WO2006067320A1 - Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element - Google Patents

Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element Download PDF

Info

Publication number
WO2006067320A1
WO2006067320A1 PCT/FR2005/003180 FR2005003180W WO2006067320A1 WO 2006067320 A1 WO2006067320 A1 WO 2006067320A1 FR 2005003180 W FR2005003180 W FR 2005003180W WO 2006067320 A1 WO2006067320 A1 WO 2006067320A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
thermostatic element
element according
thermostatic
cavities
Prior art date
Application number
PCT/FR2005/003180
Other languages
English (en)
Inventor
Gérard Jean André LE CLANCHE
Christian Mace
Original Assignee
Vernet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/793,353 priority Critical patent/US20080156890A1/en
Application filed by Vernet filed Critical Vernet
Priority to EP05826559A priority patent/EP1828864A1/fr
Publication of WO2006067320A1 publication Critical patent/WO2006067320A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1326Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element details of the sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a thermostatic element of the type comprising an elongated cup containing a substantially expandable and contractile material according to the direction of variation of its temperature, and a piston movable relative to the cup in the longitudinal direction thereof and coupled to the expandable and contractile material to move in opposite directions as the material expands or contracts.
  • the invention also relates to a cartridge and a thermostatic valve equipped with such an element.
  • thermostatic elements are used in particular in the field of controlling the temperature of a fluid resulting from the mixing of two fluid streams at different temperatures, the relative movement of the piston and the cup being used to modify the proportion of the fluid. mixing of the two fluid streams. This is particularly the case in mixer taps and mixer taps.
  • thermostatic element For a large number of applications in this field, it is necessary that the response of the thermostatic element be very fast, that is to say that the modification of the temperature of the medium in which the cup is located leads to very high temperatures. short delay a corresponding movement of the piston. This is particularly the case for thermostatic elements immersed in a feed water flow of a sanitary installation, for which application, an ideal temperature being selected, a reduction of temperature of three or four degrees only is very unpleasant, and an increase of a few degrees can be the cause of burns.
  • thermostatic elements conventionally used in this type of application comprise, for example according to FIGS. 1 and 2, a metal cup 1 having a tubular running portion 11 having a generally cylindrical shape with a circular base and a longitudinal axis X-X.
  • a bottom end 12 closes this portion 11 while the opposite end blooms to connect to a collar 13.
  • a sheath 2, having a shape of revolution with a central channel 21, comprises a base 22 housed in the collar of the cup so that apart from the base 22, the sleeve 2 extends out of the cup in the opposite direction to the cylindrical portion 11 thereof, and coaxially.
  • the flange 13 is crimped around the base 22.
  • the tubular portion 11 of the cup is filled with a mass of material which is very expandable and contractile depending on temperature variations, especially around a functional temperature, here a mass of wax 3.
  • the base 22 of the sleeve comprises in its face which is opposite this mass of wax, an annular housing 23 in which is anchored the periphery of a diaphragm 4 disc-shaped and elastically deformable, closing the central channel 21 of the sleeve on the side of 1.
  • a piston 5 subject to the movements of the central region of the diaphragm, the end of the piston opposite the diaphragm being more or less projecting out of the sheath according to of the volume occupied by the wax, therefore of the temperature of this one.
  • a tubular gusset 6 of protection surrounds a portion of the sheath 2 and the piston 5, its ends being immobilized in grooves dug in the periphery of these two parts.
  • This bellows 6, in the form of a flexible membrane unwinding, follows the movements of the piston without plastic deformation.
  • the piston 5 is subjected to the movements of the central region of the diaphragm 4 by means of a pad 7 of deformable elastomer in contact with the surface of the diaphragm opposite to the mass of wax and a washer 8 made of polymer such as PTFE inserted between the pad and the piston and fitted into the channel 21 to prevent creep of the pad elastomer around the piston.
  • DE-A-30 13 386, DE-A-34 13 466 and GB-AI 385 372 describe thermostatic elements whose cup is similar to that of FIGS. 1 and 2, that is to say whose cup delimits internally a single chamber for storing a thermally expandable wax.
  • thermostatic elements The general design of these thermostatic elements is well adapted to the use of a wax whose coefficient of expansion is very important compared to that of the common fluids (approximately 10 to 20 times higher) and thus likely to cause a very wide movement of the piston.
  • waxes Unfortunately, these waxes have a very low thermal conductivity
  • the object of the present invention is to provide an alternative solution to the presence of an insert insert as mentioned above and to provide a quick response thermostatic element that is more reliable and easier to manufacture.
  • the object of the invention is a thermostat element which, comprising a cup containing an expandable and contractile material according to the direction of variation of its temperature, and a piston movable by relative to the cup in an axial direction thereof and coupled to the expandable and contractile material to move in opposite directions as the material expands or contracts, characterized in that the cup is made of a single metal part in which at least two internal cavities for receiving at least a portion of the expandable and contractile material are delimited.
  • the use of the metal piece in one piece to receive the expandable and contractile material simplifies the obtaining of the thermostatic element since no operation of setting up an insert insert and securing this insert is not necessary.
  • the walls of the cup delimiting the cavities are connected to the outer face of the cup by a continuity of metallic material, which ensures optimal thermal conduction between the outside of the cup in contact with the environment and the material stored in the cavities.
  • the service life of the thermostatic element according to the invention is better than that of a thermostatic element insert insert, the contact areas between the insert and the peripheral wall of the cup at risk, in the long run, to be altered while, with the element according to the invention, the metallic material constituting the cup and delimiting the cavities is thermally stressed in one piece.
  • the same cross sectional plane to the thermostatic element passes through the cavities; in the abovementioned transverse section plane, the cavities are distributed around the axis of the cup; each cavity is blind and opens on the side of the cup facing the piston; each cavity extends in length in a direction substantially parallel to the axial direction of the cup; each cavity has a generally cylindrical shape with a circular base; the outer lateral face of the cup is essentially cylindrical in a direction substantially parallel to the axial direction of the cup;
