WO2006058733A1 - Granules de styrene polymere expansibles et mousse en particules presentant une conductivite thermique reduite - Google Patents

Granules de styrene polymere expansibles et mousse en particules presentant une conductivite thermique reduite Download PDF

Info

Publication number
WO2006058733A1
WO2006058733A1 PCT/EP2005/012797 EP2005012797W WO2006058733A1 WO 2006058733 A1 WO2006058733 A1 WO 2006058733A1 EP 2005012797 W EP2005012797 W EP 2005012797W WO 2006058733 A1 WO2006058733 A1 WO 2006058733A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
styrene polymer
expandable styrene
blowing agent
expandable
Prior art date
Application number
PCT/EP2005/012797
Other languages
German (de)
English (en)
Inventor
Markus Allmendinger
Joachim Ruch
Klaus Hahn
Bernhard Schmied
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE112005002814T priority Critical patent/DE112005002814A5/de
Publication of WO2006058733A1 publication Critical patent/WO2006058733A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the invention relates to expandable styrene polymer granules which
  • a filler selected from powdery inorganic materials such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, titanium dioxide, chalk, calcium sulfate, kaolin, silica, quartz powder, Aerosil , Alumina or wollastonite and
  • halogenated flame retardants such as hexabromocyclododecane (HBCD)
  • HBCD hexabromocyclododecane
  • Flame retardant synergists such as dicumyl peroxide or dicumyl, melted with polystyrene and then added a propellant.
  • the object of the present invention was therefore to remedy the disadvantages mentioned and to provide self-extinguishing styrene polymer particle foams with low thermal conductivity, and to a process for producing expandable styrene polymers which can be processed by prefoaming and sintering with hot air or steam to form self-extinguishing styrene polymer particle foams.
  • the carbon black or graphite is used in amounts of 2 to 8 wt .-%.
  • the BET surface area is preferably in the range of 10 to 120 m 2 / g.
  • the graphite used is preferably graphite having an average particle size in the range from 1 to 50 ⁇ m.
  • the EPS granulate contains hexabromocyclododecane (HBCD) as flame retardant and dicumyl or dicumyl peroxide as flame retardant synergist.
  • HBCD hexabromocyclododecane
  • the weight ratio of flame retardant synergist to organic bromine compound is usually in the range of 1 to 20, preferably in the range of 2 to 5.
  • particle foam moldings obtainable by welding prefoamed foam particles of expandable, filler-containing, thermoplastic polymer granules were found, wherein the particle foam has a density in the range of 8 to 200 g / l, preferably in the range of 10 to 50 g / l.
  • the particle foam moldings according to the invention exhibit a high degree of closed-cell quality, with more than 60%, preferably more than 70, particularly preferably more than 80% of the cells of the individual foam particles being closed-celled as a rule.
  • Suitable fillers are organic and inorganic powders or fibrous materials, as well as mixtures thereof.
  • organic fillers z As wood flour, starch, flax, hemp, ramie, jute, sisal-cotton cellulose or aramid fibers are used.
  • inorganic fillers z As carbonates, silicates, barite, glass beads, zeolites or metal oxides are used.
  • pulverulent inorganic substances such as talc, chalk, kaolin (Al 2 (Si 2 O 5 ) (OH) 4 ), aluminum hydroxide, magnesium hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, calcium sulfate, silica, quartz powder, Aerosil , Alumina or wollastonite or spherical or fibrous inorganic materials such as glass beads, glass fibers or carbon fibers.
  • pulverulent inorganic substances such as talc, chalk, kaolin (Al 2 (Si 2 O 5 ) (OH) 4 ), aluminum hydroxide, magnesium hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, calcium sulfate, silica, quartz powder, Aerosil , Alumina or wollastonite or spherical or fibrous inorganic materials such as glass beads, glass fibers or carbon fibers.
  • the mean particle diameter or, in the case of fibrous fillers, the length should be in the range of the cell size or smaller. Preference is given to an average particle diameter in the range from 1 to 100 ⁇ m, preferably in the range from 2 to 50 ⁇ m.
  • inorganic fillers having a density in the range from 2.0 to 4.0 g / cm 3 , in particular in the range from 2.5 to 3.0 g / cm 3 .
  • the whiteness / brightness (DIN / ISO) is preferably 50 to 100%, in particular 70 to 98%.
  • the oil number according to ISO 787/5 of the preferred fillers is in the range of 2 to 200 g / 100 g, in particular in the range of 5 to 150 g / 100 g.
