WO2006069979A1 - Extrusionsdüse zum extrudieren von hohlprofilen - Google Patents

Extrusionsdüse zum extrudieren von hohlprofilen Download PDF

Info

Publication number
WO2006069979A1
WO2006069979A1 PCT/EP2005/057146 EP2005057146W WO2006069979A1 WO 2006069979 A1 WO2006069979 A1 WO 2006069979A1 EP 2005057146 W EP2005057146 W EP 2005057146W WO 2006069979 A1 WO2006069979 A1 WO 2006069979A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
flow channels
core
extrusion die
cores
Prior art date
Application number
PCT/EP2005/057146
Other languages
English (en)
French (fr)
Inventor
Siegfried Topf
Original Assignee
Topf Kunststofftechnik Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topf Kunststofftechnik Gesellschaft M.B.H. filed Critical Topf Kunststofftechnik Gesellschaft M.B.H.
Priority to EP05849786A priority Critical patent/EP1827794A1/de
Priority to US11/793,688 priority patent/US20080271671A1/en
Priority to CN2005800479477A priority patent/CN101115604B/zh
Publication of WO2006069979A1 publication Critical patent/WO2006069979A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2562Mounting or handling of the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb

Definitions

  • the present invention relates to an extrusion die for extruding
  • Hollow profiles in particular of window profiles, with one or more cores, wherein in the extrusion nozzle a plurality of flow channels are provided for melt streams, which are still merged within the extrusion die to the desired profile.
  • the extrusion process is needed to make profiles and semi-finished products
  • thermoplastic polymers in the form of powders or granules in an extruder, possibly by means of additives such as dyes, fillers, reinforcing fibers, etc. abandoned.
  • An extruder consists of several functional zones.
  • the first functional zone is the solids conveying zone.
  • the present in the form of granules, semolina or powder plastic is drawn and promoted.
  • the mechanism of the promotion differs depending on the extruder concept.
  • the further zones would be e.g. the preheating zone, in which the material is heated and precompressed, the compression zone, possibly a degassing zone, and common to all concepts is the melting zone.
  • the finished polymer is discharged from the extruder.
  • the mass pressure at the end of the cylinder is equal to the ambient pressure.
  • a pressure maximum builds up in the metering zone or in the tool.
  • the resistance of the tool attached to the extruder must be overcome.
  • a calibration unit typically consists of a combination dry / wet unit, and provisionally fixed. It is then further cooled with applied vacuum in a spray or bath until well below the softening temperature (in amorphous polymers) or the melt temperature (in semi-crystalline polymers).
  • That constructed extrusion tools of several juxtaposed plates are whose task is to gradually transform the flowing from the adapter circular full cross section of the melt strand and form, for example, a hollow profile.
  • this task is by one or more of the middle plates as a mandrel plate with tip (towards the extruder) and mandrel (in the other direction) performs.
  • the point and the mandrel have the task to convert a solid strand in a hollow strand, in the simplest case, to form a tube.
  • the mandrel is connected to the outer part of the Dornhalteplatte via webs.
  • the core is thus realized by a one-piece mandrel.
  • the shaping plates consist e.g. made of: a flange plate for fixing to the adapter; Distributor plates that initiate the geometry; a plate with dispensing tip; the mandrel plate; an intermediate plate; one or more nozzle plates; and a spike attachment.
  • the prior art is that a melt strand coming from the adapter is preformed by the manifold tip plate and the distributor plate (or manifold plates). Subsequently, the flow channel of the tip plate and the mandrel plate is flowed through. By means of the mandrel holding plate located on the mandrel, which is carried out to the end of the tool, and the outlet nozzle plates surrounding the mandrel, the plastic is brought into the shape corresponding to the product. To solve this problem technically, the mandrel and the tip must be connected by webs with the outer plate. To withstand the pressure of the melt, which results from the tool resistance (flow resistance), and to ensure sufficient stability of the dome, a corresponding number of retaining webs is needed.
  • these holding webs divide the melt strand and are therefore designed aerodynamically.
  • welding occurs, which can cause the appearance of a flow line.
  • a disadvantage of the weld is also that there is a reduction in strength in the seam, which can affect the technical tests of the profile.
  • extrusion nozzles are very expensive to manufacture, mainly because of the mandrel retaining plate.
  • This mandrel plate together with mandrel is - to achieve maximum stability - worked out of the whole, on the one hand means a lot of material loss and on the other hand very labor intensive: because it must be assumed here of a workpiece whose height is equal to the distance of the opening of Extrusion nozzle to the mandrel plate, so that the mandrel reaches to the opening of the extrusion die.
  • a device of the type mentioned is known from DE 10126689 A -. known.
  • an extrusion die which has four flow channels for Having melt streams. These four flow channels are fed by three extruders, ie one of the melt streams is split. All melt streams are - regardless of how many subregions have been selected for the corresponding profile - still merged within the extrusion tool to form a common strand and passed to the calibration device as a single profile. In this document, however, there is no indication of the structure of the extrusion die. Disclosure of Invention Technical Problem
  • the extrusion die is composed of several plates, wherein in all plates with core (s) with the exception of the last plate, the flow channels are separated, so that the core or cores through the webs between the flow channels are connected to the rest of the plate.
