WO2006053447A1 - Procede et dispositif pour mesurer des surfaces courbes en trois dimensions - Google Patents

Procede et dispositif pour mesurer des surfaces courbes en trois dimensions Download PDF

Info

Publication number
WO2006053447A1
WO2006053447A1 PCT/CH2004/000694 CH2004000694W WO2006053447A1 WO 2006053447 A1 WO2006053447 A1 WO 2006053447A1 CH 2004000694 W CH2004000694 W CH 2004000694W WO 2006053447 A1 WO2006053447 A1 WO 2006053447A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
distance sensors
measurement
sensor head
distances
Prior art date
Application number
PCT/CH2004/000694
Other languages
German (de)
English (en)
Inventor
Walter Wirz
Original Assignee
Reishauer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reishauer Ag filed Critical Reishauer Ag
Priority to PCT/CH2004/000694 priority Critical patent/WO2006053447A1/fr
Publication of WO2006053447A1 publication Critical patent/WO2006053447A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • G01B7/283Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures of gears

Definitions

  • the present invention relates to a method and a Vorrich ⁇ device for measuring deviations in shape of three-dimensionally curved surfaces and especially for measuring Flankenformabweichonne on gears with three-dimensionally modified tooth flank shape.
  • the shaping processing of three-dimensionally curved surfaces with narrow dimensional tolerances such as, for example, the flank surfaces of a gear wheel or the guide surfaces of a turbine blade usually takes place on machines with a high number of electronically controlled functions which have to be designed with high precision. Even minor dysfunctions and interference such. Tool wear, thermal deformations and contamination effects can result in quality defects. Especially in mass production it is necessary to continuously monitor the quality of the machining process in order to avoid rejects. The most meaningful criterion for this is the quality of the finished workpiece itself.
  • the geometry testing of workpieces with a three-dimensionally curved surface is generally carried out on a 3D measuring machine on which the machined surface is measured pointwise.
  • a 3D measuring machine on which the machined surface is measured pointwise.
  • special tooth flank measuring machines are available which are adapted to the particular requirements of a tooth flank measurement.
  • the measurement is In any case costly and time consuming. Therefore, it is only rarely possible to provide a 100% inspection of the finished workpiece in large-scale production with its ever shorter processing times. A corrective intervention in the machining process can therefore only take place at certain intervals. However, this involves the risk of producing committees until a new test result is obtained.
  • the measurement of the deviation in shape and position of manufactured workpiece surfaces takes place by means of a plurality of distance sensors calibrated without contact and calibrated with the aid of a calibration workpiece, which are closely spaced from one another in a sensor head above a workpiece workpiece to be measured. Surface are arranged. Workpiece and sensor head are brought into the measuring position by pivoting or shifting each other.
  • FIG. 1 shows a schematic representation of a device for measuring the flank shape deviations of a toothed wheel
  • FIG. 2 is a partial view of FIG. 1 in an enlarged view with a sensor head in a first embodiment
  • Fig. 3 is a schematic representation of the sensor head of Fig. 2 in a second embodiment
  • the invention will be described in detail by the example of a device for measuring flank shape deviations of a gear. It builds on the experience that even a point-only Ver ⁇ measurement of the tooth flank form provides sufficient information about the flank form deviations of the workpiece teeth, as long as the measuring point distance on the flank surface is sufficiently small.
  • FIG. 1 shows one of the possible embodiments of a device according to the invention for measuring the shape deviations of tooth flanks 4, 5 of a toothed wheel 1.
  • a base plate 12 On a base plate 12, both a receptacle 13 for the toothed wheel 1 to be measured and a sensor holder 14 are arranged.
  • the sensor holder 14 In the sensor holder 14 is a radial led to the gear 1 movable sensor shaft 15, with which a sensor head 2 is detachably connected.
  • the sensor holder 14 ensures precise delivery and positioning of the sensor head 2 in a tooth gap 3 of the toothed wheel 1 to be measured.
  • a signal line 16 connects the sensor head 2 to an evaluation module 17, which forwards the measured values to a computer, not shown, for processing ,
  • the sensor head is detachably connected to a bed of a processing machine, and the workpiece clamped on a work spindle is brought into a measuring position after machining by means of feed movement of a workpiece carriage.
  • the sensor head 2 shows a partial view of the gearwheel 1 to be processed and the sensor head 2 in a first embodiment variant for measuring the shape deviations of the tooth flanks 4, 5.
  • the sensor head 2, which is displaceable relative to the gearwheel 1 in the radial direction 18, has approximately the shape of the tooth gap It is shaped so that after its immersion in the tooth gap 3 and reaching the measuring distance between the finished be ⁇ machined workpiece tooth flanks 4, 5 and flanks 6, 7 of the Sensor ⁇ head remains a measuring gap which is larger as the maximum expected flank shape deviation of the gear 1.
