び非特許文献 2に圧 電横効果を利用した屈曲素子及びその動作の詳細が記載されている。  [0006] As described above, a piezoelectric ceramic element that can be thinned as a mechanical drive source has been proposed and put into practical use. For example, Non-Patent Document 1 and Non-Patent Document 2 describe bending elements using the piezoelectric transverse effect and details of their operation.
[0007] また、携帯機器には、エネルギー供給源として 3〜5V出力の電池が用いられる。一 般的に圧電セラミック素子は、電磁型と比較してその動作電圧が高いことが知られて いる。これを解決する手段として圧電セラミック薄板と電極を交互に積層して、セラミツ ク板に印加する電界強度を高めることで低電圧駆動を可能にした積層圧電セラミック 振動子が提案されている。この積層圧電セラミック振動子は、例えば、非特許文献 3 にその構造が示されている。  [0007] In addition, in mobile devices, a battery of 3 to 5 V output is used as an energy supply source. It is generally known that a piezoelectric ceramic element has a higher operating voltage than an electromagnetic type. As a means for solving this problem, there has been proposed a laminated piezoelectric ceramic vibrator that can be driven at a low voltage by alternately laminating piezoelectric ceramic thin plates and electrodes and increasing the electric field strength applied to the ceramic plate. The structure of this multilayer piezoelectric ceramic vibrator is shown in Non-Patent Document 3, for example.
[0008] 図 21、図 22及び図 24を使用して、従来の圧電セラミックァクチユエータについて説 明する。図 21は従来の圧電セラミック素子 110 (圧電振動子)を示す。この従来の圧 電セラミック素子 110は、分極処理が施された 1対の圧電セラミック板 111 , 112が、 その間に恒弾性体 113を配置して接合されており、この圧電セラミック板 111 , 112 には電極が形成されている。恒弾性体 113の上下に配置された電気端子に対し所 定の結線を施すと、圧電セラミック板 111, 112に電圧を印加したときに、上に配置さ れた圧電セラミック板 111は長さ方向に縮み、下に配置された圧電セラミック板 112 は長さ方向に伸び、結果として、図 22に示すように圧電セラミック板 111 , 112の厚さ 方向(圧電セラミック素子 110の厚さ方向)に屈曲運動をする。電圧の印加方向を変 えると、逆向きに屈曲運動をする。従って、正弦波交流電圧を印加すれば、圧電セラ ミック素子 110は、厚さ方向に屈曲振動を起こす。  [0008] A conventional piezoelectric ceramic actuator will be described with reference to FIGS. 21, 22 and 24. FIG. FIG. 21 shows a conventional piezoelectric ceramic element 110 (piezoelectric vibrator). In this conventional piezoelectric ceramic element 110, a pair of piezoelectric ceramic plates 111 and 112 subjected to polarization treatment are joined with a constant elastic body 113 disposed therebetween, and the piezoelectric ceramic plates 111 and 112 are joined to the piezoelectric ceramic plates 111 and 112. Are formed with electrodes. If a predetermined connection is made to the electrical terminals arranged above and below the constant elastic body 113, the piezoelectric ceramic plate 111 arranged on the upper side when the voltage is applied to the piezoelectric ceramic plates 111, 112 The piezoelectric ceramic plate 112 arranged below extends in the length direction and, as a result, bends in the thickness direction of the piezoelectric ceramic plates 111 and 112 (thickness direction of the piezoelectric ceramic element 110) as shown in FIG. exercise. When the direction of voltage application is changed, it bends in the opposite direction. Therefore, when a sine wave AC voltage is applied, the piezoelectric ceramic element 110 causes bending vibration in the thickness direction.
[0009] この圧電セラミック素子 110の振動を、弾性体 115に伝えるためには、図 23に示す ように、圧電セラミック素子 110と弾性体 115との間に固定子 114を設け、この固定子 114を介して、圧電セラミック素子 110と、弾性体 115とを機械的に接合すれば良い  In order to transmit the vibration of the piezoelectric ceramic element 110 to the elastic body 115, as shown in FIG. 23, a stator 114 is provided between the piezoelectric ceramic element 110 and the elastic body 115, and the stator 114 The piezoelectric ceramic element 110 and the elastic body 115 may be mechanically joined via
[0010] 非特許文献 1 :「超音波エレクトロニクス振動論」、 pp. 104、富川義朗 編著、朝倉書 店、 1998年 [0010] Non-patent document 1: "Ultrasonic electronics vibration theory", pp. 104, edited by Yoshiro Tomikawa, Asakura Shop, 1998
非特許文献 2 :「電気回路素子としての電気機械振動子とその応用」、 pp. 192、 pp. 212、永井健三、近野正 共著、コロナ社、 1974年  Non-Patent Document 2: "Electromechanical vibrator as an electric circuit element and its application", pp. 192, pp. 212, Kenzo Nagai, Tadashi Masano, Corona, 1974
^^特許乂献 3: Mechanical quality factor of multilayer piezoelectric ceramic trans du cers" (Jpn. J. Appl. Phys., Vol.40, Part 1, No.5B, pp.3549-3551, May2001)  ^^ Patent Contribution 3: Mechanical quality factor of multilayer piezoelectric ceramic trans du cers "(Jpn. J. Appl. Phys., Vol.40, Part 1, No.5B, pp.3549-3551, May2001)
特許文献 1 :特開 2004— 254417  Patent Document 1: JP 2004-254417
特許文献 2:特開 2000— 333480  Patent Document 2: JP 2000-333480 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力 ながら、屈曲変位動作をする圧電横効果を利用した圧電セラミック素子を、携 帯機器に利用する際、以下に示す実用上の課題がある。  [0011] However, when a piezoelectric ceramic element using the piezoelectric lateral effect that performs bending displacement operation is used for a portable device, there are the following practical problems.
[0012] 昨今の携帯機器は運搬性を考慮し、運搬時の人的な失敗により発生する機器落下 時の破壊防止のための対策をおこなわなければならなレ、。小型である圧電セラミック 素子は、携帯機器の小型振動源として、バイブレータ及び音響素子など、その応用 性は広いが、セラミックの脆性のため、落下時の衝撃力による破壊が起こりやすいと レ、う欠点があった。図 23の構成において、携帯機器落下時に発生する衝撃応力は 固定子 114の近傍に集中し、セラミックの割れ及び欠けなどの構造的欠陥が発生し、 圧電セラミック素子の振動量は大幅に低下し、振動源として機能しなくなるという問題 点があった。  [0012] Modern mobile devices must take measures to prevent destruction when the devices fall due to human failure during transportation, considering transportability. Piezoelectric ceramic elements, which are small, have a wide range of applicability, such as vibrators and acoustic elements, as small vibration sources for portable devices, but because of the brittleness of ceramics, they are prone to breakage due to impact force when dropped. was there. In the configuration of Fig. 23, the impact stress generated when the mobile device is dropped concentrates in the vicinity of the stator 114, structural defects such as cracking and chipping of the ceramic occur, and the vibration amount of the piezoelectric ceramic element is greatly reduced. There was a problem that it could not function as a vibration source.
[0013] この問題点の解決のために、図 24に示すように、金属板等の剛性が高ぐ衝撃力 に強レ、補強板 116を圧電セラミック素子 110の表面全面に接合することが考えられる  In order to solve this problem, as shown in FIG. 24, it is considered that the reinforcing plate 116 is bonded to the entire surface of the piezoelectric ceramic element 110, with a strong impact force such as a metal plate having high rigidity. Be
[0014] し力 ながら、補強板 116の接合により、圧電セラミック素子 110が機械的に拘束さ れて、その伸縮運動が抑制されるため、振動量が小さなものになってしまレ、、実用に 供し得ないという問題点がある。 [0014] However, since the piezoelectric ceramic element 110 is mechanically constrained by the joining of the reinforcing plate 116 and its expansion and contraction is suppressed by the joining of the reinforcing plate 116, the amount of vibration becomes small, and it is practically used. There is a problem that it cannot be provided.
[0015] 同様に、特許文献 1及び 2には、圧電素子に補強板を積層させた圧電ァクチユエ一 タが開示されているが、圧電素子の衝撃破損防止及び大きな振動量の確保という相 反する要求を満足できるものではない。 [0016] 本発明は力かる問題点に鑑みてなされたものであって、落下衝撃力を受けても、圧 電セラミック素子の割れ及び欠け等の構造的欠陥が発生せず、し力も、圧電セラミツ ク素子の振動量として、大きな振動量を確保することができる圧電セラミックァクチュ エータ及びそれを組み込んだ携帯機器を提供することを目的とする。 [0015] Similarly, Patent Documents 1 and 2 disclose a piezoelectric actuator in which a reinforcing plate is laminated on a piezoelectric element. However, there are conflicting requirements for preventing damage to the piezoelectric element and ensuring a large amount of vibration. Can not be satisfied. [0016] The present invention has been made in view of the problems that may occur, and even when subjected to a drop impact force, structural defects such as cracking and chipping of the piezoelectric ceramic element do not occur, and the compressive force is piezoelectric. An object of the present invention is to provide a piezoelectric ceramic actuator capable of securing a large vibration amount as a vibration amount of the ceramic element and a portable device incorporating the piezoelectric ceramic actuator.
課題を解決するための手段  Means for solving the problem
[0017] 本発明に係る圧電セラミックァクチユエータは、電圧の印加により振動する圧電セラ ミック素子と、この圧電セラミック素子の全面に重ねられる補強材と、前記補強材に固 定され前記圧電セラミック素子の振動を外部に伝達する固定子と、を有し、前記圧電 セラミック素子と前記補強材とは 1又は複数個の局部的な部位で接合されていること を特徴とする。 The piezoelectric ceramic actuator according to the present invention includes a piezoelectric ceramic element that vibrates when a voltage is applied thereto, a reinforcing material that is superposed on the entire surface of the piezoelectric ceramic element, and the piezoelectric ceramic that is fixed to the reinforcing material. A stator for transmitting the vibration of the element to the outside, and the piezoelectric ceramic element and the reinforcing member are joined at one or more local sites.
[0018] この圧電セラミックァクチユエータにおいて、前記圧電セラミック素子は、例えば、 1 対の圧電セラミック板と、この圧電セラミック板に挟まれた恒弾性体とを有するもので ある。この場合に、前記補強材は、例えば、一方の圧電セラミック板の全面に重ねら れ、この圧電セラミック板と同一又はそれより大きな形状を有する。  In the piezoelectric ceramic actuator, the piezoelectric ceramic element has, for example, a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates. In this case, the reinforcing material is stacked on the entire surface of one piezoelectric ceramic plate, for example, and has the same or larger shape as the piezoelectric ceramic plate.
[0019] また、前記固定子は、前記圧電セラミック素子と前記補強材との接合部位に配置さ れていることが好ましい。更に、前記圧電セラミック素子と前記補強材とは接着剤によ り接合されていることが好ましい。更にまた、前記圧電セラミック素子と前記補強材と の間に、接合材が塗布された有機樹脂基材を設けることにより、前記圧電セラミック 素子と前記補強材とを接合することができる。  [0019] Further, it is preferable that the stator is disposed at a joint portion between the piezoelectric ceramic element and the reinforcing material. Furthermore, it is preferable that the piezoelectric ceramic element and the reinforcing material are bonded by an adhesive. Furthermore, by providing an organic resin base material coated with a bonding material between the piezoelectric ceramic element and the reinforcing material, the piezoelectric ceramic element and the reinforcing material can be bonded.