  • the core is not realized by a one-piece mandrel, but it is in each plate (with the exception of the last), the corresponding core piece available and connected by the webs between the flow channels with the rest of the plate.
  • This makes it possible to work out all plates from correspondingly thin workpieces, it is not a block as in the known Dornhalteplatte necessary. The production costs are thus relatively low.
  • the embodiment provides for the division of the melt strand into sub-strands. This can better balance the influence of the extruder.
  • the individual flow channels can be optimized independently of each other.
  • the core or the cores of the last plate can at the corresponding Core or the corresponding cores of the adjacent plate to be screwed. If the flow channels in the last plate are interconnected over only a portion of the height, then the lands between the flow channels are present over a portion of the height of the last plate, and the core or cores of the last plate is over them Webs connected to the rest of the plate.
  • FIG. 1 shows the first four plates of an extrusion die according to the invention in an exploded view
  • Fig. 2 shows the remaining plates of this extrusion die, again in exploded view
  • Fig. 3 shows this extrusion die assembled
  • Fig. 4 shows the foremost plate of this extrusion die, substantially in plan view
  • Fig. 5 shows a detail of Fig. 4
  • Fig. 6 shows an alternative embodiment for the last two plates of the extrusion die, again in exploded view.
  • a quarter is cut away so that the flow channels can be seen in more detail. The best way to exploit the invention
  • this is transferred in the distributor plate 2 with distributor tip 2 'in an annular cross-section.
  • the melt rod is reshaped to a larger cross-section than would be required by geometry.
  • the resulting increased residence time of the extrudate causes a certain material calming, as is necessary for the desired higher outputs.
  • this annular cross section is divided into further plates 3, 4 in segmental flow channels 11-19.
  • These segmental flow channels 11-19 in turn constitute their own, independent flow channels whose cross-section and position already have a relation to the later profile.
  • segmental flow channels 11-19 are gradually adapted to the later profile shape in its position and thickness.
  • An essential part of the invention is that these segmental flow channels 11-19 are guided separately from each other and they are no longer interrupted by webs (see also Fig. 3).
  • a final plate 7 the sub-segments are then merged.
  • This plate 7 is shown in Fig. 4, an enlarged section of which can be seen in Fig. 5.
  • cores 21-25 which are each enclosed by flow channels.
  • the core 21 of the flow channels 12, 16, 17, 18 and 19 (see FIG. 5) enclosed on all sides.
  • the plate 7 is shown substantially in plan view, the observation is slightly from the top left. It should be noted that the flow channels 12, 15, 16, 17, 18, 19 (see Fig. 5) are not exactly parallel to each other. In this way, one can see from the core 21 both the upper side wall 32 and the lower side wall 33.
  • This core 21 is connected to the adjacent cores 22, 23 and with the rest
  • Plate 7 (see Fig. 4) connected via webs: the web 34 (see Fig. 5) bridges the flow channels 12 and 16, the web 35, the flow channels 12 and 18, the web 36, the flow channels 17 and 18, the web 37 the Flow channels 17 and 19 and the web 38, the flow channels 16 and 19th
  • FIG. 6 An alternative embodiment is shown in Fig. 6.
  • the individual cores 21-25 form their own component 7 ".
  • This component 7" is screwed to the plate 6 ', and together with the rest of the plate T flow channels then emerge, which run over the entire height of the plate T.
  • each core 21-25 via webs (in Fig. 6, only the web 38 can be seen) connected. But it is of course also possible, each core 21-25 individually screwed to the plate 6 ', so that in the last plate no more webs are available.
  • the construction of the invention comes without mandrel plate with mandrel. This eliminates the otherwise necessary mandrel retaining webs with the disadvantages mentioned above. Further advantages result in the easier adjustment of the flow front at the outlet.
  • thermoplastics One of the occurring in the extrusion of thermoplastics
  • One of the effects is a not completely homogeneous temperature distribution in the melt strand delivered to the tool.
  • the uneven temperature distribution results in differences in viscosity, which in turn cause flow differences in the melt again.
  • This has different exit speeds of the plastic over the profile cross-section and an increased tuning effort result.
  • This can be compensated in the extrusion die according to the invention characterized in that the cross sections of the individual flow channels are chosen differently large, so smaller cross sections to compensate for low viscosity, and larger cross sections to compensate for high viscosity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Extrusionsdüse weist einen oder mehrere Kerne (21-25) auf. In der Extrusionsdüse sind mehrere Fließkanäle (11-19) für Schmelzeströme vorgesehen, die noch innerhalb der Extrusionsdüse zu dem gewünschten Profil zusammengeführt sind. Die Extrusionsdüse ist aus mehreren Platten (1-7) zusammengesetzt, wobei bei allen Platten mit Kern(en) (3-7) mit Ausnahme der letzten Platte (7) die Fließkanäle (11-19) voneinander getrennt sind, sodass der Kern bzw. die Kerne (21-25) durch die Stege (34-38) zwischen den Fließkanälen (11-20) mit der restlichen Platte verbunden sind. Wenn die Fließkanäle (11-19) in der letzten Platte (7) durchgehend miteinander verbunden sind, sind der Kern bzw. die Kerne (21-25) der letzten Platte (7) an dem entsprechenden Kern bzw. den entsprechenden Kernen der benachbarten Platte (6) angeschraubt; wenn die Fließkanäle (11-19) in der letzten Platte (7) nur über einen Teil der Höhe miteinander verbunden sind, sind der Kern bzw. die Kerne (21-25) der letzten Platte (7) mit der restlichen Platte (7) über diese verbleibenden Stege verbunden.

