WO2006061521A2 - Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes - Google Patents

Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes Download PDF

Info

Publication number
WO2006061521A2
WO2006061521A2 PCT/FR2005/003082 FR2005003082W WO2006061521A2 WO 2006061521 A2 WO2006061521 A2 WO 2006061521A2 FR 2005003082 W FR2005003082 W FR 2005003082W WO 2006061521 A2 WO2006061521 A2 WO 2006061521A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
promoter
sequence
expression
Prior art date
Application number
PCT/FR2005/003082
Other languages
English (en)
Other versions
WO2006061521A3 (fr
Inventor
Serge Chiarenza
Laurent Nussaume
Original Assignee
Genoplante-Valor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genoplante-Valor filed Critical Genoplante-Valor
Publication of WO2006061521A2 publication Critical patent/WO2006061521A2/fr
Publication of WO2006061521A3 publication Critical patent/WO2006061521A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific

Definitions

  • the present invention relates to isolated polynucleotides with promoter activity allowing the specific expression of heterologous sequences of interest in plant root cells depending on the cell base and the desired stage of development throughout the growth of the plant. the plant as well as the transgenic plants comprising them.
  • the control of the enemies of the cultures is one of the keys which condition the global food balance. Chemistry has long provided the bulk of the effort in the fight against pests. Recently, other methods have also been used, such as biological control and the creation of resistant varieties, for which transgenesis is a tool of choice.
  • Transgenesis broadens this investigation potential by allowing, on the one hand, the exploitation of genes from other varieties, other species or even other genera, on the other hand, by quantitative control (modulate the intensity of gene expression) and qualitative (expressing the gene in this part of the plant) of their expression.
  • the first results notably the creation of varieties resistant to viral diseases (resistance to short-knot in the vine), to nematodes or to pests (maize resistant to the moth) are particularly promising. From now on, for a large number of applications, it is not necessary that the protein of interest conferring the desired agronomic property has a distributed expression in all the organs and / or cell types of the transformed plant.
  • a promoter directing the expression of a polynucleotide of interest in both a strong and targeted manner in the root would allow many applications that can be defined both in the defense against pathogens such as bacteria, fungi, nematodes or insects, resistance to stress (cold, watery, salt stress), quality improvement (eg increase sucrose content in sugar beet), nutrition (example : express a nitrate transporter gene).
  • pathogens such as bacteria, fungi, nematodes or insects, resistance to stress (cold, watery, salt stress), quality improvement (eg increase sucrose content in sugar beet), nutrition (example : express a nitrate transporter gene).
  • Canadian Patent Application CA2425886 entitled “Root-specific conifer gene promoter and its use” refers to a promoter polynucleotide sequence in roots and derived from the pine PR10 gene.
  • Canadian Patent Application CA2228046 entitled: “Root Cortex Specifies Gene Promoter” refers to an isolated DNA comprising a promoter sequence that directs the transcription of a heterologous DNA segment specifically into the root cortex of a plant cell, eg of transformation in the tobacco plant.
  • WO 03/040322 entitled “Promoters regulating gene expression in plant roots” relates to a promoter isolated from corn and its functional equivalents which has the particularity of driving a heterologous gene expression specifically in the roots in order to increase the agronomic, horticultural and / or pesticidal characteristics of a plant and the plant tissues comprising the promoters according to the invention;
  • WO 02/46439 entitled “New root-specific promoters activating the expression of a novel LLR domain receptor kinase” discloses nucleic acids encoding root-specific promoter transcriptional regulators and nucleic acids.
  • Root preferential promoter refers to promoter fragments isolated from maize and more particularly from an upstream region of 4.7Kb designated ZRP2 as well as its functional equivalents which have the particularity to drive an expression of heterologous genes specifically in the roots to increase the agronomic, horticultural and / or pesticidal characteristics of a plant or the US application 5,401,836 entitled: "Brassica regulatory sequence for root-specific or root-abundant gene expression Concerning the isolation of a promoter who shows an expression orte at Brassica sp. This promoter is useful for conducting heterologous protein transcription which confers immunity or resistance to pathologies likely to affect the roots and in particular infection by fungi, bacteria and insects.
  • sequences according to the invention make it possible to obtain a specific expression of genes of interest at all stages of the development of the plant as per For example, an expression of antibiotics or proteins with herbicidal activity specifically in the roots at a very early stage to avoid their traces in the adult stage and also allowing a very localized expression depending on the cell base, which may be of importance. depending on the type of agriculture.
  • EAG 96 (SEQ ID NO : 1) 1 , AAJ 3 (SEQ ID NO: 2), DRM 33 (SEQ ID NO: 3), DUA 2 (SEQ ID NO: 4), DSM 153 (SEQ ID NO: 5) , DYK 138 (SEQ ID NO: ⁇ ), DXP4 (SEQ ID NO: 7), EAD 29 (SEQ ID NO: 8), DYC 237 (SEQ ID NO: 9), DUR17 (SEQ ID NO: 10), FAE 39 (SEQ ID N 0 II) and DRW 2 (SEQ ID NO: 12).
  • a nucleic acid according to the invention is in isolated form or purified.
  • isolated in the sense of the present invention refers to biological material that has been removed from its original environment (the environment in which it is naturally located). For example, a polynucleotide naturally occurring in a plant or animal is not isolated. The same polynucleotide separated from the adjacent nucleic acids in which it is naturally inserted into the genome of the plant or animal is isolated.
  • Such a polynucleotide may be included in a vector and / or in a composition and still remain in the isolated state because the vector or composition does not constitute its natural environment.
  • Nucleotide sequence can be used to denote either a polynucleotide or a nucleic acid.
  • the term “nucleotide sequence” includes the genetic material itself and is therefore not restricted to information about its sequence.
  • the invention also relates to a method, characterized in that the sequence is chosen from a polynucleotide having at least 80% nucleotide identity with a polynucleotide according to the invention or a nucleic acid of sequence complementary thereto. .
  • % identity is understood to mean the percentage of identical nucleotides that can be calculated by those skilled in the art using a computer program for sequence comparison such as Blast (www.ncbi.nlm.nih. gov) and the program FastDB with the following parameters: "Mistmatch penalty: 1.00; Gap penalty: 1.00; Gap Size Penalty: 0.33; joining penalty: 30.0shire
  • Blast www.ncbi.nlm.nih. gov
  • Polynucleotides according to the invention can also be defined by their selective hybridization properties with one of the polynucleotides defined by the sequences SEQ ID No. 1 to SEQ ID No. 12 under conditions of high stringency as defined in Sambrook and al. Molecular Cloning A Laboratory Manual (CoId Spring Harbor Press, 1989) at paragraphs 11.1 to 11.61.
  • nucleotide differences that can comprise a nucleic acid according to the invention relative to the nucleotide sequences SEQ ID No. 1 to SEQ ID No. 12 can ⁇ result in substitutions, deletions or additions of one or more consecutive nucleotides or not.
  • nucleic acids comprising all or part of a polynucleotide having at least 85%, 90%, 95%, 98%, 99%, 99.5%, or 99.8% identity. in nucleotides with the nucleotide sequences SEQ ID N 0 I to SEQ ID NO: 12, or a nucleic acid of complementary sequence.
