WO2006051699A1 - Resin composition and optical device using same - Google Patents

Resin composition and optical device using same Download PDF

Info

Publication number
WO2006051699A1
WO2006051699A1 PCT/JP2005/019891 JP2005019891W WO2006051699A1 WO 2006051699 A1 WO2006051699 A1 WO 2006051699A1 JP 2005019891 W JP2005019891 W JP 2005019891W WO 2006051699 A1 WO2006051699 A1 WO 2006051699A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fine particles
inorganic fine
resin composition
composition
Prior art date
Application number
PCT/JP2005/019891
Other languages
French (fr)
Japanese (ja)
Inventor
Masako Kikuchi
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2006544833A priority Critical patent/JPWO2006051699A1/en
Publication of WO2006051699A1 publication Critical patent/WO2006051699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Definitions

  • the present invention is suitably used as a lens, a filter, a grating, an optical fiber, a flat optical waveguide, etc., and is excellent in transparency and has a small change in size and refractive index due to temperature.
  • the present invention relates to a composition molded body.
  • Optical pickups are used for information devices such as players, recorders, and drives that read and record information on MO, CD, DVD, and other optical information recording media (hereinafter simply referred to as media!).
  • a device is provided.
  • the optical pickup device includes an optical element unit that irradiates a medium with light having a predetermined wavelength generated by a light source, and receives the reflected light with a light receiving element.
  • the optical element unit transmits the light to a reflection layer of the medium. It has an optical element such as a lens for condensing light by the light receiving element.
  • the optical element of the optical pickup device is preferably made of plastic as a material because it can be manufactured at low cost by means such as injection molding.
  • a plastic applicable to an optical element a copolymer of cyclic olefin and ⁇ -age refin (for example, Patent Document 1) is known.
  • An optical element unit using plastic as a material is required to be a substance having optical stability such as a glass lens.
  • optical plastic materials such as annular olefins have significantly improved the change in refractive index due to water absorption, which is extremely low in water absorption compared to conventional plastics for lenses.
  • the temperature dependence of optical properties has not been solved yet, and the temperature dependence of the linear expansion coefficient and refractive index is one order of magnitude greater than that of inorganic glass.
  • Patent Documents 2 to 8 as a method for reducing the temperature dependence of refractive index dnZdT, a fine particulate material with dnZdT> 0 is separated from a polymeric host material with dnZdT ⁇ 0. Scattered by an optical product has been proposed (e.g., see Patent Document 2-8.) 0
  • equation 2 described in Patent Document 6 for small to dnZdT host material 50% reduction
  • Patent Document 9 proposes a resin composition molded article in which ultrafine particles are dispersed in order to reduce the rate of dimensional change before and after the heating test.
  • It is insufficient to improve the disadvantages of the above-mentioned optical plastic materials while maintaining transparency that is satisfactory for use.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-105131 (Page 4)
  • Patent Document 2 JP 2002-207101 (Claims)
  • Patent Document 3 JP 2002-240901 A (Claims)
  • Patent Document 4 JP 2002-241560 A (Claims)
  • Patent Document 5 JP 2002-241569 A (Claims)
  • Patent Document 7 JP 2002-241612 A (Claims)
  • An object of the present invention is to provide a thermoplastic resin composition molded article which is excellent in transparency and has a small rate of change in size and refractive index due to temperature.
  • one aspect of the present invention is a resin composition in which inorganic fine particles are dispersed in a resin matrix, and the refractive index of the inorganic fine particles is 1.3 to 2.3.
  • the light transmittance per 3 mm of the optical path length of the resin composition is 70% or more and the linear expansion coefficient is 5 X 10 _5 (Z ° C) or less. It is in the thermoplastic rosin composition.
  • the inorganic fine particles are plate-like, and the average size thereof has a thickness in the range of 0.1 to: LOnm and an aspect ratio of 3 to: LOOO.
  • the rosin composition is not limited to: LOnm and an aspect ratio of 3 to: LOOO.
  • the inorganic fine particles are needle-shaped, the average value of the shortest diameter of the inorganic fine particles is 0.1 to 10 nm, and the aspect ratio is in the range of 3 to 5000.
  • the rosin composition is 0.1 to 10 nm, and the aspect ratio is in the range of 3 to 5000.
  • the resin is at least one selected from acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin and polyimide resin.
  • the coffin composition according to any one of (1) to (5).
  • thermoplastic resin composition according to any one of (1) to (7) above.
  • the present inventors have found that the above problems can be solved when the inorganic fine particles dispersed in the resin matrix are plate-like or needle-like, and have reached the present invention.