[0020] 本発明に係る他の圧電セラミックァクチユエータは、電圧の印加により振動する 1対 の圧電セラミック素子と、これらの 1対の圧電セラミック素子間に配置されその全面に 重ねられる補強材と、一方の前記圧電セラミック素子に固定され前記圧電セラミック 素子の信号を外部に伝達する固定子と、を有し、前記各圧電セラミック素子と前記補 強材とは夫々 1又は複数個の局部的な部位で接合されてレ、ることを特徴とする。  [0020] Another piezoelectric ceramic actuator according to the present invention includes a pair of piezoelectric ceramic elements that vibrate when a voltage is applied, and a reinforcing material disposed between the pair of piezoelectric ceramic elements and stacked on the entire surface thereof. And a stator that is fixed to one of the piezoelectric ceramic elements and transmits a signal of the piezoelectric ceramic element to the outside, and each of the piezoelectric ceramic elements and the reinforcing material is one or a plurality of local parts. It is characterized by being joined at various parts.
[0021] この圧電セラミックァクチユエータにおいて、前記各圧電セラミック素子は、例えば、 1対の圧電セラミック板と、この圧電セラミック板に挟まれた恒弾性体とを有するもので ある。この場合に、前記補強材は、例えば、両圧電セラミック素子の各一方の圧電セ ラミック板の全面に重ねられ、この圧電セラミック板と同一又はそれより大きな形状を 有する。 In this piezoelectric ceramic actuator, each of the piezoelectric ceramic elements has, for example, a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates. In this case, for example, the reinforcing material is stacked on the entire surface of one of the piezoelectric ceramic plates of both piezoelectric ceramic elements, and has the same or larger shape as the piezoelectric ceramic plate. Have.
[0022] また、前記固定子は、それが固定された圧電セラミック素子と前記補強材との接合 部位に配置されていることが好ましい。更に、前記圧電セラミック素子と前記補強材と は接着剤により接合されていることが好ましい。更にまた、前記圧電セラミック素子と 前記補強材との間に、接合材が塗布された有機樹脂基材を設けることにより、前記圧 電セラミック素子と前記補強材とを接合することができる。  [0022] Further, it is preferable that the stator is disposed at a joint portion between the piezoelectric ceramic element to which the stator is fixed and the reinforcing material. Furthermore, it is preferable that the piezoelectric ceramic element and the reinforcing material are joined by an adhesive. Furthermore, the piezoelectric ceramic element and the reinforcing material can be joined by providing an organic resin base material coated with a joining material between the piezoelectric ceramic element and the reinforcing material.
[0023] 本発明に係る携帯機器は、上述の圧電セラミックァクチユエータを振動源にしたこと を特徴とする。この場合に、上述の圧電セラミックァクチユエータを振動源にして、筐 体の一部を振動させることにより発音させるように構成することもできる。 発明の効果  [0023] A portable device according to the present invention is characterized in that the piezoelectric ceramic actuator described above is used as a vibration source. In this case, the above-described piezoelectric ceramic actuator can be used as a vibration source, and a part of the housing can be vibrated to generate sound. The invention's effect
[0024] 本発明によれば、圧電セラミック素子を、 1又は複数箇所の局部的な部位で補強材 に接合したので、この圧電セラミック素子を振動源として携帯機器に組み込んだ場合 に、携帯機器を落下させたときに衝撃応力が作用しても、圧電セラミック素子が破壊 すること力 S防止される。この場合に、圧電セラミック素子と補強材とは、局部的な部位 で接合されているので、補強材を設けても十分に大きな振動量を得ることができ、振 動量が大きな機械的振動源を得ることができる。また、補強材は、圧電セラミック素子 の全面に重ねられるものであるから、圧電セラミック素子に対する衝撃力を確実に抑 制することができ、その衝撃応力による破壊を防止し、高信頼性を得ることができる。 特に、補強材を圧電セラミック素子と同一の大きさにすれば、圧電セラミック素子の一 つの面を補強板で覆うことによる破損防止効果に加えて、圧電セラミック素子からは み出た無駄な突起等がなぐ装置の小型化が可能である。  [0024] According to the present invention, since the piezoelectric ceramic element is joined to the reinforcing material at one or more local sites, when the piezoelectric ceramic element is incorporated into a portable device as a vibration source, the portable device is Even if impact stress is applied when dropped, the piezoelectric ceramic element can be destroyed. In this case, since the piezoelectric ceramic element and the reinforcing material are joined locally, a sufficiently large vibration amount can be obtained even if the reinforcing material is provided, and a mechanical vibration source having a large vibration amount can be obtained. Obtainable. In addition, since the reinforcing material is stacked on the entire surface of the piezoelectric ceramic element, it is possible to reliably suppress the impact force on the piezoelectric ceramic element, to prevent breakage due to the impact stress, and to obtain high reliability. Can do. In particular, if the reinforcing material is the same size as the piezoelectric ceramic element, in addition to preventing damage by covering one surface of the piezoelectric ceramic element with a reinforcing plate, useless protrusions protruding from the piezoelectric ceramic element, etc. It is possible to reduce the size of the device.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明の第 1実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 1 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a first embodiment of the present invention.
[図 2]本発明の第 2実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 2 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a second embodiment of the present invention.
[図 3]本発明の第 3実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。 [図 4]本発明の第 4実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。 FIG. 3 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a third embodiment of the present invention. FIG. 4 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a fourth embodiment of the present invention.
[図 5]本発明の第 5実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 5 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a fifth embodiment of the present invention.
[図 6]本発明の第 6実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 6 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a sixth embodiment of the present invention.
[図 7]本発明の第 7実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 7 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a seventh embodiment of the present invention.
園 8]本発明の圧電セラミック素子の変形例を示す斜視図である。 FIG. 8] A perspective view showing a modification of the piezoelectric ceramic element of the present invention.
[図 9]本発明の第 8実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。  FIG. 9 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to an eighth embodiment of the present invention.
園 10]本発明の第 9実施形態に係る圧電セラミックァクチユエータの組立方法を示す 斜視図である。 FIG. 10] A perspective view showing a method of assembling a piezoelectric ceramic actuator according to a ninth embodiment of the present invention.
[図 11] (a)、 (b)は、本発明の実施形態のァクチユエータを携帯機器に組み込んだ状 態を示す図である。  [FIG. 11] (a) and (b) are views showing a state in which the actuator of the embodiment of the present invention is incorporated in a portable device.
園 12]本発明の実施例 1の圧電セラミック素子を示す斜視図である。 12] A perspective view showing a piezoelectric ceramic element of Example 1 of the present invention.
[図 13] (a)乃至(d)は、本発明の実施例 1の補強板及び補強板接合用基材を示す図 である。  [FIG. 13] (a) to (d) are views showing a reinforcing plate and a reinforcing plate-joining substrate of Example 1 of the present invention.
園 14]本発明の実施例 1の圧電セラミックァクチユエータの組立方法を示す斜視図で ある。 14] FIG. 14 is a perspective view showing a method for assembling the piezoelectric ceramic actuator according to the first embodiment of the present invention.
[図 15] (a)、 (b)は、実施例 1のァクチユエータを筐体に取り付ける方法を示す図であ る。  [FIG. 15] (a) and (b) are diagrams showing a method of attaching the actuator of the first embodiment to the casing.
園 16]本発明の実施例 2の圧電セラミックァクチユエータを示す斜視図である。 16] A perspective view showing a piezoelectric ceramic actuator according to a second embodiment of the present invention.
[図 17] (a)、 (b)は、実施例 2のァクチユエータを筐体に取り付ける方法を示す図であ る。  [FIG. 17] (a) and (b) are diagrams showing a method of attaching the actuator of the second embodiment to the casing.
園 18]本発明の実施例 3の圧電セラミックァクチユエータを示す斜視図である。 18] A perspective view showing a piezoelectric ceramic actuator according to a third embodiment of the present invention.
園 19]同じく本発明の実施例 3の圧電セラミックァクチユエータを示す斜視図である。 19] Similarly, it is a perspective view showing a piezoelectric ceramic actuator of Example 3 of the present invention.
[図 20] (a)、 (b)は、本発明の実施例 4の圧電セラミックァクチユエータを携帯機器内 に収納した状態を示す図である。 [FIG. 20] (a) and (b) show the piezoelectric ceramic actuator of Example 4 of the present invention in a portable device. It is a figure which shows the state accommodated in.
[図 21]従来の圧電セラミック素子を示す斜視図である。  FIG. 21 is a perspective view showing a conventional piezoelectric ceramic element.
[図 22]その動作を示す図である。 FIG. 22 is a diagram showing the operation.
[図 23]従来の圧電セラミックァクチユエータを示す斜視図である。  FIG. 23 is a perspective view showing a conventional piezoelectric ceramic actuator.
[図 24]従来の圧電セラミックァクチユエータを示す斜視図である。 FIG. 24 is a perspective view showing a conventional piezoelectric ceramic actuator.
符号の説明 Explanation of symbols
1、 11、 21、 31、 41a、 41b、 61、 81:圧電セラミック素子 1, 11, 21, 31, 41a, 41b, 61, 81: Piezoelectric ceramic element
2、 4、 82, 83:圧電セラミック板  2, 4, 82, 83: Piezoelectric ceramic plate
3、 84:恒弾性体  3, 84: Constant elastic body
5、 15、 25、 35a、 35b、 45、 62、 86:補強板  5, 15, 25, 35a, 35b, 45, 62, 86: Reinforcing plate
6、 49、 64、 74、 88:固定子  6, 49, 64, 74, 88: Stator
7a、 7b、 7c:接合部位 7a, 7b, 7c: junction sites
17a、 17b、 17c、 27a, 27b、 27c, 37a, 37b、 37c、 38a, 38b、 38c、 47a, 47b、 4 17a, 17b, 17c, 27a, 27b, 27c, 37a, 37b, 37c, 38a, 38b, 38c, 47a, 47b, 4
7c、 48a, 48b、 48c、 63a、 63b、 63c、 87b、 87c, 87d:補強板接合用基材7c, 48a, 48b, 48c, 63a, 63b, 63c, 87b, 87c, 87d: Base material for reinforcing plate bonding
51:上部絶縁層 51: Upper insulating layer
52、 54:圧電活性層  52, 54: Piezoelectric active layer
53:中間絶縁層  53: Intermediate insulating layer
55:下部絶縁層  55: Lower insulation layer
70:疑似筐体  70: Pseudo enclosure
101:携帯電話上部筐体  101: Mobile phone upper case
102:アンテナ  102: Antenna
103:携帯電話下部筐体  103: Mobile phone lower case
104:電池パック  104: Battery pack
105:折りたたみヒンジ  105: Folding hinge
106、 107:回路基板  106, 107: Circuit board
108:液晶ディスプレイ  108: LCD display
109:圧電セラミック素子  109: Piezoelectric ceramic element
発明を実施するための最良の形態 [0027] 以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。 図 1は本発明の第 1実施形態に係る圧電セラミックァクチユエータの組み立て方法を 示す斜視図である。圧電セラミック素子 1は、 1対の圧電セラミック板 2、 4の間に、恒 弾性体 3を挟むようにして構成されており、圧電セラミック板 2, 4に形成した電極(図 示せず)に電圧を印加することにより、その電圧の向きにより圧電セラミック板 2側又は 圧電セラミック板 4側のいずれかが内側になるように、圧電セラミック板 2, 4が変形す る。従って、交流電圧を印加することにより、圧電セラミック板 2, 4が交互に内側にな るように変形し (屈曲運動)、圧電セラミック素子 1が振動する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a method for assembling a piezoelectric ceramic actuator according to a first embodiment of the present invention. The piezoelectric ceramic element 1 is configured such that a constant elastic body 3 is sandwiched between a pair of piezoelectric ceramic plates 2 and 4, and a voltage is applied to electrodes (not shown) formed on the piezoelectric ceramic plates 2 and 4. As a result, the piezoelectric ceramic plates 2 and 4 are deformed so that either the piezoelectric ceramic plate 2 side or the piezoelectric ceramic plate 4 side is inward depending on the direction of the voltage. Therefore, by applying an AC voltage, the piezoelectric ceramic plates 2 and 4 are alternately deformed so as to be inward (bending motion), and the piezoelectric ceramic element 1 vibrates.