  • the substantially cylindrical shape of the outer side face of the cup is circular base
  • the essentially cylindrical shape of the outer lateral face of the cup is adjusted to the shape of the cavities; at least 80% of the expandable and contractile material is stored in the cavities;
  • the cup is provided with external ribs protruding outwards.
  • the invention also relates to a thermostatic cartridge or a thermostatic valve, provided with a thermostatic element as defined above.
  • FIG. 1 is a longitudinal section of a known thermostatic element which has been described above;
  • FIG. 2 is a cross section of the thermostatic element of Figure 1, in the plane II-II of this figure;
  • FIGS. 3, 5, 7 and 9 are views similar to Figure 1, respectively four different embodiments of a thermostatic element according to the invention; and FIGS. 4, 6, 8 and 10 are respectively transverse sections of the thermostatic elements of FIGS. 3, 5, 7 and 9, respectively in planes IV-IV, VI-VI, VIII-VIII and IX-IX of these figures. .
  • thermostatic element known from Figures 1 and 2 having been described above, it will not be detailed here again.
  • the members of the thermostatic elements according to the invention which correspond to members of the known element bear the same numerical references.
  • thermostatic elements represented in FIGS. 3 to 10 are intended to equip a valve cartridge or a thermostatic valve and comprise:
  • a metal cup 1 extending along a central axis XX, having a running portion 11 elongate form filled with a mass of essentially expandable and retractile material 3, such as wax, and provided at one end with a closed bottom transverse wall 12 while the opposite end opens up for connection has a flange 13, and
  • a sleeve 2 having a shape of revolution with a central channel 21 and a base 22 housed in the flange of the cup, the flange 13 being crimped around the base 22, and the cup and the sleeve extending coaxially according to the XX axis in opposite directions.
  • thermostatic elements of FIGS. 3 to 10 also comprise an elastically deformable diaphragm 4, a piston 5 secured to the movement of the central region of this diaphragm by means of a buffer 7, with the interposition of a washer 8, as well as 6. These components will not be detailed here again since they have been presented previously, with reference to FIGS. 1 and 2.
  • the cup 1 is made in one piece which internally delimits four cavities.
  • cylindrical 14A within which is stored most of the wax 3, while externally, the cup has a substantially circular cylindrical side face HA, centered on the axis XX.
  • Each cylindrical cavity 14A extends in length in a direction substantially parallel to the axis XX.
  • each cavity is closed by a wall formed by the current portion 11 of the metal cup 1.
  • each 14A cavity is closed, at one of its longitudinal ends, by the bottom wall 12 of the cup while at their opposite end, the cavities 14A open on the diaphragm 4, axially at the level of the collar 13.
  • more than 80% or even 90% of the wax 3 is stored in the cavities 14A.
  • the cavities 14A are for example hollowed out in a solid metal drum intended to constitute, after finishing, the cup 1, by machining, stamping or the like.
  • the thermostatic element in particular its wax 3 reaches a homogeneous temperature equal to the new hot temperature ⁇ i of the medium outside.
  • the heat circulates very rapidly throughout the metal of the cup 1, in particular up to the walls of the cup delimiting the internal cavities 14A.
  • the temperature of the wax 3 having increased by ⁇ o to ⁇ i, it expands and, as the cup assembly 1 / sheath 2 is not deformable, the wax 3 deforms, by expanding, the diaphragm 4 which, in turn , deforms the buffer 7, the latter translating the washer 8 and the piston 5 in the channel 21 of the sleeve.
  • the contact surface indicated in dashed lines for greater visibility, is denoted by S and the maximum cup / wax distance is denoted e_.
  • the contact surface to be considered corresponds to the sum of the four elementary surfaces, denoted SA, of contact between the walls delimiting the four cavities 14A and the wax, and the maximum cup / wax distance is noted ⁇ A, being noticed that this distance is the same at each cavity 14A.
  • the sum of the contact surfaces SA is greater than the contact area S associated with the conventional thermostatic element of FIGS. 1 and 2, while the distance e A is smaller than the distance e_ for a volume of wax and an identical cup length.
  • the response time is therefore considerably shorter with the thermostatic element of Figures 3 and 4 than with the element of Figures 1 and 2.
  • the metal cup 1 of the thermostatic element delimits internally, as in FIGS. 3 and 4, four cylindrical internal cavities 14B for receiving the majority of the wax 3.
  • the cross section of the cavities 14B is not strictly circular, but forms a drop pattern, the tip of which is directed towards the axis XX.
  • the outer lateral face HB of the cup 1 of FIGS. 5 and 6 is adjusted to the shape of the cavities 14B, that is to say that in cross section, it has a four-lobed outline, generally in the form of four-leaf clover.
  • the metal thickness between the face HB and the opposite wall delimiting the corresponding cavity 14A is substantially constant.
  • the external lateral face HC of the cup 1 is generally cylindrical with a circular base, as in FIGS. 3 and 4.
  • the single piece of metal constituting the cup 1 of FIGS. 7 and 8 delimits only two internal cavities 14C for storing the wax 3. These two cavities are separated from each other by a flat partition 15 which extends in a diametrical plane of the cup 1, being integral with the rest of the cup at the same time at the level of the current portion 11, here tubular, and the bottom wall 12.
  • the cup 1, of externally cylindrical running portion with a circular base internally delimits four cavities 14D for storing the wax 3.
  • these cavities do not have a circular contour or form of drop as in Figures 4 and 6, but corresponding to a portion of the circular section of the current portion 11 of the cup 1.
  • the cavities 14D are delimited by, in addition to the tubular wall of the part 11 and of the bottom wall 12, by two partitions internal to the cup, similar to the partition 15 of Figures 7 and 8 and integral with the rest of the cup, which extend respectively in diametral planes of this cup, perpendicular to one another .
  • the current portion 11 of the cup is provided with ribs 16 which protrude outwardly from the side face HD and which are intended to be in contact with the external environment to the thermostatic element.
  • the embodiment of FIGS. 9 and 10 differs moreover from the preceding embodiments in that its cup 1 is shorter along the axis XX.
  • the length of this cup that is to say its dimension taken along the axis XX, is substantially equal to its diameter.
  • thermostatic elements described above are of course conceivable.
  • embodiments may be provided having different dimensions, suitable for the specific application of the thermostatic element, and very diverse cavity shapes.
  • cup geometries are possible, with cups whose outer face Lateral presents more dishes, depressions and / or bulges or whose length is smaller than the diameter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

