WO2006059559A1 - 磁気ランダムアクセスメモリ、その動作方法及びその製造方法 - Google Patents

磁気ランダムアクセスメモリ、その動作方法及びその製造方法 Download PDF

Info

Publication number
WO2006059559A1
WO2006059559A1 PCT/JP2005/021776 JP2005021776W WO2006059559A1 WO 2006059559 A1 WO2006059559 A1 WO 2006059559A1 JP 2005021776 W JP2005021776 W JP 2005021776W WO 2006059559 A1 WO2006059559 A1 WO 2006059559A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access memory
write
magnetic random
data
Prior art date
Application number
PCT/JP2005/021776
Other languages
English (en)
French (fr)
Inventor
Tetsuhiro Suzuki
Tadashi Kai
Yoshiaki Fukuzumi
Original Assignee
Nec Corporation
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Kabushiki Kaisha Toshiba filed Critical Nec Corporation
Priority to JP2006547893A priority Critical patent/JP4891092B2/ja
Publication of WO2006059559A1 publication Critical patent/WO2006059559A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • Magnetic random access memory operation method thereof, and manufacturing method thereof
  • the present invention relates to a magnetic random access memory, and more particularly to a magnetic random access memory that performs toggle writing or direct writing.
  • MRAM magnetic random access memory
  • MTJ Magnetic Tunneling Junction
  • FIG. 1 and FIG. 2 are cross-sectional views showing the structure of a typical magnetoresistive element used in a toggle type MRAM.
  • the magnetoresistive effect element 125 is provided between the first wiring 110 and the second wiring 101.
  • an antiferromagnetic layer 109, a pinned layer 112, a barrier layer 105, and a free layer 111 are provided, and are connected to the second wiring 101.
  • the pinned layer 112 includes a magnetic film 108, a nonmagnetic film 107, and a magnetic film 106.
  • the free layer 111 includes a magnetic film 104, a nonmagnetic film 103, and a magnetic film 102.
  • This magnetoresistive effect element 125 is characterized in that a magnetic film 104 and a magnetic film 102 having the same film thickness are laminated so as to be antiferromagnetically coupled through a nonmagnetic film 103.
  • the magnetic film 108 and the magnetic film 106 are also laminated via the nonmagnetic film 107.
  • the magnetic direction of the magnetic film 108 and the magnetic film 106 is strongly fixed at the time of manufacture.
  • Direction of magnetization of magnetic film 104 Is the direction of the first free layer magnetic layer, and the direction of the magnetic layer of the magnetic film 102 is the direction of the second free layer magnetic layer.
  • the direction of the first free layer magnetic layer and the direction of the second free layer magnetic layer are controlled by a magnetic field generated by a write current flowing in the first wiring 110 and the second wiring 101.
  • the directions of the first and second free layer magnets are antiparallel to each other by 180 ° and are stable.
  • the direction of one free layer magnet is reversed, the direction of the other free layer magnet is also reversed so as to maintain the antiparallel state.
  • the sense operation principle of the toggle type MRAM is the same as the sense operation principle of a conventional typical MRAM. That is, a tunnel current passing through the noria layer 105 sandwiched between the magnetic film 104 and the magnetic film 106 is detected. When the direction of the first free layer magnetic layer is parallel to the direction of the second pinned layer magnetic layer of the magnetic film 106, the tunnel current increases as compared with the case of the antiparallel state. That is, the magnetic resistance (MTJ resistance) decreases. Using this feature, the information stored in the memory cell is read. For convenience of explanation, “1” (Fig. 1) indicates that the magnetoresistance is a high resistance value Rmax (tunnel current min.), And “0” indicates a low resistance value Rmin (tunnel current max.). ( Figure 2).
  • FIG. 3 is a top view showing a planar layout of the magnetoresistive effect element of the toggle type MRAM.
  • the direction of easy magnetization of the magnetoresistive effect element 125 is the X direction in which the first wiring 110 (example: word line) extends and the second wiring 10 1 (example: bit line) extends. Different from Y direction. In other words, it is characterized in that it is arranged at about 45 ° when viewed from both directions. As a result, a toggle operation described later is facilitated.
  • the toggle MRAM write operation differs depending on whether or not the read information and the information to be written are the same when the selected memory cell is read in advance. That is, the read information (“0” or “1”) and the information to be written (“0” or “1”) are equal to U. In the case, the toggle operation is not performed and the read If the information is different from the information to be written, a toggle operation is performed. In the toggle operation, the directions of the first and second free layer magnets can be changed while maintaining the antiparallel relationship.
  • 4 to 6 are diagrams showing the toggle operation principle in the toggle type MRAM. Figure 4 shows the write current I
  • FIG. 5 and 6 are diagrams showing changes in the directions of the first and second free layer magnets in the toggle operation.
  • the thin arrow indicates the direction of the second free layer magnet, and the thick arrow indicates the direction of the first free layer magnet.
  • FIG. 5 shows a case where data “1” is written to the magnetoresistive effect element in which data “0” is stored.
  • FIG. 6 shows a case where data “0” is written to the magnetoresistive effect element storing data “1”.
  • the write current I is supplied to the first wiring 110 (word line) at time tl.
  • the write current I is applied to the second wiring 101 (bit line).
  • the write current I is supplied by the above series of current control.
  • a rotating magnetic field is applied. Thereby, the directions of the first and second free layer magnets are rotated (changed). Thus, data is written.
  • each spinning flop To make one spin with each spinning flop. That is, if the initial state is “0”, it is rewritten (toggled) to “1”, and if it is “1”, it is rewritten to “0”. Therefore, each time the write operation is performed, the direction of each free layer magnet changes between a “1” state and a “0” state in a toggle manner.
  • Figure 7 shows the write current I and the memory cell toggled by the write current I (magnetoresistance).
  • the black circle corresponds to the selected cell
  • the white circle corresponds to the half-selected cell (one of the write word line and bit line is the same cell as the selected cell)
  • the back mark corresponds to the non-selected cell.
  • An area indicated as “TOGGLE” indicates an area where a toggle operation occurs.
  • the region indicated as “No Switching” indicates a region where no toggle operation occurs.
  • the write current I on the first wiring 110 and the write current I flow.
  • a half-selected memory cell placed anywhere on the second wiring 101 through which the current I flows (see FIG. 1
  • US Pat. No. 6,545,906 further has a structure as shown in FIGS. 1 to 3 which is basically the same as that of a toggle type magnetic MRAM, and has a direct write mode.
  • a technique of direct mode write type MR AM (hereinafter referred to as “direct mode type MRAM”) in which writing (hereinafter referred to as “direct write”) is performed is also disclosed.
  • direct mode type MRAM direct mode write type MRAM
  • the size of the first free layer magnetic layer is made smaller by, for example, making the thickness of the two magnetic films 102 and 104 in the free layer 111 slightly different. The size of the layer magnet is different.
  • the state of each free layer magnet only changes from the state of the memory cell “0” to the state of “1”, and in the case of a negative write magnetic field, the state of “1” Only a transition from state to state “0” occurs.
  • the positive write magnetic field is, for example, when the write current I is in the positive direction of the X axis.
  • the tatoo writing allows the recording state to be written only by the direction of the writing magnetic field. In other words, it is not necessary to read the recording state in advance like toggle writing.
  • toggle type MRAM and the direct mode type MRAM have the following problems.
  • the following explanation is the same for the force direct mode MRAM, which is described assuming the toggle type MRAM.
  • FIG. 8 is a graph showing magnetization characteristics with respect to an external magnetic field in the easy axis direction in the free layer.
  • the vertical axis represents magnetization
  • the horizontal axis represents the external magnetic field in the direction of the easy axis.
  • the two arrows shown beside the curve in the figure schematically indicate the orientation of the first and second free layer magnets. is doing.
  • H is the flop magnetic field
  • H is the saturation magnetic field
  • H is the return magnetic field.
  • r r is the magnetic field that returns to the flop state force antiparallel state.
  • the applied external magnetic field H When the applied external magnetic field H is between 0 and H, the antiferromagnetic coupling between the first free layer and the second free layer is maintained, so the magnetic field M that is difficult to induce magnetization is M Virtually zero. Accordingly, as indicated by the two arrows in the figure, the direction of the first free layer magnetic layer and the direction of the second free layer magnetic layer remain antiparallel. That is, when the write current magnetic field is along the easy axis, if the magnetic field is smaller than H, the toggle operation will not occur.
  • the applied external magnetic field H becomes H the magnetization M increases discontinuously. Then, when the external magnetic field H increases from H to H, the magnetization M changes linearly with respect to the external magnetic field. Accordingly, as indicated by the two arrows in the figure, the direction of the first free layer magnet and the direction of the second free layer magnet change depending on the magnitude and direction of the external magnetic field. That is, the toggle operation is possible as described above.
  • the magnetic field M becomes saturated and constant.
  • the direction of the first free layer magnet and the direction of the second free layer magnet are both aligned with the direction of the external magnetic field. Therefore, when the external magnetic field H then returns to 0 and the direction of the first free layer magnetic layer and the direction of the second free layer magnetic layer become anti-parallel, which direction of each free layer magnetic layer is It becomes unclear whether it is suitable. Therefore, it is unclear whether the direction of each free layer magnet is the desired direction. That is, stable toggle operation is impossible.
  • the upper and lower limits of the magnetic field in which the toggle operation is performed are defined by the saturation magnetic field H and the flop magnetic field H, respectively. This will be further described with reference to FIG. Figure
  • FIG. 9 is a graph representing the first quadrant of FIG. 7 with respect to the magnetic field.
  • the vertical axis shows the write current I flowing through the word line.
  • generated by WL is shown.
  • the horizontal axis shows the bit line vertical magnetic field generated by the write current I flowing through the bit line.
  • the region surrounded by the closed curve B is the “TOGGLE” region in FIG.
  • the closed curve B consists of the curves B1 and B3 determined by the flop magnetic field H and the curve B2 determined by the saturation magnetic field H.
  • the path of the magnetic field applied to the selected cell is R ⁇ R ⁇ R ⁇ R.
  • H Antiferromagnetic coupling magnetic field between the first free layer and the second free layer, and at least H> H.
  • the flop magnetic field is small. That is, it is preferable that the curve B1 approaches the vertical axis and the curve B3 approaches the horizontal axis. In addition, it is desirable that the ratio of the saturation magnetic field and the flop magnetic field is large from the viewpoint of the operation margin for operating the plurality of memory cells in the MRAM in the same manner. That is, it is preferable that the area of the closed curve B is widened. In order to satisfy these conditions, it can be seen from the above formulas (1) and (2) that it is preferable to reduce H.
  • H It is necessary to secure the size. For example, after recording information, H must satisfy the following equation in order to maintain the recorded state for 10 years.
  • ⁇ E The energy barrier required for the magnetic force of two free layers to transition to one antiparallel state force and the other antiparallel state
  • Thickness Free layer thickness
  • FIG. 10 is a graph showing the relationship between the energy barrier and the magnetic field applied to the selected cell during the write operation.
  • the vertical axis is the energy barrier standardized by the energy needed to hold data for 10 years.
  • the horizontal axis shows the magnetic field applied to the selected cell during the write operation specified by H.
  • the magnetic field H is in the easy axis direction.
  • the solid line shows the energy nore that is necessary for the magnetizations of the two free layers to transition to one antiparallel state force and the other antiparallel state.
  • FIG. 11A an energy nodule for changing the direction of each magnetic domain from the state shown on the lower side to the state shown on the upper side is shown.
  • the broken line shows an energy barrier for maintaining the relative orientation of the magnetic layer between the magnetic layers in the free layer during the toggle operation.
  • FIG. 11B the energy noir for the state shown in the upper side to be changed from the state shown in the lower side to the state shown in the upper side by rotating in the same direction.
  • the dotted line indicates an energy noor for maintaining the relative orientation relationship between the magnetic layers in the free layer during the toggle operation. Specifically, as shown in FIG. 11C, the energy noir is changed from the state shown on the lower side to the state shown on the upper side by rotating the directions of the magnets in opposite directions. Show.
  • the energy barrier shows a convex (dashed line + dotted line) characteristic in the magnetic field range up to the flop magnetic field H force saturation magnetic field H applied during toggle operation.
  • the energy barrier is f 1 s 2
  • the energy barrier is below the required energy barrier. Therefore, the first and second free layers are caused by thermal disturbance during the toggle operation. There is a possibility that the directions of the magnets rotate in opposite directions, and a state shown in the upper side is obtained. Also in this case, the directions of the magnetic keys of the first and second free layers are reversed.