Description

Beschreibung
EXTRUSIONSDÜSE ZUM EXTRUDIEREN VON
HOHLPROFILEN
Technisches Umfeld
[0001] Die vorliegende Erfindung betrifft eine Extrusionsdüse zum Extrudieren von
Hohlprofilen, insbesondere von Fensterprofilen, mit einem oder mehreren Kernen, wobei in der Extrusionsdüse mehrere Fließkanäle für Schmelzeströme vorgesehen sind, die noch innerhalb der Extrusionsdüse zu dem gewünschten Profil zusammengeführt sind.
[0002] Das Extrusionsverfahren wird benötigt, um Profile und Halbzeuge, die aus
Kunststoff bestehen, kontinuierlich herstellen zu können. Die Ausgangsstoffe, meist thermoplastische Polymere, werden in Form von Pulvern oder Granulaten in einem Extruder eventuell mittels Zuschlagstoffen wie Farbstoffen, Füllstoffen, Verstärkungsfasern etc. aufgegeben.
[0003] Ein Extruder besteht aus mehreren funktionellen Zonen. Die erste funktionelle Zone ist die Feststoffförderzone. Hier wird der in Form von Granulat, Gries oder Pulver vorliegende Kunststoff eingezogen und gefördert. Der Mechanismus der Förderung unterscheidet sich je nach Extruderkonzept. Die weiteren Zonen wären z.B. die Vorwärmzone, in der das Material erwärmt und vorverdichtet wird, die Kompressionszone, eventuell eine Entgasungszone, und allen Konzepten gemeinsam ist die Me- teringzone.
[0004] In der Meteringzone wird das fertig aufbereitete Polymer aus dem Extruder ausgetragen. Bei offenem Zylinder, also ohne Extrusions Werkzeug, ist der Massedruck am Ende des Zylinders gleich dem Umgebungsdruck. Bei angeflanschtem Werkzeug baut sich ein Druckmaximum auf, das in der Meteringzone oder im Werkzeug liegt. Bei der Extrusion muss der Widerstand des an den Extruder angebauten Werkzeuges überwunden werden.
[0005] Nachdem der Kunststoff das die Geometrie bestimmende Werkzeug durchlaufen hat, wird seine Form mit Hilfe einer Kalibriereinheit, die typischerweise aus einer Kombination Trocken-/Nasseinheit besteht, geführt und vorläufig fixiert. Anschließend wird weiter mit angelegtem Vakuum in einem Sprüh- oder Vollbad bis weit unterhalb der Erweichungstemperatur (bei amorphen Polymeren) bzw. der Schmelzetemperatur (bei teilkristallinen Polymeren) abgekühlt.
[0006] Es ist bekannt (siehe z.B. die DE 1970771 I A -. ), dass Extrusionswerkzeuge aus mehreren aneinander gereihten Platten aufgebaut sind, deren Aufgabe es ist, den aus dem Adapter strömenden kreisrunden Vollquerschnitt des Schmelzestranges schrittweise umzuformen und z.B. ein Hohlprofil auszubilden. Technisch lösbar ist diese Aufgabe, indem man eine oder mehrere der mittleren Platten als Dornhalteplatte mit Spitze (in Richtung zum Extruder) und Dorn (in der anderen Richtung) ausführt. Die Spitze und der Dorn haben die Aufgabe, einen Vollstrang in einen Hohlstrang zu überführen, im einfachsten Fall, ein Rohr zu formen. Der Dorn ist dabei mit dem äußeren Teil der Dornhalteplatte über Stege verbunden. Der Kern wird also durch einen einstückigen Dorn realisiert.
[0007] Die formgebenden Platten bestehen z.B. aus: einer Flanschplatte zur Fixierung am Adapter; Verteilerplatten, die die Geometrie einleiten; einer Platte mit Verteilerspitze; der Dornhalteplatte; einer Zwischenplatte; einer oder mehreren Düsenplatten; und einem Dornaufsatz.
