WO2006054930A1 - Annuloplasty instrument - Google Patents
Annuloplasty instrument Download PDFInfo
- Publication number
- WO2006054930A1 WO2006054930A1 PCT/SE2005/000909 SE2005000909W WO2006054930A1 WO 2006054930 A1 WO2006054930 A1 WO 2006054930A1 SE 2005000909 W SE2005000909 W SE 2005000909W WO 2006054930 A1 WO2006054930 A1 WO 2006054930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- support ring
- annulus
- implantation instrument
- tissue
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
- A61F2/2448—D-shaped rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2466—Delivery devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
- A61F2210/0023—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply
- A61F2210/0033—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at different temperatures whilst inside or touching the human body, heated or cooled by external energy source or cold supply electrically, e.g. heated by resistor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0091—Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
Definitions
- the present invention generally relates to heart valve repair and replacement techniques and annuloplasty devices. More specifically, the invention relates to the replacement of heart valves .
- mitral and tricuspid valves frequently need replacement or repair.
- the mitral and tricuspid valve leaflets or supporting chordae may degenerate and weaken or the annulus may dilate leading to valve leak (insufficiency) .
- the leaflets and chords may become calcified and thickened rendering them stenotic (obstructing forward flow) .
- the valve relies on insertion of the chordae inside the ventricle. If the ventricle changes in shape, the valve support may become non-functional and the valve may leak.
- Mitral and tricuspid valve replacement and repair are traditionally performed with a suture technique.
- sutures are spaced around the annulus (the point where the valve leaflet attaches to the heart) and then the sutures are attached to a prosthetic valve.
- the valve is lowered into position and when the sutures are tied, the valve is fastened to the annulus.
- the surgeon may remove all or part of the valve leaflets before inserting the prosthetic valve.
- valve repair a diseased valve is left in situ and surgical procedures are performed to restore its function. Frequently an annuloplasty ring is used to reduce the size of the annulus. The ring serves to reduce the diameter of the annulus and allow the leaflets to oppose each other normally.
- Sutures are used to attach a prosthetic ring to the annulus and to assist in plicating the annulus.
- the annuloplasty rings and replacement valves must be sutured to the valve annulus and this is time consuming and tedious. If the ring is severely malpositioned, then the stitches must be removed and the ring repositioned relative to the valve annulus during restitching. In other cases, a less than optimum annuloplasty may be tolerated by the surgeon rather than lengthening the time of the surgery to restitch the ring.
- a premium is placed on reducing the amount of time used to replace and repair valves as the heart is frequently arrested and without perfusion. It would therefore be very useful to have a method to efficiently attach a prosthesis into the mitral or tricuspid valve position.
- a replacement valve device for replacing a heart valve of a patient.
- the device comprises an implantation instrument, which comprises a first support ring, and a second support ring connected to said first support ring to form a coiled configuration.
- the first support ring is configured to abut one side of an area of valve tissue and the second support ring is configured to abut an opposite side of the area of the valve tissue to thereby trap the valve tissue therebetween.
- the device further comprises a replacement valve adapted to be attached to the valve tissue and including at least one valve element for allowing and preventing blood flow
- the replacement valve is coupled to the implantation instrument for insertion into the patient.
- the invention also provides a method of replacing a heart valve of a patient.
- the method comprises inserting an implantation instrument comprising a first and a second support ring connected to each other to form a coiled configuration and a replacement valve being attached to the second support ring into the patient, said instrument being inserted such that valve tissue is trapped between the first and second support rings, attaching the replacement valve to the valve tissue, and removing the implantation instrument.
- the implantation instrument provides a possibility to easily introduce the device into position in a heart valve.
- the implantation instrument anchors the device at the heart valve position such that the replacement valve may be attached to valve tissue that is fixated by the implantation instrument.
- the replacement valve may be arranged to be attached to the valve tissue by means of staples . This implies that the replacement valve may be easily attached to the valve tissue, when the implantation instrument fixates the valve tissue.
- the replacement valve may be coupled to the second support ring in a removable manner. This implies that the replacement valve may be detached from the implantation instrument after the replacement valve has been attached to the valve tissue.
- the implantation instrument may thereafter be removed from the patient.
- the annuloplasty implant may be attached to the second support ring by means of a removable suture. The suture may be cut in order to detach the annuloplasty implant from the implantation instrument.
- the first and second support rings may be axially moveable with respect to each other. This facilitates insertion of the annuloplasty instrument.
- the rings may initially be applied on opposite sides of valve tissue and may thereafter be drawn towards each other in order to trap valve tissue therebetween. Thus, there is no friction between the rings and valve tissue during placement of the rings on opposite sides of the valve.
- the step of inserting may comprise inserting a first end of the first support ring through a portion of the valve tissue, rotating the implantation instrument to position the first support ring on a first side of the valve, and positioning the second support ring on an opposite second side of the valve. The first and second support ring are thus easily applied on opposite sides of the valve.
- a device for repairing a heart valve comprised of valve tissue including an annulus and a plurality of leaflets for allowing and preventing blood flow through a patient's heart.
- the device comprises an implantation instrument, which comprises a first support ring, and a second support ring connected to the first support ring to form a coiled configuration.
- the first support ring is configured to abut one side of the valve and the second support ring is configured to abut an opposite side of the valve to thereby trap a portion of the valve tissue, that is, annulus tissue and/or leaflet tissue, therebetween.
- the device further comprises an annuloplasty implant adapted to be attached to the heart valve annulus in order to reshape the annulus and allow the leaflets to open and close properly.
- the implantation instrument is applied to the heart valve in a much easier manner than conventionally utilized annuloplasty rings.
- the implantation instrument it is possible to fixate the valve annulus and primarily reshape it. This primary reshaping of the valve annulus facilitates attachment of the annuloplasty implant to the valve annulus. There is merely a need for a slight further reshaping of the valve annulus by the attachment of the annuloplasty implant in order to
- the first and second support rings may have generally triangular-shaped cross sections with flat sides opposing one another and trapping valve tissue therebetween.
- At least the opposed surfaces of the first and second support rings may be roughened, such as by the use of fabric, coatings, knurling or the like to facilitate better engagement and retention of the support rings on the valve tissue.
- the opposed surfaces may be roughened in a pattern extending along the longitudinal direction of the rings. This implies that the roughened surface will serve to prevent slippage of tissue through the ring while presenting a low friction for the ring to be turned into position abutting the valve.
- the implantation instrument may have an inherent shape where the first and second rings contact or nearly contact each other. Thus, the implantation instrument will present a spring force pushing the first and second rings towards each other. The spring force will make the first and second rings fixating valve tissue between them.
- the first and second support rings are formed integrally from a coiled rod, such as a metallic rod, with one end of the rod formed as a leading end and one end formed as a trailing end. These ends may be bent in opposite directions so that the leading end may be directed through the valve tissue and the trailing end may be grasped by an appropriate surgical implement.
- a carrier may be used to rotate the implantation instrument into position on opposite sides of the valve annulus .
- the carrier may be coil-shaped and the implantation instrument may be rotated into place on only one side of the valve annulus similar to conventional rings.