  • the nature and amount of the fillers can influence the properties of the expandable thermoplastic polymers and the particle foam moldings obtainable therefrom.
  • the proportion of the filler is generally in the range of 1 to 50, preferably 5 to 30 wt .-%, based on the thermoplastic polymer. At Grestoff- held in the range of 5 to 15 wt .-%, no significant deterioration of the mechanical properties of the particle foams, such as flexural strength or compressive strength is observed.
  • adhesion promoters such as maleic anhydride-modified styrene copolymers, epoxy group-containing polymers, organosilanes or styrene copolymers with isocyanate or acid groups, can significantly improve the binding of the filler to the polymer matrix and thus the mechanical properties of the particle foam moldings.
  • inorganic fillers reduce flammability.
  • inorganic powders such as aluminum hydroxide
  • thermoplastic polymer granules according to the invention also show a low propellant loss during storage, even at high filler contents. Due to the nucleating effect, it is also possible to reduce the blowing agent content, based on the polymer.
  • thermoplastic polymers for example, styrene polymers, polyamides
  • PA polyolefins, such as polypropylene (PP), polyethylene (PE) or polyethylene-propylene copolymers, polyacrylates, such as polymethyl methacrylate (PMMA), polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), poly - ether sulfone (PES), Polyehterketone or polyether sulfides (PES) or mixtures thereof are used. Particular preference is given to using styrene polymers.
  • the expandable styrene polymer preferably has a molecular weight in the range from 190,000 to 400,000 g / mol, more preferably in the range from 220,000 to 300,000 g / mol. Due to the reduction in molecular weight by shear and / or temperature, the molecular weight of the expandable polystyrene is usually about 10,000 g / mol below the molecular weight of the polystyrene used.
  • the strand expansion after the nozzle exit should be as low as possible. It has been shown that the strand expansion is influenced, inter alia, by the molecular weight distribution of the styrene polymer. can be flown.
  • the expandable styrene polymer should therefore preferably have a molecular weight distribution with a nonuniformity M w / M n of at most 3.5, more preferably in the range of 1.5 to 2.8 and most preferably in the range of 1.8 to 2.6.
  • styrene polymers preference is given to glassy polystyrene (GPPS), toughened polystyrene (HIPS), anionically polymerized polystyrene or toughened polystyrene (A-IPS), styrene-a-methstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN ) Acrylonitrile-styrene-acrylic esters (ASA), methyl acrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) - polymers or mixtures thereof or with polyphenylene ether (PPE) used.
  • GPPS glassy polystyrene
  • HIPS toughened polystyrene
  • A-IPS anionically polymerized polystyrene or toughened polys
  • the styrene polymers mentioned can be used to improve the mechanical properties or the thermal stability, if appropriate by using compatibilizers with thermoplastic polymers, such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, generally in proportions of not more than 30% by weight in total , preferably in the range of 1 to 10 wt .-%, based on the polymer melt, are mixed.
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyester
  • mixtures in the above amounts ranges with z.
  • rubbers such as polyacrylates or polydienes, z.
  • Suitable compatibilizers are e.g. Maleic anhydride-modified styrene copolymers, polymers or organosilanes containing epoxide groups.
  • the styrene polymer melt may also be admixed with polymer recyclates of the above-mentioned thermoplastic polymers, in particular styrene polymers and expandable styrene polymers (EPS) in amounts which do not substantially impair their properties, generally in quantities of not more than 50% by weight, in particular in amounts of from 1 to 20 wt .-%.
  • EPS expandable styrene polymers
  • the blowing agent-containing styrene polymer melt generally contains one or more blowing agents in a homogeneous distribution in a proportion of 2 to 10 wt .-%, preferably 3 to 7 wt .-%, based on the blowing agent-containing styrene polymer melt.
  • Suitable blowing agents are the physical blowing agents commonly used in EPS, such as aliphatic hydrocarbons having 2 to 7 carbon atoms, alcohols, ketones, ethers or halogenated hydrocarbons. Preference is given to using isobutane, n-butane, isopentane, n-pentane.