[0008] Stand der Technik ist es, dass ein vom Adapter kommender Schmelzestrang von der Platte mit Verteilerspitze und der Verteilerplatte (bzw. den Verteilerplatten) vorgeformt wird. Anschließend wird der Fließkanal der Spitzenhalteplatte und der Dornhalteplatte durchströmt. Durch den auf der Dornhalteplatte befindlichen Dorn, der bis zum Ende des Werkzeuges durchgeführt wird, und die den Dorn umgebenden Austrittsdüsenplatten wird der Kunststoff in die dem Produkt entsprechende Form gebracht. Um diese Aufgabe technisch zu lösen, müssen der Dorn und die Spitze durch Stege mit der Außenplatte verbunden werden. Um dem Druck der Schmelze, der sich aus dem Werkzeugwiderstand (Fließwiderstand) ergibt, standzuhalten und eine ausreichende Stabilität des Domes zu gewährleisten, wird eine entsprechende Anzahl von Haltestegen benötigt. Konstruktionsgemäß teilen diese Haltestege den Schmelzestrang auf und sind deshalb strömungsgünstig ausgeführt. Bei der Wiederzusammenführung des Kunststoffs tritt eine Verschweißung ein, wodurch die Abbildung einer Fließlinie auftreten kann. Ein Nachteil der Verschweißung ist auch, dass eine Festigkeitsminderung in der Naht besteht, die sich bei den technischen Prüfungen des Profils auswirken kann.
[0009] Derartige Extrusionsdüsen sind sehr teuer in der Herstellung, und zwar hauptsächlich wegen der Dornhalteplatte. Diese Dornhalteplatte samt Dorn wird - um maximale Stabilität zu erreichen - aus dem Vollen herausgearbeitet, was einerseits sehr viel Materialverlust bedeutet und andererseits sehr arbeitsintensiv ist: denn es muss hier von einem Werkstück ausgegangen werden, dessen Höhe genauso groß ist wie der Abstand der Öffnung der Extrusionsdüse bis zur Dornhalteplatte, damit der Dorn bis zur Öffnung der Extrusionsdüse reicht.
[0010] Eine Vorrichtung der eingangs genannten Art ist aus der DE 10126689 A -. bekannt. Es ist dort eine Extrusionsdüse gezeigt, die vier Fließkanäle für Schmelzeströme aufweist. Diese vier Fließkanäle werden durch drei Extruder beschickt, d.h. einer der Schmelzeströme wird geteilt. Alle Schmelzeströme werden - unabhängig wie viele Teilbereiche für das entsprechende Profil gewählt wurden - noch innerhalb des Extrusionswerkzeuges zu einem gemeinsamen Strang zusammengeführt und als ein einziges Profil an die Kalibriereinrichtung übergeben. In dieser Schrift findet sich allerdings kein Hinweis über den Aufbau der Extrusionsdüse. Offenbarung der Erfindung Technisches Problem
[0011] Es ist Aufgabe der vorliegenden Erfindung, eine Extrusionsdüse der eingangs genannten Art zu schaffen, die kostengünstig herstellbar ist und bei der das extrudierte Profil dennoch hohe Qualität aufweist. Technische Lösung
[0012] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Extrusionsdüse aus mehreren Platten zusammengesetzt ist, wobei bei allen Platten mit Kern(en) mit Ausnahme der letzten Platte die Fließkanäle voneinander getrennt sind, sodass der Kern bzw. die Kerne durch die Stege zwischen den Fließkanälen mit der restlichen Platte verbunden sind.
[0013] Erfindungsgemäß wird also der Kern nicht durch einen einstückigen Dorn realisiert, sondern es ist in jeder Platte (mit Ausnahme der letzten) das entsprechende Kernstück vorhanden und durch die Stege zwischen den Fließkanälen mit der restlichen Platte verbunden. Damit lassen sich alle Platten aus entsprechend dünnen Werkstücken herausarbeiten, es ist kein Block wie bei der bekannten Dornhalteplatte notwendig. Die Herstellungskosten sind somit relativ gering.