- the carrier may also be rotated in opposite direction for withdrawing the implantation instrument.
- the first and second support rings may be adjustable in diameter to allow adjustment of the valve annulus .
- the annuloplasty implant may have an arcuate shape conforming to a desired arcuate shape of a portion of the annulus.
- the annuloplasty implant may then be attached to the portion of the valve annulus for reshaping the valve annulus.
- the desired reshaping of the valve annulus may be achieved by the annuloplasty implant reshaping only a portion of the valve annulus.
- the annuloplasty implant may be C- or U-shaped.
- the annuloplasty implant may alternatively have a ring-shape conforming to the desired shape of the annulus.
- the annuloplasty implant may thus be attached to the valve annulus forcing it to assume the desired shape.
- the annuloplasty implant may be removably attached to the second support ring of the implantation instrument.
- a kit for repairing a heart valve comprised of valve tissue including an annulus and a plurality of leaflets for allowing and preventing blood flow.
- the kit comprises an implantation instrument, which comprises a first support ring, and a second support ring connected to the first support ring to form a coiled configuration.
- the first support ring is configured to abut one side of the valve and the second support ring is configured to abut an opposite side of the valve to thereby trap a portion of the valve tissue therebetween.
- the kit further comprises an annuloplasty implant adapted to be attached to the heart valve annulus in order to reshape the annulus and allow the leaflets to open and close properly.
- the annuloplasty implant need not be attached to the implantation instrument for being inserted to the heart valve.
- the implantation instrument may provide the primary reshaping of the valve annulus.
- the annuloplasty implant may then be separately inserted to permanently reshape the valve annulus.
- the correct positioning of the annuloplasty implant is now easily achieved since the primary reshaping of the valve annulus provided by the implantation instrument clearly indicates how the annuloplasty implant should be attached to the valve annulus.
- a method for repairing a heart valve comprised of valve tissue including an annulus and a plurality of leaflets for allowing and preventing blood flow.
- the method comprises inserting an implantation instrument comprising a first and a second support ring connected to each other to form a coiled configuration, said instrument being inserted such that valve tissue is trapped between the first and second support rings, attaching an annuloplasty implant to the annulus in order to reshape it, and removing the implantation instrument.
- the step of inserting the instrument may comprise temporarily reshaping the annulus to facilitate attachment of the annuloplasty implant to the annulus.
- the implantation instrument will guide the positioning of the annuloplasty implant.
- the step of inserting may further comprise inserting a first end of the first support ring through a portion of the valve tissue, rotating the implantation instrument to position the first support ring on a first side of the valve, and positioning the second support ring on an opposite second side of the valve.
- the first and second support ring are thus easily applied on opposite sides of the valve.
- Fig. 1 schematically illustrates a patient with a heart shown in cross section and a device of the present invention schematically illustrated as supporting the mitral valve.
- Fig. IA is a cross sectional view of the left ventricle showing the mitral valve and a device according to a first embodiment of the invention in perspective.
- Fig. 2 is a perspective view of a device according to an embodiment of the invention.
- Fig. 3 is a cross sectional view of the device in Fig. 2.
- Figs 4a-b are perspective views of a device according to another embodiment of the invention.
- Fig. 4b is an enlarged view of the portion marked IVB in Fig. 4a.
- Fig. 5 is a perspective view of a device according to a second embodiment of the invention.
- Figs ⁇ a-b are partially sectioned perspective views of the mitral valve and the device of the invention during implantation of an annuloplasty implant of the device.
- Fig. 7 is a partially sectioned perspective view showing the device of the invention when the implantation instrument has been turned into position.
- Fig. 8 is a cross-sectional view illustrating primary reshaping of the valve.
- Fig. 9 is a partially sectioned perspective view showing the device when the annuloplasty implant is being attached to the valve annulus.
- Fig. 10 is a perspective view showing the device after implantation is completed.
- Fig. 11 is a partially sectioned perspective view showing the device according to the second embodiment when the implantation instrument has been turned into position.
- Fig. 12 is a partially sectioned perspective view showing the device when the replacement valve is being attached to the valve annulus.
- Fig. 13 is a perspective view showing the device according to the second embodiment after implantation is completed.
- Fig. 1 illustrates a patient 10 having a heart 12 shown in cross section including a left ventricle 14 and a right ventricle 16.
- the concepts of the present invention are suitable to be applied, for example, to a mitral valve 18 which supplies blood into left ventricle 14.
- Mitral valve 18, as better shown in Fig. IA includes an annulus 20 and a pair of leaflets 22, 24 which selectively allow and prevent blood flow into left ventricle 14.
- annulus tissue is used extensively throughout this disclosure in reference to the drawings, however, the inventive principles are equally applicable when referring to other valve tissue such as leaflet tissue or other attached vessel tissue.
- Leaflets 22, 24 are supported for coaptation by chordae tendinae or chords 26, 28 extending upwardly from respective papillary muscles 30, 32. Blood enters left ventricle 14 through mitral valve 18 and is expelled during subsequent contraction of heart 12 through aortic valve 34.
- the present invention is applicable to tricuspidal heart valves as well.
- a preferred device of the present invention is shown in Figs 2 and 3.
- the device comprises an implantation instrument 40 which comprises a first and a second support ring 42, 44 assuming a coiled configuration in the form of a spiral or keyring-type configuration.
- Any suitable medical grade material such as medical grade metals or plastics, may be used to form the implantation instrument 40.
- the device is shown in cross section in Fig. 3.
- the implantation instrument 40 has a traditional cross sectional shape associated with a keyring.
- flat, opposed surfaces 45 are arranged to trap valve annulus tissue 20 therebetween.
- the opposed surfaces 45 may also be roughened in order to improve engagement with the valve annulus 20.
- the first and second support rings 42, 44 may be axially moved in relation to each other.
- the support rings 42, 44 may be inserted on opposite sides of a heart valve and thereafter be drawn towards each other for trapping valve annulus tissue 20 between them.
- the first support ring 42 is connected to the second support ring 44 via a rod 46.
- the rod 46 is attached to the first support ring 42 and is connected to a stem 47 that extends from the second support ring 44 out of the patient in which the implantation instrument is inserted.
- the rod 46 is slidably connected to the stem 47 for moving the first support ring 42 in axial relation to the second support ring 44.
- the rod 46 is angled in order to allow the first and second support rings 42, 44 to be arranged in close relationship to each other.
- the rod 46 comprises an eye 48 at its angle.
- the eye 48 may receive a string 49
- the implantation instrument 40 may be inserted into the patient in the configuration shown in Fig. 4a and in greater detail in Fig. 4b.
- the instrument 40 may then be rotated into position with the support rings 42, 44 on opposite sides of a hear valve.
- the rotational movement will not be hindered by friction between the support rings 42, 44 and annulus tissue 20 since the support rings 42, 44 are spaced from each other.
- the first support ring 42 may be drawn towards the second support ring 44 by pulling the string 49, as indicated by arrow A.
- annuloplasty implant 50 is attached to the second support ring 44 of the implantation instrument 40, by means of sutures or clips.