[0028] 補強板 5は、金属板又は樹脂板等、種々の素材を使用することができる。そして、こ の補強板 5は、圧電セラミック素子 1の圧電セラミック板 4の全面に重ねられ、圧電セ ラミック板 4と同一力、、又はそれ以上の大きさを有する。この補強板 5と圧電セラミック 板 4とは、補強板 5における局部的な 3箇所の部位 7a, 7b、 7cに有機接着剤等の接 着剤を塗布して両者を密着させることにより、この部位 7a〜7cにて、接合される。つ まり、本実施形態は、圧電セラミック板 4の全面で補強板 5を固定せず、 1又は複数個 の局部的な且つ相互に独立した部位で補強板 5と圧電セラミック板 4とを固定する。こ の接合部位の大きさ及び数は任意である。  [0028] For the reinforcing plate 5, various materials such as a metal plate or a resin plate can be used. The reinforcing plate 5 is overlaid on the entire surface of the piezoelectric ceramic plate 4 of the piezoelectric ceramic element 1 and has the same force as or larger than the piezoelectric ceramic plate 4. The reinforcing plate 5 and the piezoelectric ceramic plate 4 are formed by applying an adhesive such as an organic adhesive to the three local portions 7a, 7b, and 7c of the reinforcing plate 5 and bringing them into close contact with each other. Joined at 7a to 7c. That is, in the present embodiment, the reinforcing plate 5 is not fixed to the entire surface of the piezoelectric ceramic plate 4, but the reinforcing plate 5 and the piezoelectric ceramic plate 4 are fixed at one or a plurality of local and mutually independent portions. . The size and number of the joining sites are arbitrary.
[0029] そして、補強板 5における圧電セラミック板 4が接合されていない側の面 (裏面)に、 固定子 6が接合されている。この固定子 6の接合部位は、補強板 5の裏面におけるい ずれかの接合部位 7a〜7cに整合する位置である。つまり、補強板 5における固定子 6の取り付け位置は、補強板 5を圧電セラミック板 4に接合する部位(図示例は、部位 7b)に対応する位置である。この固定子 6は圧電セラミック素子 1の振動を外部に伝 達するためのものであり、例えば、この固定子 6が携帯機器の筐体に接触するように 圧電セラミック素子 1が配置される。  [0029] The stator 6 is bonded to the surface (back surface) of the reinforcing plate 5 where the piezoelectric ceramic plate 4 is not bonded. The joint portion of the stator 6 is a position that matches with any one of the joint portions 7 a to 7 c on the back surface of the reinforcing plate 5. That is, the attachment position of the stator 6 on the reinforcing plate 5 is a position corresponding to a portion (the portion 7b in the illustrated example) where the reinforcing plate 5 is joined to the piezoelectric ceramic plate 4. The stator 6 is used to transmit the vibration of the piezoelectric ceramic element 1 to the outside. For example, the piezoelectric ceramic element 1 is arranged so that the stator 6 comes into contact with the casing of the portable device.
[0030] 次に、上述の如く構成された圧電セラミックァクチユエータの動作について説明する 。本実施形態においては、補強板 5が圧電セラミック素子 1の全面に重なっているの で、携帯機器を落下させても、この補強板 5が圧電セラミック素子 1を保護し、衝撃荷 重が圧電セラミック素子 1に印加することを防止することができ、圧電セラミック素子 1 の破壊を防止することができる。そして、補強板 5は、圧電セラミック素子 1 (圧電セラミ ック板 4)に局部的な 3箇所の部位 7a〜7cで接着により接合されており、補強板が圧 電セラミック素子の全面で接合されて一体的になっているものではないので、圧電セ ラミック素子 1は、補強板 5が接合されていない部位は、 自由に変形することができる 。よって、圧電セラミック素子 1は大きな振動をすることができ、振動量が大きな振動 源となる。 Next, the operation of the piezoelectric ceramic actuator configured as described above will be described. In the present embodiment, since the reinforcing plate 5 overlaps the entire surface of the piezoelectric ceramic element 1, even if the portable device is dropped, the reinforcing plate 5 protects the piezoelectric ceramic element 1 and the impact load is applied to the piezoelectric ceramic element 1. Application to the element 1 can be prevented, and destruction of the piezoelectric ceramic element 1 can be prevented. The reinforcing plate 5 is made of the piezoelectric ceramic element 1 (piezoelectric ceramic). It is bonded to the cover plate 4) by bonding at three local parts 7a to 7c, and the reinforcing plate is not bonded and integrated on the entire surface of the piezoelectric ceramic element. The portion of the ceramic element 1 where the reinforcing plate 5 is not joined can be freely deformed. Therefore, the piezoelectric ceramic element 1 can vibrate greatly and becomes a vibration source with a large amount of vibration.
[0031] この場合に、圧電セラミック素子 1と補強板 5との接合に接着材を使用することにより 、接合部位に柔軟性を持たせることができるため、圧電セラミック素子 1の振動時に圧 電セラミック素子 1は容易に変形することができる。また、局部的に設けられた接合部 位間には非接合の部位があり、この非接合部位において圧電セラミック素子 1と補強 板 5との間には間隙が存在するので、圧電セラミック素子 1と補強板 5との間の摩擦又 は拘束力を低減できるため、これによつても、圧電セラミック素子 1の振動時における 圧電セラミック素子 1の変形を容易にすることができる。これらの理由により、本実施 形態は、圧電セラミックァクチユエータとして、大きな屈曲振動を得ることができる。  [0031] In this case, by using an adhesive for joining the piezoelectric ceramic element 1 and the reinforcing plate 5, it is possible to make the joint part flexible, so that the piezoelectric ceramic element 1 vibrates during vibration of the piezoelectric ceramic element 1. Element 1 can be easily deformed. In addition, there is a non-bonded portion between the joint portions provided locally, and there is a gap between the piezoelectric ceramic element 1 and the reinforcing plate 5 at this non-bonded portion. Since the friction or restraining force between the reinforcing plate 5 and the reinforcing plate 5 can be reduced, the piezoelectric ceramic element 1 can be easily deformed when the piezoelectric ceramic element 1 vibrates. For these reasons, the present embodiment can obtain a large bending vibration as a piezoelectric ceramic actuator.
[0032] 固定子 6が固定される圧電セラミック素子 1の位置に、圧電セラミック素子 1と補強板 5との接合部位 7bがあるので、圧電セラミック素子 1の振動を、固定子 6を介して、外 部の弾性体に高効率で伝播させることができる。これに対し、圧電セラミック素子 1と 補強板 5との接合部位がない部分に固定子 6を設けると、補強板 5にて機械的な結合 経路が遮断され、振動エネルギーの伝播損失が生じる。携帯機器の落下時に発生 する衝撃振動は、固定子 6を介して圧電セラミック素子 1に伝播し、未接合部におけ る補強板 5と圧電セラミック素子 1との衝突により、圧電セラミック素子 1の破壊が生じ やすい。圧電セラミック素子 1と補強板 5との接合がある部分に固定子 6を設けると、 衝撃時の上述の問題点を防止することができる。  [0032] Since there is a joint portion 7b between the piezoelectric ceramic element 1 and the reinforcing plate 5 at the position of the piezoelectric ceramic element 1 to which the stator 6 is fixed, the vibration of the piezoelectric ceramic element 1 is passed through the stator 6 It can be propagated with high efficiency to the external elastic body. On the other hand, if the stator 6 is provided at a portion where the piezoelectric ceramic element 1 and the reinforcing plate 5 are not joined, the mechanical coupling path is blocked by the reinforcing plate 5 and a propagation loss of vibration energy occurs. The impact vibration generated when the portable device is dropped propagates to the piezoelectric ceramic element 1 through the stator 6, and the piezoelectric ceramic element 1 is destroyed by the collision between the reinforcing plate 5 and the piezoelectric ceramic element 1 at the unjoined portion. Is likely to occur. If the stator 6 is provided in a portion where the piezoelectric ceramic element 1 and the reinforcing plate 5 are joined, the above-described problems at the time of impact can be prevented.
[0033] なお、図 1においては、圧電セラミック素子 1と補強板 5との接合部位は 3箇所 (部位 7a〜7c)設けられているが、接合部位は 1箇所又は 2箇所以上の多数箇所としてもよ レ、。これは、前述の如ぐ電子機器落下時の圧電セラミック素子 1の衝撃破壊が、固 定子 6の接合部の近傍で発生するためであり、この固定子 6の接合部分が、補強板 5 により補強されていれば、圧電セラミック素子 1と補強板 5との接合部位の数によらず 、同様の効果が得られる。 [0034] 次に、図 2を参照して本発明の第 2の実施形態について説明する。但し、図 2にお いて、固定子は図示を省略する。本実施形態においては、圧電セラミック素子 11と 補強板 17との間に、ポリエチレンテレフタレート、アクリル、ポリイミド、又はシリコンゴ ム等の有機樹脂製の 3個の基材 17a、 17b、 17cが相互間に間隔をおいて配置され ている。この基材 17a〜 17cは薄板状であり、その表面及び裏面には接着剤又は粘 着剤が塗布されていて、この接着剤又は粘着剤により基材 17a〜 17cが夫々圧電セ ラミック素子 11と補強板 17とに接合されている。これにより、圧電セラミック素子 11と 補強板 15とが 3個の基材 17a〜 17cを介して接合されている。 [0033] In FIG. 1, the piezoelectric ceramic element 1 and the reinforcing plate 5 are provided with three joining parts (parts 7a to 7c), but the joining part is one place or a plurality of two or more places. Moyo. This is because the impact destruction of the piezoelectric ceramic element 1 when the electronic device is dropped as described above occurs in the vicinity of the joint portion of the stator 6, and the joint portion of the stator 6 is reinforced by the reinforcing plate 5. If this is the case, the same effect can be obtained regardless of the number of joints between the piezoelectric ceramic element 1 and the reinforcing plate 5. Next, a second embodiment of the present invention will be described with reference to FIG. However, the stator is not shown in FIG. In the present embodiment, three substrates 17a, 17b, 17c made of organic resin such as polyethylene terephthalate, acrylic, polyimide, or silicon rubber are spaced between the piezoelectric ceramic element 11 and the reinforcing plate 17. Is placed. The base materials 17a to 17c are thin plate-like, and adhesives or adhesives are applied to the front and back surfaces thereof, and the base materials 17a to 17c are respectively connected to the piezoelectric ceramic element 11 by this adhesive or adhesive. It is joined to the reinforcing plate 17. Thereby, the piezoelectric ceramic element 11 and the reinforcing plate 15 are joined via the three base materials 17a to 17c.
[0035] 本実施形態においては、有機樹脂製の基材 17a〜17cが柔軟性を有しているため 、圧電セラミック素子 1 1の屈曲振動に応じて基材 17a〜17cが容易に変形する。これ により、圧電セラミック素子 11と補強板 15との間の機械的拘束力が大幅に緩和され、 圧電セラミックァクチユエータは大きな屈曲振動をすることができる。また、有機樹脂 製基材 17a〜17cにより圧電セラミック素子 11と補強板 15とを接合することにより、圧 電セラミックァクチユエータを工業的に製造しやすくなる。  In the present embodiment, since the organic resin base materials 17a to 17c have flexibility, the base materials 17a to 17c are easily deformed according to the bending vibration of the piezoelectric ceramic element 11. As a result, the mechanical restraint force between the piezoelectric ceramic element 11 and the reinforcing plate 15 is greatly relaxed, and the piezoelectric ceramic actuator can perform a large bending vibration. Further, by joining the piezoelectric ceramic element 11 and the reinforcing plate 15 with the organic resin base materials 17a to 17c, the piezoelectric ceramic actuator can be easily manufactured industrially.