  • Inorganic fine particles with a high aspect ratio, such as plate or needle bind strongly to the matrix resin and greatly improve dimensional stability. This makes it possible to reduce the linear expansion coefficient.
  • the linear expansion coefficient can be reduced even with a small amount of addition, and as an optical material. I was able to maintain the transparency of this.
  • the shape of the inorganic fine particles dispersed in the resin matrix has a high aspect ratio compared to that of a plate or needle, other than the inorganic fine particles, surface modification is applied to the inorganic fine particles to interact with the matrix resin.
  • the strength By reinforcing the strength, it is possible to provide a resin composition molded article having a small linear expansion coefficient.
  • the transparency as an optical material is maintained, and the lightness that is the merit of optical plastics.
  • the amount of inorganic fine particles added is desirably 30% by mass or less with respect to the mass of the resin composition molded body.
  • the inorganic fine particles are those having an aspect ratio of 5 or less, if the addition amount is 9% by mass or less, a sufficient effect cannot be obtained with respect to the problem in the present invention. It is desirable to be within the range of 10-30% by mass.
  • the present inventors have found that when the refractive index of the inorganic fine particles is 1.3 to 2.3, it is possible to maintain transparency as an optical material that is a subject of the present invention. did.
  • the refractive index of inorganic fine particles is described in Optical Engineering Handbook (Asakura Shoten)! However, either the measured value or the literature value of the refractive index at the d-line wavelength of the bulk material having the same composition as the inorganic fine particles is 1.3 to 2. It has been found that the object of the present invention can be achieved within the range of 3.
  • the transparency required for the main optical applications can be obtained by setting the light transmittance per 3 mm of the optical path length at the d-line wavelength of the resin composition molded body, which is an optical material, to 70% or more. Furthermore, by setting the light transmittance to 85% or more, the transparency required for lens use can be obtained.
  • the matrix resin in which inorganic fine particles are dispersed is a thermoplastic resin.
  • a thermoplastic resin used in the present invention an acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, and a polyether are acceptable as long as it is a transparent resin material generally used as an optical material. It is preferable to use a resin, a polyamide resin, a polyimide resin. Specific examples include the compounds described in Table 1 of JP-A-2003-73559, and preferred compounds are shown in Table 1.
  • thermoplastic resin particularly preferably used in the present invention cycloolefin resin
  • the inorganic fine particles most preferably used in the present invention are plate-like or needle-like inorganic fine particles.
  • the plate-like fine particles in the present invention are particles having at least two faces facing each other, and the average force of the equivalent circle diameter (diameter) of this face is at least twice the average value of the distance between the faces of the two faces. Means that.
  • the average value of the distance between two surfaces is defined as the average thickness, the thickness is preferably within a range of 0.1 to LOnm. If the thickness is less than 0.1 nm, it is difficult to disperse the inorganic fine particles, so that the desired performance may not be obtained.
  • the needle-shaped inorganic fine particles in the present invention refer to those in which the longest diameter of the fine particles is twice or more the shortest diameter. Therefore, rod-like and ellipsoids are also included in the needle-like fine particles of the present invention.
  • the average value of the shortest diameters of the fine particles is preferably within the range of 0.1 to LOnm. If this value is less than 0.1 nm, it may be difficult to obtain the desired performance due to the difficulty in dispersing the inorganic fine particles, and if it exceeds lOnm, the transparency of the resulting molded resin composition May decrease.
  • the average aspect ratio is preferably in the range of 3 to 2000, more preferably in the range of 5 to 500.
  • the average aspect ratio in this case is given by the average value of (the longest diameter of the fine particles, the diameter) Z (the shortest diameter of the fine particles, the diameter). Even in this case, if the aspect ratio is less than 3, the effect of the present invention may not be sufficiently exhibited if the linear expansion coefficient is reduced by adding a small amount of inorganic fine particles. There is a risk that the transparency of the molded product of the composition is lowered.
  • the content of the plate-like or needle-like inorganic fine particles most preferably used in the present invention is not particularly limited as long as the effects of the present invention can be exhibited, and thermoplastic resin and inorganic fine particles are not limited. However, if the content of the inorganic fine particles is high, optical properties such as light transmittance deteriorate due to light scattering, which is not preferable. Therefore, inorganic fine particles
  • the content of the particles is preferably 0.01% by mass or more and 30% by mass or less with respect to the mass of the molded resin composition in which inorganic fine particles are dispersed in the matrix resin. More preferably, it is 0.01 mass% or more and 20 mass% or less, More preferably, it is 0.01 mass% or more and 10 mass% or less.