[0014] Die Ausführung sieht die Aufteilung des Schmelzestranges in Teilstränge vor. Dadurch kann der Einfluss des Extruders besser ausgeglichen werden. Durch die einfache geometrische Form und die getrennte Führung der Teilstränge, die nicht durch Stege unterbrochen sind, wird ein stabileres Fließverhalten erzielt. Die einzelnen Fließkanäle können unabhängig voneinander optimiert werden.
[0015] Ein besonderer Vorteil ist auch darin zu sehen, dass - wenn man erkennt, dass die Geometrie der Fließkanäle nicht optimal ist - keine neue Dornhalteplatte samt Dorn aus einem neuen Block hergestellt werden muss, es genügt, die entsprechende Platte neu herzustellen, weil ja in dieser Platte der Kern bereits vorhanden ist.
[0016] Bei der letzten Platte sind die Fließkanäle nicht mehr durchgehend voneinander getrennt, weil ja die Teilprofile in der letzten Platte zusammengeführt werden müssen. Es sind hier zwei Ausführungen möglich:
[0017] Wenn die Fließkanäle in der letzten Platte durchgehend miteinander verbunden sind, kann der Kern bzw. können die Kerne der letzten Platte an dem entsprechenden Kern bzw. den entsprechenden Kernen der benachbarten Platte angeschraubt sein. Wenn die Fließkanäle in der letzten Platte nur über einen Teil der Höhe miteinander verbunden sind, dann sind die Stege zwischen den Fließkanälen über einen Teil der Höhe der letzten Platte vorhanden, und der Kern bzw. die Kerne der letzten Platte ist bzw. sind über diese Stege mit der restlichen Platte verbunden. Kurze Beschreibung von Zeichnungen
[0018] Anhand der beiliegenden Figuren wird die Erfindung näher erläutert. Es zeigt:
Fig. 1 die ersten vier Platten einer erfindungsgemäßen Extrusionsdüse in Explosionsdarstellung; Fig. 2 zeigt die restlichen Platten dieser Extrusionsdüse, wiederum in Explosionsdarstellung; Fig. 3 zeigt diese Extrusionsdüse zusammengebaut; Fig. 4 zeigt die vorderste Platte dieser Extrusionsdüse, im Wesentlichen in Draufsicht; Fig. 5 zeigt ein Detail von Fig. 4; und Fig. 6 zeigt eine alternative Ausführungsform für die beiden letzten Platten der Extrusionsdüse, wiederum in Explosionsdarstellung. In allen Figuren ist ein Viertel weggeschnitten, damit die Fließkanäle genauer zu sehen sind. Die beste Art und Weise, die Erfindung auszunutzen
[0019] Ausgehend von einem kreisrunden Schmelzestrang in der Flanschplatte 1 (Fig. 1) wird dieser in der Verteilerplatte 2 mit Verteilerspitze 2' in einen ringförmigen Querschnitt überführt. Hier wird der Schmelzestang auf einen größeren Querschnitt umgeformt, als es von der Geometrie her erforderlich wäre. Die dadurch erhöhte Verweilzeit des Extrudates bewirkt eine gewisse Materialberuhigung, wie es für die erwünschten höheren Ausstöße notwendig ist. Danach wird dieser ringförmige Querschnitt in weiteren Platten 3, 4 in segmentförmige Fließkanäle 11-19 aufgeteilt. Diese segmentförmigen Fließkanäle 11-19 stellen ihrerseits eigene, unabhängige Fließkanäle dar, deren Querschnitt und Lage bereits einen Bezug zum späteren Profil haben.
[0020] In den weiteren Platten 5, 6 und 7 (Fig. 2) werden die segmentförmigen Fließkanäle 11-19 nach und nach der späteren Profilform in ihrer Lage und Dicke angepasst. Ein wesentlicher Teil der Erfindung ist, dass diese segmentförmigen Fließkanäle 11-19 getrennt voneinander geführt werden und diese nicht mehr durch Stege unterbrochen sind (siehe auch Fig. 3).