  • Such a problem is peculiar to a toggle type MRAM that performs a write operation while generally maintaining an antiparallel state between a plurality of magnetic layers in a free layer.
  • a conventional MRAM which is different from a toggle type MRAM, there is no need to worry about the direction of the magnetic field in the free layer during a write operation.
  • Japanese Patent Application Laid-Open No. 2003-115577 discloses a recording / reproducing method for a nonvolatile magnetic thin film memory device.
  • the recording / reproducing method of this nonvolatile magnetic thin film memory device is And a recording / reproducing method for a nonvolatile magnetic thin film memory device having a substrate, a plurality of memory cells each having a magnetoresistive effect element provided on the substrate, and a transistor.
  • trial writing of information is performed in the memory cell, and after confirming recording of the trial writing, regular data is recorded. In other words, trial writing is performed in a memory cell for trial writing before information is recorded, and regular data writing is performed after a current value at which information can be recorded is confirmed. If test writing fails, the current value may be changed and test writing may be performed again.
  • an object of the present invention is to determine the orientation of the first free layer magnetic layer and the direction of the second free layer magnetic layer during the write operation without increasing the flop magnetic field and the write current.
  • Another object of the present invention is to provide a toggle type and direct mode write type MRAM that can prevent malfunction during a write operation without increasing power consumption, and a method for operating the MRAM. It is.
  • the operation method of the magnetic random access memory of the present invention includes a step of writing data to the memory cell and a step of determining whether or not the data has been written to the memory cell. And rewriting the data to the memory cell when the data is not written.
  • the magnetic random access memory includes a memory cell including a free magnetic layer formed by stacking two or more magnetic layers antiferromagnetically coupled via a nonmagnetic layer, and a first wiring extending in the first direction. And a second wiring extending in a second direction different from the first direction.
  • the direction of the easy magnetic axis of the free magnetic layer is different from the first and second directions.
  • the writing step includes a step of executing a read operation on the memory cell and a toggle write method for the memory cell based on a result of the read operation. Steps to perform data write operation With. According to the present invention, it is possible to prevent a malfunction during a write operation especially for a toggle type MRAM. Further, the step of writing comprises the step of writing the data to the memory cell by a direct write method. According to the present invention, it is possible to prevent a malfunction during a write operation especially for a direct type MRAM.
  • the magnetic random access memory operating method further comprises the step of re-determining whether the data is written to the memory cell.
  • it is re-determined whether the data has been written after the rewriting performed when writing fails, so that it is possible to reliably grasp the malfunction during the toggle writing operation.
  • the method further includes the step of repeatedly executing the step of rewriting and the step of determining until the data is written to the memory cell. In the present invention, the write operation is continued until data is written, so that the malfunction during the toggle write operation can be prevented more reliably.
  • the step of rewriting includes the step of performing the data write operation again with the same write current as the previous data write operation.
  • the data may be written with a different write current from the previous data write operation.
  • the current value can be optimized and data can be written more reliably.
  • the data write operation may be performed again with a smaller write current than when the previous data write operation was performed.
  • the current value can be optimized for a memory cell with a small saturation magnetic field, and data can be written more reliably. I can do it.
  • the data can be written again with a larger write current than when the data was written last time.
  • the current value can be optimized for memory cells with a large saturation magnetic field. Data can be written to
  • a step of outputting a signal indicating an alarm may be further provided. As a result, it is possible to grasp that there is a memory cell in which toggle writing cannot be performed in the toggle type and direct mode type MRAM.
  • a step of registering the memory cell as a defective bit may be further provided. As a result, it is possible to operate by excluding memory cells that cannot be programmed.
  • a method of manufacturing a magnetic random access memory includes: a step of manufacturing a chip body of the magnetic random access memory; and a write current having a preset current value in the chip body.
  • a step of writing data a step of determining whether or not the data has been written to the memory cell, and a step of rewriting the data to the memory cell if the data has been written.
  • Step of writing step of repeatedly executing the step of determining and rewriting until the data is written to the memory cell, and current information indicating the current value when the data is written ( n value) and count information (n value) indicating the number of write operations until the data is written.
  • the magnetic random access memory includes a memory cell including a free magnetic layer formed by stacking two or more magnetic layers that are antiferromagnetically coupled via a nonmagnetic layer, and a first wiring extending in the first direction. And a second wiring extending in a second direction different from the first direction.
  • the direction of the easy axis of the free magnetic layer is different from the first direction and the second direction.
  • the writing step is based on the step of executing a read operation on the memory cell and the result of the read operation!
  • the step of executing the data write operation to the memory cell by the toggle write method. May be provided.
  • the step of rewriting comprises the step of performing the data write operation again on the memory cell by the toggle write method when the data is not correctly written. According to the present invention, it is possible to properly inspect the toggle writing especially at the manufacturing stage of the toggle type MRAM.
  • the step of writing may include a step of performing a data write operation on the memory cell by a direct write method.
  • the step of rewriting may include a step of rewriting the data to the memory cell by the direct writing method if the data has been written. This makes it possible to properly perform inspections related to toggle writing at the manufacturing stage, especially for direct MRAM.
  • the step of rewriting may include a step of rewriting the data to the memory cell with the same write current as when the data was written last time. Further, the step of rewriting may include a step of performing the data write operation again on the memory cell with a write current different from that when the data write operation was performed last time. The step of rewriting with a different current is smaller than the previous data write operation, and the step of rewriting the data to the memory cell with the write current may be provided.
  • the method may further include a step of resetting a current value of a write current in the chip body based on current information (n value) of a plurality of memory cells to be inspected. Since the default value of the write current is reset so as to correspond to the current value that has been written, a toggle-type MRAM with a more stable write operation can be manufactured.
  • a method for inspecting a magnetic random access memory includes a step of writing data into a memory cell with a write current having a preset current value in a chip body of the magnetic random access memory, Was that data written to the cell? Determining whether or not the data has been written, rewriting the data to the memory cell, and determining and rewriting until the data is written to the memory cell Steps for repeatedly executing the step, current information indicating the current value when the data is written (n value), and count information indicating the number of write operations until the data is written a step of storing at least one of (n values), and a step of executing all the above steps for a plurality of memory cells to be inspected.
  • the magnetic random access memory includes a memory cell including a free magnetic layer in which two or more magnetic layers antiferromagnetically coupled via a nonmagnetic layer are stacked, a first wiring extending in a first direction, Second wiring extending in a second direction different from the first direction.
  • the direction of the easy axis of the free magnetic layer is different from the first direction and the second direction.
  • the writing step includes a step of executing a read operation on the memory cell and a step of writing the data to the memory cell by a toggle write method based on the result of the read operation.
  • the step of rewriting includes the step of rewriting the data to the memory cell by the toggle writing method if the data has been written.
  • the step of writing may comprise a step of performing a data write operation on the memory cell by a direct write method.
  • the step of rewriting may include a step of rewriting the data to the memory cell by the direct writing method when the data is not written.
  • the step of rewriting includes a step of performing the data write operation on the memory cell again with the same write current as the previous data write operation.
  • the step of rewriting may include a step of rewriting the data to the memory cell with a different write current from the previous data write operation.
  • the step of rewriting with a different write current preferably includes the step of rewriting the data to the memory cell with a smaller write current than when the data was written last time.
  • the above magnetic random access memory inspection method has a plurality of memory cells to be tested.
  • a step of resetting the current value of the write current in the chip body based on the current information (n value) of the chip may be further provided. Further, it is preferable that the method further includes a step of classifying the chip body based on the number of times information (n value) of the plurality of memory cells to be inspected.
  • a magnetic random access memory in another aspect of the present invention, includes a plurality of first wirings, a plurality of second wirings, a plurality of memory cells, and a write control unit.
  • the plurality of first wirings extend in the first direction.
  • the plurality of second wirings extend in a second direction different from the first direction.
  • the plurality of memory cells are provided corresponding to respective positions where the plurality of first wirings and the plurality of second wirings intersect.
  • the write control unit controls the write operation of the plurality of memory cells.
  • Each of the plurality of memory cells includes a magnetoresistive element.
  • the write control unit supplies the first write current to the selected first wiring. Next, a second write current is supplied to the selected second wiring. Then stop the first write current. Next, the second write current is stopped.
  • the write control unit re-determines whether or not the data has been written to the selected cell for which the write operation has been performed again. In the magnetic random access memory, the write control unit determines whether or not the data has been written to the selected cell until the data is written to the selected cell, and the data is written. If not, it is preferable to repeatedly execute the write operation on the selected cell.
  • the write controller when the data is not written, the write controller preferably performs the write operation again with the same write current as when the previous write operation was performed.
  • the write control unit when the data is not written, the write control unit preferably changes the write current to that different from the previous write operation and performs the write operation again. In the magnetic random access memory described above, when the data is not written, the write control unit preferably changes the write current to be smaller than the previous write operation and performs the write operation again. In the magnetic random access memory, when the data is not written, the write control unit preferably performs the write operation again with the same write current as when the previous write operation was performed. If the data is still not written, it is preferable to perform the write operation again with a different write current from the previous write operation.
  • the write control unit outputs a signal indicating an alarm if the data is not written even if the write operation is repeated a predetermined number of times.
  • the write controller repeats the write operation a predetermined number of times, it is preferable to output a signal indicating an alarm for registering the selected cell as a defective bit.
  • FIG. 1 is a cross-sectional view showing a structure of a typical magnetoresistive effect element used in a toggle type MRAM.
  • FIG. 2 is a cross-sectional view showing a structure of a typical magnetoresistive effect element used in a toggle type MRAM.
  • FIG. 3 is a top view showing a planar layout of a magnetoresistive element of a toggle type MRAM.
  • FIG. 4 is a timing chart of a write current in a toggle operation.
  • FIG. 5 is a diagram showing a change in direction of the first and second free layer magnets in the toggle operation.
  • Fig. 6 is a diagram showing a change in direction of the first and second free layer magnets in the toggle operation.
  • FIG. 7 is a graph showing a relationship between a write current and a toggled memory cell.
  • Fig. 8 shows the magnetic field characteristics of the free layer with respect to the external magnetic field in the easy axis direction.
  • FIG. 9 is a graph representing the first quadrant of FIG. 7 with respect to the magnetic field.
  • FIG. 10 is a graph showing the relationship between an energy barrier and a magnetic field applied to a selected cell during a write operation.
  • FIGS. 11A to 11 L 1C is a diagram showing a change in direction of the first and second free layer magnets in each range.
  • FIG. 12 is a block diagram showing a configuration of an embodiment of a toggle type MRAM according to the present invention.
  • FIG. 13 is a cross-sectional view showing an example of the configuration of a memory cell in the present invention.