  • the invention also relates to a nucleic acid characterized in that it comprises all or part of a hybridizing polynucleotide, under conditions of high stringency, with the sequences SEQ ID N 0 I to SEQ ID N 12 according to the invention, or a nucleic acid of complementary sequence.
  • conditions of high stringency, for a given polynucleotide can be obtained by operating at a temperature below 5 to 10 0 C at the melting temperature of the duplex consisting of said polynucleotide and its complement, in a medium of given composition.
  • high stringency hybridization conditions that can be used in a large number of cases, the following conditions will be indicated:
  • 5X SSPE 0.9 M NaCl, 50 mM sodium phosphate pH 7.7, 5 mM EDTA
  • part of a promoter polynucleotide according to the invention is meant a nucleotide sequence of a base length less than that of the sequence according to the invention and retaining the capacity to direct the expression of a nucleotide sequence of interest in the cells of the root of a plant.
  • a "part" of the polynucleotide promoter according to the invention can also be obtained for example by deletion of one or more nucleotides of the sequence polynucleotide.
  • Part of the plant promoter according to the invention advantageously has a nucleotide length ranging from 200,
  • restriction enzymes for the purpose of obtaining polynucleotide fragments corresponding to a part of a polynucleotide promoter according to the invention, those skilled in the art may advantageously refer to the book by Sambrook et al. . (1989, Molecular Cloning: A Laboratory Manual, Coed Spring Harbor Laboratory, CoId Spring Harbor, New York).
  • a promoter polynucleotide portion according to the invention may also be prepared by specific amplification of the fragment of interest using a pair of primers flanking, respectively on the 5 'side and the 3' side, the sequence of interest. , for example using the PCR method, as described in particular in US Patents 4,683,195, US 4,683,202 and US 4,965,188.
  • the biological activity of a part of a promoter polynucleotide according to the invention can easily be verified by those skilled in the art, in particular using vector constructs and plant transformation methods therewith as described in the examples.
  • the invention also relates to a recombinant expression cassette characterized in that it comprises a promoter constituted by a polynucleotide sequence as defined above and a heterologous sequence of interest placed under transcriptional control of said promoter and whose expression is sought in the cells of the root of a plant.
  • such a nucleic acid will comprise a nucleotide sequence of interest chosen from gene coding sequences interacting with parasites or pathogens such as nematodes or fungi, such as, for example, a polynucleotide encoding a protein with herbicidal activity or antibiotic or the coding sequences of glucanase, said nucleotide sequence of interest being placed under the control of a promoter polynucleotide according to the invention.
  • a nucleotide sequence of interest chosen from gene coding sequences interacting with parasites or pathogens such as nematodes or fungi, such as, for example, a polynucleotide encoding a protein with herbicidal activity or antibiotic or the coding sequences of glucanase, said nucleotide sequence of interest being placed under the control of a promoter polynucleotide according to the invention.
  • sequences of endochitinases such as those described in European Patent 493,581 or else gene sequences acting on the sugar content of the plant.
  • the coding sequences of genes of interest ensuring the protection of a plant against other stress conditions may advantageously be placed under the control of a polynucleotide promoter according to the invention, for water stress or saline: arskl gene (Hwang et al., 1995), cDNA pA9 (Winicov, I. Deutch SE 1994) or cDNA Alfin 1 (Bastola, DR et al., 1998).
  • coding sequences could be used under the control of the promoters according to the invention, for example to act on the sucrose content of the sugar beet: BvSPS1 gene (Hesse H. et al., 1995), or overexpressing a gene already expressed physiologically as NRT1 or NRT2 nitrate transporter genes (Crawford, NL et al., 1998; Leah R. et al., 1991).
  • the invention further relates to nucleotide fragments comprising from 10 to 2000 consecutive nucleotides of a nucleic acid according to the invention, in particular fragments having a promoter activity similar or identical to the promoter activity of the corresponding complete sequence, preferentially a nucleic acid having at least 80% nucleotide identity with the sequence SEQ ID No. 1 to SEQ ID No. 12 or a hybridizing nucleic acid, under high stringency hybridization conditions with the nucleotide sequences according to US Pat. invention or a nucleic acid of complementary sequence.
  • such fragments will have a length of 10, 12, 15, 18 or 20 to 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 or 2000 consecutive nucleotides of a promoter polynucleotide according to the invention or consisting of fragments of a length of 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 or 2000 consecutive nucleotides of a polynucleotide promoter according to the invention.
  • Such nucleotide fragments may advantageously be used as probes or nucleotide primers for the purpose of detecting or amplifying all or part of a promoter-specific sequence of plant roots according to the invention.
  • the invention relates to a recombinant cloning and / or expression vector comprising a promoter polynucleotide according to the invention and more particularly comprising at least one expression cassette according to the invention.
  • a recombinant vector will advantageously comprise a nucleotide sequence of interest placed under the control of said plant promoter.
  • Vectors which may be used for the purpose of the present invention include the following: Vector pBIN19 (Bevan et al., 1984, Nucleic Acids Research, Vol 12: 8711-8721, sold by Clontech Company, Paolo Alto, California, USA ); vector 101 (Jefferson, 1987, PlantMolecular Biology Reporter, 5: 387-405, marketed by Clontech); pB1221 vector (Jefferson, 198, Plant Molecular Biology Reporter, vol.5: 387-405, commercially available from CLONTECH), pBI121 vector (Jefferson, 1987, Plant Molecular Biology Reporter, vol 5: 387-405, marketed by Clontech Company); pEGFP vector (Cormack, BP et al 1996, Yang TT et al., 1996, marketed by the Clontech Company), or the vector pC-gus.
  • Vector pBIN19 Bevan et al., 1984, Nucleic Acids Research, Vol 12: 8711-8721, sold by Clontech
  • the invention further relates to a host cell transformed with at least one expression cassette according to the invention or a recombinant vector as defined above.
  • the invention particularly relates to a recombinant host cell, characterized in that it comprises a nucleic acid with plant promoter activity specific to plant roots according to the invention, optionally associated with a polynucleotide of interest placed under the control of the latter. , or a recombinant vector as defined above.
  • the preferred recombinant host cells according to the invention can be indifferently of bacterial or plant origin. Thus, in particular, bacterial cells of different E. coli strains can be used. coli or Agrobacterium tumefaciens.
  • the invention also relates to a recombinant plant multicellular organism characterized in that it comprises recombinant host cells as defined above.
  • this relates to a transgenic plant generated from a recombinant host cell according to the invention as well as to the tissues or parts of said plants and also all the transgenic plants or parts thereof. of a transgenic plant transformed with at least one expression cassette according to the invention.