  • finely divided internal water droplets can be introduced into the styrene polymer matrix. This can be done for example by the addition of water in the molten styrene polymer matrix. The addition of the water can be done locally before, with or after the propellant dosage. A homogeneous distribution of the water can be achieved by means of dynamic or static mixers.
  • Expandable styrene polymers with at least 90% of the internal water in the form of inner water droplets with a diameter in the range of 0.5 to 15 microns form when foaming foams with sufficient cell count and homogeneous foam structure.
  • the amount of blowing agent and water added is chosen so that the expandable styrene polymers (EPS) have an expansion capacity ⁇ , defined as bulk density before foaming / bulk density after foaming, at most 125, preferably 25 to 100.
  • EPS expandable styrene polymers
  • the expandable styrene polymer pellets (EPS) according to the invention generally have a bulk density of at most 700 g / l, preferably in the range from 590 to 660 g / l.
  • bulk densities in the range of 590 to 1200 g / l may occur.
  • the styrenic polymer melt may contain additives, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and / or organic dyes and pigments, e.g. IR absorbers such as carbon black, graphite or aluminum powder together or spatially separated, e.g. be added via mixer or side extruder.
  • the dyes and pigments are added in amounts ranging from 0.01 to 30, preferably in the range of 1 to 5 wt .-%.
  • a dispersing aid for example organosilanes, polymers containing epoxy groups or maleic anhydride-grafted styrene polymers.
  • Preferred plasticizers are mineral oils, low molecular weight styrene polymers, phthalates, which can be used in amounts of from 0.05 to 10% by weight, based on the styrene polymer.
  • the blowing agent is mixed into the polymer melt.
  • the process comprises the stages a) melt production, b) mixing c) cooling d) conveying and e) granulation.
  • Stages can be performed by the apparatus or apparatus combinations known in plastics processing.
  • static or dynamic mixers are suitable, for example extruders.
  • the polymer melt can be taken directly from a polymerization reactor or produced directly in the mixing extruder or a separate melt extruder by melting polymer granules.
  • the cooling of the melt can be done in the mixing units or in separate coolers.
  • pressurized underwater granulation, granulation with rotating knives and cooling by spray misting of tempering liquids or atomization granulation are suitable for the granulation.
  • Apparatus arrangements suitable for carrying out the method are, for example:
  • the arrangement may include side extruders for incorporation of additives, e.g. of solids or thermally sensitive additives.
  • the propellant-containing styrene polymer melt is usually at a temperature in the range of 140 to 300 0 C, preferably in the range of 160 to 24O 0 C promoted through the nozzle plate. Cooling down to the range of the glass transition temperature is not necessary.
  • the nozzle plate is heated at least to the temperature of the blowing agent-containing polystyrene melt.
  • the temperature of the nozzle plate is in the range of 20 to 100 0 C above the temperature of the blowing agent-containing polystyrene melt. This prevents polymer deposits in the nozzles and ensures trouble-free granulation.
  • the diameter (D) of the nozzle bores at the nozzle exit should be in the range from 0.2 to 1.5 mm, preferably in the range from 0.3 to 1.2 mm, particularly preferably in the range from 0.3 to 0 , 8 mm lie. In this way granule sizes below 2 mm, in particular in the range from 0.4 to 1.4 mm, can be set precisely even after strand expansion.
  • the strand expansion can be influenced by the geometry of the die, apart from the molecular weight distribution.
  • the nozzle plate preferably has bores with a ratio L / D of at least 2, wherein the length (L) designates the nozzle region whose diameter corresponds at most to the diameter (D) at the nozzle exit.
  • the ratio L / D is in the range of 3 to 20.
  • the diameter (E) of the holes at the nozzle inlet of the nozzle plate should be at least twice as large as the diameter (D) at the nozzle outlet.
  • An embodiment of the nozzle plate has bores with conical inlet and an inlet angle ⁇ less than 180 °, preferably in the range of 30 to 120 °.
  • the nozzle plate has bores with conical outlet and an outlet angle ß smaller than 90 °, preferably in the range of 15 to 45 °.