Cet élément thermostatique comporte une coupelle (1) contenant une matière (3) dilatable et contractile en fonction du sens de variation de sa température, et un piston (5) mobile par rapport à la coupelle suivant une direction axiale (X-X) de celle-ci et couplé à la matière dilatable et contractile pour se déplacer en sens opposés selon que la matière se dilate ou se contracte. Pour réduire le temps de réponse de l'élément de manière simple et fiable, la coupelle (1) est réalisée d'une seule pièce métallique qui délimite intérieurement au moins deux cavités internes distinctes (14A) de réception d'au moins une partie de la matière dilatable et contractile (3).

Description

ELEMENT THERMOSTATIQUE A REPONSE RAPIDE, AINSI QUE CARTOUCHE ET ROBINET EQUIPES D' UN TEL ELEMENT
La présente invention concerne un élément thermostatique du type comportant une coupelle de forme allongée contenant une matière notablement dilatable et contractile en fonction du sens de variation de sa température , et un piston mobile par rapport à la coupelle dans la direction longitudinale de celle-ci et couplé à la matière dilatable et contractile pour se déplacer en sens opposés selon que la matière se dilate ou se contracte . L' invention concerne également une cartouche et un robinet thermostatique équipé d' un tel élément .
De tels éléments thermostatiques sont utilisés notamment dans le domaine du réglage de la température d' un fluide issu du mélange de deux courants de fluide à des températures différentes , le mouvement relatif du piston et de la coupelle étant mis en oeuvre pour modifier la proportion du mélange des deux courants de fluide . C' est notamment le cas dans les cartouches de robinet mitigeur et dans les robinets mitigeurs .
Pour un grand nombre d' applications dans ce domaine , il est nécessaire que la réponse de l ' élément thermostatique soit très rapide , c ' est-à-dire que la modification de la température du milieu dans lequel se trouve la coupelle entraîne à très bref délai un mouvement correspondant du piston . Cela est particulièrement le cas pour les éléments thermostatiques plongés dans un courant d' eau d' alimentation d' une installation sanitaire , application pour laquelle , une température idéale étant sélectionnée , une baisse de température de trois ou quatre degrés seulement est très désagréable, et une augmentation de quelques degrés peut être la cause de brûlures .
Les éléments thermostatiques utilisés classiquement dans ce type d' application comportent , par exemple conformément aux figures 1 et 2 , une coupelle métallique 1 ayant une partie courante tubulaire 11 présentant une forme générale cylindrique à base circulaire et d' axe longitudinal X-X . Une extrémité de fond 12 ferme cette partie 11 tandis que l' extrémité opposée s ' épanouit pour se raccorder à une collerette 13. Un fourreau 2 , ayant une forme de révolution avec un canal central 21 , comprend une embase 22 logée dans la collerette de la coupelle de telle sorte qu' hormis l ' embase 22 , le fourreau 2 s ' étend hors de la coupelle en direction opposée à la partie cylindrique 11 de celle-ci , et coaxialement . La collerette 13 est sertie autour de l ' embase 22.
La partie tubulaire 11 de la coupelle est emplie d' une masse de matière qui est très dilatable et contractile en fonction des variations de température , notamment autour d' une température fonctionnelle , ici une masse de cire 3. L' embase 22 du fourreau comporte dans sa face qui est en vis-à-vis de cette masse de cire , un logement annulaire 23 dans lequel est ancrée la périphérie d' un diaphragme 4 en forme de disque et déformable élastiquement , obturant le canal central 21 du fourreau du côté de la coupelle 1. A l ' intérieur du canal 21 du fourreau, est logé un piston 5 assuj etti aux mouvements de la région centrale du diaphragme , l ' extrémité de ce piston opposée au diaphragme étant plus ou moins en saillie hors du fourreau en fonction du volume occupé par la cire, donc de la température de celle-ci . Un soufflet tubulaire 6 de protection entoure une partie du fourreau 2 et du piston 5 , ses extrémités étant immobilisées dans des gorges creusées dans le pourtour de ces deux pièces . Ce soufflet 6 , sous la forme d' une membrane souple à déroulement , suit les mouvements du piston sans déformation plastique . Le piston 5 est assuj etti aux mouvements de la région centrale du diaphragme 4 par l ' intermédiaire d' un tampon 7 en élastomère déformable en contact contre la surface du diaphragme opposée à la masse de cire et d' une rondelle 8 en polymère tel que du PTFE insérée entre le tampon et le piston et ajustée dans le canal 21 pour empêcher le fluage de l ' élastomère du tampon autour du piston .
DE-A-30 13 386 , DE-A-34 13 466 et GB-A-I 385 372 décrivent des éléments thermostatiques dont la coupelle est analogue à celle des figures 1 et 2 , c ' est-à-dire dont la coupelle délimite intérieurement une unique chambre de stockage d' une cire thermodilatable .
La conception générale de ces éléments thermostatiques est bien adaptée à l ' utilisation d' une cire dont le coefficient de dilatation est très important par rapport à celui des fluides communs (environ 10 à 20 fois supérieur) et ainsi susceptible de provoquer un mouvement très ample du piston . Malheureusement , ces cires ont une très faible conductibilité thermique