[0021] In einer Abschlussplatte 7 werden dann die Teilsegmente zusammengeführt. Diese Platte 7 ist in Fig. 4 dargestellt, ein vergrößerter Ausschnitt davon ist in Fig. 5 zu sehen. In Fig. 4 erkennt man deutlich Kerne 21-25, die jeweils von Fließkanälen umschlossen sind. So ist z.B. der Kern 21 von den Fließkanälen 12, 16, 17, 18 und 19 (siehe Fig. 5) allseitig umschlossen.
[0022] In beiden Figuren ist die Platte 7 im Wesentlichen in Draufsicht dargestellt, die Betrachtung erfolgt geringfügig von links oben. Zu beachten ist, dass die Fließkanäle 12, 15, 16, 17, 18, 19 (siehe Fig. 5) nicht genau parallel zueinander verlaufen. Auf diese Weise sieht man von dem Kern 21 sowohl die obere Seitenwand 32 als auch die untere Seitenwand 33.
[0023] Dieser Kern 21 ist mit den benachbarten Kernen 22, 23 bzw. mit der restlichen
Platte 7 (siehe Fig. 4) über Stege verbunden: der Steg 34 (siehe Fig. 5) überbrückt die Fließkanäle 12 und 16, der Steg 35 die Fließkanäle 12 und 18, der Steg 36 die Fließkanäle 17 und 18, der Steg 37 die Fließkanäle 17 und 19 und der Steg 38 die Fließkanäle 16 und 19.
[0024] Einige dieser Stege, nämlich 34, 37 und 38, sind an der Oberseite flach, andere Stege, nämlich 35 und 36, laufen oben spitz zusammen. Allen Stegen 34-37 ist gemeinsam, dass sie sich nur über einen Teil der Dicke der Platte 7 erstrecken, d.h. unterhalb der Vorderseite enden. Auf diese Weise können sich die Schmelzeströme in den einzelnen Fließkanälen oberhalb der Stege miteinander verbinden.
[0025] Eine alternative Ausführungsform ist in Fig. 6 dargestellt. Hier bilden die einzelnen Kerne 21-25 einen eigenen Bauteil 7". Dieser Bauteil 7" wird an der Platte 6' angeschraubt, und zusammen mit der restlichen Platte T ergeben sich dann Fließkanäle, die über die gesamte Höhe der Platte T durchgehen.
[0026] In diesem Ausführungsbeispiel sind die einzelnen Kerne 21-25 über Stege (in der Fig. 6 ist nur der Steg 38 zu sehen) verbunden. Es ist aber natürlich auch möglich, jeden Kern 21-25 einzeln an der Platte 6' anzuschrauben, sodass in der letzten Platte überhaupt keine Stege mehr vorhanden sind.
[0027] Die erfindungsgemäße Konstruktion kommt ohne Dornhalteplatte mit Dorn aus. Dadurch entfallen auch die sonst notwendigen Dorn-Haltestege mit den oben genannten Nachteilen. Weitere Vorteile ergeben sich in der einfacheren Abstimmung der Fließfront am Austritt.
[0028] Einer der bei der Extrusion von thermoplastischen Kunststoffen auftretenden
Effekte ist unter anderem eine nicht vollständig homogene Temperaturverteilung in dem zum Werkzeug angelieferten Schmelzestrang. Durch die ungleichmäßige Temperaturverteilung ergeben sich Viskositätsunterschiede, die ihrerseits wieder Strömungsunterschiede in der Schmelze hervorrufen. Das hat unterschiedliche Austrittsgeschwindigkeiten des Kunststoffs über den Profilquerschnitt und einen erhöhten Abstimmaufwand zur Folge. Dies kann bei der erfindungsgemäßen Extrusionsdüse dadurch ausgeglichen werden, dass die Querschnitte der einzelnen Fließkanäle unterschiedlich groß gewählt werden, also geringere Querschnitte, um zu geringe Viskosität auszugleichen, und größere Querschnitte, um zu hohe Viskosität auszugleichen.
[0029] Es ist auch möglich, nach diesem Prinzip Profile mit ein oder mehreren coex- trudierten Schichten bzw. Teilsegmenten herzustellen, indem man die einzelnen Fließkanäle mit verschiedenen Extrudern beschickt. Ebenso ist es möglich, mit dieser Erfindung geschäumte Profile herzustellen.