- the annuloplasty implant 50 may be any type of annuloplasty ring, such as the CG FutureTM Annuloplasty System manufactured by Medtronic, Inc., the SJM Tailor® Annuloplasty Ring or the SJM Tailor® Flexible Annuloplasty Band manufactured by St. Jude Medical, Inc., the SoveringTM manufactured by Sorin Group, the Carpentier-McCarthy-Adams IMR ETlogix Annuloplasty Ring® or the Carpentier-Edwards Classic Annuloplasty Ring® manufactured by Edwards Lifesciences Corporation, which annuloplasty ring may form a complete ring-shape or an arcuate shape.
- the annuloplasty implant 50 is adapted to be attached to the valve annulus 20 by means of suture threads, as will be explained in further detail below.
- the annuloplasty implant 50 has a shape conforming to a desired shape of the valve annulus 20. Thus, when attached to the valve annulus 20, the annuloplasty implant 50 will reshape the valve annulus 20 to a desired shape.
- the annuloplasty implant 50 is non- stretchable lengthwise, which implies that when attached to the valve annulus it will not allow dilatation of the annulus.
- the annuloplasty implant may be flexible to change its shape while maintaining its length to allow the normal movements of the valve annulus 20 during a heart cycle.
- the annuloplasty implant 50 may have sections of differing rigidity and flexibility to comply with the normal movements of the valve annulus 20 during the heart cycle.
- a replacement valve 70 is attached to the second support ring 44 of the implantation instrument 40, by means of sutures or clips.
- the replacement valve 70 may be conventional or of any desired design.
- the replacement valve 70 may have movable flaps 72, 74 for providing a valve function.
- the replacement valve 70 further has an outer portion 76 at least partly surrounding the flaps 72, 74 and arranged to be attached to annulus tissue 20.
- the outer portion 76 may be a cuff or flange arranged to receive a suture or staple or any other means for attaching the outer portion 76 to the annulus tissue 20.
- the implantation instrument 40 is arranged to fixate the annulus tissue 20 for facilitating attachment of the replacement valve 70 to the annulus tissue 20.
- a method for repairing a heart valve by means of the device will be described.
- access to the heart valve is achieved by conventional techniques, including arresting the heart and opening the chest.
- Fig. 6a the device is shown when being inserted to the mitral valve 18.
- the implantation instrument 40 is being carried on a coil- shaped carrier 52, which is connected to a stem for remote control of the positioning of the carrier 52.
- An end of the first support ring 42 is brought to a corner of the opening between the leaflets 22, 24 of the mitral valve 18, as shown in Fig. 6b.
- the end is led through the opening and the coil-shaped carrier 52 is turned 360 degrees.
- the first support ring 42 will be rotated into place on one side of the valve 18, whereas the second support ring 44 is placed on the opposite side of the valve 18.
- the implantation instrument 40 is arranged in engagement with the valve 18, as shown in Fig. 7.
- the implantation instrument 40 shown in Fig. 4a may be inserted.
- the implantation instrument 40 is rotated into position and, thereafter, the first support ring 42 is drawn towards the second support ring 44 so that the instrument 40 is arranged in engagement with the valve.
- the leaflets 22, 24 may now be drawn towards each other through the pinch of the support rings 42, 44, as illustrated in Fig. 8.
- the leaflets are drawn through the pinch by means of a forceps instrument 54.
- the support rings 42, 44 may flex away from each other to allow drawing leaflets 22, 24 through the pinch and towards each other for preventing the leaflets 22, 24 to slip back.
- the valve annulus 20 may in this way be reshaped and be temporarily held in the new shape by means of the implantation instrument 40.
- the support rings 42, 44 may have roughened, opposed surfaces 45 to better keep the leaflets 22, 24 from slipping through the pinch and to hold the valve annulus 20 in its reshaped form.
- the annuloplasty implant 50 which has been carried into position by means of the second support ring 44, may now be attached to the valve annulus 20 for achieving a permanent reshaping of the annlus 20. Since a primary reshaping has already been made, the positioning of the annuloplasty implant 50 is facilitated.
- the annuloplasty implant 50 is sutured to the valve annulus, as illustrated in Fig. 9, showing a completed suture 60 attaching the annuloplasty implant 50 to the valve annulus 20 and showing a suture 62 being performed. In this way, the annuloplasty implant 50 is firmly attached to the valve annulus 20 for keeping the valve annulus 20 in its reshaped form.
- the leaflets 22, 24 may also or alternatively be drawn towards each other through the pinch of the support rings 42, 44 during suturing of the annuloplasty implant 50.
- the annuloplasty implant 50 When the annuloplasty implant 50 has been firmly attached to the valve annulus 20, the annuloplasty implant 50 is released from the implantation instrument 40. The sutures holding the annuloplasty implant 50 attached to the second support ring 44 are cut in order to release the annuloplasty implant 50 from the implantation instrument 40. Now, the implantation instrument 40 may be withdrawn. The carrier 52 is turned 360 degrees in order to rotate the first support ring 42 to be retracted through the opening between the leaflets 22, 24. Thereafter, the carrier 52 with the implantation instrument 40 may be retracted from the patient. As shown in Fig. 10, the annuloplasty implant 50 is now left in the patient holding the valve annulus 20 in a reshaped form such as to function normally.
- the implantation instrument 40 does not carry the annuloplasty implant 50.
- the implantation instrument 40 is inserted into position first. This positioning of the implantation instrument 40 may be performed as described above with reference to Figs 6-8.
- the annuloplasty implant 50 may be inserted to the mitral valve by means of conventional techniques for inserting an annuloplasty ring using a carrier.
- the annuloplasty implant 50 is then sutured to the valve annulus in order to permanently keep the valve annulus 20 in its reshaped form. Thereafter, the carrier used for inserting the annuloplasty implant 50 and the implantation instrument 40 may be withdrawn leaving the annuloplasty implant 50 in the patient.
- a method for replacing a mitral valve by means of the device will be described.
- the native leaflets 22, 24. are cut off and removed, since the function of the leaflets 22, 24 will be replaced by a replacement valve 70.
- the implantation instrument 40 may be inserted in a manner similar to the insertion described with reference to Figs 6a-6b above. As shown in Fig. 11, the implantation instrument is arranged in engagement with the valve 18.
- the replacement valve 70 which has been carried into position by means of the second support ring 44, may now be attached to the valve annulus 20 for achieving a permanent replacement of the valve function. Since the support rings 42, 44 are arranged trapping annulus tissue 20 therebetween, the implantation instrument 40 will fix or stabilize the shape and position of the valve annulus 20. The support rings 42, 44 may have roughened, opposed surfaces 45 to better maintain the shape of the valve annulus 20. Thus, attachment of the replacement valve 70 to the valve tissue is facilitated as the tissue is held in position. For instance, the replacement valve 70 may be stapled to the valve tissue, while the implantation instrument 40 provides an anvil to the staple. Alternatively, the replacement valve 70 is sutured to the valve annulus, as illustrated in Fig. 12, showing a completed suture 80 attaching the replacement valve 70 to the valve annulus 20 and showing a suture 82 being performed. In this way, the replacement valve 70 is firmly attached to the valve annulus 20 for providing a valve function.