[0036] 図 3は、本発明の第 3実施形態を示す斜視図である。但し、図 3において、固定子 は図示を省略する。本実施形態は、圧電セラミック素子 21と補強板 25との間に、 5個 の補強板接合用樹脂製基材 27a、 27b、 27c、 27d、 27eが相互間に間隔をおいて 配置されており、接着剤又は粘着剤により、基材 27a〜27eと、圧電セラミック素子 21 及び補強板 25とが接合されてレ、る。  FIG. 3 is a perspective view showing a third embodiment of the present invention. However, the stator is not shown in FIG. In this embodiment, five resin base materials 27a, 27b, 27c, 27d, and 27e for reinforcing plate bonding are arranged between the piezoelectric ceramic element 21 and the reinforcing plate 25 with an interval between them. The base materials 27a to 27e, the piezoelectric ceramic element 21 and the reinforcing plate 25 are joined together by an adhesive or an adhesive.
[0037] 本実施形態においては、第 2実施形態よりも、多数の幅が細い基材 27a〜27eを設 けているので、圧電セラミック素子 21の屈曲振動に補強板 25がより柔軟に追従する ことができ、補強板 25の接合による圧電セラミック素子 21の振動抑制が生じにくい。 また、基材 27a〜27eの接合部の経年変化により、一部の基材 27a〜27eに接合剥 離が起きても、他の基材 27a〜27eの接合部により、接合力が保持されるため、本実 施形態は、第 2実施形態と同様に実用的な形態を有する。  [0037] In the present embodiment, since the base materials 27a to 27e having a larger number of widths are provided than in the second embodiment, the reinforcing plate 25 follows the flexural vibration of the piezoelectric ceramic element 21 more flexibly. Therefore, vibration suppression of the piezoelectric ceramic element 21 due to the joining of the reinforcing plate 25 hardly occurs. In addition, even if some of the base materials 27a to 27e are peeled off due to secular changes in the joint portions of the base materials 27a to 27e, the joining force is maintained by the joint portions of the other base materials 27a to 27e. Therefore, the present embodiment has a practical form as in the second embodiment.
[0038] 図 4は、本発明の第 4実施形態を示す斜視図である。但し、図 4において、固定子 は図示を省略する。本実施形態においては、圧電セラミック素子 31の表面及び裏面 に、夫々補強板 35a及び 35bが、夫々補強板接合用樹脂基材 37a〜37c及び 38a 〜38cを介して接合されている。 FIG. 4 is a perspective view showing a fourth embodiment of the present invention. However, the stator is not shown in FIG. In the present embodiment, the reinforcing plates 35a and 35b are provided on the front and back surfaces of the piezoelectric ceramic element 31, respectively, and the reinforcing plate bonding resin base materials 37a to 37c and 38a, respectively. Joined through ~ 38c.
[0039] 本発明においては、圧電セラミック素子と補強板とを局部的な部位で接合している ので、圧電セラミック素子の補強板による振動拘束が小さいため、本実施形態のよう に、補強板 35a、 35bを、圧電セラミック素子 31の表裏両面に設けても、圧電セラミツ ク素子 31の振動に与える影響は少ない。  [0039] In the present invention, since the piezoelectric ceramic element and the reinforcing plate are joined at a local portion, vibration restraint by the reinforcing plate of the piezoelectric ceramic element is small, so that the reinforcing plate 35a is as in the present embodiment. 35b is provided on both the front and back surfaces of the piezoelectric ceramic element 31 and has little effect on the vibration of the piezoelectric ceramic element 31.
[0040] 携帯機器において、落下衝撃時に発生する振動は、筐体などの弾性体から固定子 を介して圧電セラミック素子に伝播するが、携帯機器の筐体内の空間は狭いため、 筐体などの弾性体と他方の側に電子回路基板などの部品が配置されていることがあ り、これらの部品と圧電セラミック素子との間の間隙が小さいと、これらの部品と圧電セ ラミック素子とが直接衝突し、圧電セラミック素子の破壊を引き起こしてしまう。このよう な場合に、本実施形態のように、圧電セラミック素子 31の上下両面に、補強板 35a、 35bを設けることにより、この問題点を解消することができる。  [0040] In a mobile device, vibration generated at the time of a drop impact propagates from an elastic body such as a housing to a piezoelectric ceramic element through a stator. However, since the space in the housing of the mobile device is narrow, Parts such as electronic circuit boards may be placed on the elastic body and the other side. If the gap between these parts and the piezoelectric ceramic element is small, these parts and the piezoelectric ceramic element are directly connected. Colliding and causing destruction of the piezoelectric ceramic element. In such a case, this problem can be solved by providing the reinforcing plates 35a and 35b on the upper and lower surfaces of the piezoelectric ceramic element 31 as in this embodiment.
[0041] 図 5及び図 6は本発明の第 5実施形態を示す斜視図である。本実施形態において は、 2個の圧電セラミック素子 41a、 41b間に、 1枚の補強板 45が接合されている。補 強板 45にはその表裏両面に夫々 3個の補強板接合用基材 47a、 47b、 47c及び 48 a、 48b、 48 己置され、この基材 47a等の表裏両面に塗布された接着剤により圧 電セラミック素子 41a、 41bが基材 47a等を介して補強板 45に接合されている。そし て、図 6に示すように、この圧電セラミック素子 41bの裏面の中央に、即ち、中央の基 材 47b、 48bに整合する位置に、固定子 49が固定されている。  5 and 6 are perspective views showing a fifth embodiment of the present invention. In the present embodiment, one reinforcing plate 45 is joined between the two piezoelectric ceramic elements 41a and 41b. The reinforcing plate 45 has three reinforcing plate bonding substrates 47a, 47b, 47c and 48a, 48b, 48 on its front and back surfaces, and is applied to both the front and back surfaces of this substrate 47a, etc. Thus, the piezoelectric ceramic elements 41a and 41b are joined to the reinforcing plate 45 via the base material 47a and the like. Then, as shown in FIG. 6, a stator 49 is fixed at the center of the back surface of the piezoelectric ceramic element 41b, that is, at a position aligned with the central base materials 47b and 48b.
[0042] 本実施形態においては、 2個の圧電セラミック素子 41a、 41bを有するので、圧電セ ラミック素子の加振力は 2倍になる。このため、固定子 49を介して振動伝播させる弾 性体の振動量を 2倍にすることができる。この際、各圧電セラミック素子の電気結線を 考慮し、同一方向に屈曲振動するようにすること、即ち同一位相で振動させることが 必要である。圧電セラミック素子 41a、 41bの屈曲振動方向が相互に異なると、固定 子 49において各圧電セラミック素子 41a、 41bの振動は、打ち消しあい、電子機器筐 体などの弾性体に振動を伝播させることができなレ、。また、圧電セラミック素子 41a、 4 lbと補強板 45との接合部には、振動時に過大なせん断力が発生し、接合部剥離等 の欠陥が生じ、信頼性の低下が起こる。 [0043] なお、固定子 49の接合位置は、圧電セラミック素子の中央に限らず、図 7に示すよ うに、端部の基材 47a、 48aに整合する位置に固定子 49を接合してもよい。この場合 も、図 6と同様の効果を奏する。 In the present embodiment, since the two piezoelectric ceramic elements 41a and 41b are provided, the excitation force of the piezoelectric ceramic element is doubled. Therefore, the amount of vibration of the elastic body that propagates vibration through the stator 49 can be doubled. At this time, in consideration of the electrical connection of each piezoelectric ceramic element, it is necessary to bend and vibrate in the same direction, that is, to vibrate in the same phase. If the bending vibration directions of the piezoelectric ceramic elements 41a and 41b are different from each other, the vibrations of the piezoelectric ceramic elements 41a and 41b in the stator 49 can cancel each other and propagate the vibration to an elastic body such as an electronic device casing. Nare ,. In addition, an excessive shearing force is generated at the joint between the piezoelectric ceramic elements 41a and 4 lb and the reinforcing plate 45 during vibration, and defects such as a peel-off of the joint occur, resulting in a decrease in reliability. Note that the joining position of the stator 49 is not limited to the center of the piezoelectric ceramic element, and as shown in FIG. 7, the stator 49 may be joined to a position aligned with the base materials 47a and 48a at the end portions. Good. In this case, the same effect as in FIG. 6 is obtained.
[0044] 本発明においては、屈曲振動をする圧電セラミック素子を構成する部材は、特定の ものに限定されるものではなレ、。例えば、図 1において、圧電セラミック素子は、圧電 セラミック板 2, 4及び恒弾性体 3により構成されている。しかし、図 8に示すように、湿 度によるセラミックの経年変化を防止するため、上部絶縁保護層 51と下部絶縁保護 層 55との間に、圧電活性層 52, 54を配置し、更に、圧電活性層 52, 54間に、中間 絶縁層 53を配置した構造の圧電セラミック素子を使用することもできる。この場合に、 圧電活性層 52, 54は、分極処理を施されたものであり、電圧印加により伸縮して、素 子屈曲振動の駆動部となるものである。また、中間絶縁層 53は、その上下に配置さ れた圧電活性層 52, 54を電気的に分離するものである。この圧電セラミック素子は、 全体を焼成して一体構造としたものである。この圧電セラミック素子も、上述のようにし て、補強板を接合することにより、同様の効果を奏する。  In the present invention, the members constituting the piezoelectric ceramic element that undergoes flexural vibration are not limited to specific ones. For example, in FIG. 1, the piezoelectric ceramic element is composed of piezoelectric ceramic plates 2, 4 and a constant elastic body 3. However, as shown in FIG. 8, in order to prevent aging of the ceramic due to humidity, piezoelectric active layers 52 and 54 are disposed between the upper insulating protective layer 51 and the lower insulating protective layer 55, and further, the piezoelectric A piezoelectric ceramic element having a structure in which an intermediate insulating layer 53 is disposed between the active layers 52 and 54 can also be used. In this case, the piezoelectric active layers 52 and 54 have been subjected to polarization treatment, and are expanded and contracted by applying a voltage to become a driving unit for element bending vibration. The intermediate insulating layer 53 electrically isolates the piezoelectric active layers 52 and 54 disposed above and below the intermediate insulating layer 53. This piezoelectric ceramic element is fired as a whole to form an integral structure. This piezoelectric ceramic element also achieves the same effect by joining the reinforcing plate as described above.
[0045] また、図 9に示すように、圧電セラミック素子 61と補強板 64とを接合するために、複 数の部位で接着剤又は接合用基材 63a、 63b、 63cを使用して接合する場合に、そ の接合部位の大きさ又は接合用基材 63a、 63b、 63cの大きさ(特に、屈曲方向の幅 )は、相互に異なるものとしてもよレ、。特に、固定子 64を圧電セラミック素子 61の中央 に接合する場合には、この固定子 64の接合位置においては、圧電セラミック素子 61 の屈曲振動量は小さいため、接合部位の幅又は接合用機材 63bの幅は、屈曲振動 に与える影響が少ない。  In addition, as shown in FIG. 9, in order to join the piezoelectric ceramic element 61 and the reinforcing plate 64, bonding is performed using adhesives or bonding base materials 63a, 63b, 63c at a plurality of sites. In this case, the size of the bonding part or the size of the bonding base materials 63a, 63b, 63c (especially the width in the bending direction) may be different from each other. In particular, when the stator 64 is joined to the center of the piezoelectric ceramic element 61, the bending vibration amount of the piezoelectric ceramic element 61 is small at the joining position of the stator 64. The width of has little effect on flexural vibration.