Claims

Ansprüche
[0001] Extrusionsdüse zum Extrudieren von Hohlprofilen, insbesondere von Fensterprofilen, mit einem oder mehreren Kernen (21-25), wobei in der Extrusionsdüse mehrere Fließkanäle (11-19) für Schmelzeströme vorgesehen sind, die noch innerhalb der Extrusionsdüse zu dem gewünschten Profil zusammengeführt sind, dadurch gekennzeichnet, dass die Extrusionsdüse aus mehreren Platten (1-7) zusammengesetzt ist, wobei bei allen Platten mit Kern(en) (3-7) mit Ausnahme der letzten Platte (7) die Fließkanäle (11-19) voneinander getrennt sind, sodass der Kern bzw. die Kerne (21-25) durch die Stege (34-38) zwischen den Fließkanälen (11-19) mit der restlichen Platte verbunden sind.
[0002] Extrusionsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die
Fließkanäle (11-19) in der letzten Platte (7) durchgehend miteinander verbunden sind und dass der Kern bzw. die Kerne (21-25) der letzten Platte (7) an dem entsprechenden Kern bzw. den entsprechenden Kernen der benachbarten Platte (6) angeschraubt sind (Fig. 6).
[0003] Extrusionsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die
Fließkanäle (11-19) in der letzten Platte (7) nur über einen Teil der Höhe miteinander verbunden sind, sodass die Stege (34-38) zwischen den Fließkanälen (11-19) über einen Teil der Höhe der letzten Platte (7) vorhanden sind und den Kern bzw. die Kerne (21-25) der letzten Platte (7) mit der restlichen Platte (7) verbinden. (Fig. 4, 5)
PCT/EP2005/057146 2004-12-23 2005-12-23 Extrusionsdüse zum extrudieren von hohlprofilen WO2006069979A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05849786A EP1827794A1 (de) 2004-12-23 2005-12-23 Extrusionsdüse zum extrudieren von hohlprofilen
US11/793,688 US20080271671A1 (en) 2004-12-23 2005-12-23 Extrusion Nozzle for Extruding Hollow Profiles
CN2005800479477A CN101115604B (zh) 2004-12-23 2005-12-23 用于挤出中空型材的挤出管嘴

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0216004A AT501156B8 (de) 2004-12-23 2004-12-23 Extrusionsdüse zum extrudieren von hohlprofilen
ATA2160/2004 2004-12-23

Publications (1)

Publication Number Publication Date
WO2006069979A1 true WO2006069979A1 (de) 2006-07-06

Family

ID=36177191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/057146 WO2006069979A1 (de) 2004-12-23 2005-12-23 Extrusionsdüse zum extrudieren von hohlprofilen

Country Status (8)

Country Link
US (1) US20080271671A1 (de)
EP (1) EP1827794A1 (de)
KR (1) KR20070098873A (de)
CN (1) CN101115604B (de)
AT (1) AT501156B8 (de)
RU (1) RU2346812C1 (de)
UA (1) UA87888C2 (de)
WO (1) WO2006069979A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009377A1 (de) 2015-07-18 2017-01-19 Heinz Gross Mischwerkzeug
DE102018005060A1 (de) 2018-06-26 2020-01-02 Heinz Gross Formgebungswerkzeug
KR102281678B1 (ko) * 2019-12-03 2021-07-23 김기영 삼중 압출금형

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504210A (en) * 1982-05-06 1985-03-12 Dynamit Nobel Aktiengesellschaft Die for extruder
DE19707711A1 (de) * 1997-02-26 1998-08-27 Waeschle Maschf Gmbh Extrusionsdüse zur Herstellung von Kunststoffhohlprofilen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331103A (en) * 1965-10-21 1967-07-18 Koppers Co Inc Extrusion die for foamable thermoplastic compositions
US3775035A (en) * 1970-01-12 1973-11-27 Owens Illinois Inc Foam plastic extrusion apparatus with plurality of die lip temperature controls
EP0207065A3 (de) * 1985-06-13 1988-09-07 Schaumstoffwerk Greiner Gesellschaft M.B.H. Strangpressdüse
US5538777A (en) * 1993-09-01 1996-07-23 Marley Mouldings Inc. Triple extruded frame profiles
US5518036A (en) * 1994-09-29 1996-05-21 Phillips Petroleum Company Multi-layer plastic pipe and method and apparatus for extrusion thereof
CN1154901A (zh) * 1995-10-10 1997-07-23 圣戈班玻璃制造公司 生产装有由弹性体制成的型材框的玻璃窗格的方法
DE10129702A1 (de) * 2001-06-22 2003-01-02 Roehm Gmbh Extrusionswerkzeug zur Herstellung von Hohlkammerprofilplatten aus thermoplastischem Kunststoff mit innen liegender coextrudierter Schicht
JP2003103592A (ja) * 2001-09-28 2003-04-09 Brother Ind Ltd 固定側入れ子及びフェルール射出成形用金型装置
EP1316407B1 (de) * 2001-11-30 2006-03-01 Rodeca GmbH Plattenförmiges Wand- oder Dachelement sowie ein Verfahren und Werkzeug zur Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504210A (en) * 1982-05-06 1985-03-12 Dynamit Nobel Aktiengesellschaft Die for extruder
DE19707711A1 (de) * 1997-02-26 1998-08-27 Waeschle Maschf Gmbh Extrusionsdüse zur Herstellung von Kunststoffhohlprofilen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GABRIELE M C: "PROFILE EXTRUSION EVOLVES FROM AN ART TO A SCIENCE", MODERN PLASTICS INTERNATIONAL, MCGRAW-HILL,INC. LAUSANNE, CH, vol. 26, no. 5, 1 May 1996 (1996-05-01), pages 42 - 44,46, XP000598309, ISSN: 0026-8283 *
See also references of EP1827794A1 *
WITT R: "WERKZEUGE FUER DIE EXTRUSION VON ROHREN UND PROFILEN SYSTEME FUER STANDARD- UND SONDERANWENDUNGEN", KUNSTSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 90, no. 10, October 2000 (2000-10-01), pages 138,140,142 - 143, XP000965892, ISSN: 0023-5563 *