  • FIG. 14 is a cross-sectional view showing an example of the configuration of a magnetoresistive effect element in a memory cell of a toggle type MRAM according to the present invention.
  • FIG. 15 is a top view showing a planar layout of the magnetoresistive element in the memory cell of the toggle type MRAM of the present invention.
  • FIG. 16 is a flowchart showing an operation method of the toggle type MRAM according to the present invention.
  • FIG. 17 is a flowchart showing a method for manufacturing a toggle-type MRAM according to the present invention.
  • FIG. 12 is a block diagram showing a configuration of an embodiment of a toggle type MRAM according to the present invention.
  • Toggle type MRAM has multiple write word lines 26, multiple read word lines 28, multiple bit lines 27, memory cell array 30, X decoder 38, first write current source 39, X termination circuit 40, Y decoder 41 , Second write current source 42, Y termination circuit 44, sense amplifier 45, reference voltage
  • a write word line 26 having a position generation circuit 46, a read determination circuit 50, a counter 51, and a write controller 52 is provided to extend in the X-axis direction as the first direction, and one end is connected to the X decoder 38. The other ends are connected to the X termination circuit 40, respectively.
  • the read lead wire 28 is provided so as to extend in the X-axis direction, and one end is connected to the X decoder 38 and the other end is connected to the X termination circuit 40.
  • the bit line 27 is provided so as to extend in the Y-axis direction as a second direction substantially perpendicular to the X-axis direction, and has one end connected to the Y decoder 41 and the other end connected to the Y termination circuit 44.
  • the memory cell array 30 includes a plurality of memory cells 10 arranged in a matrix.
  • the plurality of memory cells 10 are provided corresponding to positions where a plurality of sets of write word lines 26 and read word lines 28 and a plurality of bit lines 27 intersect.
  • the X decoder 38 selects one read word line 28 from the plurality of read word lines 28 as the selected read word line 28s based on the input of the X address during the read operation of the memory cell 10.
  • one write word line 26 is selected from the plurality of write word lines 26 as the selective write word line 26s based on the input of the X address.
  • the first write current source 39 supplies a predetermined write current I to the selective write side line 26s during the write operation of the memory cell 10.
  • X termination circuit 40 is used to write memory cell 10
  • the write current I flowing in the selected write word line 26s is terminated.
  • the read current I is supplied to the selected read word line 28s.
  • the ⁇ decoder 41 selects one bit line 27 as a selected bit line 27 s from the plurality of bit lines 27 based on the input of the Y address during the read operation and the write operation of the memory cell 10.
  • the second write current source 42 supplies a predetermined write current I to the selected bit line 27s during the write operation of the memory cell 10.
  • the Y termination circuit 44 is used to write to the memory cell 10.
  • the reference potential generation circuit 46 outputs a reference potential (eg, the potential of the reference cell) to the sense amplifier 45 when the memory cell 10 is read.
  • the state of the selected cell 10s (data, “0” or “1”) is detected by comparing with the output potential of the reference potential generation circuit 46.
  • the read determination circuit 50 compares the data to be written from the write controller 52 with the data read from the sense amplifier 45. If both data are the same, it is determined that the writing was successful. Then, a write signal is output to the write controller 52 in order to execute the data write of the next memory cell. If the two data are different, it is determined that the write has failed. Then, a rewrite signal is output to the write controller 52 in order to rewrite data to the same memory cell.
  • the counter 51 stores the number n of data writes to the same memory cell under the control of the write controller 52.
  • the write controller 52 Based on the control signal including the address signal and the data to be written, the write controller 52 generates an X decoder 38, a first write current source 39, an X termination circuit 40, a Y decoder 41, a second write current source 42, and a Y termination circuit. 44 controls to perform a toggle write operation. Then, based on the rewrite signal of the read determination circuit 50, the value of the write current is changed, and the toggle write operation to the same memory cell is executed again. When the read decision circuit 50 outputs a write signal, it controls the toggle write operation of data to the next memory cell. Current information indicating the current value when data in each memory cell is written to the internal storage unit (not shown), and the number of times the toggle write operation is performed until the data is written Store at least one of the information.
  • FIG. 13 is a cross-sectional view showing an example of the configuration of the memory cell in the present invention.
  • Memory cell 10 includes a magnetoresistive element 25 and a MOS transistor 36.
  • the MOS transistor 36 has a source 36a, a gate 36b, and a drain 36c, and is embedded in the p-type semiconductor substrate 20.
  • Source 36a is shaped as an N-type diffusion layer of semiconductor substrate 20. And is grounded via a contact 191 and a third metal layer 23 extending on the semiconductor substrate 20.
  • the gate 36 b is provided on the semiconductor substrate 20 via the insulating film 24, and is connected to the read lead line 27.
  • the drain 36c is formed as an N-type diffusion layer of the semiconductor substrate 20 and is magnetoresistive through the contacts 19-2 to 4-4, the first and second metal layers 21 and 22 and the lower electrode 18 extending on the semiconductor substrate 20. Connected to one end of effect element 25.
  • a write word line 26 is arranged near the lower side (semiconductor substrate 20 side) of the magnetoresistive effect element 47 (a position where it is electrically insulated and capable of magnetic interaction).
  • FIG. 14 is a cross-sectional view showing an example of the configuration of the magnetoresistive element in the memory cell of the toggle type MRAM of the present invention.
  • the magnetoresistive element 25 is provided between the bit line 27 and the write word line 26.
  • Free layer 1 consists of first magnetic film 11 + first nonmagnetic film 12 + second magnetic film 13 + second nonmagnetic film 14 + third magnetic film 15 + third nonmagnetic film 16 + fourth magnetic film 17 +
  • N ⁇ 2 N is a natural number
  • FIG. 15 is a top view showing a planar layout of the magnetoresistive effect element in the memory cell of the toggle type MRAM of the present invention.
  • the easy axis direction of the free layer 1 of the magnetoresistive element 25 is arranged to be approximately 45 ° when viewed from the X direction in which the write word line 26 extends and the Y direction in which the bit line 27 extends. ing.
  • FIG. 16 is a flowchart showing the operation method of the toggle type MRAM of the present invention. This operation is performed by data writing in the case of normal use and data writing in the case of inspection.
  • a control signal is input to the write controller 52.
  • the write controller 52 writes to the selected cell 10s by a toggle operation. Specifically, the X address is sent to the X decoder 38, the Y address is sent to the Y decoder 41, the control signal is sent to the first write current source 39, the second write current source 42, the X termination circuit 40 and the Y termination circuit 44. Each is output. X decoder 38 supplies write current I to selected write word line 26s.
  • the Y decoder 41 supplies a write current I to the selected bit line 27s. afterwards
  • the X decoder 38 stops supplying the write current I.
  • the write controller 52 reads data written to the selected cell 10s. Specifically, the X address is output to the X decoder 38, the Y address is output to the Y decoder 41, and the control signal is output to the first write current source 39 and the Y termination circuit 44, respectively.
  • the X decoder 38 supplies a read current I to the selected read word line 28s. Read current I is selected cell 10s.
  • the signal passes through the Y termination circuit 44 via the selected bit line 27s selected by the Y decoder 41. At that time, the sense amplifier 45 compares the potential of the selected bit line 27s with the potential of the reference potential generation circuit 46, and outputs the read data.
  • the read determination circuit 50 determines whether or not the write data received from the write controller 52 and the data read by the sense amplifier 45 are equal. Etc., if (SO 5: Yes), output a write signal to write controller 52 to execute the next data write.
  • the write controller 52 stores the count value n when the memory cell is successfully written. n corresponds to the number of toggle write attempts. Since n is also related to the write current value (described later), it corresponds to the current value. If they are not equal (S05: No), it is necessary to rewrite, so a rewrite signal for that purpose is output to the write controller 52.
  • the write controller 52 determines whether n exceeds the preset maximum value n (n> n).
  • the write controller 52 changes the data write condition.
  • the write condition is as follows, corresponding to the value of n.
  • step S02. the correspondence table between n and the write current is stored in a storage unit (not shown) of the write controller 52.
  • the write controller 52 is responsible for this write operation for pre-shipment inspection such as shipping inspection. If it is performed in (S09: Yes), go to step S10. If it is V ⁇ in such an inspection (S09: No), go to step S11.
  • the write controller 52 outputs to the outside that the toggle type MRAM is defective through the read determination circuit 50, and performs defect registration.
  • the write controller 52 outputs, via the read determination circuit 50, a failure warning alarm indicating that there is a defective memory cell in the toggle type MRAM. At this time, n max may be changed from that at the time of shipping inspection.
  • the toggle MRAM operating method of the present invention is executed.
  • Reducing B is to reduce the magnetic field applied to the memory cell.
  • the magnetic field that was originally in range A in Figure 10 will approach range A, and the energy barrier will be
  • the setting of the write current in step S08 in the operation method of the toggle type MRAM of the present invention is not limited to the above example.
  • the flow I may have a different value, or one may be increased and the other decreased. So
  • the toggle type MRAM can change the write current step by step as needed. It is a force that does not need to consider the effect of the magnetic field due to the write current on the half-selected cell.
  • the half-selected cell is affected by the magnetic field due to the write current, so the write current once set cannot be changed step by step as necessary.
  • the number value or write current value stored for each memory cell is managed for each memory cell, but it is averaged for one column or one row or averaged. It may be managed by being approximated to a value. Alternatively, it is averaged or approximated to a close value for each given block
  • the anisotropic magnetic field and the antiferromagnetic coupling magnetic field are determined only by the resistance to thermal disturbance during holding without considering the decrease in energy noria during writing. Assuming that a malfunction will occur with a certain probability due to a decrease in the energy norm during writing, check whether writing has been performed normally for each writing operation. If the frequency of malfunctions due to thermal disturbance is sufficiently low, normal writing can be performed by rewriting at most several times. Furthermore, the probability of normal writing can be increased by changing the current value during rewriting.
  • FIG. 17 is a flowchart showing a method for manufacturing the toggle type MRAM according to the present invention.
  • a toggle MRAM chip body (not shown) is manufactured by a conventionally known semiconductor manufacturing process. That is, referring to FIG. 13, the outline will be described.
  • the MOS transistor 36 is formed on the semiconductor substrate 20.
  • contacts (vias) 19-1 to 19-4 and first to third metal layers 21 to 23 are formed to connect the MOS transistor 36 and the base electrode 18 while the interlayer insulating film is formed. .
  • a write word line 26 is formed.
  • the magnetoresistive effect element 25 including the antiferromagnetic layer 4, the pinned layer 3, the barrier layer 2, the free layer 1 made of an N ( ⁇ 2) magnetic film on the lower electrode 18, and the cap layer 5 is formed.
  • the bit line 27 is formed. And a time to execute the rewrite algorithm.
  • a path is provided at the periphery of the cell array.
  • the inspection of the toggle type MRAM chip body is performed by the inspection device.
  • the inspection method the operation method of the toggle type MRAM of the present invention shown in FIG. 16 is executed. At that time, step S09 is Yes.
  • step S22 The operation method of the toggle type MRAM in step S22 is executed for all the memory cells to be inspected in the chip body. However, if you register a defect in step S10, you can end step S22 and proceed to step S24 at that time!
  • each of the write current I and write current I of the toggle MRAM is
  • the current value is reset.
  • the toggle MRAM class is then determined.
  • the write current value can be optimized for each toggle-type MRAM. As a result, it is possible to reduce the number of times the write is re-executed during the write operation. Such determination and resetting of values for resetting may be performed for each toggle type MRAM or for each manufacturing lot. In that case, the resetting time can be further shortened.
  • Toggle type MRAM classes are classified into low-level classes when, for example, the value of n varies or is large, the value is large, and n is large. When the value of n is almost equal, or when the value of n is small, it is classified into a higher class. In this case, the higher layer class has a higher writing speed. A lower hierarchy class has a slower writing speed.
  • the manufacturing method of the toggle type MRAM of the present invention is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気ランダムアクセスメモリは、第1方向へ伸びる複数の第1配線と、第1方向とは異なる第2方向へ伸びる複数の第2配線と、複数の第1配線と複数の第2配線との交点に形成された複数のメモリセルとを備えている。複数のメモリセルの各々は、非磁性層を介して反強磁性的に結合した2層以上の磁性層を積層したフリー磁性層を含み、フリー磁性層の磁化容易軸の方向が、第1方向及び第2方向とは異なる。複数のメモリセルの1つとしての特定メモリセルに対して、予め決められた書込条件でデータが書込まれる。データが特定メモリセルに正しく書き込まれるまで、書込み条件を再設定しながら、データが特定メモリセルに繰り返し書き込まれる。