  • the nozzle plate can be equipped with bores of different exit diameters (D). The various embodiments of the nozzle geometry can also be combined.
  • a particularly preferred process for making expandable styrenic polymers comprises the steps
  • the granulation can be carried out directly behind the nozzle plate under water at a pressure in the range of 1 to 25 bar, preferably 5 to 15 bar.
  • a polymer melt is directly available for the blowing agent impregnation in stage c) and melting of styrene polymers is not necessary.
  • This is not only more economical but also leads to expandable styrenic polymers (EPS) with low styrenic molar monomer, since the mechanical shear in the melting range of an extruder, which usually leads to a back-cleavage of monomers, is avoided.
  • EPS expandable styrenic polymers
  • shear rates below 50 / sec, preferably 5 to 30 / sec, and temperatures below 26O 0 C and short residence times in the range of 1 to 20, preferably 2 to 10 minutes in stages c) to e) are particularly preferred.
  • the polymer melt can by pressure pumps, z. B. gear pumps funded and discharged.
  • a further possibility for reducing the styrene monomer content and / or residual solvents such as ethylbenzene is to provide high degassing by means of entrainers, for example water, nitrogen or carbon dioxide, in step b) or to carry out the polymerization step a) anionically.
  • entrainers for example water, nitrogen or carbon dioxide
  • the finished expandable styrene polymer granules can be coated by glycerol esters, antistatic agents or anticaking agents.
  • the expandable styrene polymer pellets (EPS) according to the invention generally have higher bulk densities, depending on the filler type and content, which are generally in the range from 590 to 1200 g / l.
  • the expandable thermoplastic polymer granules according to the invention exhibit a good expansion capacity even at low propellant contents. Even without a coating, the bond is significantly lower than with conventional EPS beads.
  • Fillers with particle sizes in the range from 0.1 to 100 .mu.m, in particular in the range of 0.5 and 10 .mu.m result in a reduction of the thermal conductivity by 1 to 3 mW in the polystyrene foam at contents of 10 wt .-%. Therefore, comparatively low thermal conductivities can be achieved even with smaller amounts of IR absorbers, such as soot and graphite.
  • an IR absorber such as carbon black or graphite
  • carbon black in amounts of from 0.1 to 10% by weight, in particular in amounts of from 2 to 8% by weight.
  • fillers eg. B. under 5 wt .-%
  • carbon black in amounts of 1 to 25 wt .-%, preferably in the range of 10 to 20 wt .-%.
  • the carbon black addition is preferably mixed into the styrene polymer melt via the main stream and a side stream extruder.
  • Addition via extruder makes it possible to easily break down the carbon black agglomerates to an average agglomerate size in the range from 0.3 to 10 ⁇ m, preferably in the range from 0.5 to 5 ⁇ m, and homogeneous dyeing of the expandable styrene polymer granules to form dense-cell foam particles having a density in the range of 5 to 40 kg / m 3 , in particular 10 to 15 kg / m 3 can be foamed.
  • the particle foams obtainable with 10 to 20 wt .-% carbon black by foaming and sintering ⁇ achieve a thermal conductivity determined at 1O 0 C according to DIN 52612, in the range of 30 to 33mW / mK.
  • the BET surface area is preferably in the range of 10 to 120 m 2 / g.
  • the graphite used is preferably graphite having an average particle size in the range from 1 to 50 ⁇ m.
  • a preferred process for preparing expandable styrene polymers comprises the steps
  • a filler selected from pulverulent inorganic substances, such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, titanium dioxide, calcium sulfate, silicic acid, quartz powder, Areosil, alumina or wollastonite and
  • the expandable, styrene polymer granules according to the invention can be prefoamed by means of hot air or steam to foam particles having a density in the range of 8 to 200 kg / m 3 , preferably in the range of 10 to 50 kg / m 3 and then welded in a closed mold into foam moldings.
  • the mixture of polystyrene melt, blowing agent, flame retardant and synergist was at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm) promoted. With the help of pressurized underwater granulation, compact granules with a narrow size distribution were produced.
  • the thermal conductivity / » was measured at 10 0 C in accordance with DIN 52,612th burning times of below 6 seconds are suitable in order to exist the B2 test according to DIN 4102nd