(environ 1000 fois inférieure à celle du cuivre) , et ainsi la température de la masse entière de la cire ne reflète qu' imparfaitement et avec un grand retard celle du fluide qui baigne la coupelle . Pour cette raison, la cire est généralement « chargée » d' une poudre en matière présentant une bonne conductibilité thermique , par exemple une poudre de cuivre de granulométrie appropriée . Par simplification, dans la suite , on désignera par « cire » aussi bien les matières chargées que les mélanges non chargés et les cires à composant unique . Cependant, tous ces artifices sont insuffisants pour obtenir un élément thermostatique à réponse rapide utilisable sans précaution particulière dans une installation sanitaire .
Pour remédier en particulier à cet inconvénient , on a proposé , notamment dans FR-A-2 775 780 et EP-A- 0 967 536 , de rapporter, à l ' intérieur de la coupelle de l ' élément thermostatique , un insert métallique en contact avec la paroi périphérique de la coupelle . Cet insert est par exemple positionné dans la coupelle 1 des figures 1 et 2 , en contact avec la partie 11 et/ou le fond 12. De la sorte , la chaleur de la paroi périphérique de la coupelle est transmise plus rapidement à l ' insert métallique interne qu' à la cire , cette dernière étant alors chauffée par l ' insert en complément de son chauffage par la paroi périphérique de la coupelle . Cependant , la mise en place d' un tel insert rapporté se révèle être une opération complexe, qui nécessite une attention particulière pour s ' assurer d' un contact suffisant et stable entre l ' insert et la paroi externe de la coupelle pour transmettre efficacement la chaleur de la coupelle jusqu' à l ' insert . Le but de la présente invention est d' apporter une solution alternative à la présence d' un insert rapporté tel qu' évoqué ci-dessus et de proposer un élément thermostatique à réponse rapide qui soit plus fiable et de fabrication plus simple . A cet effet, l ' invention a pour obj et un élément thermostat!que , comportant une coupelle contenant une matière dilatable et contractile en fonction du sens de variation de sa température , et un piston mobile par rapport à la coupelle suivant une direction axiale de celle-ci et couplé à la matière dilatable et contractile pour se déplacer en sens opposés selon que la matière se dilate ou se contracte , caractérisé en ce que la coupelle est réalisée d' une seule pièce métallique dans laquelle sont délimitées au moins deux cavités internes de réception d' au moins une partie de la matière dilatable et contractile .
L' utilisation de la pièce métallique d' un seul tenant pour recevoir la matière dilatable et contractile simplifie l' obtention de l ' élément thermostatique puisque aucune opération de mise en place d' un insert rapporté et de solidarisation de cet insert n' est nécessaire . En outre , les parois de la coupelle délimitant les cavités sont raccordées à la face extérieure de la coupelle par une continuité de matière métallique , ce qui assure une conduction thermique optimale entre l' extérieur de la coupelle en contact avec le milieu ambiant et la matière stockée dans les cavités . De plus , à l ' usage , la tenue en service de l ' élément thermostatique selon l ' invention est meilleure que celle d' un élément thermostatique à insert rapporté , les zones de contact entre cet insert et la paroi périphérique de la coupelle risquant , à la longue , d' être altérées alors que, avec l ' élément selon l ' invention, la matière métallique constituant la coupelle et délimitant les cavités est sollicitée thermiquement d' un seul tenant .
Par rapport à l ' élément thermostatique classique des figures 1 et 2 et à ceux envisagés dans les documents précités DE-A-30 13 386 , DE-A-34 13 466 et GB-A-I 385 372 , le flux thermique transmis , via la coupelle métallique d' une seule pièce, de l ' extérieur de l ' élément selon l' invention vers la matière dilatable et contractile répartie dans les cavités , est considérablement augmenté, réduisant significativement le temps de réponse de l ' élément thermostatique selon l' invention. Suivant d' autres caractéristiques de cet élément thermostatique , prises isolément ou selon toutes les combinaisons techniquement possibles : un même plan de coupe transversale à l ' élément thermostatique passe par les cavités ; - dans le plan de coupe transversale précité, les cavités sont réparties autour de l ' axe de la coupelle ; chaque cavité est borgne et débouche du côté de la coupelle tourné vers le piston ; - chaque cavité s ' étend en longueur suivant une direction sensiblement parallèle à la direction axiale de la coupelle ; chaque cavité présente une forme globalement cylindrique à base circulaire ; - la face latérale extérieure de la coupelle est essentiellement cylindrique dans une direction sensiblement parallèle à la direction axiale de la coupelle ;
- la forme essentiellement cylindrique de la face latérale extérieure de la coupelle est à base circulaire ;
- la forme essentiellement cylindrique de la face latérale extérieure de la coupelle est ajustée sur la forme des cavités ; - au moins 80 % de la matière dilatable et contractile est stockée dans les cavités ;