[0046] また、図 10に示すように、圧電セラミック素子 71と補強板 72とを接合するために、 固定子 74の近傍の 1箇所にのみ、補強板接合用基材 73を設けることとしてもよい。こ の場合においても、機器落下時の衝撃応力は固定子 74の近傍に集中するため、補 強板 72による圧電セラミック素子 71の破壊防止機能は、複数箇所による接合と同様 の補強効果がある。  Further, as shown in FIG. 10, in order to join the piezoelectric ceramic element 71 and the reinforcing plate 72, a reinforcing plate joining base material 73 may be provided only at one place in the vicinity of the stator 74. Good. Even in this case, since the impact stress when the device is dropped concentrates in the vicinity of the stator 74, the function of preventing the destruction of the piezoelectric ceramic element 71 by the reinforcing plate 72 has the same reinforcing effect as the joining at a plurality of locations.
[0047] 図 11 (a)は携帯機器筐体 70の外観を示す斜視図、図 11 (b)は図 11 (a)の A— A 線による断面図である。この携帯機器筐体 70内に、圧電セラミック素子 71と補強板 7 2とを補強板接合用基材 73a、 73b, 73cにより接合して一体化した圧電セラミックァ クチユエータが収納されており、この圧電セラミックァクチユエータの固定子 74が筐体 70の内面に接触するように設けられている。なお、筐体 70とは、携帯機器を構成す る電子回路基板及び液晶ディスプレイ等の電子部品を保持するために設けられたも のであり、液晶ディスプレイの保護のために設けられた透明プラスチック等のように、 機器外観に現れる箱状構造物に対して機械的に接合された内部構成物も含む。 FIG. 11 (a) is a perspective view showing the appearance of the mobile device casing 70, and FIG. 11 (b) is a cross-sectional view taken along the line AA in FIG. 11 (a). In this portable device casing 70, a piezoelectric ceramic element 71 and a reinforcing plate 7 2 and the reinforcing plate bonding base material 73a, 73b, and 73c are housed in the piezoelectric ceramic actuator. The stator 74 of the piezoelectric ceramic actuator contacts the inner surface of the housing 70. It is provided to do. Note that the housing 70 is provided to hold electronic components such as an electronic circuit board and a liquid crystal display that constitute a portable device, such as a transparent plastic provided for protecting the liquid crystal display. Thus, an internal structure mechanically joined to a box-like structure appearing on the exterior of the device is also included.
[0048] このように、本発明の圧電セラミックァクチユエータを振動源として具備する場合は、 この圧電ァクチユエータに交流電界を印加すると、圧電ァクチユエータは屈曲振動を おこして、固定子 74を介して筐体 70に振動が伝播する。筐体 70の全体に、機械振 動が励振され、筐体 70に接する空気を揺動させることにより、音響放射され、発音体 として利用することができる。 As described above, when the piezoelectric ceramic actuator of the present invention is provided as a vibration source, when an AC electric field is applied to the piezoelectric actuator, the piezoelectric actuator causes flexural vibration and passes through the stator 74. Vibration propagates to the housing 70. Mechanical vibration is excited throughout the entire casing 70, and the air in contact with the casing 70 is oscillated to be radiated and used as a sounding body.
実施例 1  Example 1
[0049] 次に、本発明の効果を実証するために行った試験結果について説明する。本発明 の圧電セラミックァクチユエータの効果を説明するために、図 12に示す圧電セラミック 素子 81を作製した。圧電セラミック板 82, 83用の材料として、ジルコン酸チタン酸鉛 系ぺロブスカイトイ匕合物を用いた。圧電セラミック板 82, 83の作製にはセラミックコン デンサ一などの作製に用いられるグリーンシート法を適用した。  [0049] Next, the results of tests conducted to demonstrate the effects of the present invention will be described. In order to explain the effect of the piezoelectric ceramic actuator of the present invention, a piezoelectric ceramic element 81 shown in FIG. 12 was produced. As a material for the piezoelectric ceramic plates 82 and 83, a lead zirconate titanate perovskite composite was used. For the production of piezoelectric ceramic plates 82 and 83, the green sheet method used for the production of ceramic capacitors and the like was applied.
[0050] 圧電セラミック板 82, 83は、長さ 30mm、幅 5mm、厚さ 0. 2mmの寸法であり、 11 00°Cで、 2時間、大気中で焼成をおこなった。圧電セラミック板の両主面に Ag電極を 形成し、その後、分極処理を施した。恒弾性体 84として、長さ 30mm、幅 5mm、厚さ 0. 12mmの寸法のリン青銅板を用意し、圧電セラミック板 82, 83にエポキシ系接着 剤で接合した。この恒弾性体 84は、電極として使用され、振動に影響を及ぼさないた め、電気結線を工夫すれば必ずしも必要ではなレ、。更に、圧電セラミック板 82, 83 及びリン青銅板からなる恒弾性体 84に、 3本の電気リード端子 85a、 85b、 85cを接 した。  [0050] The piezoelectric ceramic plates 82 and 83 had a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm, and were fired in the atmosphere at 1100 ° C for 2 hours. Ag electrodes were formed on both main surfaces of the piezoelectric ceramic plate and then polarized. A phosphor bronze plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.12 mm was prepared as the constant elastic body 84 and bonded to the piezoelectric ceramic plates 82 and 83 with an epoxy adhesive. This constant elastic body 84 is used as an electrode and does not affect vibration, so it is not always necessary if the electrical connection is devised. Further, three electrical lead terminals 85a, 85b, and 85c were brought into contact with a constant elastic body 84 made of piezoelectric ceramic plates 82 and 83 and a phosphor bronze plate.
[0051] 次に、図 13 (a)に示すように、従来例として、補強板 86の全面 87aに接着剤を塗布 したものを用意した。また、本発明の実施例として、図 13 (b)に示すように、補強板 8 6上の 3箇所の独立した幅 6mmの部位 87bに、エポキシ接着剤を塗布したものと、図 13 (c)に示すように、幅 6mm、厚さ 0. 1mmの補強板接合用基材 87cを、その両面 にエポキシ接着剤を塗布して、補強板 86上の 3箇所の部位に接合したものと、図 13 (d)に示すように、幅 4mm、厚さ 0. 1mmの補強板接合用基材 87dを、その両面に エポキシ接着剤を塗布して、補強板 86上の 5箇所の部位に接合したものとを用意し た。この際、固定子の接合位置には、接合用基材を 1個配置している。本実施例では 、使用した接合用基材の厚さを 0. 1mmとしたが、本発明は基材の厚さを限定するも のでなぐ携帯機器に搭載する際、圧電セラミックァクチユエータの所望の振動特性 をもつ厚さ寸法に合わせ、適宜選択すれば良い。 [0051] Next, as shown in FIG. 13 (a), as an example of the prior art, an adhesive coated on the entire surface 87a of the reinforcing plate 86 was prepared. Further, as an example of the present invention, as shown in FIG. 13 (b), an epoxy adhesive was applied to three independent parts 6b of width 6mm on the reinforcing plate 86, 13 As shown in (c), a reinforcing plate bonding base material 87c having a width of 6 mm and a thickness of 0.1 mm was bonded to three portions on the reinforcing plate 86 by applying an epoxy adhesive on both sides thereof. As shown in Fig. 13 (d), a reinforcing plate joining base material 87d with a width of 4mm and a thickness of 0.1mm was coated with epoxy adhesive on both sides. Prepared one joined to the part. At this time, one joining base material is arranged at the joining position of the stator. In this example, the thickness of the bonding base material used was set to 0.1 mm. However, the present invention limits the thickness of the base material, and when mounted on a portable device, the thickness of the piezoelectric ceramic actuator is limited. What is necessary is just to select suitably according to the thickness dimension which has a desired vibration characteristic.
[0052] 次に、図 14に示すように、 ABS樹脂を用いて、長さ 5mm、幅 5mm、厚さ lmmの固 定子 88を作製して、補強板 86の中央に配置し、圧電セラミック素子 81と、接合用基 材 87c等と、補強板 86と、固定子 88とを接合した。固定子 88の役割は圧電セラミック 素子の振動を弾性体に伝播させるものである。本実施例では、固定子材料として AB S樹脂を用いたが、固定子としては、その材料が限定されるものではない。  Next, as shown in FIG. 14, a stator 88 having a length of 5 mm, a width of 5 mm, and a thickness of 1 mm is manufactured using ABS resin, and is placed in the center of the reinforcing plate 86 to obtain a piezoelectric ceramic element. 81, a joining base material 87c, etc., a reinforcing plate 86, and a stator 88 were joined. The role of the stator 88 is to propagate the vibration of the piezoelectric ceramic element to the elastic body. In this embodiment, ABS resin is used as the stator material, but the material of the stator is not limited.
[0053] 次に、図 15 (a)、(b)に示すように、電子機器の筐体をシミュレートする長さ 90mm 、幅 45mm、厚さ 20mmの擬似筐体 90を、肉厚 2mmのアクリル材料で作製した。そ の後、図 13 (a)〜(d)に示す 4種類の補強板と、圧電セラミック素子及び固定子を設 けた圧電セラミックァクチユエータを、固定子の底面中心位置を、擬似筐体 90の内面 における長手方向一方の端部から 20mm、幅方向左端から 22mmの位置に接合し た。図 15 (a)において、破線は圧電セラミックァクチユエータの配置位置を示す。  Next, as shown in FIGS. 15 (a) and 15 (b), a simulated housing 90 having a length of 90 mm, a width of 45 mm, and a thickness of 20 mm, which simulates the housing of an electronic device, is Made of acrylic material. After that, the four types of reinforcing plates shown in Fig. 13 (a) to (d), the piezoelectric ceramic actuator with the piezoelectric ceramic element and the stator, and the center position of the bottom surface of the stator The inner surface of the 90 was joined at a position 20 mm from one end in the longitudinal direction and 22 mm from the left end in the width direction. In Fig. 15 (a), the broken line indicates the arrangement position of the piezoelectric ceramic actuator.
[0054] そして、各圧電セラミック素子に lVrms、 500Hzの交流正弦波電圧を印加して、セ ラミック素子を振動させ、伝達される擬似筐体 90の表面中心部の実効的振動速度量 を、レーザ振動系を用いて計測した。従来の圧電セラミック素子(図 13 (a) )を用いた 際の擬似筐体の振動量を基準 1として、その測定値の比を規格化振動速度とした。 また、擬似筐体 90を 200cmの高さ力 床面コンクリート上に落下させて、擬似筐体 9 0内の圧電セラミック素子の接合側外面に、衝撃力を与える落下試験を行った。その 後、圧電セラミック素子に lVrms、 500Hzの交流正弦波電圧を印加して、各圧電セ ラミック素子を振動させ、伝達されるアクリル板の中心部の実効的振動速度量を、レ 一ザ振動系を用いて計測し、落下前の従来素子を用いた際の振動量を基準 1として 、その測定値比を規格化振動速度として、本発明の効果を評価した。その結果を下 記表 1に示す。 [0054] Then, by applying an AC sine wave voltage of lVrms and 500Hz to each piezoelectric ceramic element, the ceramic element is vibrated, and the effective vibration velocity amount at the center of the surface of the pseudo casing 90 transmitted is measured by the laser. Measurements were made using a vibration system. The vibration amount of the pseudo case when using a conventional piezoelectric ceramic element (Fig. 13 (a)) was taken as the reference 1, and the ratio of the measured values was taken as the normalized vibration speed. In addition, a drop test was performed in which the pseudo casing 90 was dropped on floor concrete with a height of 200 cm, and an impact force was applied to the outer surface of the piezoelectric ceramic element on the joining side in the pseudo casing 90. After that, an AC sine wave voltage of lVrms and 500 Hz is applied to the piezoelectric ceramic element to vibrate each piezoelectric ceramic element, and the effective vibration velocity amount at the center of the acrylic plate to be transmitted is determined by the laser vibration system. Measured using, and the amount of vibration when using a conventional element before dropping as reference 1 The effect of the present invention was evaluated using the measured value ratio as the normalized vibration speed. The results are shown in Table 1 below.