Abstract

L'invention concerne des granulés de styrène polymère, qui contiennent a) entre 5 et 50 % en poids d'une matière de charge, sélectionnée parmi des matières inorganiques, se présentant sous forme de poudre, telles que le talc, la craie, le kaolin, l'hydroxyde d'aluminium, le nitrure d'aluminium, de silicate d'aluminium, le sulfate de baryum, le carbonate de calcium, le dioxyde de titane, le sulfate de calcium, l'acide silicique, la poudre de quartz, l'aérosil, l'oxyde d'aluminium, ou la wollastonite ; b) entre 0,1 et 10 % en poids de suie ou de graphite. L'invention concerne également un procédé pour produire lesdits granulés et la mousse en particules contenant les granulés et présentant une conductivité thermique réduite.
PCT/EP2005/012797 2004-12-03 2005-12-01 Granules de styrene polymere expansibles et mousse en particules presentant une conductivite thermique reduite WO2006058733A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005002814T DE112005002814A5 (de) 2004-12-03 2005-12-01 Expandierbare Styrolpolymergranulate und Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004058583A DE102004058583A1 (de) 2004-12-03 2004-12-03 Expandierbare Styrolpolymergranulate und Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit
DE102004058583.0 2004-12-03

Publications (1)

Publication Number Publication Date
WO2006058733A1 true WO2006058733A1 (fr) 2006-06-08

Family

ID=36241036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012797 WO2006058733A1 (fr) 2004-12-03 2005-12-01 Granules de styrene polymere expansibles et mousse en particules presentant une conductivite thermique reduite

Country Status (2)