  • plant tissue refers to any tissue of a plant, plant or culture. This term includes whole plants, plant cells, plant organs, plant seeds, protoplasts, calli, cell cultures and any other plant cells organized as functional and / or structural unit. Parts of regenerated plants such as flowers, seeds, leaves, stems, fruits, pollen, tubers, wood and the like are also within the scope of the invention.
  • a transgenic plant according to the invention may be in particular a rapeseed, a tobacco, a maize, wheat, barley, sunflower or Arabidopsis thaliana.
  • transgenic plants as defined above thus have the property of expressing a nucleotide sequence of interest specifically at the different cell types of the root (from the outside to the inside: epidermis, cortex, endoderm, pericycle, vessel), at all stages of development of the plant.
  • the subject of the invention is also a process for obtaining a transgenic plant expressing specifically a nucleotide sequence of interest in the cells of the root at all stages of development of said plant, characterized in that it comprises the steps following: a) Obtaining a plant recombinant host cell according to the invention; b) Regenerating an entire plant from the recombinant host cell obtained in step a); c) Selection of the plants obtained in step b) having integrated the nucleotide sequence of interest placed under the control of the plant-promoting polynucleotide according to the invention.
  • the method according to the invention comprises a step of crossing transgenic plants with one another as obtained previously or else the crossing between a transgenic plant according to the invention and a plant of the same species and the selection of the plants resulting from the crossing. having preserved the transgene.
  • the subject of the invention is furthermore a process for obtaining a transgenic plant characterized in that it comprises the following steps: a) Transformation of at least one plant cell by a vector according to the invention; b) culturing said transformed cells in order to generate a plant containing in its genome an expression cassette as defined according to the invention.
  • the invention also relates to a transgenic plant as obtained by any of the above methods.
  • a transgenic plant according to the invention has not only integrated into its genome a transgene comprising a nucleotide sequence of interest placed under the control of the plant promoter polynucleotide presently described but expresses said nucleotide sequence of interest mainly or exclusively in the constituent cells of the root.
  • the invention also relates to seeds obtained from a transgenic plant according to the invention. It is in particular a seed of Arabidopsis thaliana, rapeseed, tobacco or corn having incorporated a nucleic acid according to the invention.
  • the present invention also relates to a method for protecting a plant from infection by a parasite comprising the following steps: a) Transformation of the plant with an expression cassette according to any one of claims 3 to 4; b) Selection of the plant having integrated the expression cassette.
  • the invention relates to the use of a promoter nucleotide sequence according to the invention for expressing a gene in root cells and, in a particular embodiment of the invention, for expressing a sequence of interest. with herbicidal or antibiotic activity.
  • EXAMPLE 1 PREPARATION OF TRANSFORMANTS
  • the promoter sequences were amplified by PCR (polymerase chain reaction) reaction using the respective primer pairs described below (SEQ ID NO: 13 to SEQ ID NO: 36).
  • DNA (10 to 50 ng) from Arabidopsis thaliana ecotype Wassilewskija was used as a template.
  • the reactions were carried out thanks to the Expand High Fidelity kit (Roche) according to the supplier's protocol.
  • the PCR was carried out with 30 cycles (55 ° C. 30s for pairing, 72 ° C. for elongation for 3 minutes and 94 ° C. for 30 seconds).
  • the amplified DNA fragments were cloned into the pGEM-T Easy vector (Promega). After verification of the amplified sequences, the latter were cloned into the binary vector pBI 101 (Jefferson et al., 1987, EMBO J. 6, 3901-3907) using the restriction sites introduced into the oligonucleotides or from the pGEM polylinker.
  • -T Easy namely respectively: SmaI / BamHI (DRM33, AAJ3, DUA2,
  • the transformants were selected by virtue of kanamycin resistance (50 mg / L) carried by the vector pBilOl. For each promoter, 16 plants per construct were transformed. The number of transformants obtained was quite variable (11 (DSM 153), 10 (DRM 33), 16 (DYK 138), 11 (DXP 4), 7 (EAD 29), 2 (DUA 2), 4
  • Figures 1 to 12 show sections of transformed plants as described in Example 1, to visualize the colorations obtained at different stages of growth. Several stages are indicated only in cases where the color changes or changes during development, especially young seedlings 8 to 14 days after sowing with details (cutting and / or enlargement) of the various areas of the root and the aerial part .
  • FIGS. 1 to 12 correspond to the colorations observed for the sequences SEQ ID No. 1 to SEQ ID No. 12 respectively.
  • Figure 1 Expression profile of the EAG96 promoter visualized on 1 transformant.
  • the specific expression is at the level of the epidermis, the cortex, and in the mature root. No discoloration is observed in the leaves, stems, pods, and embryo.
  • FIG. 1 Expression profile of the AAJ 3 promoter visualized on 4 transformants.
  • Figure 3 Expression profile of the DRM33 promoter visualized on 6 transformants.
  • the expression GUS affects the embryo at a very early stage but not the reserves of the seed.
  • the expression is visible in the root but not in the cap (part of the apex that touches the root).
  • the expression is visible in the differentiated central part but not in the zone meristematic outside the epidermis.
  • the expression is light in some transformants for the aerial part but it is not systematic.
  • Leaves appear to be affected in conductive tissue throughout the plant. We find the conductive fabrics throughout the plant. The expression is mainly root. There is colouration in cotyledons that are not found in old leaves.
  • FIG. 4 Expression profile of the DUA2 promoter visualized on 2 transformants.
  • Staining is observed in the embryo at the heart-shaped stage, but nothing in the flowers and the hypocotyl. It is a promoter with very strong expression in the root.
  • FIG. 5 Expression profile of the DSM153 promoter visualized on 11 transformants.
  • Figure 6 Expression profile of the DYK138 promoter visualized on 13 transformants. Stomatal and hydathodic staining was observed. Staining is observed in the aged leaves, in the embryo, and in the siliques. Color is observed throughout the root.
  • FIG. 7 Expression profile of the DXP4 promoter visualized on 9 transformants.
  • Figure 8 Expression profile of the EAD29 promoter visualized on 6 transformants. We observe an expression in the columella, the central cylinder, the embryo, on all the bases except the cortex and the epidermis. No discolouration was observed in the aerial parts, with the exception of cotyledon and leaves (stages 1 and 2). Slight expression is observed in hydathodes, and apical meristem in some transformants.
  • Figure 9 Expression profile of the DYC237 promoter visualized on 2 transformants.
  • GUS expression is observed in the epidermis, columellae, meristem, areas of elongation and differentiation, and in the root at all stages.
  • FIG. 10 Expression profile of the DUR17 promoter visualized on 6 transformants.
  • FIG. 11 Expression profile of the EAF39 promoter visualized on 4 transformants.
  • Table 1 Expression profiles of a gene of interest according to the promoter used and according to the cell location and the stage of development of the plant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention se rapporte à des polynucléotides isolés à activité promotrice, permettant l'expression spécifique de séquences hétérologues d'intérêt dans les cellules des racines des plantes, en fonction de l'assise cellulaire et du stade de développement souhaité, tout au long de la croissance de la plante, ainsi que les plantes transgéniques les comprenant.