- the replacement valve 70 When the replacement valve 70 has been firmly attached to the valve annulus 20, the replacement valve 70 is released from the implantation instrument 40.
- the sutures holding the replacement valve 70 attached to the second support ring 44 are cut in order to release the replacement valve 70 from the implantation instrument 40.
- the implantation instrument 40 may be withdrawn.
- the carrier 52 is turned 360 degrees in order to rotate the first support ring 42 to be retracted through the opening between the leaflets 22, 24. Thereafter, the carrier 52 with the implantation instrument 40 may be retracted from the patient.
- the replacement valve 70 is now left in the patient replacing the function of the native valve.
- the access to the heart valve may be achieved endoscopically.
- the implantation instrument 40 and the annuloplasty implant 50 need to be inserted through a narrow tube (endoscope) .
- the implantation instrument 40 and the annuloplasty implant 50 will need to be compressed during insertion in order to pass through the endoscope.
- the implantation instrument 40 needs to assume its proper shape after having been passed through the endoscope. Therefore, using an endoscopic approach, the implantation instrument 40 should preferably be formed from a shape memory material. This allows the implantation instrument 40 to be compressed and also to have a stable shape when being applied to the heart valve. Further, the annuloplasty implant 50 needs to be flexible in order to be compressed for the insertion through the endoscope.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT05752611T ATE491412T1 (en) | 2004-11-19 | 2005-06-15 | ANNULOPLASTY INSTRUMENT |
JP2007542967A JP4468992B2 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty device |
US11/667,335 US7951195B2 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty instrument |
CN2005800392219A CN101087570B (en) | 2004-11-19 | 2005-06-15 | Annuloplasty instrument |
DE602005025394T DE602005025394D1 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty INSTRUMENT |
EP05752611A EP1827314B1 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty instrument |
US13/108,876 US8784479B2 (en) | 2004-11-19 | 2011-05-16 | Method of replacing native heart valve tissue |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/992,998 | 2004-11-19 | ||
US10/992,998 US7077861B2 (en) | 2000-07-06 | 2004-11-19 | Annuloplasty instrument |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/667,335 A-371-Of-International US7951195B2 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty instrument |
US13/108,876 Continuation US8784479B2 (en) | 2004-11-19 | 2011-05-16 | Method of replacing native heart valve tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006054930A1 true WO2006054930A1 (en) | 2006-05-26 |
Family
ID=36407410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2005/000909 WO2006054930A1 (en) | 2004-11-19 | 2005-06-15 | Annuloplasty instrument |
Country Status (7)
Country | Link |
---|---|
US (3) | US7077861B2 (en) |
EP (1) | EP1827314B1 (en) |
JP (2) | JP4468992B2 (en) |
CN (1) | CN101087570B (en) |
AT (1) | ATE491412T1 (en) |
DE (1) | DE602005025394D1 (en) |
WO (1) | WO2006054930A1 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104472A (en) * | 2006-10-23 | 2008-05-08 | Jms Co Ltd | Heart valve operation aid |
WO2008058940A1 (en) | 2006-11-13 | 2008-05-22 | Medtentia Ab | Device and method for improving function of heart valve |
JP2011506017A (en) * | 2007-12-21 | 2011-03-03 | メドテンティア インターナショナル リミテッド オイ | Heart valve downsizing apparatus and method |
US8128691B2 (en) | 2005-09-07 | 2012-03-06 | Medtentia International Ltd. Oy | Device and method for improving the function of a heart valve |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US8414641B2 (en) | 2007-12-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8460365B2 (en) | 2005-09-21 | 2013-06-11 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8470023B2 (en) | 2007-02-05 | 2013-06-25 | Boston Scientific Scimed, Inc. | Percutaneous valve, system, and method |
US8721717B2 (en) | 2003-12-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US8932349B2 (en) | 2004-09-02 | 2015-01-13 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9017399B2 (en) | 2010-07-21 | 2015-04-28 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9028542B2 (en) | 2005-06-10 | 2015-05-12 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US9180006B2 (en) | 2005-02-28 | 2015-11-10 | Medtentia Ab | Devices and a kit for improving the function of a heart valve |
US9301843B2 (en) | 2003-12-19 | 2016-04-05 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US9370419B2 (en) | 2005-02-23 | 2016-06-21 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9375312B2 (en) | 2010-07-09 | 2016-06-28 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US9861473B2 (en) | 2005-04-15 | 2018-01-09 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
USD841812S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US10245143B2 (en) | 2011-08-05 | 2019-04-02 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10376361B2 (en) | 2011-08-05 | 2019-08-13 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10390952B2 (en) | 2015-02-05 | 2019-08-27 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US10492908B2 (en) | 2014-07-30 | 2019-12-03 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US11291546B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11696827B2 (en) | 2010-07-23 | 2023-07-11 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
Families Citing this family (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2706934B1 (en) * | 1993-06-21 | 1995-10-13 | Valeo Electronique | |
US10327743B2 (en) * | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
US7077861B2 (en) * | 2000-07-06 | 2006-07-18 | Medtentia Ab | Annuloplasty instrument |
US7942927B2 (en) * | 2004-03-15 | 2011-05-17 | Baker Medical Research Institute | Treating valve failure |
US7955385B2 (en) * | 2005-02-28 | 2011-06-07 | Medtronic Vascular, Inc. | Device, system, and method for aiding valve annuloplasty |
US7797607B2 (en) * | 2005-12-27 | 2010-09-14 | Lg Electronics, Inc. | DTV transmitter and method of coding main and enhanced data in DTV transmitter |
US20100174365A1 (en) * | 2007-02-15 | 2010-07-08 | Roberto Erminio Parravicini | Mitral annuloplasty ring |
US7993395B2 (en) * | 2008-01-25 | 2011-08-09 | Medtronic, Inc. | Set of annuloplasty devices with varying anterior-posterior ratios and related methods |
US8323335B2 (en) | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US8475525B2 (en) | 2010-01-22 | 2013-07-02 | 4Tech Inc. | Tricuspid valve repair using tension |
US9307980B2 (en) | 2010-01-22 | 2016-04-12 | 4Tech Inc. | Tricuspid valve repair using tension |
EP4129238A1 (en) | 2010-03-05 | 2023-02-08 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