Description

磁気ランダムアクセスメモリ、その動作方法及びその製造方法 技術分野
[0001] 本発明は、磁気ランダムアクセスメモリに関し、特にトグル書込み又はダイレクト書込 みを行う磁気ランダムアクセスメモリに関する。
背景技術
[0002] 記憶素子としての磁気抵抗効果素子(MTJ : Magnetic Tunneling Junction) の磁ィ匕の向きを制御することで、データを記憶する磁気ランダムアクセスメモリ(以下 、「MRAM」と記す)が知られている。磁化の向きの記録方法により、 MRAMはいく つかの種類に分けられる。
[0003] 米国特許 6, 545, 906号公報 (第 1従来例)には、トグル書込み方式 (toggle wri te mode)で書込み(以下「トグル書込み」 t 、う)が行われるトグル型磁気ランダムァ クセスメモリ(以下、「トグル型 MRAM」と記す)の技術が開示されている。このトグル 型 MRAMは、従来の典型的な MRAMと比べて、メモリセルの構造と書込み動作の 原理が異なる。特に、書き込み動作時におけるメモリセルの選択性が優れているとい う点に特徴がある。以下、米国特許 6, 545, 906号公報のトグル型 MRAMについて 詳細に説明する。
[0004] 図 1及び図 2は、トグル型 MRAMに用いられる典型的な磁気抵抗効果素子の構造 を示す断面図である。この磁気抵抗効果素子 125は、第 1配線 110と第 2配線 101と の間に設けられている。第 1配線 110側から順に、反強磁性層 109、ピン層 112、バ リア層 105、フリー層 111を備え、第 2配線 101へ接続されている。ピン層 112は、磁 性膜 108、非磁性膜 107、磁性膜 106を備える。フリー層 111は、磁性膜 104、非磁 性膜 103、磁性膜 102を備えている。
この磁気抵抗効果素子 125は、膜厚が等しい磁性膜 104及び磁性膜 102が、非磁 性膜 103を介して反強磁性結合となるように積層されている点に特徴がある。磁性膜 108と磁性膜 106も、非磁性膜 107を介して積層されている。磁性膜 108及び磁性 膜 106の磁ィ匕方向は、製造時に強く固定されている。磁性膜 104が持つ磁化の向き を第 1フリー層磁ィ匕の向きとし、磁性膜 102が持つ磁ィ匕の向きを第 2フリー層磁ィ匕の 向きとする。第 1フリー層磁ィ匕の向き及び第 2フリー層磁ィ匕の向きは、第 1配線 110及 び第 2配線 101に流れる書き込み電流により生成される磁界により制御される。ここで 、第 1及び第 2フリー層磁ィ匕の向きは互いに 180° 反転した反平行状態であり安定し ている。一方のフリー層磁ィ匕の方向が反転した場合、他方のフリー層磁ィ匕の向きも、 その反平行状態を保つように反転される。
[0005] トグル型 MRAMにおけるセンス動作原理は従来の典型的な MRAMのセンス動作 原理と同様である。すなわち、磁性膜 104と磁性膜 106とに挟まれたノリア層 105を 貫通するトンネル電流が検出される。磁性膜 106が持つ第 2ピン層磁ィ匕の向きに対し て第 1フリー層磁ィ匕の向きが平行状態である場合は、反平行状態である場合よりも上 記トンネル電流が増加する。すなわち磁気抵抗 (MTJ抵抗)が低下する。この特徴を 利用してメモリセルに格納された情報を読み出す。ここで、説明の便宜上、磁気抵抗 が高抵抗値 Rmax (トンネル電流 min. )である場合を「1」(図 1)、低抵抗値 Rmin (ト ンネル電流 max. )である場合を「0」(図 2)と定義する。
トグル型 MRAMにおけるメモリセルの平面レイアウトは、従来の典型的な MRAM のそれとは異なっている。図 3は、トグル型 MRAMの磁気抵抗効果素子の平面レイ アウトを示す上面図である。トグル型 MRAMにおいて、磁気抵抗効果素子 125の磁 化容易軸方向は、第 1配線 110 (例示:ワード線)が延在する X方向及び第 2配線 10 1 (例示:ビット線)が延在する Y方向と異なる。つまり、両方向から見ておよそ 45° 方 向になるように配置されることに特徴がある。この結果、後述するトグル動作が容易に なる。
[0006] 次に、従来の典型的な MRAMとは異なるトグル型 MRAMの書き込み動作の原理 について説明する。トグル型 MRAMの書き込み動作は、予め選択メモリセルの読み 出しを実行しておき、その読み出された情報と書き込みをしょうとする情報とが同じか 否かで異なる。すなわち、読み出された情報(「0」又は「1」)と書き込みをしょうとする 情報(「0」又は「1」)とが等 U、場合にはトグル動作は行われず、読み出された情報と 書き込みをしょうとする情報とが異なる場合にはトグル動作が行われる。トグル動作で は、反平行の関係を保ちながら第 1及び第 2フリー層磁ィ匕の方向が変えられる。 図 4〜図 6は、トグル型 MRAMにおけるトグル動作原理を示す図である。図 4は、ト ダル動作における書き込み電流 I
WL及び書き込み電流 I の
BL タイミングを示すタイミン グチャートである。図 5及び図 6は、トグル動作における第 1及び第 2フリー層磁ィ匕の 向きの変化を示す図である。細い矢印は第 2フリー層磁ィ匕の向きを示し、太い矢印は 第 1フリー層磁ィ匕の向きを示す。図 5は、データ「0」が格納された磁気抵抗効果素子 にデータ「1」が書き込まれる場合を示している。図 6は、データ「1」が格納された磁気 抵抗効果素子にデータ「0」が書き込まれる場合を示して ヽる。
図 4を参照して、トグル動作では、時刻 tlで第 1配線 110 (ワード線)に書き込み電 流 I が供給される。次いで、時刻 t2で第 2配線 101 (ビット線)に書き込み電流 I が
WL BL
供給される。時刻 t3で書き込み電流 I の供給は停止され、時刻 t4で書き込み電流 I
WL
の供給が停止される。以上の一連の電流制御により、書き込み電流 I が供給され
BL WL
る第 1配線 110と書き込み電流 I が供給される第 2配線 101の交点の選択セルには
Bし
回転磁界が加わる。それにより、第 1及び第 2フリー層磁ィ匕の向きが回転 (変更)させ られる。こうして、データが書き込まれる。
図 5及び図 6を参照して、磁気抵抗効果素子において、時刻 tlで、書き込み電流 I
W
により磁界 H が発生され、第 1及び第 2フリー層磁ィ匕の向きが回転し始める。時刻 t し WL
2で、書き込み電流 I により界 H が発生され、第 1及び第 2フリー層磁化のうちの
BL BL 一 方の向きが磁ィ匕困難軸を超える。時刻 t3で、磁界 H が消滅し、第 1及び第 2フリー
WL
層磁ィ匕のうちの他方の向きも磁ィ匕困難軸を超える。時刻 t4で、磁界 H
Bしが消滅する。 このように、第 1及び第 2フリー層磁ィ匕の向きは、回転磁界 (H →H +H →H )
WL WL BL BL
により、それぞれスピンフロップした状態で 1回転する。すなわち、初期状態が「0」の 状態である場合は「1」の状態に、「1」の状態である場合は「0」の状態に書き換えられ る(トグルされる)。したがって、書込み動作の度に、各フリー層磁ィ匕の向きは「1」の状 態と「0」の状態との間でトグルスイッチ的に変化する。
図 7は、書き込み電流 I 及び書き込み電流 I とトグルされるメモリセル (磁気抵抗
WL BL
効果素子)との関係を示すグラフである。縦軸は書き込み電流 I 、横軸は書き込み
WL
電流 I
Bしを示す。黒丸印は選択セルに、白丸印は半選択セル (書き込みワード線及び ビット線のいずれか一方が選択セルと共通のセル)に、バッ印は非選択セルに対応 する。「TOGGLE」と示された領域は、トグル動作が発生する領域を示す。「No Sw itching]と示された領域は、トグル動作が発生しない領域を示す。
トグル型 MRAMでは、書き込み電流 I が流れる第 1配線 110上及び書き込み電
WL
流 I が流れる第 2配線 101上のいずれかに配置される半選択状態のメモリセル(図
Bし
中、白丸印)には、一方向の磁界し力加わらないため誤書き込みする可能性は非常 に低い。よって、書き込み電流値の厳密な制御は必要なぐ書き込みマージンは従 来の典型的な MRAMと比較して飛躍的に向上する。
[0008] 米国特許 6, 545, 906号公報には、更に、トグル型磁気 MRAMと基本的に同様 の図 1〜図 3に示すような構造を有し、ダイレクト書込み方式(direct write mode) で書込み(以下、「ダイレクト書込み」と 、う)が行われるダイレクトモード書込み型 MR AM (以下、「ダイレクトモード型 MRAM」と記す)の技術も開示されている。ただし、 ダイレクトモード型 MRAMでは、例えば、フリー層 111における二つの磁性膜 102及 び磁性膜 104の厚さに若干差異を持たせることにより、第 1フリー層磁ィ匕の大きさが 第 2フリー層磁ィ匕の大きさとは異なるようにされている。それにより、正の書込み磁界 の場合、各フリー層磁ィ匕の状態はメモリセル「0」の状態から「1」の状態への遷移のみ が起こり、負の書込み磁界の場合、「1」の状態から「0」の状態への遷移のみが起こる ようにする。ここで、正の書込み磁界は、例えば、書き込み電流 I が X軸正方向、書
WL
き込み電流 I が Y軸正方向の場合の磁界であり、負の書込み磁界は、書き込み電
Bし
流 I が X軸負方向、書き込み電流 I が Y軸負方向の場合の磁界である。このダイレ
WL BL
タト書込みは、トグル書込みと異なり、書込み磁界の方向だけで記録状態の書き分け をすることができる。すなわち、トグル書込みのように事前に記録状態を読み込んで おく必要はない。
[0009] し力し、トグル型 MRAM、ダイレクトモード型 MRAMには、以下に示すような課題 がある。なお、以下の説明はトグル型 MRAMを想定して記載している力 ダイレクト モード型 MRAMにおいても本質は同様である。
[0010] 図 8は、フリー層における磁化容易軸方向の外部磁界に対する磁化特性を示すグ ラフである。縦軸は磁化を、横軸は磁ィ匕容易軸方向の外部磁界を示している。図の 曲線のそばに示される 2つの矢印は、第 1及び第 2フリー層磁ィ匕の向きを概略的に示 している。 Hはフロップ磁界、 Hは飽和磁界、 Hはリターン磁界を示す。ただし、 H
r r はフロップ状態力 反平行状態に戻る磁界である。
印加される外部磁界 Hが 0から Hまでの場合、第 1フリー層と第 2フリー層との間の 反強磁性的な結合が保たれるので、磁化が誘起され難ぐ磁ィ匕 Mは実質的に 0にな る。それに伴い、図の 2つの矢印に示されるように、第 1フリー層磁ィ匕の向きと第 2フリ 一層磁ィ匕の向きとは反平行の状態を維持する。すなわち、書き込み電流磁界が磁化 容易軸に沿った場合、その磁界が Hよりも小さな場合は、トグル動作は起きない。 印加される外部磁界 Hが Hになると、磁化 Mは不連続に増大する。その後外部磁 界 Hが Hから Hまで増加する場合、外部磁界に対して磁化 Mは線形的に変化する。 それに伴い、図の 2つの矢印に示されるように、第 1フリー層磁ィ匕の向きと第 2フリー 層磁ィ匕の向きとは、外部磁界の大きさと向きに応じて向きを変える。すなわち、前述 のようにトグル動作が可能である。
外部磁界 Hが H以上の場合、磁ィ匕 Mは飽和して一定となる。それに伴い、図の 2 つの矢印に示されるように、第 1フリー層磁ィ匕の向きと第 2フリー層磁ィ匕の向きとは、 いずれも外部磁界の向きと同じ向きに揃う。そのため、その後外部磁界 Hが 0に戻り、 第 1フリー層磁ィ匕の向きと第 2フリー層磁ィ匕の向きとが反平行になった場合、各フリー 層磁ィ匕の向きがどちらを向いているか不明となる。よって、各フリー層磁ィ匕の向きが 所望の向きになっているか否か不明となる。すなわち、安定的なトグル動作が不可能 である。
以上のように、トグル動作が行われる磁界の上限及び下限は、それぞれ飽和磁界 H及びフロップ磁界 Hにより規定される。このことを、図 9を用いて更に説明する。図
9は、図 7の第 1象限を磁界について表現したグラフである。縦軸は、ワード線を流れ る書き込み電流 I
WLにより生成されるワード線垂直磁界を示す。横軸は、ビット線を流 れる書き込み電流 I により生成されるビット線垂直磁界を示す。図 8の横軸は、図 9
Bし
の破線で示す「磁化容易軸方向」に対応する。閉曲線 Bで囲まれた領域は、図 7の「 TOGGLE」領域である。閉曲線 Bは、フロップ磁界 Hで定まる曲線 B1及び B3と、飽 和磁界 Hで定まる曲線 B2とからなる。トグル動作により、選択セルに印加される磁界 の経路は、 R→R→R→Rとなる。 [0012] Rの点(図 8)における飽和磁界 H及びフロップ磁界 Hは、フリー層 111が 2つの
0 s f
等価な磁性層 102、 104からなる場合、近似的に次式のように書ける。
H = (H X H )xO. 5 (1)
f k i
H =H (2)
s i
ただし、
H:フリー層の異方性磁界
k
H:第 1フリー層と第 2フリー層との間の反強磁性結合磁界であり、少なくとも H > Hである。
k
[0013] MRAMを低消費電力(低書き込み電流)で動作させるという観点からは、フロップ 磁界が小さいことが望ましい。すなわち、曲線 B1が縦軸に、曲線 B3が横軸にそれぞ れ近づくことが好ましい。また、 MRAM中の複数のメモリセルを同じように動作させる ための動作マージンの観点からは、飽和磁界とフロップ磁界の比が大きいことが望ま しい。すなわち、閉曲線 Bの領域が広がることが好ましい。これらの条件を満たすため には、上記式(1)及び(2)から Hを小さくすることが好ましいことがわかる。
k
そのフリー層の異方性磁界 Hは、熱擾乱耐性を確保するために、ある程度以上の k
大きさを確保する必要がある。例えば、情報を記録した後、 10年間その記録状態を 保持するためには、 Hは下式を満たす必要がある。
k
Δ E/kT=H *M *Thickness*Area/kT〉 54 (3)
k s
ただし、
Δ E:二つのフリー層の磁ィ匕が一方の反平行の状態力 他方の反平行の状態に 遷移するのに必要なエネルギーバリア
M:フリー層飽和磁ィ匕