Description

SEQUENCES POLYNUCLEOTIDIQUES A ACTIVITE PROMOTRICE SPECIFIQUE
DES CELLULES DES RACINES DES PLANTES
La présente invention se rapporte à des polynucléotides isolés à activité promotrice permettant l'expression spécifique de séquences hétérologues d'intérêts dans les cellules des racines des plantes en fonction de l'assise cellulaire et du stade de développement souhaité tout au long de la croissance de la plante ainsi que les plantes transgéniques les comprenant. La maîtrise des ennemis des cultures est une des clefs qui conditionnent l'équilibre alimentaire mondial. La chimie a longtemps fourni l'essentiel de l'effort dans la lutte contre les ravageurs. Récemment, d'autres méthodes sont aussi utilisées comme la lutte biologique et la création de variétés résistantes pour laquelle la transgenèse constitue un outil de choix.
De nombreux pathogènes de plantes d'origine virale, bactérienne ou phytoplasmique ne sont pas sensibles aux pesticides actuellement commercialisés. La seule solution consiste alors à utiliser des variétés végétales résistantes. Par ailleurs, certains champignons pathogènes, acariens, nématodes ou insectes peuvent supporter sans dommage de fortes doses de pesticides.
La transgenèse élargit ce potentiel d'investigation en permettant d'une part, l'exploitation de gènes issus d'autres variétés, d'autres espèces, voire d'autres genres, d'autre part, par le contrôle quantitatif (moduler l'intensité de l'expression du gène) et qualitatif (faire exprimer le gène dans telle partie de la plante) de leur expression. Les premiers résultats, notamment la création de variétés résistantes à des maladies virales (résistance au court-noué de la vigne) , à des nématodes ou à des ravageurs (maïs résistant à la pyrale) sont particulièrement prometteurs. Désormais, pour un grand nombre d'applications, il n' est pas nécessaire que la protéine d' intérêt conférant la propriété agronomique recherchée présente une expression distribuée dans la totalité des organes et/ou des types cellulaires de la plante transformée.
Très précocement, la recherche d'une expression plus spécifique du gène d' intérêt a été entreprise et a conduit, par exemple, à l'identification de promoteurs spécifiques de tissus ou d'organe. \ En particulier, un promoteur dirigeant l'expression d'un polynucléotide d'intérêt de façon à la fois forte et ciblée dans la racine permettrait de nombreuses applications que l'on peut définir à la fois dans la défense contre les pathogènes telles que des bactéries, des champignons, des nématodes ou des insectes, la résistance au stress (froid, hydrique, stress salin), l'amélioration de la qualité (par exemple : augmenter la teneur en saccharose dans la betterave à sucre) , la nutrition (exemple : exprimer un gène de transporteur des nitrates) . II existe dans l'art antérieur de nombreuses demandes concernant des promoteurs pour diriger une expression dans les racines des plantes. Par exemple, la Demande de Brevet canadien CA2425886 intitulée « Root- specific conifer gène promoter and its use » se rapporte à une séquence polynucléotidique promotrice dans les racines et dérivée du gène PRlO du pin. La Demande de Brevet canadien CA2228046 intitulée: « Root Cortex spécifie gène promoter » se rapporte à un ADN isolé comprenant une séquence promotrice qui dirige la transcription d'un segment d'ADN hétérologue spécifiquement dans le cortex racinaire d'une cellule de plante, exemple de transformation dans la plante du tabac. La Demande WO 03/040322 intitulée : « Promoteurs régulant l'expression génique dans les racines de plantes » concerne un promoteur isolé du maïs et ses équivalents fonctionnels qui a la particularité de conduire une expression de gènes hétérologues spécifiquement dans les racines afin d' augmenter les caractéristiques agronomiques, horticoles et/ou pesticides d'une plante et les tissus de plantes comprenant les promoteurs selon l'invention ; la Demande WO 02/46439 intitulée : « Nouveaux promoteurs spécifiques des racines activant l'expression d'une nouvelle kinase de type récepteur de domaine LLR » divulgue des acides nucléiques codant pour des régulateurs de transcription de promoteur spécifique de la racine et les acides nucléiques codant pour une nouvelle protéine récepteur kinase LLR, la Demande US 5,633,363 « Root preferential promoter » fait référence à des fragments promoteurs isolé du mais et plus particulièrement d'une région de 4.7Kb en amont désigné ZRP2 ainsi que ses équivalents fonctionnels qui ont la particularité de conduire une expression de gènes hétérologues spécifiquement dans les racines afin d'augmenter les caractéristiques agronomiques, horticoles et/ou pesticides d'une plante ou encore la Demande US 5,401,836 intitulée : » Brassica regulatory séquence for root-specific or root-abundant gène expression » concernant l'isolement d'un promoteur qui montre une expression forte chez Brassica sp. Ce promoteur est utile pour conduire la transcription de protéine hétérologue qui confère une immunité ou a résistance à des pathologies susceptibles de toucher les racines et notamment infection par champignons, bactéries et insectes.
Aucune de ces Demandes ne permet d' obtenir une expression de séquences d' intérêt en fonction des besoins et tout particulièrement en choisissant le stade du développement et ciblant précisément l'assise cellulaire ou l'on veut diriger l'expression.
Les séquences selon l'invention permettent d' obtenir une expression spécifique de gènes d' intérêts à tous les stades du développement de la plante comme par exemple une expression d' antibiotique ou de protéines à activité herbicide spécifiquement dans les racines à un stade très précoce pour éviter leurs traces au stade adulte et en permettant également une expression très localisée en fonction de l'assise cellulaire ce qui peut avoir une" importance en fonction du type d'agriculture.
La présente invention se rapporte par conséquent à une méthode pour diriger l'expression d'une séquence nucléotidique d'intérêt dans les cellules de la racine d'une plante caractérisée en que l'on utilise un acide nucléique isolé comprenant un promoteur végétal choisi parmi les séquences suivantes :
EAG 96 (SEQ ID N0I)1, AAJ 3 (SEQ ID N°2), DRM 33 (SEQ ID N°3), DUA 2 (SEQ ID N°4), DSM 153 (SEQ ID N°5) , DYK 138 (SEQ ID N°β), DXP4 (SEQ ID N°7), EAD 29 (SEQ ID N°8), DYC 237 (SEQ ID N°9), DUR17 (SEQ ID N°10), EAF 39 (SEQ ID N0Il) et DRW 2 (SEQ ID N°12) .
De préférence, un acide nucléique selon l'invention se présente sous forme isolée ou purifiée. Le terme « isolé » au sens de la présente invention désigne un matériel biologique qui à été soustrait à son environnement originel (l'environnement dans lequel il est localisé naturellement) . Par exemple, un polynucléotide présent à l'état naturel dans une plante ou un animal n'est pas isolé. Le même polynucléotide séparé des acides nucléiques adjacents au sein desquels il est naturellement inséré dans le génome de la plante ou l'animal est isolé.
Un tel polynucléotide peut être inclus dans un vecteur et/ou dans une composition et demeurer néanmoins à l'état isolé du fait que le vecteur ou la composition ne constitue pas son environnement naturel.
Le terme « purifié » ne nécessite pas que le matériel soit présent sous une forme de pureté absolue, exclusive de la présence d'autres composés. Aux fins de la présente description, l'expression
« séquence nucléotidique » peut être employée pour désigner indifféremment un polynucléotide ou un acide nucléique. L' expression « séquence nucléotidique » comprend le matériel génétique lui-même et n'est donc pas restreinte à l'information concernant sa séquence.