SE535140C2 (en) * | 2010-03-25 | 2012-04-24 | Jan Otto Solem | An implantable device, kit and system for improving cardiac function, including means for generating longitudinal movement of the mitral valve |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US8657872B2 (en) | 2010-07-19 | 2014-02-25 | Jacques Seguin | Cardiac valve repair system and methods of use |
CA3035048C (en) | 2010-12-23 | 2021-05-04 | Mark Deem | System for mitral valve repair and replacement |
US8845717B2 (en) | 2011-01-28 | 2014-09-30 | Middle Park Medical, Inc. | Coaptation enhancement implant, system, and method |
US8888843B2 (en) | 2011-01-28 | 2014-11-18 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valve regurgitation |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
WO2012137208A1 (en) * | 2011-04-04 | 2012-10-11 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | Device and method for heart valve repair |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
EP2723273B1 (en) | 2011-06-21 | 2021-10-27 | Twelve, Inc. | Prosthetic heart valve devices |
US9364326B2 (en) | 2011-06-29 | 2016-06-14 | Mitralix Ltd. | Heart valve repair devices and methods |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
CN103974674B (en) | 2011-10-19 | 2016-11-09 | 托尔福公司 | Artificial heart valve film device, artificial mitral valve and related system and method |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
EP2591754B1 (en) * | 2011-11-10 | 2015-02-25 | Medtentia International Ltd Oy | A device and a method for improving the function of a heart valve |
US9078747B2 (en) | 2011-12-21 | 2015-07-14 | Edwards Lifesciences Corporation | Anchoring device for replacing or repairing a heart valve |
ES2752453T3 (en) | 2011-12-21 | 2020-04-06 | Univ Pennsylvania | Platforms for mitral valve replacement |
EP2620125B1 (en) * | 2012-01-24 | 2017-10-11 | Medtentia International Ltd Oy | An arrangement, a loop-shaped support, a prosthetic heart valve and a method of repairing or replacing a native heart valve |
AU2013213888B2 (en) | 2012-01-31 | 2017-08-10 | Mitral Valve Technologies Sarl | Mitral valve docking devices, systems and methods |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US8961594B2 (en) | 2012-05-31 | 2015-02-24 | 4Tech Inc. | Heart valve repair system |
WO2014108903A1 (en) | 2013-01-09 | 2014-07-17 | 4Tech Inc. | Soft tissue anchors |
WO2014141239A1 (en) | 2013-03-14 | 2014-09-18 | 4Tech Inc. | Stent with tether interface |
FR2998167B1 (en) * | 2013-03-20 | 2015-01-09 | Marco Vola | DEVICE FOR PERFORMING AN ANNULOPLASTY BY THE TRANSAPICAL PATH OF THE MITRAL VALVE |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
CA2910948C (en) | 2013-05-20 | 2020-12-29 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US9801710B2 (en) * | 2013-07-09 | 2017-10-31 | Edwards Lifesciences Corporation | Collapsible cardiac implant and deployment system and methods |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
WO2015023579A1 (en) | 2013-08-12 | 2015-02-19 | Mitral Valve Technologies Sa | Apparatus and methods for implanting a replacement heart valve |
US10052198B2 (en) | 2013-08-14 | 2018-08-21 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
SI3545906T1 (en) | 2013-08-14 | 2021-04-30 | Mitral Valve Technologies Sarl | Replacement heart valve apparatus |
US10195028B2 (en) | 2013-09-10 | 2019-02-05 | Edwards Lifesciences Corporation | Magnetic retaining mechanisms for prosthetic valves |
US10166098B2 (en) | 2013-10-25 | 2019-01-01 | Middle Peak Medical, Inc. | Systems and methods for transcatheter treatment of valve regurgitation |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10039643B2 (en) | 2013-10-30 | 2018-08-07 | 4Tech Inc. | Multiple anchoring-point tension system |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
US9622863B2 (en) | 2013-11-22 | 2017-04-18 | Edwards Lifesciences Corporation | Aortic insufficiency repair device and method |
CN106068108B (en) | 2014-02-21 | 2019-03-01 | 米特拉尔维尔福科技有限责任公司 | For delivering the devices, systems, and methods of artificial mitral valve and anchor |
EP3157469B2 (en) | 2014-06-18 | 2024-10-02 | Polares Medical Inc. | Mitral valve implants for the treatment of valvular regurgitation |
EP3157607B1 (en) | 2014-06-19 | 2019-08-07 | 4Tech Inc. | Cardiac tissue cinching |
CN107072784B (en) | 2014-06-24 | 2019-07-05 | 中峰医疗公司 | System and method for anchoring implantation material |
US9700412B2 (en) | 2014-06-26 | 2017-07-11 | Mitralix Ltd. | Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices |
WO2016001407A1 (en) * | 2014-07-03 | 2016-01-07 | Medtentia International Ltd Oy | An annuloplasty system |
US10016272B2 (en) | 2014-09-12 | 2018-07-10 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
WO2016050751A1 (en) | 2014-09-29 | 2016-04-07 | Martin Quinn | A heart valve treatment device and method |
EP3068311B1 (en) | 2014-12-02 | 2017-11-15 | 4Tech Inc. | Off-center tissue anchors |
WO2016093877A1 (en) | 2014-12-09 | 2016-06-16 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10231834B2 (en) | 2015-02-09 | 2019-03-19 | Edwards Lifesciences Corporation | Low profile transseptal catheter and implant system for minimally invasive valve procedure |
US10039637B2 (en) | 2015-02-11 | 2018-08-07 | Edwards Lifesciences Corporation | Heart valve docking devices and implanting methods |
EP3294220B1 (en) | 2015-05-14 | 2023-12-06 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
EP3294221B1 (en) | 2015-05-14 | 2024-03-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
JP7111610B2 (en) | 2015-08-21 | 2022-08-02 | トゥエルヴ, インコーポレイテッド | Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods |
US20170143478A1 (en) | 2015-11-02 | 2017-05-25 | Robert S. Schwartz | Devices and methods for reducing cardiac valve regurgitation |
US9592121B1 (en) | 2015-11-06 | 2017-03-14 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10363130B2 (en) | 2016-02-05 | 2019-07-30 | Edwards Lifesciences Corporation | Devices and systems for docking a heart valve |
WO2017189276A1 (en) | 2016-04-29 | 2017-11-02 | Medtronic Vascular Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
US10828150B2 (en) | 2016-07-08 | 2020-11-10 | Edwards Lifesciences Corporation | Docking station for heart valve prosthesis |
US10722359B2 (en) | 2016-08-26 | 2020-07-28 | Edwards Lifesciences Corporation | Heart valve docking devices and systems |
CR20190069A (en) | 2016-08-26 | 2019-05-14 | Edwards Lifesciences Corp | Heart valve docking coils and systems |
US10357361B2 (en) | 2016-09-15 | 2019-07-23 | Edwards Lifesciences Corporation | Heart valve pinch devices and delivery systems |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
HRP20230241T1 (en) | 2016-12-16 | 2023-04-14 | Edwards Lifesciences Corporation | Deployment systems and tools for delivering an anchoring device for a prosthetic valve |
US10813749B2 (en) | 2016-12-20 | 2020-10-27 | Edwards Lifesciences Corporation | Docking device made with 3D woven fabric |
EP3906893A1 (en) | 2016-12-20 | 2021-11-10 | Edwards Lifesciences Corporation | Systems and mechanisms for deploying a docking device for a replacement heart valve |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