  • the flanks 6, 7 of the sensor head 2 are equipped matrix-like on their entire Ober ⁇ surface in a measuring task adapted Raster ⁇ distance with contactless measuring distance sensors 8 whose respective measuring axis is preferably perpendicular to the flank surface.
  • These sensors 8 are in the first embodiment variant shown here in the flanks 6, 7 of the sensor holder 2 individually inserted, acting as Induktivaufsmelling wire coils with an outer diameter, which must be naturally smaller than a grid spacing or measuring point distance 20.
  • the coils have preferably a ferrite core. In the measuring position of the sensor head 2, they face the workpiece tooth flanks 4, 5 at a distance from the measuring gap width.
  • the distance sensors 8 are connected via a multiplexer to an oscillator and a measuring amplifier in the measuring and evaluation module 17, which individually evaluates the signals of all sensors during the measurement and stores them in a suitable computer.
  • the detection of the sensor signals can be done simultaneously, in groups or in succession. Because of the short time required for one measurement per sensor, a number of e.g. 100 sensors per edge, the total measuring time required for this not more than 1 second.
  • the comparison of the individual measured values with the predetermined desired results in the flank shape deviation of the workpiece 1 in the measuring points 20 of all the sensors 8 as well as the deviation of the measured tooth gap width from the desired value, which easily results in the tooth width deviation that is usually of interest can be converted.
  • FIG. 3 shows as a conceivable alternative to individually set sensors 8 in a second embodiment variant on a silicon substrate in a line-shaped arrangement, e.g. Photochemically generated sensors 8, which are applied to the flanks 6, 7 of the sensor head 2 in the form of sensor strips 10 in the direction of a generating straight line 11.
  • Photochemically generated sensors 8 which are applied to the flanks 6, 7 of the sensor head 2 in the form of sensor strips 10 in the direction of a generating straight line 11.
  • the distance sensors 8 Since the distance sensors 8, despite the same production data, usually do not completely agree in their physical characteristics, they must be calibrated before the production operation.
  • a tooth gap of a calibration gear which is topologically measured in a conventional manner with the workpiece setpoint geometry into which the sensor head 2 is retracted for calibration inside or outside the machine is used. If the sensor head 2 is radially positioned in the tooth gap of this calibration gear, then the Kalibrier leopardrad is rotated so far until the small clearance or the measuring gap width between this and the sensor head 2 is lifted on the first tooth flank, ie the sensor head ein ⁇ i tig on one of the two tooth flanks of the Kalibrier leopardrades an ⁇ . This is the starting point for the calibration.
  • the measured values of all the sensors 8 are interrogated by the measuring amplifier and adjusted to the same initial value, for example by adding individual correction values. Zero, brought.
  • the corresponding Flankenformabweichung the Kalibrier ⁇ gear in accordance with its measurement protocol with the correction value of the calibration can be additionally offset by measuring points. The output values would then not all be zero, but they reflected the flank shape deviations of the Kalibrierschwrades.
  • the calibration gear is rotated by a small angle value so that a clearance of, for example, between the sensor head and calibration gear flank surfaces is produced.
  • 0.01 mm ent stands.
  • the second calibration run which provides a second point of the correction curve of all sensors 8, in such a way that all corrected measurement signals be ⁇ the same value be ⁇ sitting, which corresponds to 0.01 mm - possibly again taking into account the Flankenformabweichungen the Kalibrier leopardrades ,
  • the measuring device is arranged on the machine bed, and the sensor head or the workpiece is brought into the measuring position following the machining of the workpiece before it is unclamped. If, during the manufacturing process, the measured value of one of the sensors 8 exceeds the predetermined tolerance limit, then the production process can be stopped and / or the assessment of the tolerance violation by the operator or the machine can be triggered by means of appropriate software.
  • the measured workpiece tooth flanks in a known manner, as in FIG. 4, in a 3D representation, wherein the desired shape of the three-dimensionally curved tooth flank is usually represented as a plane, the so-called reference plane 19.
  • the measured shape deviations 9 are plotted for each individual measured flank point in a strong elevation.
  • the measuring points 20 connected to a network then yield an image of the flank shape deviation as a surface deviating from the reference surface.
  • Steles where the specified tolerance is exceeded can be drawn in red for quick recognition.
  • the method according to the invention and the device according to the invention enable not only a 100% inspection of the finished workpieces for tolerance, but also the recording and logging of the effectively generated tooth flank form and surfaces of each individual workpiece 1 and their change during the entire process duration.
  • inventive method and Vorrich ⁇ inventive device are particularly suitable for gears.
  • same method can also be used for other three-dimensionally curved surfaces, wherein the device used is adapted to the shape of the surface to be measured.