L'invention se rapporte également à une méthode, caractérisée en ce que la séquence est choisie parmi un polynucléotide possédant au moins 80% d'identité en nucléotides avec un polynucléotide selon l'invention ou encore un acide nucléique de séquence complémentaire à ceux- ci.
Selon la présente invention, on entend par « % d'identité » le pourcentage de nucléotides identiques qui peut être calculé par l'homme du métier en utilisant un programme informatique de comparaison de séquence tel que Blast (www.ncbi.nlm.nih.gov) et le programme FastDB avec les paramètres suivants : « Mistmatch penalty : 1.00 ; Gap penalty : 1.00 ; Gap Size Penalty : 0.33 ; joining penalty : 30.0 ». Ces algorithmes sont présentés dans Current Methods in Sequencing and synthesis Methods and Applications, pages 127-149, 1988, AIa. R. Liss, Inc, incorporé dans la description par référence.
On peut également définir des polynucléotides selon l'invention par leurs propriétés d'hybridation sélective avec l'un des polynucléotides définis par les séquences SEQ ID n°l à SEQ ID N°12 dans des conditions de fortes stringence telles que définies dans Sambrook et al. Molecular Cloning A Laboratory Manual (CoId Spring Harbor Press, 1989) aux paragraphes 11.1 à 11.61.
Les différences nucléotidiques que peut comprendre un acide nucléique selon l'invention par rapport aux séquences nucléotidiques SEQ ID N°l à SEQ ID N°12 peuvent β résulter en des substitutions, délations ou additions d'un ou plusieurs nucléotides consécutifs ou non.
Font également partie de l'invention des acides nucléiques comprenant tout ou partie d' un polynucléotide possédant au moins 85%, 90%, 95%, 98%, 99%, 99,5%, ou encore 99,8% d'identité en nucléotides avec les séquences nucléotidiques SEQ ID N0I à SEQ ID N°12, ou un acide nucléique de séquence complémentaire.
Selon un autre aspect, l'invention est également relative à un acide nucléique caractérisé en ce qu'il comprend tout ou partie d'un polynucléotide hybridant, dans des conditions de fortes stringences, avec les séquences SEQ ID N0I à SEQ ID N°12 selon l'invention, ou un acide nucléique de séquence complémentaire. En général, des conditions de forte stringence, pour un polynucléotide donné peuvent être obtenues en opérant à une température inférieure de 5 à 100C à la température de fusion du duplex constitué par ledit polynucléotide et son complémentaire, dans un milieu de composition donnée. A titre d'exemple de conditions d'hybridation de forte stringence utilisables dans un grand nombre de cas, on indiquera les conditions suivantes:
Préhybridation:
Même conditions que pour l'hybridation Durée : 1 nuit.
Hybridation:
5X SSPE (0,9 M NaCl, 50 mM phosphate de sodium pH 7,7, 5 mM EDTA)
5X Denhardt's (0,2% PVP, 0,2% Ficoll, 0,2% SAB) 0,1% SDS
Durée: 1 nuit.
Lavages:
2X SSC, 0,1% SDS 10 min 65°C
IX SSC, 0,1% SDS 10 min 65°C 0,5X SSC, 0,1% SDS 10 min 650C
0,1X SSC, 0,1% SDS 10 min 650C
Par « partie » d'un polynucléotide promoteur selon l'invention, on entend une séquence nucléotidique d'une longueur en base inférieure à celle de la séquence selon l'invention et conservant la capacité à diriger l'expression d' une séquence nucléotidique d' intérêt dans les cellules de la racine d'une plante.
Une « partie » de polynucléotide promoteur selon l'invention peut être aussi obtenue par exemple par délétion d' un ou plusieurs nucléotides du polynucléotide de séquence
SEQ ID N°l à SEQ ID N°12 à l'aide des techniques à l' exonucléase III (Ausubel et al., 1989) . Un polynucléotide
« partie » du promoteur végétal selon l'invention a avantageusement une longueur en nucléotide allant de 200,
250, 300, 400, 500, 750, 1000, 1200, 1500 ou 2000 nucléotides
(ou paires de bases s'il se présente sous la forme double brin) .
Pour la mise en œuvre d' enzymes de restriction aux fins d' obtenir des fragments de polynucléotides correspondant à une partie d' un polynucléotide promoteur selon l'invention, l'homme du métier pourra avantageusement se référer à l'ouvrage de Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, 2ed. CoId Spring Harbor Laboratory, CoId Spring Harbor, New York) .
Une partie de polynucléotide promoteur selon l'invention pourra également être préparée par amplification spécifique du fragment d'intérêt à l'aide d'un couple d'amorces encadrant, respectivement du coté 5' et du coté 3', la séquence d'intérêt, par exemple à l'aide de la méthode PCR, telle que décrite notamment dans les brevets US 4,683,195, US 4,683,202 et US 4,965,188.
L'activité biologique d'une partie d'un polynucléotide promoteur selon l'invention peut être aisément vérifiée par l'homme du métier, notamment à l'aide des constructions de vecteurs et des procédés de transformation de plantes avec ces derniers, tels que décrits dans les exemples . L' invention concerne également une cassette d'expression recombinante caractérisé en ce qu'elle comprend un promoteur constitué par une séquence polynucléotidique telle que définie précédemment et une séquence hétérologue d' intérêt placée sous contrôle transcriptionnel dudit promoteur et dont l'expression est recherchée dans les cellules de la racine d'une plante.
De manière avantageuse, un tel acide nucléique comprendra une séquence nucléotidique d' intérêt choisie parmi les séquences codantes de gène interagissant avec des parasites ou des pathogènes tels que les nématodes ou les champignons, comme par exemple un polynucléotide codant pour une protéine à activité herbicide ou antibiotique ou encore les séquences codantes de glucanase, ladite séquence nucléotidique d'intérêt étant placée sous le contrôle d'un polynucléotide promoteur selon l'invention.
Il peut également s'agir de séquences d' endochitinases telles que celles décrites dans le Brevet européen 493,581 ou encore de séquences de gènes agissant sur la teneur en sucre de la plante. A titre d'exemple, les séquences codantes de gènes d'intérêt assurant la protection d'une plante contre d'autres conditions de stress pourront être avantageusement placées sous le contrôle d'un polynucléotide promoteur selon l'invention, pour le stress hydrique ou salin : gène arskl (Hwang et al, 1995), cDNA pA9 (Winicov, I. Deutch S.E. 1994) ou cDNA Alfin 1 (Bastola, DR et al. 1998) .
D'autres séquences codantes pourraient être utilisées sous le contrôle des promoteurs selon l' invention, par exemple pour agir sur la teneur en saccharose de la betterave à sucre : gène BvSPSl (Hesse H. et al., 1995), ou surexprimer un gène déjà exprimé physiologiquement comme les gènes de transporteurs de nitrate NRTl ou NRT2 (Crawford, N.L. et al. 1998 ; Leah R. et al., 1991) . L' invention est en outre relative à des fragments nucléotidiques comprenant 10 à 2000 nucléotides consécutifs d'un acide nucléique selon l'invention, en particulier des fragments ayant une activité promotrice similaire ou identique à l'activité promotrice de la séquence correspondante complète, préférentiellement un acide nucléique possédant au moins 80% d'identité en nucléotide avec la séquence SEQ ID N°l à SEQ ID N°12 ou encore un acide nucléique hybridant, dans des conditions d'hybridation de forte stringence avec les séquences nucléotidiques selon l'invention ou un acide nucléique de séquence complémentaire. De préférence, de tels fragments auront une longueur de 10, 12, 15, 18 ou 20 à 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 ou 2000 nucléotides consécutifs d'un polynucléotide promoteur selon l'invention ou consistant en des fragments d'une longueur de 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 200, 500, 1000, 1500 ou 2000 nucléotides consécutifs d'un polynucléotide promoteur selon l'invention. De tels fragments nucléotidiques pourront avantageusement être mis en œuvre en tant que sondes ou amorces nucléotidiques aux fins de détection ou d'amplification de la totalité ou d'une partie d'une séquence à activité promotrice spécifique des racines de plantes selon l'invention.