CA3051272C (en) | 2017-01-23 | 2023-08-22 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
USD867595S1 (en) | 2017-02-01 | 2019-11-19 | Edwards Lifesciences Corporation | Stent |
US10478303B2 (en) | 2017-03-13 | 2019-11-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10123874B2 (en) | 2017-03-13 | 2018-11-13 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10653524B2 (en) | 2017-03-13 | 2020-05-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10842619B2 (en) | 2017-05-12 | 2020-11-24 | Edwards Lifesciences Corporation | Prosthetic heart valve docking assembly |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
CN110891526A (en) | 2017-06-30 | 2020-03-17 | 爱德华兹生命科学公司 | Locking and releasing mechanism for transcatheter implantable devices |
EP3644903B1 (en) | 2017-06-30 | 2023-07-19 | Edwards Lifesciences Corporation | Docking stations for transcatheter valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
USD890333S1 (en) | 2017-08-21 | 2020-07-14 | Edwards Lifesciences Corporation | Heart valve docking coil |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
EP3860519A4 (en) | 2018-10-05 | 2022-07-06 | Shifamed Holdings, LLC | Prosthetic cardiac valve devices, systems, and methods |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
CN116456937A (en) | 2020-08-31 | 2023-07-18 | 施菲姆德控股有限责任公司 | Prosthetic valve delivery system |
US11464634B2 (en) | 2020-12-16 | 2022-10-11 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors |
US11759321B2 (en) | 2021-06-25 | 2023-09-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403305A (en) * | 1993-04-08 | 1995-04-04 | Carbomedics, Inc. | Mitral valve prosthesis rotator |
US20020013621A1 (en) * | 2000-07-27 | 2002-01-31 | Robert Stobie | Heart valve holder for constricting the valve commissures and methods of use |
US6406492B1 (en) * | 1999-04-08 | 2002-06-18 | Sulzer Carbomedics Inc. | Annuloplasty ring holder |
US20040019357A1 (en) * | 2002-07-26 | 2004-01-29 | Campbell Louis A. | Annuloplasty ring holder |
WO2004089250A1 (en) * | 2003-03-30 | 2004-10-21 | Fidel Realyvasquez | Apparatus and methods for valve repair |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL143127B (en) | 1969-02-04 | 1974-09-16 | Rhone Poulenc Sa | REINFORCEMENT DEVICE FOR A DEFECTIVE HEART VALVE. |
US4042923A (en) * | 1973-11-30 | 1977-08-16 | Del Norte Technology, Inc. | Radar trilateralization position locators |
FR2306671A1 (en) | 1975-04-11 | 1976-11-05 | Rhone Poulenc Ind | VALVULAR IMPLANT |
US3997923A (en) | 1975-04-28 | 1976-12-21 | St. Jude Medical, Inc. | Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart |
US4042979A (en) | 1976-07-12 | 1977-08-23 | Angell William W | Valvuloplasty ring and prosthetic method |
US4489446A (en) | 1982-07-14 | 1984-12-25 | Reed Charles C | Heart valve prosthesis |
DE3230858C2 (en) | 1982-08-19 | 1985-01-24 | Ahmadi, Ali, Dr. med., 7809 Denzlingen | Ring prosthesis |
US4535483A (en) | 1983-01-17 | 1985-08-20 | Hemex, Inc. | Suture rings for heart valves |
US4863460A (en) | 1986-03-04 | 1989-09-05 | Sta-Set Corporation | Suture rings for heart valves |
CA1303298C (en) | 1986-08-06 | 1992-06-16 | Alain Carpentier | Flexible cardiac valvular support prosthesis |
US4917698A (en) | 1988-12-22 | 1990-04-17 | Baxter International Inc. | Multi-segmented annuloplasty ring prosthesis |
EP0595791B1 (en) | 1989-02-13 | 1999-06-30 | Baxter International Inc. | Anuloplasty ring prosthesis |
US5306296A (en) | 1992-08-21 | 1994-04-26 | Medtronic, Inc. | Annuloplasty and suture rings |
US5201880A (en) | 1992-01-27 | 1993-04-13 | Pioneering Technologies, Inc. | Mitral and tricuspid annuloplasty rings |
AU670934B2 (en) | 1992-01-27 | 1996-08-08 | Medtronic, Inc. | Annuloplasty and suture rings |
US5163953A (en) | 1992-02-10 | 1992-11-17 | Vince Dennis J | Toroidal artificial heart valve stent |
FR2708458B1 (en) | 1993-08-03 | 1995-09-15 | Seguin Jacques | Prosthetic ring for cardiac surgery. |
AU1301095A (en) | 1993-12-13 | 1995-07-03 | Brigham And Women's Hospital | Aortic valve supporting device |
EP0735845B1 (en) * | 1993-12-22 | 2002-07-31 | St. Jude Medical Inc. | Cardiac valve holders |
US5593435A (en) | 1994-07-29 | 1997-01-14 | Baxter International Inc. | Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth |
IL115680A (en) | 1994-10-21 | 1999-03-12 | St Jude Medical | Rotatable cuff assembly for a heart valve prosthesis |
EP0871417B1 (en) | 1995-12-01 | 2003-10-01 | Medtronic, Inc. | Annuloplasty prosthesis |
DE19605042A1 (en) | 1996-02-12 | 1998-01-15 | Figulla Hans Reiner Prof Dr Me | Vessel implant for bridging vascular weaknesses |
US5669919A (en) | 1996-08-16 | 1997-09-23 | Medtronic, Inc. | Annuloplasty system |
US5716397A (en) | 1996-12-06 | 1998-02-10 | Medtronic, Inc. | Annuloplasty device with removable stiffening element |
US5908450A (en) | 1997-02-28 | 1999-06-01 | Medtronic, Inc. | Physiologic mitral valve implantation holding system |
US5776189A (en) | 1997-03-05 | 1998-07-07 | Khalid; Naqeeb | Cardiac valvular support prosthesis |
AU8497498A (en) | 1997-07-22 | 1999-02-16 | Baxter International Inc. | Expandable annuloplasty ring |
US6136015A (en) | 1998-08-25 | 2000-10-24 | Micrus Corporation | Vasoocclusive coil |
US6059827A (en) | 1998-05-04 | 2000-05-09 | Axya Medical, Inc. | Sutureless cardiac valve prosthesis, and devices and methods for implanting them |
NO308575B1 (en) | 1999-02-17 | 2000-10-02 | Sumit Roy | multipurpose valve |
US6183512B1 (en) | 1999-04-16 | 2001-02-06 | Edwards Lifesciences Corporation | Flexible annuloplasty system |
US6348068B1 (en) | 1999-07-23 | 2002-02-19 | Sulzer Carbomedics Inc. | Multi-filament valve stent for a cardisc valvular prosthesis |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6402781B1 (en) | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US6419696B1 (en) * | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
US7077861B2 (en) * | 2000-07-06 | 2006-07-18 | Medtentia Ab | Annuloplasty instrument |
EP1432369B1 (en) * | 2001-08-31 | 2008-02-27 | Mitral Interventions | Apparatus for valve repair |
-
2004
- 2004-11-19 US US10/992,998 patent/US7077861B2/en not_active Expired - Fee Related
-
2005
- 2005-06-15 EP EP05752611A patent/EP1827314B1/en not_active Not-in-force
- 2005-06-15 US US11/667,335 patent/US7951195B2/en not_active Expired - Fee Related
- 2005-06-15 CN CN2005800392219A patent/CN101087570B/en not_active Expired - Fee Related
- 2005-06-15 AT AT05752611T patent/ATE491412T1/en not_active IP Right Cessation
- 2005-06-15 WO PCT/SE2005/000909 patent/WO2006054930A1/en active Application Filing
- 2005-06-15 JP JP2007542967A patent/JP4468992B2/en active Active
- 2005-06-15 DE DE602005025394T patent/DE602005025394D1/en active Active
-
2009
- 2009-10-26 JP JP2009245437A patent/JP2010017580A/en not_active Abandoned
-
2011
- 2011-05-16 US US13/108,876 patent/US8784479B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403305A (en) * | 1993-04-08 | 1995-04-04 | Carbomedics, Inc. | Mitral valve prosthesis rotator |