Thickness :フリー層膜厚
Area:フリー層面積
k:ボルツマン係数
T :絶対温度
したがって、 Hの大きさには式(3)で示される下限がある。
k
[0014] さら〖こ、トグル型 MRAMに特有の課題として、記録動作(書き込み動作)中のエネ ルギーノ《リアの低下が発明者らにより見出された。図 10は、エネルギーバリアと書き 込み動作時に選択セルに印加される磁界との関係を示すグラフである。縦軸は、 10 年間データを保持するために必要なエネルギーノ リアで規格ィ匕されたエネルギーバ リアである。横軸は、 Hで規格ィ匕した書き込み動作時に選択セルに印加される磁ィ匕 k
容易軸方向の磁界 Hである。実線は、二つのフリー層の磁化が一方の反平行の状態 力 他方の反平行の状態に遷移するのに必要なエネルギーノ リアを示す。具体的に は、図 11Aに示されるように、下側に示される状態から、各磁ィ匕の方向が反転して上 側に示される状態になるためのエネルギーノ リアを示す。破線は、フリー層内の磁性 層間の磁ィ匕の向きがトグル動作中に相対的な向きの関係を維持するためのエネルギ 一バリアを示す。具体的には、図 11Bに示されるように、下側に示される状態から、各 磁ィ匕の方向が同一の方向に回転して上側に示される状態になるためのエネルギー ノ リアを示す。点線は、フリー層内の磁性層間の磁化の向きがトグル動作中に相対 的な向きの関係を維持するためのエネルギーノ リアを示す。具体的には、図 11Cに 示されるように、下側に示される状態から、各磁ィ匕の方向が互いに反対の方向に回 転して上側に示される状態になるためのエネルギーノ リアを示す。
エネルギーバリアは、トグル動作時に印加されるフロップ磁界 H力 飽和磁界 Hま での磁界の範囲で、凸型 (破線 +点線)の特性を示す。書込み磁界がフロップ磁界 H (範囲 A )付近、又は、飽和磁界 H (範囲 A )付近の場合、エネルギーバリアは、 f 1 s 2
必要なエネルギーバリア( = 1)を下回ることがわかる。範囲 Aでのみエネルギーバリ
3
ァは必要なエネルギーバリアを上回る。
範囲 Aでは、書き込み動作に伴う磁場 Hによりトグル動作が起こる。それにより、図 11Bの下側に示される状態になる。このときエネルギーバリアは必要なエネルギーバ リアを下回っている。そのため、トグル動作中に熱擾乱により、第 1及び第 2フリー層 の磁ィ匕の向きがいずれも同じ方向に回転し、上側に示される状態になる可能性があ る。この場合、第 1及び第 2フリー層の磁ィ匕の向きが逆になつてしまう。
範囲 Aでは、書き込み動作に伴う磁場 Hによりトグル動作が起こる。それにより、図
2
11Cの下側に示される状態になる。このときエネルギーバリアは必要なエネルギーバ リアを下回っている。そのため、トグル動作中に熱擾乱により、第 1及び第 2フリー層 の磁ィ匕の向きが互いに逆方向に回転し、上側に示される状態になる可能性がある。 この場合も、第 1及び第 2フリー層の磁ィ匕の向きが逆になつてしまう。
[0016] こうして、図 10及び図 11Aから 11Cに示されるように、トグル動作中に書き込み動 作の磁場 Hの大きさが範囲 A及び Aになると、エネルギーバリアが必要なエネルギ
1 2
ーノリアを下回り、メモリセルにおいて誤動作が起こって書き込みが正常に行われな い確率が高くなる。すなわち、トグル型 MRAMに特有の課題として、必要なエネルギ ーノリアが十分に大きいトグル型 MRAMを用いても、書き込み動作時に偶発的にェ ラーが起こる可能性があることが判明した。
[0017] このような書込み動作中の誤動作を防ぐための方法は、以下の方法が考えられる。
(a)異方性磁界 Hkを大きくする。それにより、図 10における凸型の曲線は高くなるの で、範囲 Aが広くなり、範囲 A及び Aが狭くなる。したがって、書込み中にエネルギ
3 1 2
ーノリアが低下しても、エネルギーバリアは保持状態での値以上にしゃすくなり、誤 動作が起こる確率を小さくできる。
(b)飽和磁界とフロップ磁界との比を大きくする。すなわち、反強磁性結合磁界 Hを 大きくする。それにより、図 10における凸型の曲線は横方向に広がるので、範囲 A
3 が広くなる。したがって、動作マージンを広くでき、エネルギーノ《リアが低下しない領 域において、書込み動作を行うことができる。
[0018] しかし、上記 、ずれの方法 (a)、 (b)を用いても、フロップ磁界の増大や書込み電流 の増加を伴ってしまう。すなわち、消費電力が増大してしまう。フロップ磁界の増大や 書込み電流の増加を伴わずに、書き込み動作中に第 1フリー層磁化と第 2フリー層磁 ィ匕とが熱擾乱で入れ替わる可能性を抑制する技術が望まれて 、る。消費電力の増 大を伴わずに、書込み動作中の誤動作を防ぐ技術が求められる。
[0019] このような課題は、フリー層内の複数の磁性層間の反平行状態を概ね維持しながら 書き込み動作を行うトグル型 MRAMに特有である。トグル型 MRAMと異なる従来の 典型的な MRAMでは、書き込み動作時にフリー層内での磁ィ匕の向きを気にする必 要がない。
[0020] 関連する技術として特開 2003— 115577号公報に不揮発磁気薄膜メモリ装置の 記録再生方法が開示されている。この不揮発磁気薄膜メモリ装置の記録再生方法は 、基板と、該基板上に設けられた磁気抵抗効果素を有する複数のメモリセルと、トラン ジスタと、を有する不揮発磁気薄膜メモリ装置の記録再生方法である。情報の記録を 行なう前に、メモリセルに情報の試し書きが行なわれ、試し書きの記録確認を行った 後、正規のデータが記録される。すなわち、情報を記録する前に試し書き用のメモリ セルに試し書きが行われ、情報が記録できる電流値が確認された後に正規のデータ 書込みが行われる。試し書きに失敗した場合、電流値を変化させて、再度試し書きが 行われても良い。
発明の開示
[0021] 従って、本発明の目的は、フロップ磁界の増大や書込み電流の増加を伴わずに、 書き込み動作中に第 1フリー層磁ィ匕の向きと第 2フリー層磁ィ匕の向きとが熱擾乱で入 れ替わる可能性を抑制することが可能なトグル型及びダイレクトモード書込み型の M RAM及びその MRAMの動作方法を提供することである。
また、本発明の他の目的は、消費電力の増大を伴わずに、書込み動作中の誤動作 を防ぐことが可能なトグル型及びダイレクトモード書込み型の MRAM及びその MRA Mの動作方法を提供することである。
[0022] 本発明の観点では、本発明の磁気ランダムアクセスメモリの動作方法は、メモリセル に対してデータの書込むステップと、メモリセルに対してそのデータが書き込まれたか 否かを判定するステップと、そのデータが書き込まれていない場合、メモリセルに対し てそのデータの再書込みを行うステップとを具備する。ここで、磁気ランダムアクセス メモリは、非磁性層を介して反強磁性的に結合した 2層以上の磁性層を積層したフリ 一磁性層を含むメモリセルと、第 1方向へ伸びる第 1配線と、第 1方向とは異なる第 2 方向へ伸びる第 2配線とを備える。フリー磁性層の磁ィ匕容易軸の方向が、第 1方向及 び第 2方向とは異なる。本発明では、データが書き込まれたかを判定し、書込み失敗 の場合に再書込みを行うので、トグル型及びダイレクト型の MRAMについて、書込 み動作時の熱擾乱による誤動作を防ぐことができる。
上記の磁気ランダムアクセスメモリの動作方法において、書込むステップは、メモリ セルに対して読出し動作を実行するステップと、その読出し動作の結果に基づ 、て、 メモリセルに対してトグル書込み方式でそのデータの書込み動作を実行するステップ とを備える。本発明により、特にトグル型の MRAMにっき書込み動作時の誤動作を 防ぐことができる。また、上記書込むステップは、メモリセルに対してダイレクト書込み 方式でそのデータを書込むステップとを備える。本発明により、特にダイレクト型の M RAMにっき書込み動作時の誤動作を防ぐことができる。
上記の磁気ランダムアクセスメモリの動作方法は、メモリセルに対してそのデータが 書き込まれた力否力を再度判定するステップ更に具備することが好ま U、。本発明で は、書込み失敗のとき行う再書込みの後で、データが書き込まれたかを再判定する ので、トグル書込み動作時の誤動作を確実に把握することができる。メモリセルに対 してそのデータが書き込まれるまで、再書込みするステップと判定するステップとを繰 り返し実行するステップを更に具備することが好ましい。本発明では、データが書き込 まれるまで書き込み動作を続けるので、より確実にトグル書込み動作時の誤動作を防 ぐことができる。
上記の磁気ランダムアクセスメモリの動作方法にぉ 、て、再書込みするステップは、 前回そのデータの書込み動作を行ったときと同じ書込み電流で、そのデータの書込 み動作を再度行うステップを備えることが好ましい。熱擾乱による偶発的エラーの場 合、デフォルト値の書込み電流で再書込みを行うことで書込みを行うことができ、偶発 的エラーを排除できる可能性が高い。また、再書込みするステップは、前回そのデー タの書込み動作を行ったときと異なる書き込み電流で、そのデータの書込みしてもよ い。デフォルト値の書込み電流と異なる電流値で再書込みを行うことで、電流値を最 適な値にすることができ、より確実にデータを書き込むことが出来る。さらに、異なる電 流値で再書込みするステップは、前回そのデータの書込み動作を行ったときより小さ い書込み電流で、そのデータの書込み動作を再度行なってもよい。この場合、デフォ ルト値の書込み電流より小さ 、電流値で再書込みを行うことで、飽和磁界の小さなメ モリセルに対して、電流値を最適な値にすることができ、より確実にデータを書き込む ことが出来る。また、異なる電流値で再書込みするステップは、前回そのデータの書 込み動作を行ったときより大きい書込み電流で、そのデータの書込み動作を再度行 なってもょ 、。デフォルト値の書込み電流より大き 、電流値で再書込みを行うことで、 飽和磁界の大きなメモリセルに対して、電流値を最適な値にすることができ、より確実 にデータを書き込むことが出来る。
上記の磁気ランダムアクセスメモリの動作方法において、所定の回数書込み動作を 繰り返してもそのデータが書き込まれな 、場合、警報を示す信号を出力するステップ を更に具備してもよい。これにより、トグル型及びダイレクトモード型の MRAM内にト ダル書込みが出来な 、メモリセルが存在することを把握することができる。
また、所定の回数書込み動作を繰り返してもそのデータが書き込まれない場合、当 該メモリセルを不良ビットとして登録するステップを更に具備してもよい。これにより、ト ダル書込みが出来な ヽメモリセルを除 ヽて動作させることができる。
本発明の他の観点では、磁気ランダムアクセスメモリの製造方法は、磁気ランダム アクセスメモリのチップ本体を製造するステップと、そのチップ本体において、予め設 定された電流値の書込み電流で、メモリセルに対してデータの書込むステップと、メ モリセルに対してそのデータが書き込まれた力否かを判定するステップと、そのデー タが書き込まれて 、な 、場合、メモリセルに対してそのデータの再書込みするステツ プと、そのメモリセルに対してそのデータが書き込まれるまで、判定するステップと再 書込みするステップを繰り返し実行するステップと、そのデータが書き込まれたときの その電流値を示す電流情報 (n値)、及びそのデータが書き込まれたときのまでの書 き込み動作の回数を示す回数情報 (n値)の少なくとも一方を格納するステップと、検 查対象の複数のメモリセルにっ 、て、上記全てのステップステップを実行するステツ プとを具備する。ここで、磁気ランダムアクセスメモリは、非磁性層を介して反強磁性 的に結合した 2層以上の磁性層を積層したフリー磁性層を含むメモリセルと、第 1方 向へ伸びる第 1配線と、第 1方向とは異なる第 2方向へ伸びる第 2配線とを備える。フ リー磁性層の磁化容易軸の方向が、第 1方向及び第 2方向とは異なる。書込みが行 われた電流値を示す電流情報、又は、電流値に対応する書き込み動作の回数を示 す回数情報を取得するので、製造段階のトグル型及びダイレクト型の MRAMにおけ る書込みに関する検査を適正に行うことができる。
上記の磁気ランダムアクセスメモリの製造方法において、書き込むステップは、メモ リセルに対して読出し動作を実行するステップと、その読出し動作の結果に基づ!/、て 、メモリセルに対してトグル書込み方式でそのデータの書込み動作を実行するステツ プとを備えてもよい。再書込みするステップは、そのデータが正しく書き込まれていな Vヽ場合、メモリセルに対してトグル書込み方式でそのデータの書込み動作を再度行う ステップとを備える。本発明により、特にトグル型の MRAMにっき製造段階でのトグ ル書込みに関する検査を適正に行うことができる。
また、書き込むステップは、メモリセルに対してダイレクト書込み方式でそのデータ の書込み動作を実行するステップとを備えてもよい。再書込みするステップは、その データが書き込まれて ヽな 、場合、メモリセルに対してそのダイレクト書込み方式で 前記データの書込み動作を再度行うステップとを備えてもよい。これにより、特にダイ レクト型の MRAMにっき製造段階でのトグル書込みに関する検査を適正に行うこと ができる。
再書込みするステップは、前回そのデータの書込み動作を行ったときと同じ書込み 電流で、メモリセルに対してそのデータの書込み動作を再度行うステップを備えても よい。また、再書込みするステップは、前回そのデータの書込み動作を行ったときと 異なる書込み電流で、メモリセルに対してそのデータの書込み動作を再度行うステツ プを備えてもよい。異なる電流で再書込みするステップは、前回そのデータの書込み 動作を行ったときより小さ 、書込み電流で、メモリセルに対してそのデータの書込み 動作を再度行うステップを備えてもょ 、。
また、検査対象の複数のメモリセルの電流情報 (n値)に基づいて、そのチップ本体 における書き込み電流の電流値を再設定するステップを更に具備してもよ 、。書込 みが行われた電流値に対応するように書き込み電流のデフォルト値を再設定するの で、書き込み動作のより安定したトグル型 MRAMを製造することができる。