Selon un autre aspect, l'invention concerne un vecteur recombinant de clonage et/ou d'expression comprenant un polynucléotide promoteur selon l'invention et plus particulièrement comprenant au moins une cassette d'expression selon l'invention. Un tel vecteur recombinant comprendra avantageusement une séquence nucléotidique d'intérêt placée sous le contrôle dudit promoteur végétal. Des vecteurs pouvant être utilisés aux fins de la présente invention sont notamment les suivants: vecteur pBIN19 (Bevan et al., 1984, Nucleic Acids Research, vol. 12 : 8711-8721, commercialisé par la Société Clontech, PaIo Alto, Californie, USA); vecteur 101 (Jefferson, 1987, PlantMolecular Biology Reporter, vol. 5: 387-405, commercialisé par la société Clontech); vecteur pB1221 (Jefferson, 198, Plant Molecular Biology Reporter, vol. 5: 387-405, commercialisé par la Société CLONTECH) ;vecteur pBI121 (Jefferson, 1987, Plant Molecular Biology Reporter, vol. 5: 387-405, commercialisé par la Société Clontech) ; vecteur pEGFP (Cormack, B.P. et al. 1996 ; Yang T.T. et al., 1996, commercialisé par la Société Clontech), ou encore le vecteur pC-gus.
L'invention a en outre pour objet une cellule hôte transformée par au moins une cassette d' expression selon l'invention ou un vecteur recombinant tel que défini ci- dessus. L'invention concerne particulièrement une cellule hôte recombinante, caractérisée en ce qu'elle comprend un acide nucléique à activité de promoteur végétal spécifique des racines de plantes selon l'invention, éventuellement associée à un polynucléotide d'intérêt placé sous le contrôle de ce dernier, ou un vecteur recombinant tel que défini ci- dessus. Les cellules hôtes recombinantes préférées selon l'invention peuvent être indifféremment d'origine bactérienne ou végétale. Ainsi, peuvent notamment être utilisées des cellules bactériennes de différentes souches d'E. coli ou encore d'Agrobacterium tumefaciens. II s'agit également de cellules de plantes transformées par un vecteur conforme à l'invention, tel que des cellules d'Arabidopsis thaliana, de colza, de tabac ou encore de maïs. L'invention concerne aussi un organisme multicellulaire végétal recombinant caractérisé en ce qu'il comprend des cellules hôtes recombinantes telles que définies ci-dessus. Dans un mode de réalisation particulier de l'invention, celle-ci a trait à une plante transgénique générée à partir d'une cellule hôte recombinante selon l'invention ainsi qu'aux tissus ou parties desdites plantes et également toutes les plantes transgéniques ou parties d'une plante transgénique transformées avec au moins une cassette d'expression selon l'invention.
Le terme "tissu de plante" fait référence à n'importe quel tissu d'une plante, dans une plante ou dans une culture. Ce terme inclut des plantes entières, des cellules de plantes, des organes de plantes, des graines de plantes, des protoplastes, des cals, des cultures de cellules et toutes autres cellules de plantes organisées en tant qu'unité fonctionnelle et/ou structurelle. Des parties de plantes régénérées telles que des fleurs, des graines, des feuilles, des tiges, des fruits, du pollen, des tubercules, bois et analogues sont également dans le cadre de 1' invention.
Une plante transgénique selon 1 ' invention peut être notamment un colza, un tabac, un maïs, blé, orge, tournesol ou encore Arabidopsis thaliana.
Les plantes transgéniques telles que définies ci- dessus ont donc la propriété d'exprimer une séquence nucléotidique d'intérêt spécifiquement au niveau des différents types cellulaires de la racine (de l'extérieur vers l'intérieur : épiderme, cortex, endoderme, péricycle, vaisseau), à tous les stades de développement de la plante.
L'invention a également pour objet un procédé d'obtention d'une plante transgénique exprimant spécifiquement une séquence nucléotidique d'intérêt dans les cellules de la racine à tous les stades de développement de ladite plante, caractérisé en ce qu'il comprend les étapes suivantes : a) Obtention d'une cellule hôte recombinante végétale conforme à l'invention ; b) Régénération d'une plante entière à partir de la cellule hôte recombinante obtenue à l'étape a) ; c) Sélection des plantes obtenues à l'étape b) ayant intégré la séquence nucléotidique d'intérêt placée sous le contrôle du polynucléotide promoteur végétal selon 1' invention.
Optionnellement, la méthode selon l'invention comporte une étape de croisement de plantes transgéniques entre elles telles qu'obtenues précédemment ou encore le croisement entre une plante transgénique selon l'invention et une plante de la même espèce et la sélection des plantes issues du croisement ayant conservé le transgène. L'invention a en outre pour objet un procédé d'obtention d'une plante transgénique caractérisé en ce qu'il comprend les étapes suivantes : a) Transformation d'au moins une cellule de plante par un vecteur selon l'invention ; b) Culture desdites cellules transformées afin de générer une plante contenant dans son génome une cassette d'expression telle que définie selon l'invention.
L' invention se rapporte également à une plante transgénique telle qu'obtenue selon l'un quelconque des procédés ci-dessus. De manière préférée, une plante transgénique selon l'invention a non seulement intégré dans son génome un transgène comprenant une séquence nucléotidique d'intérêt placée sous le contrôle du polynucléotide promoteur végétal présentement décrit mais exprime ladite séquence nucléotidique d'intérêt majoritairement ou exclusivement dans les cellules constitutives de la racine.
Enfin, l'invention concerne aussi les graines obtenues à partir d'une plante transgénique selon l'invention. II s'agit notamment d'une semence d'Arabidopsis thaliana, de colza, de tabac ou de mais ayant incorporé un acide nucléique selon l'invention.
La présente invention a également pour objet une méthode pour protéger une plante d'une infection par un parasite comprenant les étapes suivantes : a) Transformation de la plante avec une cassette d'expression selon l'une quelconque des revendication 3 à 4 ; b) Sélection de la plante ayant intégré la cassette d'expression. Enfin, l'invention se rapporte à l'utilisation d'une séquence nucléotidique promotrice selon l'invention pour exprimer un gène dans les cellules des racines et, dans un mode particulier de réalisation de l'invention, pour exprimer une séquence d' intérêt à activité herbicide ou antibiotique.
L'invention sera en outre illustrée, sans pour autant être limitée, par les figures et les exemples suivants . EXEMPLE 1 : PREPARATION DES TRANSFORMANTS Les séquences promotrices ont été amplifiées par réaction de PCR (polymerase chain reaction) en utilisant les couples d'amorces respectifs décrits ci-dessous (SEQ ID N°13 à SEQ ID N° 36) . L'ADN (10 à 50 ng) issu d' Arabidopsis thaliana écotype Wassilewskija a été utilisé comme matrice. Les réactions ont été effectuées grâce au kit Expand High Fidelity (Roche) selon le protocole du fournisseur. La PCR a été effectuée avec 30 cycles (55°C 30s pour l' appariement, 720C d' élongation pendant 3 mn et 940C pendant 30s) .