US6406492B1 (en) * | 1999-04-08 | 2002-06-18 | Sulzer Carbomedics Inc. | Annuloplasty ring holder |
US20020013621A1 (en) * | 2000-07-27 | 2002-01-31 | Robert Stobie | Heart valve holder for constricting the valve commissures and methods of use |
US20040019357A1 (en) * | 2002-07-26 | 2004-01-29 | Campbell Louis A. | Annuloplasty ring holder |
WO2004089250A1 (en) * | 2003-03-30 | 2004-10-21 | Fidel Realyvasquez | Apparatus and methods for valve repair |
Cited By (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9301843B2 (en) | 2003-12-19 | 2016-04-05 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8721717B2 (en) | 2003-12-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US10869764B2 (en) | 2003-12-19 | 2020-12-22 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US9918834B2 (en) | 2004-09-02 | 2018-03-20 | Boston Scientific Scimed, Inc. | Cardiac valve, system and method |
US8932349B2 (en) | 2004-09-02 | 2015-01-13 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US9370419B2 (en) | 2005-02-23 | 2016-06-21 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9808341B2 (en) | 2005-02-23 | 2017-11-07 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US9526614B2 (en) | 2005-02-28 | 2016-12-27 | Medtentia International Ltd. Oy | System for improving the function of a heart valve |
US9180006B2 (en) | 2005-02-28 | 2015-11-10 | Medtentia Ab | Devices and a kit for improving the function of a heart valve |
US9861473B2 (en) | 2005-04-15 | 2018-01-09 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US9028542B2 (en) | 2005-06-10 | 2015-05-12 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US11337812B2 (en) | 2005-06-10 | 2022-05-24 | Boston Scientific Scimed, Inc. | Venous valve, system and method |
US8128691B2 (en) | 2005-09-07 | 2012-03-06 | Medtentia International Ltd. Oy | Device and method for improving the function of a heart valve |
US10195029B2 (en) | 2005-09-07 | 2019-02-05 | Medtentia Internatinal Ltd Oy | Device and method for improving the function of a heart valve |
US11241314B2 (en) | 2005-09-07 | 2022-02-08 | Medtentia International Ltd Oy | Device and method for improving the function of a heart valve |
US8460365B2 (en) | 2005-09-21 | 2013-06-11 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8672997B2 (en) | 2005-09-21 | 2014-03-18 | Boston Scientific Scimed, Inc. | Valve with sinus |
US10548734B2 (en) | 2005-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US9474609B2 (en) | 2005-09-21 | 2016-10-25 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
JP2008104472A (en) * | 2006-10-23 | 2008-05-08 | Jms Co Ltd | Heart valve operation aid |
EP2415421A1 (en) * | 2006-11-13 | 2012-02-08 | Medtentia International Ltd Oy | Device for improving function of heart valve |
US11554014B2 (en) | 2006-11-13 | 2023-01-17 | Medtentia International Ltd. Oy | Device and method for improving function of heart valve |
US8663322B2 (en) | 2006-11-13 | 2014-03-04 | Medtentia International Ltd. Oy | Device and method for improving function of heart valve |
WO2008058940A1 (en) | 2006-11-13 | 2008-05-22 | Medtentia Ab | Device and method for improving function of heart valve |
US9056009B2 (en) | 2006-11-13 | 2015-06-16 | Medtentia International Ltd. Oy | Device and method for improving function of heart valve |
EP2193761A2 (en) | 2006-11-13 | 2010-06-09 | Medtentia AB | Device and method for improving function of a heart valve |
US8734507B2 (en) | 2006-11-13 | 2014-05-27 | Medtentia International Ltd. Oy | Device and method for improving function of heart valve |
AU2007321262B2 (en) * | 2006-11-13 | 2012-09-13 | Medtentia International Ltd Oy | Device and method for improving function of heart valve |
KR101448326B1 (en) * | 2006-11-13 | 2014-10-07 | 메드텐티아 인터내셔날 엘티디 오와이 | Device and method for improving function of heart valve |
US10595995B2 (en) | 2006-11-13 | 2020-03-24 | Medtentia International Ltd. Oy | Device and method for improving function of heart valve |
EP2193761A3 (en) * | 2006-11-13 | 2012-01-18 | Medtentia International Ltd Oy | Device and method for improving function of a heart valve |
US8348999B2 (en) | 2007-01-08 | 2013-01-08 | California Institute Of Technology | In-situ formation of a valve |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US9421083B2 (en) | 2007-02-05 | 2016-08-23 | Boston Scientific Scimed Inc. | Percutaneous valve, system and method |
US11504239B2 (en) | 2007-02-05 | 2022-11-22 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US10226344B2 (en) | 2007-02-05 | 2019-03-12 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US8470023B2 (en) | 2007-02-05 | 2013-06-25 | Boston Scientific Scimed, Inc. | Percutaneous valve, system, and method |
EP3042636A1 (en) | 2007-12-21 | 2016-07-13 | Medtentia International Ltd Oy | Cardiac valve downsizing device and method |
JP2014168694A (en) * | 2007-12-21 | 2014-09-18 | Medtentia International Ltd Oy | Cardiac valve downsizing device and method |
EP2072027B1 (en) | 2007-12-21 | 2020-06-17 | Medtentia International Ltd Oy | pre-annuloplasty device and method |
JP2011506017A (en) * | 2007-12-21 | 2011-03-03 | メドテンティア インターナショナル リミテッド オイ | Heart valve downsizing apparatus and method |
US8414641B2 (en) | 2007-12-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
EP2222248B1 (en) | 2007-12-21 | 2017-11-22 | Medtentia International Ltd Oy | Cardiac valve downsizing device |
US10610359B2 (en) | 2009-12-08 | 2020-04-07 | Cardiovalve Ltd. | Folding ring prosthetic heart valve |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US11141268B2 (en) | 2009-12-08 | 2021-10-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper and lower skirts |
US10660751B2 (en) | 2009-12-08 | 2020-05-26 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11351026B2 (en) | 2009-12-08 | 2022-06-07 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10548726B2 (en) | 2009-12-08 | 2020-02-04 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
US9375312B2 (en) | 2010-07-09 | 2016-06-28 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11259921B2 (en) | 2010-07-09 | 2022-03-01 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11311377B2 (en) | 2010-07-09 | 2022-04-26 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US9931206B2 (en) | 2010-07-09 | 2018-04-03 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11446140B2 (en) | 2010-07-09 | 2022-09-20 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11883283B2 (en) | 2010-07-09 | 2024-01-30 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US11259922B2 (en) | 2010-07-09 | 2022-03-01 | Highlife Sas | Transcatheter atrio-ventricular valve prosthesis |