[0055] [表 1] [0055] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0056] この表 1に示すように、従来例である図 13 (a)の場合と比較して、本発明の実施形 態の圧電セラミックァクチユエータは、振動量が 2. 5倍以上に向上している。また、本 実施形態の圧電セラミックァクチユエータは落下試験の前後での特性変化はない。 落下試験後の外観検査においても、圧電セラミック素子の欠け、割れ及び接合部剥 離等は観察されなかった。よって、本実施例により、本発明は、衝撃破壊を防止でき 、振動量を大幅に向上できることが実証された。 [0056] As shown in Table 1, the piezoelectric ceramic actuator according to the embodiment of the present invention has a vibration amount of 2.5 times or more as compared with the conventional example of FIG. 13 (a). Has improved. In addition, the piezoelectric ceramic actuator of this embodiment does not change in characteristics before and after the drop test. Also in the appearance inspection after the drop test, chipping, cracking, and peeling of the joint portion of the piezoelectric ceramic element were not observed. Therefore, according to this example, it was proved that the present invention can prevent the impact destruction and can greatly improve the vibration amount.
実施例 2  Example 2
[0057] 本実施例では、補強板としてステンレス板を使用し、固定子をこの補強板の端部に 固定したこと以外は、実施例 1記載の圧電セラミック素子と同様の圧電セラミック素子 を用いた。即ち、図 13の補強板 86として、長さ 30mm、幅 5mm、厚さ 0. 2mmのステ ンレス板を用意した。従来例として、エポキシ接着剤を補強板全面に塗布したもの( 図 13 (a) )と、幅 6mm、厚さ 0. 1mmの基材の両面にエポキシ接着剤を塗布して、基 材を補強板上面の 3箇所に接合したもの(図 13 (c) )との 2種類の圧電セラミック素子 を作製した。  [0057] In this example, a piezoelectric ceramic element similar to the piezoelectric ceramic element described in Example 1 was used, except that a stainless steel plate was used as the reinforcing plate and the stator was fixed to the end of the reinforcing plate. . That is, a stainless steel plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm was prepared as the reinforcing plate 86 in FIG. As a conventional example, an epoxy adhesive is applied to the entire surface of the reinforcing plate (Fig. 13 (a)), and an epoxy adhesive is applied to both sides of a 6mm wide and 0.1mm thick substrate to reinforce the base material. Two types of piezoceramic elements were fabricated, one bonded to three locations on the top surface of the plate (Fig. 13 (c)).
[0058] 次に、 ABS樹脂材料を用いて長さ 5mm、幅 5mm、厚さ lmmの固定子を作製して 、圧電セラミック素子の端部に配置し、図 16に示すように各部品を接合した。  [0058] Next, a stator having a length of 5 mm, a width of 5 mm, and a thickness of 1 mm is manufactured using an ABS resin material, arranged at the end of the piezoelectric ceramic element, and each component is joined as shown in FIG. did.
[0059] 次に、図 17に示すように、長さ 90mm、幅 45mm、厚さ 20mmの電子機器の擬似 筐体 90を、肉厚 2mmのアクリル材料で作製した。その後、 2種類の圧電セラミック素 子を、固定子を介して、擬似筐体 90の内面における長手方向(屈曲方向)の一端部 力、ら 20mm、幅方向の左端から 10mmの位置に接合した。  Next, as shown in FIG. 17, a pseudo housing 90 of an electronic device having a length of 90 mm, a width of 45 mm, and a thickness of 20 mm was made of an acrylic material having a thickness of 2 mm. After that, two types of piezoelectric ceramic elements were joined to each other at a position of one end force in the longitudinal direction (bending direction) on the inner surface of the pseudo casing 90, 20 mm, and 10 mm from the left end in the width direction via the stator.
[0060] 本発明の効果を定量化するため、各圧電セラミック素子に lVrms、 500Hzの交流 正弦波電圧を印加して、セラミック素子を振動させ、伝達されるアクリル板の中心部の 実効的振動速度量を、レーザ振動系を用いて計測した。従来の図 13 (a)の圧電素 子を用いた際の振動量を基準として 1として、その測定値比を規格振動速度とした。 また、擬似筐体 90を 200cmの高さから床面コンクリート上に落下させ、擬似筐体内 面の圧電セラミック素子を接合した筐体外面に、衝撃力を与えた。その後、圧電セラ ミック素子に lVrms、 500Hzの交流正弦波電圧を印加して、セラミック素子を振動さ せ、伝達されるアクリル板の中心部の実効的振動速度量を、レーザ振動系を用いて 再度計測し、落下前の図 13 (a)の圧電素子を用いた際の振動量を基準 1として、そ の測定値比を規格化振動速度として、本発明の圧電セラミック素子の評価を行った。 その結果を下記表 2に示す。 [0060] In order to quantify the effect of the present invention, each piezoelectric ceramic element has an alternating current of lVrms and 500 Hz. A sinusoidal voltage was applied to vibrate the ceramic element, and the effective vibration velocity at the center of the transmitted acrylic plate was measured using a laser vibration system. The vibration amount when using the conventional piezoelectric element shown in Fig. 13 (a) was taken as 1, and the measured value ratio was taken as the standard vibration speed. In addition, the pseudo casing 90 was dropped onto the floor concrete from a height of 200 cm, and an impact force was applied to the outer surface of the casing where the piezoelectric ceramic elements on the inner surface of the pseudo casing were joined. After that, an AC sine wave voltage of lVrms and 500Hz is applied to the piezoelectric ceramic element to vibrate the ceramic element, and the effective vibration velocity amount at the center of the acrylic plate transmitted is again measured using the laser vibration system. The piezoelectric ceramic element of the present invention was evaluated based on the measured vibration ratio when the piezoelectric element shown in FIG. 13 (a) was used as the reference 1 and the ratio of the measured values as the normalized vibration speed. The results are shown in Table 2 below.
[表 2]
Figure imgf000017_0001
[Table 2]
Figure imgf000017_0001
[0062] その結果、従来例である図 13 (a)のァクチユエータと比較し、本発明の圧電セラミツ クァクチユエータは、 3. 3倍に振動量が向上している。また、本発明のァクチユエータ は落下試験前後での特性変化はない。落下試験後の外観検査をおこなったが、圧 電セラミックの欠け、割れ、及び接合部剥離等は観察されなかった。本実施例により 、本発明により、衝撃破壊を防止でき、振動量を大幅に向上できることが実証された 実施例 3 As a result, the amount of vibration is improved by a factor of 3.3 in the piezoelectric ceramics according to the present invention as compared with the conventional example shown in FIG. 13 (a). In addition, the actuator of the present invention has no change in characteristics before and after the drop test. An appearance inspection was conducted after the drop test, but no chipping, cracking, or peeling of the piezoelectric ceramic was observed. According to the present embodiment, it was proved that the present invention can prevent impact destruction and greatly improve the vibration amount.
[0063] 次に、図 18及び図 19を参照して本発明の実施例 3について説明する。本実施例 では、図 12に示す実施例 1の圧電セラミック素子を使用した。次に、補強板 86として 、長さ 30mm、幅 5mm、厚さ 0. 2mmのステンレス板を用意した。図 18の場合(従来 例)は、この補強板 86の表裏両面の全面 87aにエポキシ樹脂を塗布して、 1対の圧 電セラミック素子 81を補強板 86の表裏両面に接合した。また、固定子 88を下方の圧 電セラミック素子 81の下面に接合した。図 19の場合 (本発明の実施例)は、補強板 8 6の表裏両面に夫々 3個の接合用基材 87c、 87cを接合した。この基材 87cの幅は 6 mm、厚さは 0. 1mmである。この基材 87cの両面にエポキシ接着剤を塗布して、補 強板 86に接合した。なお、図 14に示す圧電セラミック素子力 個のものも用意した。 Next, Embodiment 3 of the present invention will be described with reference to FIG. 18 and FIG. In this example, the piezoelectric ceramic element of Example 1 shown in FIG. 12 was used. Next, a stainless steel plate having a length of 30 mm, a width of 5 mm, and a thickness of 0.2 mm was prepared as the reinforcing plate 86. In the case of FIG. 18 (conventional example), an epoxy resin was applied to the entire surface 87a of both sides of the reinforcing plate 86, and a pair of piezoelectric ceramic elements 81 were bonded to the front and back surfaces of the reinforcing plate 86. The stator 88 was joined to the lower surface of the lower piezoelectric ceramic element 81. In the case of FIG. 19 (Example of the present invention), three bonding substrates 87c and 87c were bonded to the front and back surfaces of the reinforcing plate 86, respectively. The width of this substrate 87c is 6 mm, thickness is 0.1 mm. An epoxy adhesive was applied to both surfaces of the base material 87c and joined to the reinforcing plate 86. In addition, the piezoelectric ceramic elements with the number shown in Fig. 14 were also prepared.
[0064] 固定子 88は、 ABS樹脂材料を用いて長さ 5mm、幅 5mm、厚さ lmmになるように 作製した。この固定子 88を、圧電セラミック素子 81の下面中央に配置し、各部品を 接合した。 [0064] The stator 88 was manufactured using an ABS resin material so as to have a length of 5 mm, a width of 5 mm, and a thickness of 1 mm. This stator 88 was placed in the center of the lower surface of the piezoelectric ceramic element 81, and the components were joined.
[0065] 次に、図 15に示すように、電子機器の擬似筐体 90 (長さ 90mm、幅 45mm、厚さ 2 Omm、肉厚 2mmのアクリル材料製)の内部に、上記 3種類の圧電セラミック素子を、 固定子 86を介して固定した。擬似筐体 90の内面における固定子 86の接合位置は、 擬似筐体 90の一方の端部力、ら 20mm、幅方向の左端から 22mmの位置である。  Next, as shown in FIG. 15, the above three types of piezoelectrics are placed inside a pseudo housing 90 (made of acrylic material having a length of 90 mm, a width of 45 mm, a thickness of 2 Omm, and a thickness of 2 mm) of an electronic device. The ceramic element was fixed via a stator 86. The joining position of the stator 86 on the inner surface of the pseudo housing 90 is a position of one end force of the pseudo housing 90, 20 mm, and 22 mm from the left end in the width direction.