Country Link
DE (2) DE102004058583A1 (fr)
WO (1) WO2006058733A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061678A2 (fr) 2006-11-23 2008-05-29 Polimeri Europa S.P.A. Polymères aromatiques vinyliques expansibles assurant une meilleure isolation thermique et procédé de préparation de ceux-ci
EP2025700A1 (fr) * 2007-08-01 2009-02-18 Ineos Europe Limited procédé de fabrication de polystyrène expansible (eps) comprenant des retardateurs de flamme
EP2158258A1 (fr) * 2007-05-30 2010-03-03 Jae-Cheon Kim Bille de polystyrène expansible ayant un effet adiabatique et à l'épreuve des flammes supérieur et leur procédé de fabrication
ITMI20082278A1 (it) * 2008-12-19 2010-06-20 Polimeri Europa Spa Composizioni di polimeri vinilaromatici espansibili a migliorata capacita' di isolamento termico, procedimento per la loro preparazione ed articoli espansi da loro ottenuti
CN101824192A (zh) * 2010-05-11 2010-09-08 宁波力达得为高分子科技有限公司 一种改性聚苯乙烯材料及其制备方法
WO2012032022A1 (fr) 2010-09-10 2012-03-15 Total Petrochemicals Research Feluy Polymères aromatiques de vinyle expansibles
WO2012175345A1 (fr) 2011-06-23 2012-12-27 Total Research & Technology Feluy Polymères aromatiques de vinyle expansibles améliorés
WO2013000679A1 (fr) 2011-06-27 2013-01-03 Total Research & Technology Feluy Polymères aromatiques vinyliques expansibles contenant du graphite
WO2013150456A1 (fr) 2012-04-06 2013-10-10 Versalis Spa Procédé pour l'insertion et le transport d'additifs labiles dans des flux de matériau fondu
WO2015097112A1 (fr) * 2013-12-27 2015-07-02 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia S.K.A. Utilisation de cénosphères pour améliorer les propriétés d'auto-extinction de mousse polymère préparée à partir d'un monomère vinylaromatique et contenant un additif athermane
WO2015097106A1 (fr) 2013-12-27 2015-07-02 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia S.K.A. Combinaison d'un composant minéral avec du noir de carbone et son utilisation pour diminuer la conductivité thermique d'un polymère vinyl-aromatique.
CN104895217A (zh) * 2015-05-28 2015-09-09 中国十七冶集团有限公司 现浇无网聚苯板外保温墙构造方法
EP2274369B1 (fr) 2008-05-02 2015-12-02 Basf Se Mousses de polystyrene avec une faible teneur en métal
WO2016113328A1 (fr) 2015-01-14 2016-07-21 Synthos S.A. Utilisation de minéraux de structure pérovskite dans une mousse de polymère aromatique vinylique
CN106398011A (zh) * 2016-06-20 2017-02-15 肇庆市峰明光电科技有限公司 一种去蓝光扩散板及其制作方法
CN107141384A (zh) * 2016-08-16 2017-09-08 新疆蓝山屯河新材料有限公司 一种高黑度石墨可发性聚苯乙烯颗粒的生产方法
EP2427514B1 (fr) 2009-05-05 2017-09-13 versalis S.p.A. Articles expansés présentant une excellente résistance au rayonnement solaire et des propriétés optimales d'isolation thermique et des propriétés mécaniques.
WO2018015502A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Utilisation d'un additif géopolymère en combinaison avec un retardateur de flamme non bromé dans des mousses polymères
WO2018015494A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Géopolymère modifié, composite géopolymère modifié et procédé de production associé
WO2018015490A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Procédé de production d'un géopolymère ou d'un composite géopolymère
EP3495335A1 (fr) 2015-01-14 2019-06-12 Synthos S.A. Procédé de fabrication d'un composite géopolymère
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083068A2 (fr) 2009-01-15 2010-07-22 Dow Global Technologies Inc. Mousse de polymère à faibles teneurs en bromure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1504711A1 (de) * 1963-08-17 1969-11-20 Holl Dr Karl Polystyrolschaum mit hohem Fuellstoffgehalt und ein Verfahren zu seiner Herstellung
WO1990006339A1 (fr) * 1988-11-25 1990-06-14 The Dow Chemical Company Mousse au polystyrene contenant du noir de carbone
WO2000043442A1 (fr) * 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Polymeres de styrene particulaires, expansibles, et leur procede de production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1504711A1 (de) * 1963-08-17 1969-11-20 Holl Dr Karl Polystyrolschaum mit hohem Fuellstoffgehalt und ein Verfahren zu seiner Herstellung
WO1990006339A1 (fr) * 1988-11-25 1990-06-14 The Dow Chemical Company Mousse au polystyrene contenant du noir de carbone
WO2000043442A1 (fr) * 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Polymeres de styrene particulaires, expansibles, et leur procede de production