また、検査対象の複数のメモリセルの回数情報 (n値)に基づいて、そのチップ本体 をクラス分けするステップを更に具備することが好ましい。書き込み動作の回数に対 応してクラス分けをして ヽるので、動作速度に対応したクラスに分けられたトグル型 M RAMを製造することができる。
本発明の他のでは、磁気ランダムアクセスメモリの検査方法は、磁気ランダムァクセ スメモリのチップ本体において、予め設定された電流値の書込み電流で、メモリセル に対してデータを書込むステップと、メモリセルに対してそのデータが書き込まれたか 否かを判定するステップと、そのデータが書き込まれていない場合、メモリセルに対し てそのデータの再書込みするステップと、メモリセルに対してそのデータが書き込ま れるまで、判定するステップと再書込みするステップを繰り返し実行するステップと、 そのデータが書き込まれたときのその電流値を示す電流情報 (n値)、及び、そのデ ータが書き込まれたときのまでの書き込み動作の回数を示す回数情報 (n値)の少な くとも一方を格納するステップと、検査対象の複数のメモリセルについて、上記全ての ステップを実行するステップとを具備する。ここで、磁気ランダムアクセスメモリは、非 磁性層を介して反強磁性的に結合した 2層以上の磁性層を積層したフリー磁性層を 含むメモリセルと、第 1方向へ伸びる第 1配線と、第 1方向とは異なる第 2方向へ伸び る第 2配線とを備える。フリー磁性層の磁ィ匕容易軸の方向が、第 1方向及び第 2方向 とは異なる。
ここで、書き込むステップは、メモリセルに対して読出し動作を実行するステップと、 その読出し動作の結果に基づ 、て、メモリセルに対してトグル書込み方式でそのデ 一タを書込むステップとを備える。再書込みするステップは、そのデータが書き込ま れて ヽな 、場合、メモリセルに対してトグル書込み方式でそのデータの書込み動作 を再度行うステップとを備える。また、書き込むステップは、メモリセルに対してダイレ タト書込み方式でそのデータの書込み動作を実行するステップとを備えて 、てもよ ヽ 。再書込みするステップは、そのデータが書き込まれていない場合、メモリセルに対し てそのダイレクト書込み方式で前記データの書込み動作を再度行うステップとを備え ていてもよい。
また、再書込みするステップは、前回そのデータの書込み動作を行ったときと同じ 書込み電流で、メモリセルに対してそのデータの書込み動作を再度行うステップを備 えることが好ましい。また、再書込みするステップは、前回そのデータの書込み動作 を行ったときと異なる書込み電流で、メモリセルに対してそのデータの再書込みを行う ステップを備えていてもよい。この場合、異なる書込み電流で再書込みを行うステップ は、前回そのデータの書込み動作を行ったときより小さい書込み電流で、メモリセル に対してそのデータの書込み動作を再度行うステップを備えることが好ましい。
上記の磁気ランダムアクセスメモリの検査方法は、その検査対象の複数のメモリセ ルの電流情報 (n値)に基づいて、そのチップ本体における書き込み電流の電流値を 再設定するステップを更に具備してもよい。また、その検査対象の複数のメモリセル の回数情報 (n値)に基づいて、そのチップ本体をクラス分けするステップを更に具備 することが好ましい。
本発明の他の観点では、磁気ランダムアクセスメモリは、複数の第 1配線と、複数の 第 2配線と、複数のメモリセルと、書き込み制御部とを具備する。複数の第 1配線は、 第 1方向に延伸する。複数の第 2配線は、第 1方向と異なる第 2方向に延伸する。複 数のメモリセルは、複数の第 1配線と複数の第 2配線とが交差する位置のそれぞれに 対応して設けられている。書き込み制御部は、複数のメモリセルの書き込み動作を制 御する。複数のメモリセルの各々は、磁気抵抗効果素子を備える。磁気抵抗効果素 子は、非磁性膜を介して2層以上の磁性膜を積層したフリー磁性層を含み、磁ィ匕容 易軸方向が第 1方向及び第 2方向とは異なる。複数の第 1配線から選択される選択 第 1配線と複数の第 2配線カゝら選択される選択第 2配線とに対応するメモリセルとして の選択セルへデータを書き込むとき、書き込み制御部が、選択セルに対してそのデ ータを書き込む書き込み動作を実行する。選択セルに対してそのデータが書き込ま れたか否かを判定する。そのデータが書き込まれていない場合、選択セルに対して その書き込み動作を再度行う。上記の磁気ランダムアクセスメモリにおいて、フリー磁 性層における容易軸方向のうちの一方の向きの自発磁ィ匕の大きさは、他方の向きの 自発磁ィ匕の大きさと異なることが好まし 、。
その書き込み動作は、書き込み制御部が、選択第 1配線に第 1書き込み電流を供 給する。次に、選択第 2配線に第 2書き込み電流を供給する。その後、第 1書き込み 電流を停止する。次に、第 2書き込み電流を停止する動作である。上記の磁気ランダ ムアクセスメモリにおいて、書き込み制御部が、その書込み動作を再度行った選択セ ルに対して、そのデータが書き込まれた力否かを再度判定することが好ま 、。 上記の磁気ランダムアクセスメモリにおいて、書込み制御部が、選択セルに対して そのデータが書き込まれるまで、選択セルに対してそのデータが書き込まれた力否 かを判定することと、そのデータが書き込まれていない場合、選択セルに対してその 書込み動作を再度行うこととを繰り返し実行することが好まし 、。上記の磁気ランダム アクセスメモリにおいて、書き込み制御部が、そのデータが書き込まれていない場合 、前回書込み動作を行ったときと同じ書込み電流で、その書き込み動作を再度行うこ とが好ましい。
上記の磁気ランダムアクセスメモリにおいて、書き込み制御部が、そのデータが書き 込まれていない場合、前回書込み動作を行ったときと異なる書き込み電流に変更し て、その書き込み動作を再度行うことが好ましい。上記の磁気ランダムアクセスメモリ において、書き込み制御部が、そのデータが書き込まれていない場合、前回書込み 動作を行ったときより小さい書き込み電流に変更して、その書き込み動作を再度行う ことが好ましい。上記の磁気ランダムアクセスメモリにおいて、書き込み制御部が、そ のデータが書き込まれていない場合、前回書込み動作を行ったときと同じ書込み電 流で、その書込み動作を再度行うことが好ましい。それでもそのデータが書き込まれ ていない場合、前回書込み動作を行ったときと異なる書き込み電流で、その書込み 動作を再度行うことが好まし 、。
上記の磁気ランダムアクセスメモリにおいて、書き込み制御部が、所定の回数書込 み動作を繰り返してもそのデータが書き込まれな 、場合、警報を示す信号を出力す ることが好ましい。上記の磁気ランダムアクセスメモリにおいて、書き込み制御部が、 所定の回数書込み動作を繰り返してもそのデータが書き込まれない場合、当該選択 セルを不良ビットとして登録する警報を示す信号を出力することが好ましい。
図面の簡単な説明
[図 1]図 1は、トグル型 MRAMに用いられる典型的な磁気抵抗効果素子の構造を示 す断面図である。
[図 2]図 2は、トグル型 MRAMに用いられる典型的な磁気抵抗効果素子の構造を示 す断面図である。
[図 3]図 3は、トグル型 MRAMの磁気抵抗効果素子の平面レイアウトを示す上面図 である。
[図 4]図 4は、トグル動作における書き込み電流のタイミングチャートである。
[図 5]図 5は、トグル動作における第 1及び第 2フリー層磁ィ匕の向きの変化を示す図で ある。 [図 6]図 6は、トグル動作における第 1及び第 2フリー層磁ィ匕の向きの変化を示す図で ある。
[図 7]図 7は、書き込み電流とトグルされるメモリセルとの関係を示すグラフである。
[図 8]図 8は、フリー層における磁ィ匕容易軸方向の外部磁界に対する磁ィ匕特性を示 す。
[図 9]図 9は、図 7の第 1象限を磁界について表現したグラフである。
[図 10]図 10は、エネルギーバリアと書き込み動作時に選択セルに印加される磁界と の関係を示すグラフである。
[図 11]図 11A〜: L 1Cは、各範囲における第 1及び第 2フリー層磁ィ匕の向きの変化を 示す図である。
[図 12]図 12は、本発明のトグル型 MRAMの実施例の構成を示すブロック図である。
[図 13]図 13は、本発明におけるメモリセルの構成の一例を示す断面図である。
[図 14]図 14は、本発明のトグル型 MRAMのメモリセルにおける磁気抵抗効果素子 の構成の一例を示す断面図である。
[図 15]図 15は、本発明のトグル型 MRAMのメモリセルにおける磁気抵抗効果素子 の平面レイアウトを示す上面図である。
[図 16]図 16は、本発明のトグル型 MRAMの動作方法を示すフローチャートである。
[図 17]図 17は、本発明のトグル型 MRAMの製造方法を示すフローチャートである。 発明を実施するための最良の形態
[0027] 以下、本発明の MRAMの実施例について図面を参照して説明する。以下の説明 においては、本発明を適用したトグル型 MRAMについて説明する力 本発明をダイ レクトモード型 MRAMに適用することも可能である。
[0028] 以下、本発明のトグル型 MRAMの実施例の構成について、添付図面を参照して 説明する。
図 12は、本発明のトグル型 MRAMの実施例の構成を示すブロック図である。トグ ル型 MRAMは、複数の書き込みワード線 26、複数の読み出しワード線 28、複数の ビット線 27、メモリセルアレイ 30、 Xデコーダ 38、第 1書込み電流源 39、 X終端回路 4 0、 Yデコーダ 41、第 2書き込み電流源 42、 Y終端回路 44、センスアンプ 45、参照電 位発生回路 46、読出し判定回路 50、カウンタ 51、書込みコントローラ 52を具備する 書き込みワード線 26は、第 1の方向としての X軸方向へ延伸するように設けられ、一 端を Xデコーダ 38に、他端を X終端回路 40にそれぞれ接続されている。読み出しヮ ード線 28は、 X軸方向へ延伸するように設けられ、一端を Xデコーダ 38に、他端を X 終端回路 40にそれぞれ接続されている。ビット線 27は、 X軸方向に実質的に垂直な 第 2の方向としての Y軸方向へ延伸するように設けられ、一端を Yデコーダ 41に、他 端を Y終端回路 44にそれぞれ接続されて 、る。
メモリセルアレイ 30は、行列状に配列された複数のメモリセル 10を備える。複数のメ モリセル 10は、書き込みワード線 26及び読み出しワード線 28の複数の組と複数のビ ット線 27とが交差する位置のそれぞれに対応して設けられている。
Xデコーダ 38は、メモリセル 10の読み出し動作時に、 Xアドレスの入力に基づいて 、複数の読み出しワード線 28から一つの読み出しワード線 28を選択読み出しワード 線 28sとして選択する。メモリセル 10の書き込み動作時に、 Xアドレスの入力に基づ V、て、複数の書き込みワード線 26から一つの書き込みワード線 26を選択書き込みヮ ード線 26sとして選択する。
第 1書き込み電流源 39は、メモリセル 10の書き込み動作時に、選択書き込みヮー ド線 26sへ所定の書き込み電流 I を供給する。 X終端回路 40は、メモリセル 10の書
WL
き込み動作時に、選択書き込みワード線 26sに流れる書き込み電流 I を終端する。
WL
メモリセル 10の読み出し動作時に、選択読み出しワード線 28sへ読出し電流 Iを供
R
給する。
γデコーダ 41は、メモリセル 10の読み出し動作時及び書き込み動作時に、 Yァドレ スの入力に基づ 、て、複数のビット線 27から一つのビット線 27を選択ビット線 27sとし て選択する。
第 2書き込み電流源 42は、メモリセル 10の書き込み動作時に、選択ビット線 27sへ 所定の書き込み電流 I を供給する。 Y終端回路 44は、メモリセル 10の書き込み動
Bし
作時に、選択ビット線 27sに流れる書き込み電流 I を終端する。メモリセル 10の読み
Bし
出し動作時に、選択ビット線 27sへ流れ込むの読出し電流 Iをセンスアンプ 45へ導く 参照電位発生回路 46は、メモリセル 10の読出し動作時に、参照用の電位 (例示: 参照セルの電位)をセンスアンプ 45へ出力する。
センスアンプ 45は、メモリセル 10の読み出し動作時に、選択セル 10s (選択読み出 しワード線 28sと選択ビット線 27sとで選択されるメモリセル 10)の電位(=選択ビット 線 27sの電位)と、参照電位発生回路 46の出力電位とを比較することにより、選択セ ル 10sの状態 (データ、「0」又は「1」)を検出する。
読出し判定回路 50は、書込みコントローラ 52からの書き込むべきデータとセンスァ ンプ 45からの読み出されたデータとを比較する。両データが同一の場合、書込みが 成功したと判定する。そして、次のメモリセルのデータ書込みを実行させるために、書 込みコントローラ 52へ書込み信号を出力する。両データが異なる場合、書込みが失 敗したと判定する。そして、同じメモリセルへのデータ書込みを再度実行させるために 、書込みコントローラ 52へ再書込み信号を出力する。
カウンタ 51は、書込みコントローラ 52の制御により、同じメモリセルへのデータ書込 み回数 nを格納する。
書込みコントローラ 52は、アドレス信号と書き込むべきデータを含む制御信号に基 づいて、 Xデコーダ 38、第 1書込み電流源 39、 X終端回路 40、 Yデコーダ 41、第 2 書き込み電流源 42、 Y終端回路 44がトグル書込み動作を実行するように制御する。 そして、読出し判定回路 50の再書込み信号に基づいて、書込み電流の値を変動さ せて、同じメモリセルへの再度のトグル書込み動作を実行させる。読出し判定回路 50 が書き込み信号を出力した場合には、次のメモリセルへのデータのトグル書込み動 作を制御する。内部の記憶部(図示せず)に、各メモリセルにおけるデータが書き込 まれたときの電流値を示す電流情報、及び、データが書き込まれたときのまでのトグ ル書き込み動作の回数を示す回数情報の少なくとも一方を格納する。
図 13は、本発明におけるメモリセルの構成の一例を示す断面図である。メモリセル 10は、磁気抵抗効果素子 25と MOSトランジスタ 36とを含む。