US10531872B2 (en) | 2010-07-21 | 2020-01-14 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US9017399B2 (en) | 2010-07-21 | 2015-04-28 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10925595B2 (en) | 2010-07-21 | 2021-02-23 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US10512456B2 (en) | 2010-07-21 | 2019-12-24 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11426155B2 (en) | 2010-07-21 | 2022-08-30 | Cardiovalve Ltd. | Helical anchor implantation |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11969163B2 (en) | 2010-07-21 | 2024-04-30 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11696827B2 (en) | 2010-07-23 | 2023-07-11 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US11969344B2 (en) | 2010-07-23 | 2024-04-30 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9387078B2 (en) | 2011-08-05 | 2016-07-12 | Mitraltech Ltd. | Percutaneous mitral valve replacement and sealing |
US11344410B2 (en) | 2011-08-05 | 2022-05-31 | Cardiovalve Ltd. | Implant for heart valve |
US10245143B2 (en) | 2011-08-05 | 2019-04-02 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11951005B2 (en) | 2011-08-05 | 2024-04-09 | Cardiovalve Ltd. | Implant for heart valve |
US11369469B2 (en) | 2011-08-05 | 2022-06-28 | Cardiovalve Ltd. | Method for use at a heart valve |
US11517436B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Implant for heart valve |
US11291545B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Implant for heart valve |
US10695173B2 (en) | 2011-08-05 | 2020-06-30 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US10702385B2 (en) | 2011-08-05 | 2020-07-07 | Cardiovalve Ltd. | Implant for heart valve |
US11291547B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11291546B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11517429B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Apparatus for use at a heart valve |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11690712B2 (en) | 2011-08-05 | 2023-07-04 | Cardiovalve Ltd. | Clip-secured implant for heart valve |
US10226341B2 (en) | 2011-08-05 | 2019-03-12 | Cardiovalve Ltd. | Implant for heart valve |
US10376361B2 (en) | 2011-08-05 | 2019-08-13 | Cardiovalve Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US11864995B2 (en) | 2011-08-05 | 2024-01-09 | Cardiovalve Ltd. | Implant for heart valve |
US9681952B2 (en) | 2013-01-24 | 2017-06-20 | Mitraltech Ltd. | Anchoring of prosthetic valve supports |
US10835377B2 (en) | 2013-01-24 | 2020-11-17 | Cardiovalve Ltd. | Rolled prosthetic valve support |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US10631982B2 (en) | 2013-01-24 | 2020-04-28 | Cardiovale Ltd. | Prosthetic valve and upstream support therefor |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US11872130B2 (en) | 2014-07-30 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic heart valve implant |
US11701225B2 (en) | 2014-07-30 | 2023-07-18 | Cardiovalve Ltd. | Delivery of a prosthetic valve |
US10492908B2 (en) | 2014-07-30 | 2019-12-03 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US10463487B2 (en) | 2015-02-05 | 2019-11-05 | Cardiovalve Ltd. | Prosthetic valve delivery system with independently-movable capsule portions |
US10973636B2 (en) | 2015-02-05 | 2021-04-13 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10736742B2 (en) | 2015-02-05 | 2020-08-11 | Cardiovalve Ltd. | Prosthetic valve with atrial arms |
US10722360B2 (en) | 2015-02-05 | 2020-07-28 | Cardiovalve Ltd. | Prosthetic valve with radially-deflectable tissue anchors |
US10695177B2 (en) | 2015-02-05 | 2020-06-30 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10918481B2 (en) | 2015-02-05 | 2021-02-16 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10682227B2 (en) | 2015-02-05 | 2020-06-16 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US10667908B2 (en) | 2015-02-05 | 2020-06-02 | Cardiovalve Ltd. | Prosthetic valve with S-shaped tissue anchors |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
US10758344B2 (en) | 2015-02-05 | 2020-09-01 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10357360B2 (en) | 2015-02-05 | 2019-07-23 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10864078B2 (en) | 2015-02-05 | 2020-12-15 | Cardiovalve Ltd. | Prosthetic valve with separably-deployable valve body and tissue anchors |
US10390952B2 (en) | 2015-02-05 | 2019-08-27 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10524903B2 (en) | 2015-02-05 | 2020-01-07 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10507105B2 (en) | 2015-02-05 | 2019-12-17 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10849748B2 (en) | 2015-02-05 | 2020-12-01 | Cardiovalve Ltd. | Prosthetic valve delivery system with independently-movable capsule portions |
US11534298B2 (en) | 2015-02-05 | 2022-12-27 | Cardiovalve Ltd. | Prosthetic valve with s-shaped tissue anchors |
US10888422B2 (en) | 2015-02-05 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US11793635B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US11793638B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US10463488B2 (en) | 2015-02-05 | 2019-11-05 | Cardiovalve Ltd. | Prosthetic valve with separably-deployable valve body and tissue anchors |
US11672658B2 (en) | 2015-02-05 | 2023-06-13 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10449047B2 (en) | 2015-02-05 | 2019-10-22 | Cardiovalve Ltd. | Prosthetic heart valve with compressible frames |
US10426610B2 (en) | 2015-02-05 | 2019-10-01 | Cardiovalve Ltd. | Prosthetic valve with radially-deflectable tissue anchors |
US11298117B2 (en) | 2016-02-16 | 2022-04-12 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
USD841812S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US11571298B2 (en) | 2017-08-03 | 2023-02-07 | Cardiovalve Ltd. | Prosthetic valve with appendages |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
USD841813S1 (en) | 2017-08-03 | 2019-02-26 | Cardiovalve Ltd. | Prosthetic heart valve element |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11872131B2 (en) | 2017-12-13 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11872124B2 (en) | 2018-01-10 | 2024-01-16 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
Also Published As
Publication number | Publication date |
---|---|
CN101087570B (en) | 2010-06-09 |
US7077861B2 (en) | 2006-07-18 |
US7951195B2 (en) | 2011-05-31 |
JP2010017580A (en) | 2010-01-28 |
ATE491412T1 (en) | 2011-01-15 |
JP2008520336A (en) | 2008-06-19 |
EP1827314A1 (en) | 2007-09-05 |
CN101087570A (en) | 2007-12-12 |
US20110218621A1 (en) | 2011-09-08 |
US20080033542A1 (en) | 2008-02-07 |
US20050149178A1 (en) | 2005-07-07 |
US8784479B2 (en) | 2014-07-22 |
DE602005025394D1 (en) | 2011-01-27 |
EP1827314B1 (en) | 2010-12-15 |
JP4468992B2 (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7951195B2 (en) | Annuloplasty instrument | |
US11337809B2 (en) | Cardiac valve downsizing device and method | |
EP1853199B1 (en) | Devices for improving the function of a heart valve | |
EP1296618B1 (en) | Annuloplasty devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11667335 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580039221.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007542967 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2166/CHENP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005752611 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005752611 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11667335 Country of ref document: US |