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061678A3 (fr) * 2006-11-23 2008-10-30 Polimeri Europa Spa Polymères aromatiques vinyliques expansibles assurant une meilleure isolation thermique et procédé de préparation de ceux-ci
WO2008061678A2 (fr) 2006-11-23 2008-05-29 Polimeri Europa S.P.A. Polymères aromatiques vinyliques expansibles assurant une meilleure isolation thermique et procédé de préparation de ceux-ci
EP2158258A4 (fr) * 2007-05-30 2011-10-05 Jae-Cheon Kim Bille de polystyrène expansible ayant un effet adiabatique et à l'épreuve des flammes supérieur et leur procédé de fabrication
EP2158258A1 (fr) * 2007-05-30 2010-03-03 Jae-Cheon Kim Bille de polystyrène expansible ayant un effet adiabatique et à l'épreuve des flammes supérieur et leur procédé de fabrication
EP2025700A1 (fr) * 2007-08-01 2009-02-18 Ineos Europe Limited procédé de fabrication de polystyrène expansible (eps) comprenant des retardateurs de flamme
EP2274369B1 (fr) 2008-05-02 2015-12-02 Basf Se Mousses de polystyrene avec une faible teneur en métal
EP2274369B2 (fr) 2008-05-02 2023-03-29 Basf Se Mousses de polystyrene avec une faible teneur en métal
RU2510406C2 (ru) * 2008-12-19 2014-03-27 Полимери Эуропа С.П.А. Композиции из вспениваемых винилароматических полимеров с улучшенной теплоизоляционной способностью, способ их получения и вспененные изделия, полученные из этих композиций
WO2010069584A1 (fr) * 2008-12-19 2010-06-24 Polimeri Europa S.P.A. Compositions de polymères vinyliques aromatiques expansibles avec une capacité d'isolation thermique renforcée, procédé de fabrication associé, et articles obtenus à partir de ces compositions
US10961365B2 (en) 2008-12-19 2021-03-30 Versalis S.P.A. Compositions of expandable vinyl aromatic polymers with an improved thermal insulation capacity, process for their production and expanded articles obtained therefrom
ITMI20082278A1 (it) * 2008-12-19 2010-06-20 Polimeri Europa Spa Composizioni di polimeri vinilaromatici espansibili a migliorata capacita' di isolamento termico, procedimento per la loro preparazione ed articoli espansi da loro ottenuti
EP2427514B1 (fr) 2009-05-05 2017-09-13 versalis S.p.A. Articles expansés présentant une excellente résistance au rayonnement solaire et des propriétés optimales d'isolation thermique et des propriétés mécaniques.
CN101824192A (zh) * 2010-05-11 2010-09-08 宁波力达得为高分子科技有限公司 一种改性聚苯乙烯材料及其制备方法
WO2012032022A1 (fr) 2010-09-10 2012-03-15 Total Petrochemicals Research Feluy Polymères aromatiques de vinyle expansibles
US9169638B2 (en) 2010-09-10 2015-10-27 Total Research & Technology Feluy Expandable vinyl aromatic polymers
WO2012175345A1 (fr) 2011-06-23 2012-12-27 Total Research & Technology Feluy Polymères aromatiques de vinyle expansibles améliorés
US9279041B2 (en) 2011-06-23 2016-03-08 Total Research & Technology Feluy Expandable vinyl aromatic polymers
EA024000B1 (ru) * 2011-06-23 2016-08-31 Тотал Ресерч & Технолоджи Фелай Винилароматические пенополимеры с улучшенными свойствами
WO2013000679A1 (fr) 2011-06-27 2013-01-03 Total Research & Technology Feluy Polymères aromatiques vinyliques expansibles contenant du graphite
WO2013150456A1 (fr) 2012-04-06 2013-10-10 Versalis Spa Procédé pour l'insertion et le transport d'additifs labiles dans des flux de matériau fondu
US10183264B2 (en) 2012-04-06 2019-01-22 Versalis S.P.A. Process for the insertion and conveying of labile additives in streams of molten material
WO2015097106A1 (fr) 2013-12-27 2015-07-02 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia S.K.A. Combinaison d'un composant minéral avec du noir de carbone et son utilisation pour diminuer la conductivité thermique d'un polymère vinyl-aromatique.
WO2015097112A1 (fr) * 2013-12-27 2015-07-02 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia S.K.A. Utilisation de cénosphères pour améliorer les propriétés d'auto-extinction de mousse polymère préparée à partir d'un monomère vinylaromatique et contenant un additif athermane
US11267170B2 (en) 2015-01-14 2022-03-08 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US11447614B2 (en) 2015-01-14 2022-09-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
US11708306B2 (en) 2015-01-14 2023-07-25 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
WO2016113328A1 (fr) 2015-01-14 2016-07-21 Synthos S.A. Utilisation de minéraux de structure pérovskite dans une mousse de polymère aromatique vinylique
EP3495335A1 (fr) 2015-01-14 2019-06-12 Synthos S.A. Procédé de fabrication d'un composite géopolymère
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
CN104895217A (zh) * 2015-05-28 2015-09-09 中国十七冶集团有限公司 现浇无网聚苯板外保温墙构造方法
CN106398011A (zh) * 2016-06-20 2017-02-15 肇庆市峰明光电科技有限公司 一种去蓝光扩散板及其制作方法
US11440843B2 (en) 2016-07-20 2022-09-13 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
WO2018015502A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Utilisation d'un additif géopolymère en combinaison avec un retardateur de flamme non bromé dans des mousses polymères
WO2018015490A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Procédé de production d'un géopolymère ou d'un composite géopolymère
WO2018015494A1 (fr) 2016-07-20 2018-01-25 Synthos S.A. Géopolymère modifié, composite géopolymère modifié et procédé de production associé
CN107141384B (zh) * 2016-08-16 2020-07-14 新疆蓝山屯河新材料有限公司 一种高黑度石墨可发性聚苯乙烯颗粒的生产方法
CN107141384A (zh) * 2016-08-16 2017-09-08 新疆蓝山屯河新材料有限公司 一种高黑度石墨可发性聚苯乙烯颗粒的生产方法