- la coupelle est munie de nervures externes saillantes vers l ' extérieur . L' invention a également pour obj et une cartouche thermostatique ou un robinet thermostatique , muni d' un élément thermostatique tel que défini ci-dessus .
L' invention sera mieux comprise à la lecture de la description qui va suivre , donnée uniquement à titre d' exemple et faite en se référant aux dessins sur lesquels :
- la figure 1 est une coupe longitudinale d' un élément thermostatique connu qui a été décrit plus haut ;
- la figure 2 est une coupe transversale de l' élément thermostatique de la figure 1 , selon le plan II-II de cette figure ;
- les figures 3 , 5 , 7 et 9 sont des vues analogues à la figure 1 , de respectivement quatre formes différentes de réalisation d' un élément thermostatique selon l' invention ; et les figures 4 , 6, 8 et 10 sont respectivement des coupes transversales des éléments thermostatiques des figures 3 , 5 , 7 et 9 , selon respectivement les plans IV-IV, VI-VI , VIII-VIII et IX-IX de ces figures .
L' élément thermostatique connu des figures 1 et 2 ayant été décrit plus haut , il ne sera pas détaillé ici de nouveau . Par commodité , les organes des éléments thermostatiques selon l' invention qui correspondent à des organes de l ' élément connu portent les mêmes repères numériques .
Comme l ' élément thermostatique connu, les éléments thermostatiques représentés aux figures 3 à 10 sont destinés à équiper une cartouche de robinet ou un robinet thermostatique et comportent :
- une coupelle métallique 1 s ' étendant le long d' un axe central X-X, ayant une partie courante 11 de forme allongée emplie d' une masse de matière essentiellement dilatable et rétractile 3 , telle que de la cire, et munie, à une extrémité, d' une paroi transversale de fond 12 fermée tandis que l ' extrémité opposée s ' épanouit pour se raccorder a une collerette 13 , et
- un fourreau 2 ayant une forme de révolution avec un canal central 21 et une embase 22 logée dans la collerette de la coupelle, la collerette 13 étant sertie autour de l ' embase 22 , et la coupelle et le fourreau s ' étendant coaxialement suivant l ' axe X-X dans des directions opposées .
Les éléments thermostatiques des figures 3 à 10 comportent également un diaphragme 4 élastiquement déformable, un piston 5 assuj etti au mouvement de la région centrale de ce diaphragme par l ' intermédiaire d' un tampon 7 , avec interposition d' une rondelle 8 , ainsi qu' un soufflet de protection 6. Ces composants ne seront pas ici détaillés de nouveau puisqu' ils ont été présentés précédemment , en regard des figures 1 et 2.
En s ' intéressant maintenant aux différences par rapport à l' élément des figures 1 et 2 , et en considérant plus en détail le mode de réalisation des figures 3 et 4 , la coupelle 1 est réalisée d' une seule pièce qui délimite intérieurement quatre cavités cylindriques distinctes 14A, à l ' intérieur desquelles est stocké l ' essentiel de la cire 3 , tandis qu' extérieurement , la coupelle présente une face latérale HA sensiblement cylindrique à base circulaire, centrée sur l ' axe X-X . Chaque cavité cylindrique 14A s ' étend en longueur suivant une direction sensiblement parallèle à l ' axe X-X . Latéralement , chaque cavité est fermée par une paroi constituée par la partie courante 11 de la coupelle métallique 1. De plus , chaque cavité 14A est fermée, à une de ses extrémités longitudinales , par la paroi de fond 12 de la coupelle tandis qu' à leur extrémité opposée , les cavités 14A débouchent sur le diaphragme 4 , axialement au niveau de la collerette 13.
Avantageusement , plus de 80 %, voire de 90%, de la cire 3 est stockée dans les cavités 14A.
Les cavités 14A sont par exemple creusées dans un fût métallique plein destiné à constituer , après finition, la coupelle 1 , par usinage , matriçage ou analogue .
En fonctionnement , lorsque l ' élément thermostatique des figures 3 et 4 passe d' un premier état dit « froid » , dans lequel sa cire 3 présente une température homogène égale à la température θo du milieu extérieur, tel que de l ' eau mélangée en sortie d' une cartouche de robinet mitigeur, à un état échauffé résultant d' une augmentation soudaine de la température du milieu extérieur jusqu' à une valeur θi, un flux thermique se produit du milieu extérieur vers la coupelle
1 et de la coupelle 1 vers la cire thermodilatable 3 , jusqu' à ce que , au bout d' une durée Δ, l ' élément thermostatique , en particulier sa cire 3 , atteigne une température homogène égale à la nouvelle température chaude θi du milieu extérieur . La chaleur circule très rapidement dans tout le métal de la coupelle 1 , notamment jusqu' aux parois de la coupelle délimitant les cavités internes 14A. La température de la cire 3 ayant augmentée de θo à θi, elle se dilate et , comme l ' ensemble coupelle l/fourreau 2 n' est pas déformable , la cire 3 déforme , en se dilatant, le diaphragme 4 qui , à son tour, déforme le tampon 7 , ce dernier translatant la rondelle 8 et le piston 5 dans le canal 21 du fourreau . Ainsi , une augmentation soudaine de la température du milieu extérieur entraîne la translation du piston 5 hors du fourreau 2 , au