  • the inorganic fine particles dispersed in the resin matrix is other than the inorganic fine particles having a high aspect ratio such as a plate shape or a needle shape, the inorganic fine particles are subjected to surface modification to form a matrix resin. It is possible to provide a resin composition composition having a low coefficient of linear expansion by strengthening the interaction. In this case, it is necessary to increase the amount of inorganic fine particles added compared to the case of plate-like or needle-like particles, but even in this case, transparency as an optical element is maintained, which is an advantage of optical plastics. In order to maintain light weight, the amount of inorganic fine particles added is desirably 30% by mass or less based on the mass of the resin composition molded body.
  • the inorganic fine particles are particles having an aspect ratio of 3 or less, if the addition amount is 9 mass% or less, a sufficient effect cannot be obtained for the problem in the present invention. Is preferably in the range of 10 to 30% by mass.
  • the average particle size of the inorganic fine particles is preferably 1 nm or more and 30 nm or less, preferably 1 nm or more, more preferably 20 nm or less, and further preferably 1 nm or more and 10 nm or less. If the average particle size is less than 1 nm, it is difficult to disperse the inorganic fine particles, so that the desired performance may not be obtained. If the average particle size exceeds 30 nm, the resulting thermoplastic material composition becomes cloudy. There is a risk that transparency will be reduced.
  • the average particle diameter here refers to the diameter when converted to a sphere having the same volume as the particle.
  • the distribution of the inorganic fine particles used in the present invention is not particularly limited! / ⁇ 1S In order to more efficiently express the effects of the present invention, it is more preferable than those having a wide distribution. Those having a relatively narrow distribution are preferably used.
  • the refractive index of the fine particles is preferably in the range of 1.3 to 2.3, more preferably in the range of 1.3 to 2.0, and still more preferably in the range of 1.3 to 1.7. Is within.
  • the index of refraction of inorganic fine particles is described in the Optical Engineering Nord Book (Asakura Shoten)! It can be measured by the method. Reference values of the refractive index at the d-line wavelength of the Balta body having the same composition as the inorganic fine particles may be referred to.
  • the type of plate-like fine particles preferably used in the present invention is not particularly limited, and examples thereof include layered silicates.
  • the layered silicate is an inorganic mineral in which a large number of fine flaky crystals having a thickness of about 1 nm and an average aspect ratio of about 20 to 200 are aggregated by ionic bonds.
  • the rate of change in size and refractive index with temperature which is the object of the present invention, is small.
  • a molded resin composition can be obtained.
  • Layered silicate refers to a silicate mineral having exchangeable cations between layers.
  • the type of layered silicate is not particularly limited, but it is a synthetic mica such as swellable my strength (mica), smetite series such as montmorillonite, sabonite, hectorite, piderite, stevensite, nontronite.
  • swellable my strength mica
  • smetite series such as montmorillonite, sabonite, hectorite, piderite, stevensite, nontronite.
  • vermiculite, nor, leucite, and the like and natural or synthesized ones can be preferably used.
  • examples of the inorganic fine particles preferably used in the present invention include metal oxide fine particles.
  • Metals constituting the metal oxide are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals
  • Metal oxides that are metals of the above can be used, and phosphates, sulfates, carbonates and the like can also be used.
  • fine particles having a semiconductor crystal composition can also be preferably used.
  • the composition include simple elements of Group 14 elements of the periodic table such as carbon, kaen, germanium and tin, periodic elements of Group 15 elements of the periodic table such as phosphorus (black phosphorus), periodic periods of selenium, tellurium and the like.
  • Table 16 element simple substance, several periodic table such as silicon carbide (SiC), group 14 element power compound, tin oxide (IV) (Sn02), tin sulfate (IV, IV) (Sn (II ) Sn (IV) S3), sulfurized tin (IV) (SnS2), sulfurized tin ( ⁇ ) (SnS), tin selenide ( ⁇ ) (SnSe), tin telluride ( ⁇ ) (SnTe), Compounds of periodic table group 14 elements and periodic table group 16 elements such as lead sulfide ( ⁇ ) (PbS), selenium lead ( ⁇ ) (PbSe), lead telluride (II) (PbTe) Boron nitride (BN), phosphorous boron (BP), boron arsenide (BAs), aluminum nitride (A1N), aluminum phosphide (A1P), aluminum arsenide (AlAs), aluminum antimonide (AlSb),
  • Compounds with group 16 elements of the periodic table compounds with group 4 elements of the periodic table such as titanium oxide (Ti02, Ti205, Ti203, Ti509, etc.), group 16 elements of the periodic table, magnesium sulfate (MgS), selenium ⁇ Magnesium (MgSe) and other compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table, cadmium oxide (II) Cu PIII (CdCr204), selenium cadmium ( ⁇ ) Cu Pmu (III ) (CdCr2Se4), chalcogen spinels such as copper chloride (II) chromium (III) (CuCr2S4), selenium mercury (III) (HgCr2Se4), norium titanate (BaTi03), and the like.