MOSトランジスタ 36は、ソース 36a、ゲート 36b及びドレイン 36cを有し、 p型の半導 体基板 20に埋め込まれている。ソース 36aは、半導体基板 20の N型拡散層として形 成され、半導体基板 20上に延びるコンタクト 19 1及び第 3金属層 23を介して接地 されている。ゲート 36bは、半導体基板 20に絶縁膜 24を介して設けられ、読み出しヮ ード線 27に接続されている。ドレイン 36cは、半導体基板 20の N型拡散層として形成 され、半導体基板 20上に延びるコンタクト 19— 2〜4と第 1及び第 2金属層 21及び 2 2と下部電極 18とを介して磁気抵抗効果素子 25の一端に接続されて ヽる。磁気抵 抗効果素子 47の他端は、キャップ層 5を介してビット線 27に接続されている。磁気抵 抗効果素子 47の下側(半導体基板 20側)の近傍 (電気的に絶縁され、磁気的相互 作用が可能な位置)に、書き込みワード線 26が配置されている。
磁気抵抗効果素子 25について更に説明する。図 14は、本発明のトグル型 MRAM のメモリセルにおける磁気抵抗効果素子の構成の一例を示す断面図である。磁気抵 抗効果素子 25は、ビット線 27と書き込みワード線 26との間に設けられている。フリー 層 1、バリア層 2、ピン層 3及び反強磁性層 4を含む。フリー層 1は、第 1磁性膜 11 + 第 1非磁性膜 12 +第 2磁性膜 13 +第 2非磁性膜 14 +第 3磁性膜 15 +第 3非磁性 膜 16 +第 4磁性膜 17 +〜+第 N非磁性膜 (N≥2、 Nは自然数)のように、非磁性膜 を介して 2層以上の磁性膜が積層された構造を有する。各磁性膜は非磁性膜を介し て反強磁性結合している。
フリー層をより多く(N≥3)することは、体積が増加することにより熱擾乱耐性が向上 するという効果もある。
[0031] 図 15は、本発明のトグル型 MRAMのメモリセルにおける磁気抵抗効果素子の平 面レイアウトを示す上面図である。磁気抵抗効果素子 25のフリー層 1の磁化容易軸 方向は、書き込みワード線 26が延在する X方向及びビット線 27が延在する Y方向か ら見ておよそ 45° 方向になるように配置されている。
[0032] 次に、本発明のトグル型 MRAMの動作方法について説明する。
図 16は、本発明のトグル型 MRAMの動作方法を示すフローチャートである。この 動作は、通常使用の場合でのデータ書込み及び検査の場合でのデータ書込みで実 行される。
[0033] (1)ステップ SO 1
Xアドレス及び Yアドレスの指定される選択セル 10sへのデータ書き込む命令を示 す制御信号が、書込みコントローラ 52へ入力される。書込みコントローラ 52は、カウ ンタ 51をリセットして、 n=0とする。
ただし、ダイレクトモード型 MRAMの場合には、 n= lとする。
(2)ステップ S02
書込みコントローラ 52は、カウンタ 51の値 nを読み出す。!1>0の場合(302 :丫65) はステップ S03へ、 n=0の場合(S02 :No)はステップ S04へ進む。ただし、ダイレク トモード型 MRAMの場合には、このステップを飛ばし、全ての場合でステップ S03へ 進む。
(3)ステップ S03
書込みコントローラ 52は、選択セル 10sへトグル動作による書込みを行う。具体的 には、 Xアドレスを Xデコーダ 38へ、 Yアドレスを Yデコーダ 41へ、制御信号を第 1書 込み電流源 39、第 2書込み電流源 42、 X終端回路 40及び Y終端回路 44へそれぞ れ出力する。 Xデコーダ 38が、選択書込みワード線 26sに書き込み電流 I を供給す
WL
る。次に、 Yデコーダ 41が、選択ビット線 27sに書き込み電流 I を供給する。その後
Bし
、 Xデコーダ 38が、書き込み電流 I の供給を停止する。続いて、 Yデコーダ 41が、
WL
書き込み電流 I の供給を停止する。ただし、ダイレクトモード型 MRAMの場合には
BL
、選択セル 10sへダイレクトモード書込みを行う。
(4)ステップ S04
書込みコントローラ 52は、選択セル 10sに対して書き込んだデータの読出しを行う。 具体的には、 Xアドレスを Xデコーダ 38へ、 Yアドレスを Yデコーダ 41へ、制御信号を 第 1書込み電流源 39及び Y終端回路 44へそれぞれ出力する。 Xデコーダ 38が、選 択読出しワード線 28sに読出し電流 Iを供給する。読出し電流 Iは、選択セル 10sを
R R
通過し、 Yデコーダ 41により選択された選択ビット線 27sを介して Y終端回路 44へ流 れ込む。そのとき、センスアンプ 45は、選択ビット線 27sの電位と参照電位発生回路 46の電位とを比較して、読み出したデータを出力する。
(5)ステップ S05
読出し判定回路 50は、書込みコントローラ 52から受信される書き込みデータとセン スアンプ 45により読み出されたデータとが等 、か否かを判定する。等 、場合 (SO 5: Yes)、次のデータの書込みを実行するための書込み信号を書込みコントローラ 5 2へ出力する。書込みコントローラ 52は、そのメモリセルに対して書込みの成功したと きの回数値 nを格納する。 nは、トグル書込みの試行回数に相当する。 nは書き込み 電流値とも関連している(後述)ことから、電流値にも相当する。等しくない場合 (S05 : No)、再書込みを実行する必要があるので、そのための再書込み信号を書込みコ ントローラ 52へ出力する。
(6)ステップ S06
書込みコントローラ 52は、カウンタ 51をカウントアップし、 n=n+lとする。
(7)ステップ S07
書込みコントローラ 52は、予め設定された nの最大値 n を nが超える(n>n )か
max max 否かを判定する。 n>n の場合(S07:Yes)はステップ S09へ、 n≤n の場合(SO
max max
7: No)はステップ S08へ進む。
(8)ステップ S08
書込みコントローラ 52は、データの書き込み条件を変更する。書き込み条件は、 n の値に対応して、例えば以下のようにする。
n=l:書き込み電流 I =書き込み電流 I =デフォルト値
WL BL
n=2:書き込み電流 I =書き込み電流 I =デフォルト値
WL BL
n=3:書き込み電流 I =書き込み電流 I =デフォルト値 X0.9
WL BL
n=4:書き込み電流 IWL 書き込み電流 I デフォルト値 X0.8 n=5:書き
B
込み電流 I =書き込み電流 I =デフォルト値 X0.7
WL BL
n=6:書き込み電流 I =書き込み電流 I =デフォルト値 XI. 1
WL BL
n=7:書き込み電流 I =書き込み電流 I =デフォルト値 XI· 2 n=n :
max
その後、ステップ S02へ進む。ただし、この nと書込み電流との対応テーブルは、書 込みコントローラ 52の記憶部(図示されず)に格納されて 、る。
(9)ステップ S09
書込みコントローラ 52は、この書込み動作が、出荷検査のような出荷する前の検査 で行われている場合(S09 : Yes)、ステップ S 10へ進む。そのような検査で行われて Vヽな 、場合(S09: No)、ステップ S 11へ進む。
(10)ステップ S 10
書込みコントローラ 52は、読出し判定回路 50を介して、このトグル型 MRAMが不 良品であることを外部へ出力し、不良登録を行う。
( 11)ステップ S 11
書込みコントローラ 52は、読出し判定回路 50を介して、このトグル型 MRAMに不 良なメモリセルがあることを示す故障予兆アラームを外部へ出力する。このとき、 n max は出荷検査時と変えても良い。
以上のようにして、本発明のトグル型 MRAMの動作方法が実行される。
[0034] 上記ステップ S08において、 n= 2において、書き込み電流 I 及び書き込み電流 I
WL B
しを同じにすることで、熱擾乱による偶発的エラーを排除できる。熱擾乱による偶発的 エラーの場合、同一電流の再書込みで修正できる可能性が高いからである。したが つて、まずは同一のデフォルト値の書込み電流で再書込みを行う。
[0035] 上記ステップ S08において、 n= 3〜5において、書き込み電流 I 及び書き込み電
WL
流 I
Bしを下げるのは、メモリセルに印加する磁界を低下させることになる。すなわち、当 初図 10の範囲 Aにあった磁界は、範囲 Aへ近づくことになり、エネルギーバリアを
2 3
高めることができる。したがって、書き込み電流を下げることは、飽和磁界 Hの小さな メモリセル(印加される磁界が範囲 Aに入りやすい)に対して好ましい。
2
[0036] 上記ステップ S08において、 n=6〜7において、書き込み電流 I 及び書き込み電
WL
流 I を上げることは、メモリセルに印加する磁界を高めることになる。すなわち、当初
Bし
図 10の範囲 Aにあった磁界は、範囲 Aへ近づくことになり、エネルギーバリアを高
1 3
めることができる。したがって、書き込み電流を上げることは、フロップ磁界 Hの大きな のメモリセル(印加される磁界が範囲 Aに入りやすい)に対して好ましい。
[0037] 本発明のトグル型 MRAMの動作方法におけるステップ S08の書き込み電流の設 定は、上記の例に限定されるものではない。例えば、書き込み電流 I と書き込み電
WL
流 I とを異なる値にしたり、一方を増加させ、他方を減少させるようにしても良い。そ
Bし
れにより、より最適な磁界を設定でき、トグル書込み動作時に誤動作の発生量をより 低減させることができる。このようにトグル型 MRAMは、必要に応じて段階的に書き 込み電流を変更することができる。それは、半選択セルに対して書き込み電流による 磁場の影響を考慮しなくて済む力 である。従来の典型的な MRAMでは、半選択セ ルに対して書き込み電流による磁場の影響があるため、一度設定した書き込み電流 を必要に応じて段階的に変更することは行えない。
[0038] 上記の例では、各メモリセルに対して格納された回数値あるいは書込み電流値力 各メモリセルに対して管理されて 、るが、 1カラム分或いは 1ロー分平均化あるいはそ の平均値に近似化されて管理されてもよい。あるいは、所定のブロックごとに平均化 あるいは卑近値に近似化されて
管理されてもよい。
[0039] 本発明にお ヽては、異方性磁界、反強磁性結合磁界は、書込み中のエネルギー ノリアの低下を考慮せずに、保持中の熱擾乱耐性のみで決定される。書込み中のェ ネルギーノ リアの低下により、ある確率で誤動作が起きることを想定し、書込み動作 毎に、正常に書き込めたかどうかの確認をおこなう。熱擾乱による誤動作の発生頻度 は十分小さくすれば、多くとも数回の再書込みにより正常な書込みが行える。さらに、 再書込み時の電流値を変化させることにより、正常書込みの確率をあげることができ る。
[0040] 次に、本発明のトグル型 MRAMの製造方法について説明する。
図 17は、本発明のトグル型 MRAMの製造方法を示すフローチャートである。 (1)ステップ S21
トグル型 MRAMのチップ本体(図示されず)を従来知られた半導体製造プロセスに より製造する。すなわち、図 13を参照して、概略を説明すると、まず、半導体基板 20 上に MOSトランジスタ 36を形成される。次に、層間絶縁膜が形成されながら、 MOS トランジスタ 36と下地電極 18とを接続するためにコンタクト(ビア) 19— 1〜19— 4、 第 1〜第 3金属層 21〜23が形成される。また、書込みワード線 26が形成される。そ の後、下部電極 18上に反強磁性層 4、ピン層 3、バリア層 2、 N (≥2)層の磁性膜から なるフリー層 1を備えた磁気抵抗効果素子 25、及び、キャップ層 5が形成される。続 いて、ビット線 27が形成される。そして、再書込みのアルゴリズムを実行するための回 路がセルアレイ周辺部に設けられる。
(2)ステップ S22
トグル型 MRAMのチップ本体の検査が検査装置により行われる。検査方法は、図 16に示す本発明のトグル型 MRAMの動作方法を実行する。そのとき、ステップ S09 は Yesである。
(3)ステップ S23
ステップ S22のトグル型 MRAMの動作方法を、チップ本体における検査対象のメ モリセルの全てについて実行する。ただし、ステップ S10で不良登録を行う場合には 、その時点でステップ S22を終了しステップ S24へ進んでも良!、。
(4)ステップ S 24
書込みコントローラ 52に格納されたトグル型 MRAMの nの値の分布により、必要に 応じてそのトグル型 MRAMの書き込み電流 I 及び書き込み電流 I のそれぞれの
WL BL
電流値が再設定される。そして、トグル型 MRAMのクラスが決定される。
[0041] ここで、書き込み電流 I 及び書き込み電流 I のそれぞれの電流値の再設定は、
WL BL
例えば、以下のように行われる。ほとんどのメモリセルで n=4の場合、書き込み電流 I 及び書き込み電流 I のそれぞれの電流値がデフォルト値 X O. 8に再設定される。
WL BL
このような再設定を行うことで、トグル型 MRAMごとに書込み電流の値を最適な値に することができる。それにより、書込み動作時に、書込みを再実行する回数を減少さ せることが可能となる。このような再設定用の値の決定及び再設定は、個々のトグル 型 MRAMごと行っても良いし、製造ロットごとに行っても良い。その場合、再設定時 間を更に短縮することができる。
[0042] トグル型 MRAMのクラスは、例えば、 nの値がばらつ!/ヽて 、る場合、値が大き 、nが 多い場合などのとき、低い階層のクラスに分類する。 nの値が概ね等しい場合、値の 小さい nが多い場合などのとき、高い階層のクラスに分類する。この場合、高い階層 のクラスは、書込み速度が速い。低い階層のクラスは、書込み速度が遅くなる。
[0043] 以上のようにして、本発明のトグル型 MRAMの製造方法が実行される。
[0044] 以上の実施例においては、本発明を適用したトグル型 MRAMを想定して記載した 1S ダイレクトモード型 MRAMについても同様に成り立ち、トグル型 MRAMの場合 と同様の効果を得ることができる。
本発明によれば、消費電力の増大を伴わずに、トグル書込み動作における熱擾乱 による誤動を防ぐことが可能となる。