bout de la durée Δ, appelée en pratique « temps de réponse » . Ce temps de réponse est d' autant plus court que le flux thermique vers la cire thermodilatable 3 est important . Comme le matériau de la coupelle 1 présente un bien meilleur coefficient de conduction thermique que celui de la cire , le flux thermique précité dépend essentiellement de la différence des températures θo et θi , de la surface de contact entre la cire 3 et la coupelle et de la distance maximale , en coupe transversale , entre la coupelle et toute particule de la cire . Plus précisément , le flux thermique augmente avec la différence θo - θi et avec la valeur de la surface de contact tandis qu' il diminue avec la distance maximale coupelle/cire . Sur les figures 1 et 2 , la surface de contact, indiquée en pointillés pour plus de visibilité , est notée S et la distance maximale coupelle/cire est notée e_. Sur les figures 3 et 4 , la surface de contact à considérer correspond à la somme des quatre surfaces élémentaires , notées SA, de contact entre les parois délimitant les quatre cavités 14A et la cire , et la distance maximale coupelle/cire est notée βA, étant remarqué que cette distance est la même au niveau de chaque cavité 14A.
Avec l ' élément thermostatique des figures 3 et 4 , la somme des surfaces de contact SA est plus importante que la surface de contact S associée à l ' élément thermostatique classique des figures 1 et 2 , tandis que la distance eA est plus petite que la distance e_, et ce pour un volume de cire et une longueur de coupelle identique . Le temps de réponse est donc considérablement plus court avec l ' élément thermostatique des figures 3 et 4 qu' avec l' élément des figures 1 et 2.
Dans la forme de réalisation des figures 5 et 6 , la coupelle métallique 1 de l ' élément thermostatique délimite intérieurement , comme aux figures 3 et 4 , quatre cavités internes cylindriques 14B de réception de la maj orité de la cire 3. A la différence des cavités 14A, la section transversale des cavités 14B n' est pas rigoureusement circulaire, mais forme un motif en goutte , dont la pointe est dirigée vers l ' axe X-X . A la différence de la face latérale extérieure HA de la coupelle des figures 3 et 4 , la face latérale extérieure HB de la coupelle 1 des figures 5 et 6 est ajustée sur la forme des cavités 14B, c ' est-à-dire qu' en coupe transversale, elle présente un contour quadrilobé , globalement en forme de trèfle à quatre feuilles . Autrement dit , suivant la périphérie de la coupelle , l' épaisseur de métal entre la face HB et la paroi opposée délimitant la cavité 14A correspondante est sensiblement constante .
Dans le mode de réalisation des figures 7 et 8 , la face latérale extérieure HC de la coupelle 1 est globalement cylindrique à base circulaire, comme aux figures 3 et 4. En revanche, contrairement aux modes de réalisation des figures 3 à 6 , la pièce métallique d' un seul tenant constituant la coupelle 1 des figures 7 et 8 ne délimite que deux cavités internes 14C de stockage de la cire 3. Ces deux cavités sont séparées l ' une de l' autre par une cloison plane 15 qui s ' étend dans un plan diamétral de la coupelle 1, en étant venue de matière avec le reste de la coupelle à la fois au niveau de la partie courante 11 , ici tubulaire , et de la paroi de fond 12. Dans la forme de réalisation des figures 9 et 10 , la coupelle 1 , de partie courante extérieurement cylindrique à base circulaire , délimite intérieurement quatre cavités 14D de stockage de la cire 3. En coupe transversale, ces cavités ne présentent pas un contour circulaire ou en forme de goutte comme aux figures 4 et 6 , mais correspondant à une portion de la section circulaire de la partie courante 11 de la coupelle 1. En effet, les cavités 14D sont délimitées par, en plus de la paroi tubulaire de la partie 11 et de la paroi de fond 12 , par deux cloisons internes à la coupelle , analogues à la cloison 15 des figures 7 et 8 et venues de matière avec le reste de la coupelle , qui s ' étendent respectivement suivant des plans diamétraux de cette coupelle , perpendiculaires l ' un à l ' autre . En outre , la partie courante 11 de la coupelle est munie de nervures 16 qui s ' étendent en saillie , vers l ' extérieur, de la face latérale HD et qui sont destinées à être au contact du milieu extérieur à l ' élément thermostatique . Le mode de réalisation des figures 9 et 10 se distingue par ailleurs des modes de réalisation précédents par le fait que sa coupelle 1 est plus courte suivant l ' axe X-X . A titre d' exemple , la longueur de cette coupelle , c ' est -à-dire sa dimension prise suivant l ' axe X-X, est sensiblement égale à son diamètre .
Divers aménagements et variantes aux éléments thermostatiques décrits ci-dessus sont bien entendu envisageables . En particulier, on peut prévoir notamment des formes de réalisation présentant des dimensions différentes , appropriées à l ' application spécifique de l ' élément thermostatique , et des formes de cavités très diverses . De même, diverses géométries de coupelles sont envisageables , avec des coupelles dont la face extérieure latérale présente davantage de plats , de dépressions et/ou de bombements ou dont la longueur est plus faible que le diamètre .