Also Published As

Publication number Publication date
EP1827794A1 (de) 2007-09-05
CN101115604A (zh) 2008-01-30
RU2346812C1 (ru) 2009-02-20
US20080271671A1 (en) 2008-11-06
AT501156A4 (de) 2006-07-15
KR20070098873A (ko) 2007-10-05
AT501156B1 (de) 2006-07-15
UA87888C2 (ru) 2009-08-25
AT501156B8 (de) 2007-02-15
CN101115604B (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
DE3325017C2 (de) Preßkopf zum Herstellen von flachen zusammenhängenden Profilsträngen aus plastischen Kautschuk- oder Kunststoffmischungen verschiedener Zusammensetzung
EP1621320B1 (de) Koextrusionsadapter
DE102006042065B4 (de) Verfahren und Vorrichtung zur Herstellung von bandförmigen Kunststoffvorformlingen
DE19535749C1 (de) Extrusionskopf zur Herstellung von schlauch- oder rohrförmigen Vorformlingen aus extrudierbarem Kunststoff
EP0361123A2 (de) Verfahren zum Herstellen gefüllter Flüssigkeitsbehälter aus thermoplastischem Kunststoff sowie Extrusionskopf
DE202006013751U1 (de) Vorrichtung zur Herstellung von bandförmigen Kunststoffvorformlingen
EP3216583B1 (de) Koextrusionsadapter
EP0093894A1 (de) Werkzeug für Extruder
DE202007016630U1 (de) Vorrichtung zur fortlaufenden Herstellung eines Verbundrohres mit Rohrmuffe
WO2006069979A1 (de) Extrusionsdüse zum extrudieren von hohlprofilen
EP0157103A1 (de) Einrichtung zum Herstellen von flachen Profilsträngen aus plastischen Kautschuk- oder Kunststoffmischungen verschiedener Zusammensetzung durch Strangpressen
AT413270B (de) Haltevorrichtung für eine extrusionsdüse
EP2941339A1 (de) BLOCKTRÄGER MIT INTEGRIERTER STRANGGIEßEINRICHTUNG FÜR THERMOPLASTISCHE KUNSTSTOFFE
EP1346814B1 (de) Kalibrierblende
DE2217620A1 (de) Extrudiervorrichtung
DE3245084A1 (de) Verfahren und vorrichtung zur bildung und umschichtung von teilstroemen einer aus einer strangpresse gefoerderten kunststoffschmelze
EP0584467B1 (de) Verfahren zur kontinuierlichen Herstellung eines langgestreckten Hohlprofils aus thermoplastischem Kunststoff
DE2143597A1 (de) Strangpreßvorrichtung zur Herstellung von Kunstharzverbundgebilden oder -laminaten
EP4045278A1 (de) Extrusionstechnik zur bildung von kunststoff-vorformlingen und schlauchbildungstechnik
EP4045277A1 (de) Extrusionsaggregat zur bildung von kunststoff-vorformlingen und profilierungstechnik
DE1479931A1 (de) Extruderkopf mit verstellbarer Duese
DE1504619A1 (de) Verfahren und Vorrichtung zum Strangpressen von Kunststoff-Folien
DE102018005060A1 (de) Formgebungswerkzeug
DE19802646C1 (de) Verfahren zur Herstellung einer mehrschichtigen Bahn mit geringen Schichtdickentoleranzen
DE1914617C3 (de) Strangpresse für schmelzbare oder plastifizierbare Stoffe, insbesondere Kunststoffe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005849786

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2499/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077016792

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007128029

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580047947.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005849786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793688

Country of ref document: US