Abstract

L'invention concerne un procédé et un dispositif pour mesurer les écarts de forme et de position de surfaces courbes en trois dimensions. Selon la présente invention, les distances entre les surfaces de mesure (4, 5) et les capteurs de distance (8), placés sur une tête de détection (2) en chaque point de mesure, sont déterminées en une seule opération de mesure en une pluralité de points de mesure (20) répartis sur la surface de mesure sous la forme d'une matrice. Les capteurs sont reliés à un oscillateur et à un amplificateur de mesure par le biais d'un multiplexeur. Les résultats de mesure sont mémorisés et représentés graphiquement. Si les écarts de forme et de position mesurés (9) excèdent le seuil de tolérance prescrit, un signal est alors déclenché. Ledit procédé convient à la surveillance en continu de processus d'usinage/façonnage.
PCT/CH2004/000694 2004-11-18 2004-11-18 Procede et dispositif pour mesurer des surfaces courbes en trois dimensions WO2006053447A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000694 WO2006053447A1 (fr) 2004-11-18 2004-11-18 Procede et dispositif pour mesurer des surfaces courbes en trois dimensions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2004/000694 WO2006053447A1 (fr) 2004-11-18 2004-11-18 Procede et dispositif pour mesurer des surfaces courbes en trois dimensions

Publications (1)

Publication Number Publication Date
WO2006053447A1 true WO2006053447A1 (fr) 2006-05-26

Family

ID=34959155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000694 WO2006053447A1 (fr) 2004-11-18 2004-11-18 Procede et dispositif pour mesurer des surfaces courbes en trois dimensions

Country Status (1)

Country Link
WO (1) WO2006053447A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554938A4 (fr) * 2010-04-02 2016-11-02 Mitsubishi Heavy Ind Machine Tool Co Ltd Procédé d'étalonnage de dispositif de mesure d'engrenage
US20180128608A1 (en) * 2016-01-21 2018-05-10 Shenzhen Hisym Industry Co.,Ltd. Method for measuring and evaluating gear precision
WO2021069384A1 (fr) * 2019-10-12 2021-04-15 KAPP NILES GmbH & Co. KG Procédé de rectification de la denture d'un engrenage
WO2021074016A1 (fr) * 2019-10-17 2021-04-22 KAPP NILES GmbH & Co. KG Procédé de meulage de la denture ou du profil d'une pièce ouvrée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952418A (en) * 1974-09-21 1976-04-27 Toyota Jidosha Kogyo Kabushiki Kaisha Master gear for checking tooth contact
EP0067643A2 (fr) * 1981-06-12 1982-12-22 Peter Caleb Frederick Wolfendale Méthode pour déterminer les dimensions et/ou la forme de surfaces
DE3611905A1 (de) * 1986-04-09 1987-10-22 Gematronik Gmbh Verfahren und vorrichtung zum pruefen der oberflaeche eines gewoelbten koerpers
DE4305408A1 (de) * 1993-02-22 1994-08-25 Sumitomo Heavy Industries Verfahren zum Vermessen von Zahnrädern sowie Anordnung zum spanenden Bearbeiten und Vermessen von Zahnrädern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952418A (en) * 1974-09-21 1976-04-27 Toyota Jidosha Kogyo Kabushiki Kaisha Master gear for checking tooth contact
EP0067643A2 (fr) * 1981-06-12 1982-12-22 Peter Caleb Frederick Wolfendale Méthode pour déterminer les dimensions et/ou la forme de surfaces
DE3611905A1 (de) * 1986-04-09 1987-10-22 Gematronik Gmbh Verfahren und vorrichtung zum pruefen der oberflaeche eines gewoelbten koerpers
DE4305408A1 (de) * 1993-02-22 1994-08-25 Sumitomo Heavy Industries Verfahren zum Vermessen von Zahnrädern sowie Anordnung zum spanenden Bearbeiten und Vermessen von Zahnrädern