Claims

REVENDICATIONS
1. Elément thermostatique , comportant une coupelle (1) contenant une matière (3 ) dilatable et contractile en fonction du sens de variation de sa température, et un piston (5) mobile par rapport à la coupelle suivant une direction axiale (X-X) de celle-ci et couplé à la matière dilatable et contractile pour se déplacer en sens opposés selon que la matière se dilate ou se contracte , caractérisé en ce que la coupelle (1 ) est réalisée d' une seule pièce métallique qui délimite intérieurement au moins deux cavités internes distinctes
(14A ; 14B ; 14C ; 14D) de réception d' au moins une partie de la matière dilatable et contractile (3 ) .
2. Elément thermostatique suivant la revendication 1, caractérisé en ce qu' un même plan (figures 4 ; 6 ; 8 ; 10 ) de coupe transversale à l ' élément thermostatique passe par les cavités (14A ; 14B ; 14C ; 14D) .
3. Elément thermostatique suivant la revendication 2 , caractérisé en ce que, dans ledit plan de coupe transversale , les cavités (14A ; 14B ; 14C ; 14D) sont réparties autour de l' axe (X-X) de la coupelle
(1) .
4. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce que chaque cavité (14A ; 14B ; 14C ; 14D) est borgne et débouche du côté de la coupelle (1) tourné vers le piston (5 ) .
5. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce que chaque cavité ( 14A ; 14B ; 14C ; 14D) s ' étend en longueur suivant une direction sensiblement parallèle à la direction axiale (X-X) de la coupelle (1) .
6. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce que chaque cavité (14A) présente une forme globalement cylindrique à base circulaire .
7. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce que la face latérale extérieure ( HA ; HB ; HC ; HD) de la coupelle (1) est essentiellement cylindrique dans une direction sensiblement parallèle à la direction axiale (X-X) de la coupelle .
8. Elément thermostatique suivant la revendication 7 , caractérisé en ce que la forme essentiellement cylindrique de la face latérale extérieure (HA ; HC ; HD) de la coupelle ( 1) est à base circulaire .
9. Elément thermostatique suivant la revendication 7 , caractérisé en ce que la forme essentiellement cylindrique de la face latérale extérieure (HB) de la coupelle (1) est ajustée sur la forme des cavités (14B) .
10. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce qu' au moins 80 % de la matière dilatable et contractile (3 ) est stockée dans les cavités (14A ; 14B ; 14C ; 14D) .
11. Elément thermostatique suivant l ' une quelconque des revendications précédentes , caractérisé en ce que la coupelle (1) est munie de nervures externes
(16) saillantes vers l ' extérieur .
12. Cartouche thermostatique ou robinet thermostatique équipé d' un élément thermostatique conforme à l' une quelconque des revendications précédentes .
PCT/FR2005/003180 2004-12-20 2005-12-19 Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element WO2006067320A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/793,353 US20080156890A1 (en) 2004-12-20 2005-12-12 Fast Response Thermostatic Element, a Cartridge and Valve Provided with Said Element
EP05826559A EP1828864A1 (fr) 2004-12-20 2005-12-19 Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413576 2004-12-20
FR0413576A FR2879681A1 (fr) 2004-12-20 2004-12-20 Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element

Publications (1)

Publication Number Publication Date
WO2006067320A1 true WO2006067320A1 (fr) 2006-06-29

Family

ID=34952077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/003180 WO2006067320A1 (fr) 2004-12-20 2005-12-19 Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element

Country Status (6)