[0066] そして、各圧電セラミック素子に lVrms、 500Hzの交流正弦波電圧を印加して、セ ラミック素子を振動させ、伝達されるアクリル板の中心部の実効的振動速度量を、レ 一ザ振動系を用いて計測した。この際、図 18及び図 19の 2個の圧電セラミック素子 が設けられているァクチユエータにおいては、各圧電セラミック素子に対し、互いに振 動が同方向(同相)になるように電圧を印加した。そして、図 14の圧電セラミックァク チユエータを使用した場合の振動量を基準として 1とし、その変化量を規格振動速度 とした。また、擬似筐体を 200cmの高さ力も床面コンクリート上に落下させ、擬似筐体 の圧電セラミック素子を接合した接合面に、衝撃力を与えた。その後、圧電セラミック 素子に lVrms、 500Hzの交流正弦波電圧を印加して、セラミック素子を振動させ、 伝達されるアクリル板の中心部の実効的振動速度量を、レーザ振動系を用いて計測 し、落下前の図 14の圧電セラミック素子を使用した場合の振動量を基準 1として、そ の測定値比を規格化振動速度として、本発明の圧電素子を評価した。その結果を下 記表 3に示す。  [0066] Then, an AC sine wave voltage of lVrms and 500Hz is applied to each piezoelectric ceramic element to vibrate the ceramic element, and the effective vibration velocity amount at the center of the acrylic plate to be transmitted is determined by laser vibration. Measurement was performed using a system. At this time, in the actuator provided with the two piezoelectric ceramic elements of FIGS. 18 and 19, a voltage was applied to each piezoelectric ceramic element so that the vibrations were in the same direction (in phase). The vibration amount when using the piezoelectric ceramic actuator shown in Fig. 14 was set as 1, and the amount of change was set as the standard vibration speed. In addition, a 200cm high force was dropped onto the floor concrete, and the impact force was applied to the joint surface of the pseudo housing where the piezoelectric ceramic elements were joined. After that, an AC sine wave voltage of lVrms and 500Hz is applied to the piezoelectric ceramic element to vibrate the ceramic element, and the effective vibration velocity at the center of the transmitted acrylic plate is measured using a laser vibration system. The piezoelectric element of the present invention was evaluated using the vibration amount when the piezoelectric ceramic element of FIG. 14 before dropping was used as the reference 1 and the ratio of the measured values as the normalized vibration speed. The results are shown in Table 3 below.
[0067] [表 3]
Figure imgf000018_0001
この表 3に示すように、図 19のように 2個の圧電セラミック素子を使用した場合は、 図 14に示す 1個の圧電セラミック素子を使用した場合に比して、 2. 2倍の振動量が 得られる。これは、圧電セラミック素子を 2個使用したため、加振力が 2倍になったた めである。しかし、圧電セラミック素子を 2個使用しても、図 18のように、その全面に補 強板を接合した場合は、図 14の場合に比して振動量が 0. 1に低下している。このこ とは、本発明の構成により、使用する圧電セラミック素子の数量に応じて、加振動力 を十分発揮できることを示している。また、落下試験の前後での特性変化はない。落 下試験後の外観検査をおこなったが、圧電セラミックの欠け、割れ、接合部剥離など は観察されなかった。よって、本実施例により、本発明は、衝撃破壊を防止でき、か つ、振動量を大幅に向上できることが実証された。
[0067] [Table 3]
Figure imgf000018_0001
As shown in Table 3, when two piezoceramic elements are used as shown in Fig. 19, 2.2 times as much vibration as when one piezoceramic element as shown in Fig. 14 is used. Amount can get. This is because the excitation force doubled because two piezoelectric ceramic elements were used. However, even when two piezoelectric ceramic elements are used, when a reinforcing plate is bonded to the entire surface as shown in FIG. 18, the vibration amount is reduced to 0.1 compared to the case of FIG. . This indicates that the vibration force can be sufficiently exerted according to the number of piezoelectric ceramic elements to be used by the configuration of the present invention. There is no change in characteristics before and after the drop test. An appearance inspection was conducted after the drop test, but no chipping, cracking, or peeling of the joint was observed. Therefore, according to the present example, it was proved that the present invention can prevent impact destruction and can greatly improve the vibration amount.
実施例 4  Example 4
[0069] 実施例 1乃至実施例 3においては、電子機器を模した擬似筐体により、本発明の効 果を試験している。これに対し、本実施例では、携帯電子機器として携帯電話の実 機を作製し、本発明の効果を試験した。  [0069] In Examples 1 to 3, the effect of the present invention is tested using a pseudo case imitating an electronic device. On the other hand, in this example, a mobile phone device was fabricated as a portable electronic device, and the effect of the present invention was tested.
[0070] 図 20は本発明の電子機器の例としての携帯電話の構造を示す。携帯電話の上部 筐体 101が長さ 90mm、幅 45mm、厚さ 15mm、下部筐体 103が長さ 90mm、幅 45 mm、厚さ 15mmであり、上部筐体 101と下部筐体 103とを、肉厚 2mmのアクリル材 料で作製した。上部筐体 101と下部筐体 103とは、ヒンジ機構 105により折り畳み可 能に連結されている。また、上部筐体 101にはアンテナ 102が取り付けられている。 上部筐体 101内には、液晶ディスプレイ 108と、回路基板 106と、圧電セラミック素子 109とが収納されている。一方、下部筐体 103内には、回路基板 107と電池パック 10 4とが収納されている。  FIG. 20 shows the structure of a mobile phone as an example of the electronic apparatus of the present invention. The upper housing 101 of the mobile phone is 90 mm long, 45 mm wide, 15 mm thick, and the lower housing 103 is 90 mm long, 45 mm wide, 15 mm thick. Made of acrylic material with a wall thickness of 2 mm. The upper casing 101 and the lower casing 103 are foldably connected by a hinge mechanism 105. An antenna 102 is attached to the upper housing 101. In the upper casing 101, a liquid crystal display 108, a circuit board 106, and a piezoelectric ceramic element 109 are accommodated. On the other hand, a circuit board 107 and a battery pack 104 are accommodated in the lower housing 103.
[0071] この電子機器筐体に対し、実施例 1に記載の図 13 (a)〜(d)の補強板を備えた圧 電セラミック素子を使用し、 ABS樹脂による長さ 5mm、幅 5mm、厚さ lmmの固定子 を圧電セラミック素子の中央に配置し、図 14に示すように、各部品を接合した。  [0071] For this electronic device casing, the piezoelectric ceramic element provided with the reinforcing plate of Figs. 13 (a) to (d) described in Example 1 was used, and the length was 5mm and the width was 5mm. A lmm-thick stator was placed in the center of the piezoelectric ceramic element, and the parts were joined as shown in FIG.
[0072] 次に、固定子の中心位置を筐体の長さ方向の下側端面から 20mmの位置に合わ せ、圧電セラミック素子の長手方向力 筐体の幅方向と平行になるように、エポキシ 接着剤で、筐体に接合した。なお、本発明の圧電セラミック素子の接続箇所は、電子 機器筐体の特定の位置に限定されるものではなぐ例えば、液晶ディスプレイ上又は ディスプレイ保護材上等に設けても良い。 [0073] 次に、本発明の効果を定量化するため、各圧電セラミック素子に lVrms、 500Hz の交流正弦波電圧を印加して、セラミック素子を振動させ、伝達されるアクリル板の中 心部の実効的振動速度量を、レーザ振動系を用いて計測した。図 13 (a)の従来の 圧電セラミック素子を使用した場合の振動量を基準として 1とし、各圧電セラミック素 子による弾性体の振動速度比を規格振動速度とした。 [0072] Next, the center position of the stator is aligned with the position 20 mm from the lower end surface in the longitudinal direction of the casing, and the longitudinal force of the piezoelectric ceramic element is parallel to the width direction of the casing. Bonded to the housing with an adhesive. In addition, the connection location of the piezoelectric ceramic element of the present invention is not limited to a specific position of the electronic device casing, but may be provided on, for example, a liquid crystal display or a display protective material. [0073] Next, in order to quantify the effect of the present invention, an AC sine wave voltage of lVrms and 500Hz is applied to each piezoelectric ceramic element to vibrate the ceramic element and transmit the center of the acrylic plate to be transmitted. The amount of effective vibration velocity was measured using a laser vibration system. The vibration amount when using the conventional piezoelectric ceramic element in Fig. 13 (a) was set to 1, and the vibration speed ratio of the elastic body by each piezoelectric ceramic element was taken as the standard vibration speed.
[0074] また、筐体を 200cmの高さから床面コンクリート上に落下させ、筐体の圧電セラミツ ク素子を接合した接合面に、衝撃力を与えた。その後、圧電セラミック素子に lVrms 、 500Hzの交流正弦波電圧を印加して、セラミック素子を振動させ、伝達されるアタリ ル板の中心部の実効的振動速度量を、レーザ振動系を用いて計測し、落下前の図 1 3 (a)の従来の圧電セラミック素子を使用した場合の振動量を基準 1とし、測定値比を 規格化振動速度として、本発明の圧電セラミック素子を評価した。更に、落下試験後 に、圧電素子の配置面筐体外側から 10cmの距離にマイクロホンを配置し、上記の 振動速度計測と同様に各圧電セラミック素子に lVrms、 500Hzの交流正弦波電圧 を印加して、音圧測定をおこなった。そして、図 13 (a)の従来の圧電セラミック素子を 使用した場合の音圧を 1として、その測定値比を規格化音圧として表した。その結果 を下記表 4に示す。  [0074] In addition, the casing was dropped onto the floor concrete from a height of 200 cm, and an impact force was applied to the joint surface where the piezoelectric ceramic element of the casing was joined. Then, an AC sine wave voltage of lVrms and 500Hz is applied to the piezoelectric ceramic element to vibrate the ceramic element, and the amount of effective vibration velocity at the center of the transmitted tantalum plate is measured using a laser vibration system. The piezoelectric ceramic element of the present invention was evaluated with the vibration amount when using the conventional piezoelectric ceramic element of FIG. 13 (a) before dropping as the reference 1 and the measured value ratio as the normalized vibration speed. Furthermore, after the drop test, a microphone was placed at a distance of 10 cm from the outside of the housing where the piezoelectric element was placed, and an AC sine wave voltage of lVrms and 500 Hz was applied to each piezoelectric ceramic element in the same manner as the vibration velocity measurement described above. The sound pressure was measured. Then, the sound pressure when using the conventional piezoelectric ceramic element of FIG. 13 (a) is set to 1, and the ratio of the measured values is expressed as the normalized sound pressure. The results are shown in Table 4 below.
[0075] [表 4]  [0075] [Table 4]
Figure imgf000020_0001
Figure imgf000020_0001
[0076] 表 4に示すように、図 13 (a)の従来例の場合と比較し、本発明の圧電セラミック素子 は、 2. 3倍以上に振動量が向上している。また、落下試験の前後での特性変化はな レ、。落下試験後の外観検査においては、圧電セラミックの欠け、割れ、接合部剥離等 は観察されなかった。本実施例により、本発明は、衝撃破壊を防止でき、かつ、振動 量を大幅に向上できることが実証された。また、振動量と同様の効果が音圧にも認め られ、本発明の効果は振動源のみならず発音素子としても有効であり、本発明はそ の利用方法が格段に拡大する。従って、その工業的価値は多大である。 産業上の利用可能性 [0076] As shown in Table 4, as compared with the conventional example of Fig. 13 (a), the piezoelectric ceramic element of the present invention has a vibration amount improved 2.3 times or more. Also, there is no change in characteristics before and after the drop test. In the appearance inspection after the drop test, no chipping, cracking, peeling of the joint, etc. were observed. According to this example, it was proved that the present invention can prevent impact destruction and can greatly improve the vibration amount. In addition, the same effect as the amount of vibration is recognized in the sound pressure, and the effect of the present invention is effective not only as a vibration source but also as a sound generating element, and the use method of the present invention is greatly expanded. Therefore, its industrial value is great. Industrial applicability
本発明は、携帯機器用の薄型及び高信頼性を有する機械的振動源として有益で ある。  The present invention is useful as a mechanical vibration source having a thin shape and high reliability for portable equipment.