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554938A4 (fr) * 2010-04-02 2016-11-02 Mitsubishi Heavy Ind Machine Tool Co Ltd Procédé d'étalonnage de dispositif de mesure d'engrenage
US20180128608A1 (en) * 2016-01-21 2018-05-10 Shenzhen Hisym Industry Co.,Ltd. Method for measuring and evaluating gear precision
EP3407011A4 (fr) * 2016-01-21 2018-11-28 Shenzhen Hisym Industry Co., Ltd. Procédé pour mesurer et évaluer la précision d'un engrenage
WO2021069384A1 (fr) * 2019-10-12 2021-04-15 KAPP NILES GmbH & Co. KG Procédé de rectification de la denture d'un engrenage
WO2021074016A1 (fr) * 2019-10-17 2021-04-22 KAPP NILES GmbH & Co. KG Procédé de meulage de la denture ou du profil d'une pièce ouvrée

Similar Documents

Publication Publication Date Title
DE19928500B4 (de) Verfahren und Vorrichtung zur automatischen Messung von Prozess- und Werkstückkennwerten beim Schleifen von Zahnrädern
EP3285961B1 (fr) Procédé et dispositif d'usinage d'un outil par enlèvement de matière
EP3456453A1 (fr) Procédé et dispositif de taillage
EP2916996B1 (fr) Machine-outil et procédé de mesurage d'une pièce
EP1696289B1 (fr) Procédé pour dimensionner une machine-outil
DE3702594C2 (fr)
DE2934347C2 (de) Verfahren und Prüfgerät zum Prüfen des Zahnflankenprofils von Zahnrädern großen Durchmessers
EP2492038A2 (fr) Procédé destiné à mesurer et à contrôler une pièce usinée et machine à tailler les engrenages
DE4006889A1 (de) Bestimmung der abmessungen von rohren
EP2535142A1 (fr) Procédé et installation de traitement de pièces usinées utilisant l'holographie conoscopique
EP2807447A1 (fr) Procédé de détermination d'une valeur de correction pour un contrôle d'un palier à fluide, et machine présentant au moins un palier à fluide
EP3158283A1 (fr) Système de fabrication
DE102016116523A1 (de) Vibrationsanalysevorrichtung, die einen Zyklus der Werkzeugvibration in Bezug zum Werkstück berechnet
EP3636373B1 (fr) Procédé et dispositif de vérification d'un serrage de lame à barre et / ou d'un logement de lame d'une tête de lame à barre destinée à la fabrication d'une roue conique
DE10342495A1 (de) Verfahren und Vorrichtung zum Einzentrieren von vorverzahnten Werkstücken auf Verzahnungsfeinbearbeitungsmaschinen
WO2020221818A1 (fr) Procédé et dispositif de contrôle de roues dentées
DE102012201732B4 (de) Numerisch gesteuerte Werkzeugmaschine und Verfahren zum Steuern eines automatischen rotatorischen Ausrichtvorgangs eines Zahnrads an der Werkzeugmaschine
DE3411892A1 (de) Verschleissmessvorrichtung
DE10157174A1 (de) Verfahren und Vorrichtung zum räumlichen Vermessen von Werkstücken an einer Werkzeugmaschine
WO2006053447A1 (fr) Procede et dispositif pour mesurer des surfaces courbes en trois dimensions
DE60032635T2 (de) Verfahren und vorrichtung zum testen von werkzeugmaschinen
EP0326625A1 (fr) Appareil pour déterminer les irrégularités d'une machine d'usinage de pièces
EP3537102B1 (fr) Procédé et dispositif d'augmentation du rendement pour une précision suffisante lors de la mesure de pièces à usiner
EP2292899A1 (fr) Procédé et appareil destinés au contrôle de rainures profilées
DE102017221737B4 (de) Verfahren und System zum Auswerten eines durch eine Messvorrichtung erfassten vorbestimmten Oberflächenbereichs eines Prüfkörpers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04797251

Country of ref document: EP

Kind code of ref document: A1