Country Link
US (1) US20080156890A1 (fr)
EP (1) EP1828864A1 (fr)
CN (1) CN101084477A (fr)
FR (1) FR2879681A1 (fr)
RU (1) RU2007127718A (fr)
WO (1) WO2006067320A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084821A3 (fr) * 2016-11-02 2018-06-07 Kirpart Otomoti̇v Parçalari Sanayi̇ Ve Ti̇caret A.Ş. Actionneur à base de cire à réponse rapide
US11053928B2 (en) 2016-05-25 2021-07-06 Vernet Assembly for producing a thermostatic element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940397B1 (fr) * 2008-12-22 2014-06-20 Vernet Cartouche thermostatique monocommande et robinet mitigeur comportant une telle cartouche
TWI422788B (zh) * 2011-09-22 2014-01-11 Globe Union Ind Corp Constant temperature components
CN103914091B (zh) * 2013-01-05 2016-05-11 成霖企业股份有限公司 一种恒温组件及其制法
CN107860035A (zh) * 2017-11-08 2018-03-30 海盐东海电器有限公司 一种具有温度限制控制功能的电陶炉发热盘

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333471A (en) * 1964-03-04 1967-08-01 Antioch College Thermal sensitive element
GB1385372A (en) * 1971-02-10 1975-02-26 Kuze Y Thermally responsive element
DE3013386A1 (de) * 1980-04-05 1981-10-08 Pierburg Gmbh & Co Kg, 4040 Neuss Thermostatisches betaetigungselement
DE3413466A1 (de) * 1984-04-10 1985-10-17 Pierburg Gmbh & Co Kg, 4040 Neuss Thermisches arbeitselement
US5052181A (en) * 1989-12-25 1991-10-01 Nihon Seiken Kabushiki Kaisha Heat sensitive actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454220A (en) * 1967-09-11 1969-07-08 Caterpillar Tractor Co Water temperature regulator seal
FR2775780B1 (fr) * 1998-03-09 2000-07-28 Vernet Sa Element thermostatique a reponse rapide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333471A (en) * 1964-03-04 1967-08-01 Antioch College Thermal sensitive element
GB1385372A (en) * 1971-02-10 1975-02-26 Kuze Y Thermally responsive element
DE3013386A1 (de) * 1980-04-05 1981-10-08 Pierburg Gmbh & Co Kg, 4040 Neuss Thermostatisches betaetigungselement
DE3413466A1 (de) * 1984-04-10 1985-10-17 Pierburg Gmbh & Co Kg, 4040 Neuss Thermisches arbeitselement
US5052181A (en) * 1989-12-25 1991-10-01 Nihon Seiken Kabushiki Kaisha Heat sensitive actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053928B2 (en) 2016-05-25 2021-07-06 Vernet Assembly for producing a thermostatic element
WO2018084821A3 (fr) * 2016-11-02 2018-06-07 Kirpart Otomoti̇v Parçalari Sanayi̇ Ve Ti̇caret A.Ş. Actionneur à base de cire à réponse rapide

Also Published As

Publication number Publication date
CN101084477A (zh) 2007-12-05
EP1828864A1 (fr) 2007-09-05
FR2879681A1 (fr) 2006-06-23
US20080156890A1 (en) 2008-07-03
RU2007127718A (ru) 2009-01-27

Similar Documents

Publication Publication Date Title
EP1875073B1 (fr) Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element
WO2006067320A1 (fr) Element thermostatique a reponse rapide, ainsi que cartouche et robinet equipes d'un tel element
EP2047348B1 (fr) Cartouche thermostatique a commandes de température et de débit concentriques, et robinet mitigeur équipé d'une telle cartouche
EP0936524B1 (fr) Cartouche de sécurité pour mitigeur thermostatique
FR2680544A1 (fr) Refroidisseur d'huile a disques.
FR2680844A1 (fr) Dispositif de debrayage a commande hydraulique pour embrayage a friction pour vehicule automobile.
WO1985001810A1 (fr) Perfectionnements aux dispositifs de regulation thermostatiques
FR2957395A1 (fr) Vanne thermostatique a manchon
FR2489754A1 (fr) Ensemble de moyeu de roue pour vehicule automobile
FR2843418A1 (fr) Dispositif stabilisateur d'un train de tiges de forage rotatif a frottement reduit
EP0942347B1 (fr) Elément thermostatique à réponse rapide
FR2681660A1 (fr) Tiroir pour distributeurs a tiroir.
WO2017005860A1 (fr) Cartouche thermostatique de régulation de fluides chaud et froid à mélanger
FR2961917A1 (fr) Vanne thermostatique de regulation d'un fluide, notamment d'un fluide de refroidissement d'un moteur thermique
WO2017202981A1 (fr) Ensemble pour fabriquer un élément thermostatique
FR2883995A1 (fr) Element thermostatique, notamment pour thermostat de circuit de refroidissement, et procede de fabrication d'un tel element
EP1881310A1 (fr) Elément thermostatique à réponse rapide, ainsi que cartouche et robinet équipés d'un tel élément
FR2480965A1 (fr) Thermostat
EP1041323A1 (fr) Vanne à clapet perfectionné à joint en élastomère
FR2885181A1 (fr) Element thermostatique a reponse rapide, cartouche et robinet equipe d'un tel element, et procede de fabrication d'un tel element
EP4049107B1 (fr) Vanne thermostatique
WO2015091344A1 (fr) Vanne de commande avec segment d'etancheite moule comportant une bavure localisee dans un retrait
WO2024126701A1 (fr) Ensemble thermostatique, notamment cartouche thermostatique
WO2021250245A1 (fr) Dispositif thermostatique
FR3105337A1 (fr) Dispositif de commande de l’écoulement d’un fluide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005826559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580043685.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007127718

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11793353

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005826559

Country of ref document: EP