Les fragments d'ADN amplifiés ont été clones dans le vecteur pGEM-T Easy (Promega) . Après vérification des séquences amplifiées, ces dernières ont été clonées dans le vecteur binaire pBI 101 (Jefferson et al., 1987, EMBO J. 6, 3901-3907) en utilisant les sites de restriction introduits dans les oligonucléotides où issus du polylinker de pGEM-T Easy, soit respectivement : Smal/BamHI (DRM33, AAJ3, DUA2,
EAD 29) ; HindIII/BamHI (DYK 138, DSM 153, DYC 237, EAG 96) et SalI/BamHI (DUR 17, DXP 4, EAF 39, DRW 2) . Ce clonage permet d' introduire les divers promoteurs en amont du gène GUS et du terminateur NOS dans un vecteur binaire. Ces vecteurs ont ensuite été introduits par agro-transformation dans des plants d' Arabidopsis thaliana écotype Wassilewskija pour vérification de leur fonctionnalité par la technique d'infiltration sous vide (Bechtold et al, 1993, CR. Acad. Sci. Paris 316, 1188-1193) . Les transformants ont été sélectionnés grâce à la résistance à la kanamycin (50 mg/L) portée par le vecteur pBilOl. Pour chaque promoteur, 16 plantes par construction ont été transformées. Le nombre de transformants obtenus a été assez variable (11 (DSM 153) , 10 (DRM 33), 16 (DYK 138), 11 (DXP 4), 7 (EAD 29), 2 (DUA2) , 4
(AAJ3), 5( DYC237), 10 (DUR17), 3 (DRW2) , 6 (EAF 39)) . Les profils de coloration se sont avérés reproductibles entre les lignées, mais pouvait présenter un niveau d'expression variable. L'analyse des transformants (expression du gène rapporteur GUS) a été effectuée par coloration histochimiques
(Jefferson et al., 1987, EMBO J. 6, 3901-3907) à quatre étapes distinctes de croissance pour étudier le profil d'expression du promoteur tout au long de la croissance de la plante (germination (stade 2 cotylédons), stade rosette (15 jours après germination, plante adulte (3 à 4 semaines) et coloration des embryons) . Les plantes sont issues de culture in vitro pour les sélection sur antibiotiques (milieu Hoagland modifié selon Sarrobert et al., 2000, Plant J. 24, 357-367 ) , cultivés en chambre de culture (16h de jour à 24°C et 8h de nuit à 21°C, 150 μmol .m"2, s"1) jusqu'au stade rosette (15 jours après germination), puis les plantes sont repiquées en chambre de culture sur terreau pour le reste de la croissance (16h de jour à 240C et 8h de nuit à 21°C, 300 μmol .m"2. s"1) . EXEMPLE 2 : VISUALISATION DES EXPRESSIONS SPECIFIQUES
Figures
Les figures 1 à 12 représentent des coupes des plantes transformées comme décrit à l'Exemple 1, permettant de visualiser les colorations obtenues aux différents stades de croissance. Plusieurs stades sont indiqués uniquement dans les cas où la coloration évolue ou se modifie pendant le développement, notamment des jeunes plantules de 8 à 14 jours après semis avec détails (coupe et/ou agrandissement) des diverses zones de la racine et de la partie aérienne.
La coloration observée est une coloration GUS 24h. Ces figures 1 à 12 correspondent aux colorations observées pour les séquences SEQ ID N°l à SEQ ID N°12 respectivement. Figure 1 : Profil d'expression du promoteur EAG96 visualisé sur 1 transformant.
L' expression spécifique se situe au niveau de l'épiderme, du cortex, et dans la racine mature. On n'observe pas de coloration dans les feuilles, les tiges, les siliques, et l'embryon.
Figure 2 : Profil d' expression du promoteur AAJ 3 visualisé sur 4 transformants.
On observe une coloration sur toute la racine.
Elle est très spécifique de la racine sauf pour la zone du méristème primaire. On n'observe pas de coloration dans les parties aériennes. Il s'agit d'un promoteur racine spécifique, constitutif.
Figure 3 : Profil d' expression du promoteur DRM33 visualisé sur 6 transformants. L'expression GUS touche l'embryon à un stade très précoce mais pas les réserves de la graine. L'expression est visible dans la racine mais pas dans la coiffe (partie de l'apex qui touche la racine) . L'expression est visible dans la partie centrale différenciée mais pas dans la zone méristematique hors l'épiderme. L'expression est légère dans certains transformants pour la partie aérienne mais elle n'est pas systématique.
Les feuilles semblent touchées dans les tissus conducteurs dans toute la plante. On retrouve les tissus conducteurs dans toute la plante. L'expression est majoritairement racinaire. On observe une coloration dans les cotylédons que- l'on ne retrouve pas dans les feuilles âgées.
Figure 4 : Profil d'expression du promoteur DUA2 visualisé sur 2 transformants.
On observe une coloration dans l'embryon au stade cordiforme, mais rien dans les fleurs et l'hypocotyle. Il s'agit d'un promoteur à très forte expression dans la racine.
Figure 5 : Profil d'expression du promoteur DSM153 visualisé sur 11 transformants.
On observe une coloration forte dans l'Apex, qui continue dans la racine sauf dans l'épiderme et dans les parties âgées. On n'observe pas d'expression dans les siliques ni dans les tiges. On observe une expression faible à la base des fleurs. On observe parfois une expression dans les feuilles jeunes dans certains transformants mais pas dans les feuilles âgées. Il s'agit d'un promoteur racinaire fort.
Figure 6 : Profil d' expression du promoteur DYK138 visualisé sur 13 transformants. On observe une coloration dans les stomates et la partie hydathode. On observe une coloration dans les feuilles âgées, dans l'embryon, et dans les siliques. On observe une coloration dans toute la racine.
Figure 7 : Profil d'expression du promoteur DXP4 visualisé sur 9 transformants.
On observe une coloration visible dans toute la graine de façon très homogène. Cependant, on peut remarquer que l'expression est très forte dans la zone de division ainsi que dans le méristème foliaire et racinaire. On observe une coloration sur toute la racine sauf dans l'épiderme et le cortex.
Figure 8 : Profil d'expression du promoteur EAD29 visualisé sur 6 transformants. On observe une expression dans la columelle, le cylindre central, l'embryon, sur toutes les assises sauf le cortex et l'épiderme. On n'observe pas de coloration dans les parties aériennes, à l'exception du cotylédon et des feuilles (stades 1 et 2) . On observe une expression légère dans les hydathodes, et le méristème apical dans certains transformants.
Figure 9 : Profil d'expression du promoteur DYC237 visualisé sur 2 transformants.
On observe une expression GUS dans l'épiderme, les columelles, le méristème, les zones d'élongation et de différenciation, ainsi que dans la racine à tous les stades.
Figure 10 : Profil d' expression du promoteur DUR17 visualisé sur 6 transformants.
On observe une expression constitutive dans toutes les assises à tous les stades sauf au niveau du cylindre central.
Figure 11 : Profil d'expression du promoteur EAF39 visualisé sur 4 transformants.
On observe une coloration du xylème jusqu'au péricycle face et nulle part ailleurs. La coloration forme un éventail. Le signal diffuse à travers des cellules.
Figure 12 : Profil d' expression du promoteur DRW2 visualisé sur 2 transformants.
On observe une coloration dans toute la racine dans les parties jeunes, et le cylindre central dans les parties âgées, ainsi que dans l'embryon. Résultats
Table 1 : Profils d'expression d'un gène d'intérêt en fonction du promoteur utilisé et selon la localisation cellulaire et le stade de développement de la plante.
Figure imgf000019_0001
Figure imgf000020_0001
Les résultats montrent que le groupe des promoteurs selon l'invention permet de cibler tous les stades du développement de la plante ainsi que toutes les assises en fonction de l'endroit ou l'on souhaite exprimer un gène d'intérêt.