Also Published As

Publication number Publication date
DE102004058583A1 (de) 2006-06-14
DE112005002814A5 (de) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2006058733A1 (fr) Granules de styrene polymere expansibles et mousse en particules presentant une conductivite thermique reduite
EP1819758B1 (fr) Polymeres styreniques expansibles, ignifuges et sans halogenes
WO2005056653A1 (fr) Piece moulee en mousse particulaire composee de granules polymeres expansibles contenant une charge
EP2212377B1 (fr) Polymères styréniques expansibles ignifugés et leur procédé de production
WO2011073141A1 (fr) Mousses polymères ignifugées
WO2006007995A2 (fr) Procede pour produire du polystyrene expansible ignifuge
EP1791896A1 (fr) Mousses polymeres ignifuges sans halogene
WO2005056652A1 (fr) Parties moulees particulaires expansees et melanges avec des polymeres thermoplastiques
EP1771505B1 (fr) Melanges ignifugeants a effet synergique pour mousses de polystyrene
WO2006007994A1 (fr) Procede pour produire des polymeres de styrene expansible presentant une meilleure expansibilite
WO2006106120A1 (fr) Procede de production de particules de mousse de polystyrene de haute densite
EP1694755B1 (fr) Granules de polystyrene expanse a repartition des poids moleculaires bimodale ou multimodale
EP1616902B1 (fr) Mousse autoextinguible de particules de polystyrène
EP1694487B1 (fr) Procédé de production de granules de polystyrene expansible
EP2062935B1 (fr) Procédé destiné à l'introduction de particules solides dans des masses fondues polymères
DE10358805A1 (de) Partikelschaumformteile aus expandierbaren, schlagzähmodifizierten, thermoplastischen Polymergranulaten
WO2005056654A1 (fr) Granules de polymere de styrene expansible

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120050028143

Country of ref document: DE

REF Corresponds to

Ref document number: 112005002814

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05812250

Country of ref document: EP

Kind code of ref document: A1