Claims

請求の範囲 The scope of the claims
[1] 電圧の印加により振動する圧電セラミック素子と、この圧電セラミック素子の全面に重 ねられる補強材と、前記補強材に固定され前記圧電セラミック素子の振動を外部に 伝達する固定子と、を有し、前記圧電セラミック素子と前記補強材とは 1又は複数個 の局部的な部位で接合されていることを特徴とする圧電セラミックァクチユエータ。  [1] A piezoelectric ceramic element that vibrates when a voltage is applied, a reinforcing material that is superimposed on the entire surface of the piezoelectric ceramic element, and a stator that is fixed to the reinforcing material and transmits the vibration of the piezoelectric ceramic element to the outside. The piezoelectric ceramic element and the reinforcing material are joined at one or more local sites.
[2] 前記圧電セラミック素子は、 1対の圧電セラミック板と、この圧電セラミック板に挟まれ た恒弾性体とを有することを特徴とする請求項 1に記載の圧電セラミックァクチユエ一 タ。  2. The piezoelectric ceramic actuator according to claim 1, wherein the piezoelectric ceramic element has a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates.
[3] 前記補強材は、一方の圧電セラミック板の全面に重ねられ、この圧電セラミック板と同 一又はそれより大きな形状を有することを特徴とする請求項 2に記載の圧電セラミック ァクチユエータ。  3. The piezoelectric ceramic actuator according to claim 2, wherein the reinforcing material is stacked on the entire surface of one piezoelectric ceramic plate, and has the same or larger shape as the piezoelectric ceramic plate.
[4] 前記固定子は、前記圧電セラミック素子と前記補強材との接合部位に配置されてい ることを特徴とする請求項 1乃至 3のいずれ力 1項に記載の圧電セラミックァクチユエ ータ。  4. The piezoelectric ceramic actuator according to any one of claims 1 to 3, wherein the stator is disposed at a joint portion between the piezoelectric ceramic element and the reinforcing material. .
[5] 前記圧電セラミック素子と前記補強材とは接着剤により接合されていることを特徴す る請求項 1乃至 4のいずれ力、 1項に記載の圧電セラミックァクチユエータ。  5. The piezoelectric ceramic actuator according to any one of claims 1 to 4, wherein the piezoelectric ceramic element and the reinforcing material are joined together by an adhesive.
[6] 前記圧電セラミック素子と前記補強材との間に、接合材が塗布された有機樹脂基材 を設けることにより、前記圧電セラミック素子と前記補強材とを接合することを特徴す る請求項 1乃至 5のいずれ力、 1項に記載の圧電セラミックァクチユエータ。  [6] The piezoelectric ceramic element and the reinforcing material are bonded together by providing an organic resin base material coated with a bonding material between the piezoelectric ceramic element and the reinforcing material. The piezoelectric ceramic actuator according to any one of 1 to 5, wherein
[7] 電圧の印加により振動する 1対の圧電セラミック素子と、これらの 1対の圧電セラミック 素子間に配置されその全面に重ねられる補強材と、一方の前記圧電セラミック素子 に固定され前記圧電セラミック素子の信号を外部に伝達する固定子と、を有し、前記 各圧電セラミック素子と前記補強材とは夫々 1又は複数個の局部的な部位で接合さ れてレ、ることを特徴とする圧電セラミックァクチユエータ。  [7] A pair of piezoelectric ceramic elements that vibrate when a voltage is applied, a reinforcing material disposed between the pair of piezoelectric ceramic elements and overlaid on the entire surface, and the piezoelectric ceramic element fixed to one of the piezoelectric ceramic elements A stator that transmits the signal of the element to the outside, and each of the piezoelectric ceramic elements and the reinforcing member are joined at one or more local sites. Piezoelectric ceramic actuator.
[8] 前記各圧電セラミック素子は、 1対の圧電セラミック板と、この圧電セラミック板に挟ま れた恒弾性体とを有することを特徴とする請求項 7に記載の圧電セラミックァクチユエ ータ。  8. The piezoelectric ceramic actuator according to claim 7, wherein each piezoelectric ceramic element has a pair of piezoelectric ceramic plates and a constant elastic body sandwiched between the piezoelectric ceramic plates. .
[9] 前記補強材は、両圧電セラミック素子の各一方の圧電セラミック板の全面に重ねられ 、この圧電セラミック板と同一又はそれより大きな形状を有することを特徴とする請求 項 8に記載の圧電セラミックァクチユエータ。 [9] The reinforcing material is superimposed on the entire surface of one piezoelectric ceramic plate of both piezoelectric ceramic elements. 9. The piezoelectric ceramic actuator according to claim 8, wherein the piezoelectric ceramic plate has a shape equal to or larger than that of the piezoelectric ceramic plate.
[10] 前記固定子は、それが固定された圧電セラミック素子と前記補強材との接合部位に 配置されていることを特徴とする請求項 7乃至 9のいずれか 1項に記載の圧電セラミツ クァクチユエータ。 10. The piezoelectric ceramic ceramic actuator according to any one of claims 7 to 9, wherein the stator is disposed at a joint portion between the piezoelectric ceramic element to which the stator is fixed and the reinforcing material. .
[11] 前記圧電セラミック素子と前記補強材とは接着剤により接合されていることを特徴す る請求項 7乃至 10のいずれか 1項に記載の圧電セラミックァクチユエータ。  11. The piezoelectric ceramic actuator according to any one of claims 7 to 10, wherein the piezoelectric ceramic element and the reinforcing material are joined by an adhesive.
[12] 前記圧電セラミック素子と前記補強材との間に、接合材が塗布された有機樹脂基材 を設けることにより、前記圧電セラミック素子と前記補強材とを接合することを特徴す る請求項 7乃至 11のいずれ力、 1項に記載の圧電セラミックァクチユエータ。  [12] The piezoelectric ceramic element and the reinforcing material are bonded by providing an organic resin base material coated with a bonding material between the piezoelectric ceramic element and the reinforcing material. The piezoelectric ceramic actuator according to any one of 7 to 11,
[13] 請求項 1乃至 12のいずれ力 4項に記載の圧電セラミックァクチユエータを振動源にし たことを特徴とする携帯機器。  [13] A portable device comprising the piezoelectric ceramic actuator according to any one of claims 1 to 12 as a vibration source.
[14] 請求項 1乃至 12のいずれ力 1項に記載の圧電セラミックァクチユエータを振動源にし て、筐体の一部を振動させることにより発音させることを特徴とする携帯機器  [14] A portable device characterized in that the piezoelectric ceramic actuator according to any one of claims 1 to 12 is used as a vibration source to generate a sound by vibrating a part of the housing.
PCT/JP2005/022894 2004-12-28 2005-12-13 Piezoelectric ceramic actuator and portable device WO2006070595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550664A JP4830858B2 (en) 2004-12-28 2005-12-13 Piezoelectric ceramic actuator and portable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-380106 2004-12-28
JP2004380106 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070595A1 true WO2006070595A1 (en) 2006-07-06

Family

ID=36614716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022894 WO2006070595A1 (en) 2004-12-28 2005-12-13 Piezoelectric ceramic actuator and portable device

Country Status (3)

Country Link
JP (1) JP4830858B2 (en)
TW (1) TW200631298A (en)
WO (1) WO2006070595A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141067B (en) * 2010-01-29 2013-04-03 中国人民解放军国防科学技术大学 Method for sticking piezoelectric ceramic actuator in structural vibration control
JP2014239238A (en) * 2012-05-14 2014-12-18 京セラ株式会社 Piezoelectric actuator, piezoelectric vibration device and portable terminal
WO2018047892A1 (en) * 2016-09-12 2018-03-15 株式会社村田製作所 Vibration device and manufacturing method for same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404970B1 (en) * 2012-03-26 2014-02-05 京セラ株式会社 Piezoelectric vibration component and portable terminal
JP6598488B2 (en) * 2015-04-10 2019-10-30 キヤノン株式会社 Vibration wave motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104503A (en) * 1992-09-18 1994-04-15 Sharp Corp Bimorph piezoelectric actuator
JP2000333480A (en) * 1999-03-15 2000-11-30 Seiko Epson Corp Piezoelectric actuator, watch and portable apparatus
JP2002190629A (en) * 2000-07-17 2002-07-05 Sumitomo Special Metals Co Ltd Method for manufacturing piezoelectric element
JP2004254417A (en) * 2003-02-19 2004-09-09 Seiko Epson Corp Piezoelectric actuator and device equipped with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417964B2 (en) * 1992-11-27 2003-06-16 北陸電気工業株式会社 Electronic components and their manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104503A (en) * 1992-09-18 1994-04-15 Sharp Corp Bimorph piezoelectric actuator
JP2000333480A (en) * 1999-03-15 2000-11-30 Seiko Epson Corp Piezoelectric actuator, watch and portable apparatus
JP2002190629A (en) * 2000-07-17 2002-07-05 Sumitomo Special Metals Co Ltd Method for manufacturing piezoelectric element
JP2004254417A (en) * 2003-02-19 2004-09-09 Seiko Epson Corp Piezoelectric actuator and device equipped with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141067B (en) * 2010-01-29 2013-04-03 中国人民解放军国防科学技术大学 Method for sticking piezoelectric ceramic actuator in structural vibration control
JP2014239238A (en) * 2012-05-14 2014-12-18 京セラ株式会社 Piezoelectric actuator, piezoelectric vibration device and portable terminal
WO2018047892A1 (en) * 2016-09-12 2018-03-15 株式会社村田製作所 Vibration device and manufacturing method for same
CN109689231A (en) * 2016-09-12 2019-04-26 株式会社村田制作所 Vibration device and its manufacturing method
JPWO2018047892A1 (en) * 2016-09-12 2019-06-24 株式会社村田製作所 Vibratory device and method of manufacturing the same
US11453029B2 (en) 2016-09-12 2022-09-27 Murata Manufacturing Co., Ltd. Vibration device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2006070595A1 (en) 2008-06-12
TWI321895B (en) 2010-03-11
TW200631298A (en) 2006-09-01
JP4830858B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP6228994B2 (en) Piezoelectric element and piezoelectric vibration device including the same, portable terminal, sound generator, sound generator, electronic device
JP5558577B2 (en) Piezoelectric vibration device and portable terminal using the same
JP5253620B1 (en) Mobile device
US9135906B2 (en) Ultrasonic generator
WO2007102305A1 (en) Piezoelectric actuator and electronic device
WO2005024966A1 (en) Piezoelectric ceramic element and portable device
KR101523535B1 (en) Piezoelectric element, and piezoelectric vibration device, portable terminal, acoustic generator, acoustic generation device and electronic device provided with the same
JPWO2008146678A1 (en) Piezoelectric actuator and electronic device
JP4830858B2 (en) Piezoelectric ceramic actuator and portable device
WO2012060041A1 (en) Oscillator and portable device
US20190265795A1 (en) Vibration generating device and electronic equipment for non-acoustic applications
JP2010068586A (en) Vibration wave motor
JP2015126605A (en) Piezoelectric actuator, piezoelectric vibration device having the same, portable terminal, acoustic generator, and electronic apparatus
JP2014143649A (en) Acoustic generator and electronic apparatus employing the same
JP6215746B2 (en) SOUND GENERATOR AND SOUND GENERATION DEVICE, ELECTRONIC DEVICE, AND PORTABLE TERMINAL HAVING THE SAME
JP2016184786A (en) Acoustic generation device and electronic apparatus including the same
JP2019147122A (en) Vibration generator and electronic equipment
JP6193748B2 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, acoustic generator, electronic device
JP2017118424A (en) Acoustic generator, acoustic generation device and electronic apparatus
JP5932458B2 (en) Piezoelectric vibration element, piezoelectric vibration device using the same, and portable terminal
JP5940947B2 (en) Piezoelectric vibration element, piezoelectric vibration device using the same, and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550664

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816503

Country of ref document: EP

Kind code of ref document: A1