Claims

REVENDICATIONS
1. Méthode pour diriger l'expression d'une séquence nucléotidique d' intérêt dans les cellules de la racine d'une plante caractérisée en que l'on utilise un acide nucléique isolé comprenant un promoteur végétal choisi parmi les séquences suivantes :
EAG 96 (SEQ ID N°l) , AAJ 3 (SEQ ID N°2) , DRM 33 (SEQ ID N°3), DUA 2 (SEQ ID N°4), DSM 153 (SEQ ID N°5) , DYK 138 (SEQ ID N°β), DXP4 (SEQ ID N°7), EAD 29 (SEQ ID N°8), DYC 237 (SEQ ID N°9), DUR17 (SEQ ID N0IO), EAF 39 (SEQ ID N0Il) et DRW 2 (SEQ ID N°12) .
2. Méthode selon la revendication 1, caractérisée en ce que la séquence est choisie parmi : a) un polynucléotide possédant au moins 80% d'identité en nucléotides avec un polynucléotide choisi parmi
SEQ ID N° l à 12 ; b) ou un acide nucléique de séquence complémentaires à ceux-ci.
3. Cassette d'expression recombinante, caractérisée en ce qu'elle comprend : un promoteur constitué par une séquence polynucléotidique selon la revendication 1 ou 2 ; et une séquence hétérologue d' intérêt placée sous contrôle transcriptionnel dudit promoteur et dont l'expression est recherchée dans les cellules de la racine d'une plante.
4. Cassette d'expression selon la revendication 3 caractérisée en ce que ladite séquence d'intérêt est choisie parmi un polynucléotide codant pour une protéine à activité herbicide ou antibiotique.
5. Vecteur recombinant comprenant au moins une cassette d'expression selon l'une des revendications 3 à 4.
6. Cellule hôte transformée par au moins une cassette d'expression selon l'une des revendications 3 ou 4 ou un vecteur recombinant selon la revendication 5.
7. Plante transgénique ou partie de plante transgénique générée à partir d'une cellule selon la revendication 6.
8. Plante transgénique ou partie d'une plante transgénique transformée avec au moins une cassette d'expression selon l'une quelconque des revendications 3 à 4.
9. Plante transgénique selon la revendication 7 ou 8 caractérisée en ce qu'elle est choisie parmi les plantes des espèces suivantes : Arabidopsis thaliana, colza, tabac, maïs, blé, orge, tournesol.
10. Procédé d'obtention d'une plante transgénique caractérisé en ce qu' il comprend les étapes suivantes : a) Obtention d'une cellule hôte recombinante végétale selon la revendication 6 ; b) Régénération d'une plante entière à partir de la cellule hôte recombinante obtenue à l'étape a) ; c) Sélection des plantes obtenues à l'étape b) ayant intégré la séquence nucléotidique d' intérêt placée sous le contrôle de la séquence polynucléotidique selon la revendication 1.
11. Procédé selon la revendication 10 caractérisé en ce qu'il comporte les étapes additionnelles suivantes : d) Croisement entre elles de deux plantes transgéniques telles qu'obtenues à l'étape c) ; e) Sélection des plantes issues du croisement de l'étape d) ayant conservé le transgène.
12. Procédé d'obtention d'une plante transgénique caractérisé en ce qu' il comprend les étapes suivantes : a) Transformation d'au moins une cellule de plante par un vecteur selon la revendication 5 ; b) Culture desdites cellules transformées afin de générer une plante contenant dans son génome une cassette d'expression telle que définie selon l'une des revendications 3 à 4.
13. Plante transgénique susceptible d'être obtenue en mettant en oeuvre le procédé selon l'une quelconque des revendications 10 à 12.
14. Graines obtenues à partir d'une plante transgénique selon l'une des revendications 7 à 9 ou 13.
15. Méthode pour protéger une plante d'une infection par un parasite comprenant les étapes suivantes : a) Transformation de la plante avec une cassette d' expression selon l'.une quelconque des revendication 3 à 4 ; b) Sélection de la plante ayant intégré la cassette d'expression.
16. Utilisation d'une séquence nucléotidique promotrice selon l'une quelconque des revendications 1 à 4 pour exprimer un gène dans les cellules des racines.
17. Utilisation d' au moins un polynucléotide selon l'une des revendications 1 ou 2 pour exprimer une séquence d'intérêt, à activité herbicide ou antibiotique.
PCT/FR2005/003082 2004-12-08 2005-12-08 Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes WO2006061521A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413056 2004-12-08
FR0413056A FR2878862A1 (fr) 2004-12-08 2004-12-08 Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes

Publications (2)

Publication Number Publication Date
WO2006061521A2 true WO2006061521A2 (fr) 2006-06-15
WO2006061521A3 WO2006061521A3 (fr) 2007-01-18

Family

ID=34953779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/003082 WO2006061521A2 (fr) 2004-12-08 2005-12-08 Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes

Country Status (2)

Country Link
FR (1) FR2878862A1 (fr)
WO (1) WO2006061521A2 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633363A (en) * 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5837876A (en) * 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
WO2001044454A2 (fr) * 1999-12-16 2001-06-21 Planton Gmbh Promoteur specifique de racine
WO2003040322A2 (fr) * 2001-11-07 2003-05-15 Syngenta Participations Ag Promoteurs regulant l'expression genique dans les racines de plante
CA2425886A1 (fr) * 2002-04-26 2003-10-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada, Canadian Forest Service Promoteur de genes de coniferes specifique des racines et utilisation dudit promoteur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633363A (en) * 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5837876A (en) * 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
WO2001044454A2 (fr) * 1999-12-16 2001-06-21 Planton Gmbh Promoteur specifique de racine
WO2003040322A2 (fr) * 2001-11-07 2003-05-15 Syngenta Participations Ag Promoteurs regulant l'expression genique dans les racines de plante
CA2425886A1 (fr) * 2002-04-26 2003-10-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada, Canadian Forest Service Promoteur de genes de coniferes specifique des racines et utilisation dudit promoteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL 15 mars 1999 (1999-03-15), XP002335980 extrait de EBI Database accession no. AC007017 *

Also Published As

Publication number Publication date
FR2878862A1 (fr) 2006-06-09
WO2006061521A3 (fr) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2759135B2 (ja) 除草剤抵抗性植物のアセトラクテートシンターゼを暗号化する核酸断片
EP3425046A1 (fr) Protéine tolérante aux herbicides, gène codant et son utilisation
CN102459615B (zh) 耐旱植物
RU2665804C2 (ru) Рнк-интерференция гена phya1 хлопчатника, повышающая качество волокон, удлинение корня, цветение, созревание и потенциал урожайности у хлопчатника мохнатого (gossypium hirsutum l.)
EP0412912B1 (fr) Plantes transgéniques appartenant à l'espèce Cucumis melo
CN109295246B (zh) 与玉米雄性生育力相关的dna分子标记及其应用
ES2651714T3 (es) Promotores específicos de los tricomas
CN107325162B (zh) Spl基因及其在增强植物耐热性能中的应用
WO2017128791A1 (fr) Association de gènes et utilisation associée
JPWO2007032111A1 (ja) トウモロコシ由来のストレス誘導性転写因子
EP1196581B1 (fr) Promoteur s'exprimant specifiquement dans les cellules de racines de plantes, vecteurs et cellules hotes recombinantes comprenant un tel promoteur et plantes transgeniques obtenues
EP1585759A1 (fr) Gene de resistance a aphis gossypii
CN110714023B (zh) 番茄cti1基因在提高植物根结线虫抗性中的应用
CA2385763C (fr) Promoteurs specifiques de l'albumen des graines de vegetaux
US7314757B2 (en) Drought inducible promoters and uses thereof
CN116622666A (zh) 调控植物抗旱性的方法及TaMPK3在调控植物抗旱性中的应用
WO2006061521A2 (fr) Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes
CN113666993B (zh) 紫花苜蓿MsSPL12蛋白及其相关生物材料与它们在提高植物抗逆性中的应用
JP2005278499A (ja) 植物の茎頂分裂組織の転換の時間的制御に関わる新規遺伝子、及びその利用
JPWO2006057306A1 (ja) ストレス耐性及び/又は生産性を改良したイネ科植物、及びその作出方法
JP2001057886A (ja) 遺伝子の発現量を増大させる新規dna断片
WO2005116215A1 (fr) Amelioration de la resistance d'une plante a des insectes ravageurs
JP2004329210A (ja) 塩ストレス耐性を付与する遺伝子
FR2841248A1 (fr) Proteine, acide nucleique, vecteur, transformant, graine et procede de floraison precoce
WO2005063989A1 (fr) Sequences nucleotidiques promotrices inductibles par infection par les pathogenes.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, DATED 16.11.2007.

122 Ep: pct application non-entry in european phase

Ref document number: 05825992

Country of ref document: EP

Kind code of ref document: A2