Claims

請求の範囲
[1] 磁気ランダムアクセスメモリを提供するステップと、
ここで、前記磁気ランダムアクセスメモリは、
第 1方向へ伸びる複数の第 1配線と、
前記第 1方向とは異なる第 2方向へ伸びる複数の第 2配線と、
前記複数の第 1配線と前記複数の第 2配線との交点に形成された複数のメモリセ ルとを備え、前記複数のメモリセルの各々は、非磁性層を介して反強磁性的に結合 した 2層以上の磁性層を積層したフリー磁性層を含み、前記フリー磁性層の磁化容 易軸の方向が、前記第 1方向及び前記第 2方向とは異なり、
前記複数のメモリセルの 1つとしての特定メモリセルに対して、予め決められた書込 条件でデータを書込むステップと、
前記データが前記特定メモリセルに正しく書き込まれな ヽとき、前記データが前記 特定メモリセルに正しく書き込まれるまで、前記書込み条件を再設定しながら、前記 データを前記特定メモリセルに繰り返し書き込むステップと
を具備する磁気ランダムアクセスメモリの動作方法。
[2] 請求項 1に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記書き込むステップは、
前記特定メモリセル力 格納データを読み出すステップと、
前記読み出されたデータに基づいて前記特定メモリセルに対してトグル書込み方 式で前記データを書込むステップと
を備える磁気ランダムアクセスメモリの動作方法。
[3] 請求項 1に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記書き込むステップは、
前記特定メモリセルに対してダイレクト書込み方式で前記データを書込むステップ を備え磁気ランダムアクセスメモリの動作方法。
[4] 請求項 1乃至 3のいずれかに記載の磁気ランダムアクセスメモリの動作方法におい て、 前記繰り返し書き込むステップは、
前記特定メモリセルに対して前記データが正しく書込まれな力つた回数をカウント するステップと、
前記カウントに基づいて定まる前記書込み条件を再設定するステップと を備える磁気ランダムアクセスメモリの動作方法。
[5] 請求項 4に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記特定メモリは、前記複数の第 1配線のうちの 1つとしての第 1特定配線と前記複 数の第 2配線のうちの 1つとしての第 2特定配線と関連し、前記書込み条件は、前記 第 1特定配線と前記第 2特定配線とに流される書込み電流値である
磁気ランダムアクセスメモリの動作方法。
[6] 請求項 5に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記再設定するステップは、
前記カウントが第 1範囲にあるとき、前回前記データの書込み動作を行ったときと同 じ前記書込み電流値を再設定するステップ
を備える磁気ランダムアクセスメモリの動作方法。
[7] 請求項 6に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記再設定するステップは、
前記カウントが、前記第 1範囲より大きい第 2範囲にあるとき、前回前記データの書 込みを行ったときより小さい前記書き込み電流値を再設定するステップ
を備える磁気ランダムアクセスメモリの動作方法。
[8] 請求項 6に記載の磁気ランダムアクセスメモリの動作方法にぉ 、て、
前記再設定するステップは、
前記カウントが、前記第 1範囲より大きい第 3範囲にあるとき、前回前記データの書 込み動作を行ったときより大きい前記書き込み電流値を再設定するステップ を備える磁気ランダムアクセスメモリの動作方法。
[9] 請求項 4乃至 8の 、ずれかに記載の磁気ランダムアクセスメモリの動作方法にお!ヽ て、
前記カウントが所定の値に達したとき、警報を示す信号を出力するステップ を更に具備する磁気ランダムアクセスメモリの動作方法。
[10] 請求項 4乃至 9の 、ずれかに記載の磁気ランダムアクセスメモリの動作方法にお!ヽ て、
前記データが正しく書き込まれたとき、前記特定メモリセルに関連して前記カウント を格納するステップ
を更に具備する磁気ランダムアクセスメモリの動作方法。
[11] 第 1方向へ伸びる複数の第 1配線と、前記第 1方向とは異なる第 2方向へ伸びる複 数の第 2配線と、前記複数の第 1配線と前記複数の第 2配線との交点に形成された 複数のメモリセルとを備え、前記複数のメモリセルの各々は、非磁性層を介して反強 磁性的に結合した 2層以上の磁性層を積層したフリー磁性層を含み、前記フリー磁 性層の磁化容易軸の方向が、前記第 1方向及び前記第 2方向とは異なる磁気ランダ ムアクセスメモリの検査方法であって、
前記複数のメモリセルの 1つとしての特定メモリセルに対して、予め決められた書込 条件でデータを書込むステップと、
前記データが前記特定メモリセルに正しく書き込まれな ヽとき、前記データが前記 特定メモリセルに正しく書き込まれるまで、前記書込み条件を再設定しながら、前記 データを前記特定メモリセルに繰り返し書き込むステップと、
前記データが前記特定メモリセルに正しく書き込まれたとき、前記書込み条件と関 連するデータを検査結果データとして前記メモリセルに対して格納するステップと を具備する磁気ランダムアクセスメモリの検査方法。
[12] 請求項 11に記載の磁気ランダムアクセスメモリの検査方法にぉ 、て、
前記書き込むステップは、
前記特定メモリセル力 格納データを読み出すステップと、
前記読み出されたデータに基づいて前記特定メモリセルに対してトグル書込み方 式で前記データを書込むステップと
を備える磁気ランダムアクセスメモリの検査方法。
[13] 請求項 12に記載の磁気ランダムアクセスメモリの製造方法において、
前記書込むステップは、
前記特定メモリセルに対してダイレクト書込み方式で前記データの書込むステップ を備える磁気ランダムアクセスメモリの検査方法。
[14] 請求項 11乃至 13のいずれかに記載の磁気ランダムアクセスメモリの検査方法にお いて、
前記繰り返し書き込むステップは、
前記特定メモリセルに対して前記データが正しく書込まれな力つた回数をカウント するステップと、
前記カウントに基づいて定まる前記書込み条件を再設定するステップと を備える磁気ランダムアクセスメモリの検査方法。
[15] 請求項 14に記載の磁気ランダムアクセスメモリの検査方法において、
前記特定メモリは、前記複数の第 1配線のうちの 1つとしての第 1特定配線と前記複 数の第 2配線のうちの 1つとしての第 2特定配線と関連し、前記書込み条件は、前記 第 1特定配線と前記第 2特定配線とに流される書込み電流値である
磁気ランダムアクセスメモリの検査方法。
[16] 請求項 14又は 15に記載の磁気ランダムアクセスメモリの検査方法において、 前記カウントが所定の値に達したとき、前記特定メモリセルを不良として登録するス テツプ
を更に具備する磁気ランダムアクセスメモリの検査方法。
[17] 請求項 14又は 15に記載の磁気ランダムアクセスメモリの検査方法において、 前記複数のメモリセルの少なくとも一部につ 、ての前記検査結果データに基づ ヽ て、前記予め決められた書込み条件を再設定するステップ
を更に具備する磁気ランダムアクセスメモリの検査方法。
[18] 請求項 11乃至 17のいずれかに記載の磁気ランダムアクセスメモリの検査方法にお いて、
前記複数のメモリセルの前記検査結果データに基づ 、て、前記磁気ランダムァクセ スメモリを複数のクラスのうちの 1つにグループ化するステップ
を更に具備する磁気ランダムアクセスメモリの検査方法。
[19] 第 1方向へ伸びる複数の第 1配線と、
前記第 1方向とは異なる第 2方向へ伸びる複数の第 2配線と、
前記複数の第 1配線と前記複数の第 2配線との交点に形成された複数のメモリセ ルとを備え、前記複数のメモリセルの各々は、非磁性層を介して反強磁性的に結合 した 2層以上の磁性層を積層したフリー磁性層を含み、前記フリー磁性層の磁化容 易軸の方向が、前記第 1方向及び前記第 2方向とは異なり、
前記複数のメモリセルへのデータの書込み動作を制御する書き込み制御部と を具備し、
前記データの書込み動作時に、前記複数の第 1配線から第 1選択配線と前記複数 の第 2配線力 第 2選択配線とが選択され、前記複数のメモリセルのうち選択セルは 第 1選択配線と第 2選択配線と関連付けられ、
前記書き込み制御部が、
予め決められた書込み条件で前記選択セルに対してデータを書込み、 前記データが前記特定メモリセルに正しく書き込まれないとき、前記データが正し く書き込まれるまで、前記書込み条件を再設定しながら、前記選択セルに対して前記 データを繰り返し書き込む
磁気ランダムアクセスメモリ。
[20] 請求項 19に記載の磁気ランダムアクセスメモリにお ヽて、
前記フリー磁性層における前記容易軸方向のうちの一方の向きの自発磁ィ匕の大き さは、他方の向きの自発磁ィ匕の大きさと異なる
磁気ランダムアクセスメモリ。
[21] 請求項 19又は 20に記載の磁気ランダムアクセスメモリにおいて、
前記書き込み動作は、
前記書き込み制御部が、前記第 1選択配線に第 1書き込み電流を供給し、次に、 前記第 2選択配線に第 2書き込み電流を供給し、その後、前記第 1書き込み電流を 停止し、次に、前記第 2書き込み電流を停止する動作である
磁気ランダムアクセスメモリ。
[22] 請求項 19乃至 21のいずれかに記載の磁気ランダムアクセスメモリにおいて、 前記書き込み制御部は、
前記データが正しく書き込まれな力つた回数をカウントするカウンタと、 前記カウントと前記書込み条件との関係を規定するテーブルと を具備し、
前記書き込み制御部は、
前記カウントに基づ 、て前記テーブルを参照して前記書込み条件を再設定し、再 設定された書込み条件で前記データを前記選択メモリセルに書き込む
磁気ランダムアクセスメモリ。
[23] 請求項 22に記載の磁気ランダムアクセスメモリにおいて、
前記書込み条件は、前記第 1選択配線と前記第 2選択配線とに流される書込み電 流値である
磁気ランダムアクセスメモリ。
[24] 請求項 23に記載の磁気ランダムアクセスメモリにお ヽて、
前記書き込み制御部は、
前記カウントが第 1範囲にあるとき、前回前記データの書込み動作を行ったときと同 じ前記書込み電流値を再設定する
磁気ランダムアクセスメモリ。
[25] 請求項 24に記載の磁気ランダムアクセスメモリにおいて、
前記書き込み制御部は、
前記カウントが、前記第 1範囲より大きい第 2範囲にあるとき、前回前記データの書 込みを行ったときより小さい前記書き込み電流値を再設定する
磁気ランダムアクセスメモリ。
[26] 請求項 24に記載の磁気ランダムアクセスメモリにおいて、
前記書き込み制御部は、
前記カウントが、前記第 1範囲より大きい第 3範囲にあるとき、前回前記データの書 込み動作を行ったときより大きい前記書き込み電流値を再設定する
磁気ランダムアクセスメモリ。
[27] 請求項 22に記載の磁気ランダムアクセスメモリにおいて、
前記書き込み制御部が、
所定の回数書込み動作を繰り返しても前記データが書き込まれない場合、警報を 示す信号を出力する 磁気ランダムアクセスメモリ。
[28] 請求項 22に記載の磁気ランダムアクセスメモリにおいて、
前記書き込み制御部が、
所定の回数書込み動作を繰り返しても前記データが書き込まれない場合、当該選 択セルを不良ビットとして登録する警報を示す信号を出力する
磁気ランダムアクセスメモリ。
[29] 磁気ランダムアクセスメモリを製造するステップと、
ここで、前記磁気ランダムアクセスメモリは、
第 1方向へ伸びる複数の第 1配線と、
前記第 1方向とは異なる第 2方向へ伸びる複数の第 2配線と、
前記複数の第 1配線と前記複数の第 2配線との交点に形成された複数のメモリセ ルとを備え、前記複数のメモリセルの各々は、非磁性層を介して反強磁性的に結合 した 2層以上の磁性層を積層したフリー磁性層を含み、前記フリー磁性層の磁化容 易軸の方向が、前記第 1方向及び前記第 2方向とは異なり、
請求項 11乃至 18のいずれかに記載の磁気ランダムアクセスメモリを検査するステ ップと
を具備する磁気ランダムアクセスメモリの製造方法。
PCT/JP2005/021776 2004-12-01 2005-11-28 磁気ランダムアクセスメモリ、その動作方法及びその製造方法 WO2006059559A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547893A JP4891092B2 (ja) 2004-12-01 2005-11-28 磁気ランダムアクセスメモリ、その動作方法及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-349059 2004-12-01
JP2004349059 2004-12-01

Publications (1)

Publication Number Publication Date
WO2006059559A1 true WO2006059559A1 (ja) 2006-06-08

Family

ID=36564992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021776 WO2006059559A1 (ja) 2004-12-01 2005-11-28 磁気ランダムアクセスメモリ、その動作方法及びその製造方法

Country Status (2)

Country Link
JP (1) JP4891092B2 (ja)
WO (1) WO2006059559A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034437A2 (en) * 2001-10-16 2003-04-24 Motorola, Inc. Writing to a mram element comprising a synthetic antiferromagnetic layer
JP2003208786A (ja) * 2002-01-10 2003-07-25 Hewlett Packard Co <Hp> 最適化された書込み電流をオンチップで自動的に判定する方法及び装置を備える磁気抵抗ランダムアクセスメモリ(mram)
JP2003272375A (ja) * 2002-03-20 2003-09-26 Sony Corp 強磁性トンネル接合素子を用いた磁気記憶装置
JP2006031795A (ja) * 2004-07-14 2006-02-02 Renesas Technology Corp 不揮発性半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034437A2 (en) * 2001-10-16 2003-04-24 Motorola, Inc. Writing to a mram element comprising a synthetic antiferromagnetic layer
JP2003208786A (ja) * 2002-01-10 2003-07-25 Hewlett Packard Co <Hp> 最適化された書込み電流をオンチップで自動的に判定する方法及び装置を備える磁気抵抗ランダムアクセスメモリ(mram)
JP2003272375A (ja) * 2002-03-20 2003-09-26 Sony Corp 強磁性トンネル接合素子を用いた磁気記憶装置
JP2006031795A (ja) * 2004-07-14 2006-02-02 Renesas Technology Corp 不揮発性半導体記憶装置

Also Published As

Publication number Publication date
JPWO2006059559A1 (ja) 2008-06-05
JP4891092B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
US9536621B2 (en) Nonvolatile memory
US7379327B2 (en) Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells having enhanced read and write margins
US7835210B2 (en) Magnetic random access memory and data read method of the same
US9721632B2 (en) Redundant magnetic tunnel junctions in magnetoresistive memory
KR100646479B1 (ko) 데이터 에러 감소 방법 및 자기저항 랜덤 액세스 메모리
US8416612B2 (en) Memory and data processing method
US8929167B2 (en) MRAM self-repair with BIST logic
US9595311B2 (en) Nonvolatile semiconductor memory device
US10593375B2 (en) Semiconductor memory device with correcting resistances in series with memory array signal lines
US20110019466A1 (en) Stuck-At Defect Condition Repair for a Non-Volatile Memory Cell
JP2011008849A (ja) メモリ及び書き込み制御方法
JP5152672B2 (ja) 磁気ランダムアクセスメモリ及びその動作方法
US20040047177A1 (en) Magnetic random access memory
US8942032B2 (en) Method for magnetic screening of arrays of magnetic memories
US10236077B2 (en) Screening method for magnetic storage device, screening apparatus for magnetic storage device, and manufacturing method of magnetic storage device
US9653182B1 (en) Testing method, manufacturing method, and testing device of memory device
US7577018B2 (en) Readout circuit of magnetic memory
US20080080232A1 (en) Active write current adjustment for magneto-resistive random access memory
US9349427B2 (en) Method for screening arrays of magnetic memories
JP2019160365A (ja) 磁気メモリ装置及び磁気メモリ装置の書き込み方法
JP4891092B2 (ja) 磁気ランダムアクセスメモリ、その動作方法及びその製造方法
CN112289352B (zh) 具有ecc功能的mram系统及其操作方法
JP4839894B2 (ja) 磁気メモリの読み出し回路
JP2007281229A (ja) 磁気抵抗ランダムアクセスメモリ、その書き込み方法、およびテスト方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547893

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809619

Country of ref document: EP

Kind code of ref document: A1