  • titanium oxide Ti02, Ti205, Ti203, Ti509, etc.
  • MgS magnesium sulfate
  • MgS selenium ⁇ Magnesium
  • the shape of the metal oxide fine particles, fine particles of phosphate, sulfate, carbonate, fine particles of semiconductor crystal composition, etc. is not particularly limited, but is a plate-like or acicular fine particle. It is more preferable.
  • the metal oxide needle-shaped fine particles include NanoCeram (manufactured by Argonide), which is an alumina nanofiber having a diameter of 2 to 4 nm and an aspect ratio of 20 to 100.
  • silica silicon oxide having a small difference in refractive index from the matrix resin, calcium carbonate Since selecting aluminum phosphate improves the transparency of the resin composition, it is more preferable to use silica.
  • these fine particles may use one kind of inorganic fine particles or a combination of plural kinds of inorganic fine particles.
  • the inorganic fine particles according to the present invention are preferably subjected to a surface treatment.
  • the exchangeable cation existing between the layers may be previously ion-exchanged with a cationic surfactant or the like.
  • a cationic surfactant or the like.
  • Examples of the surface modifier used for the surface treatment of inorganic fine particles such as metal oxide fine particles include, for example, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrahenoxysilane, methyltrimethoxysilane.
  • These compounds have different characteristics such as reaction rate, and compounds suitable for surface modification conditions can be used. Further, only one type may be used or a plurality of types may be used in combination. Furthermore, the properties of the surface-modified fine particles obtained may vary depending on the compound used, and the affinity with the thermoplastic resin used in obtaining the material composition can be achieved by selecting the compound used for the surface modification. It is.
  • the ratio of the surface modification is not particularly limited, but it is preferable that the ratio of the surface modifier is 10 to 99% by mass with respect to the fine particles after the surface modification. Is more preferable.
  • the resin composition of the present invention is composed of thermoplastic resin and inorganic fine particles, but the production method is not particularly limited. That is, a method of preparing thermoplastic coagulate and inorganic fine particles independently and then mixing them together, a method of producing thermoplastic coagulate under conditions in which pre-produced inorganic fine particles exist, Any method can be employed, such as a method of producing inorganic fine particles under the condition where plastic resin is present or a method of producing both thermoplastic resin and inorganic fine particles simultaneously. Specifically, for example, two solutions of a solution in which thermoplastic resin is dissolved and a dispersion in which inorganic fine particles are uniformly dispersed are mixed uniformly, and the solutions are arranged in a solution having poor solubility in thermoplastic resin.
  • the degree of mixing of the thermoplastic resin and the inorganic fine particles is particularly limited. Although not intended, in order to achieve the effect of the present invention more efficiently, it is desirable to mix uniformly. When the degree of mixing is insufficient, there is a concern that the optical properties such as the refractive index, Abbe number, and light transmittance may be affected, and the resin processability such as thermoplasticity and melt moldability is also adversely affected. There is a fear.
  • the degree of mixing is considered to be affected by the production method, and it is important to select a method in consideration of the characteristics of the thermoplastic resin and inorganic fine particles used.
  • thermoplastic resin and the inorganic fine particles In order to more uniformly mix both the thermoplastic resin and the inorganic fine particles, a method of directly bonding the thermoplastic resin and the inorganic fine particles can be suitably used in the present invention.
  • the resin composition of the present invention is an optically excellent resin composition having a small coefficient of linear expansion, a small temperature dependence of the refractive index, and a high transparency, and further has thermoplasticity and Because it has Z or injection moldability, it is a thermoplastic material that has excellent moldability. This material with both excellent optical properties and moldability is a powerful property that cannot be achieved with the materials disclosed so far, and it also has a specific thermoplastic resin and a specific inorganic fine particle force. However, it is conceivable that it contributes to this characteristic.
  • additives also referred to as compounding agents
  • stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, UV absorbers, near infrared absorbers, and oil refining agents such as lubricants and plasticizers.
  • examples thereof include: anti-clouding agents such as soft polymers and alcoholic compounds; coloring agents such as dyes and pigments; antistatic agents, flame retardants and fillers.
  • anti-clouding agents such as soft polymers and alcoholic compounds
  • coloring agents such as dyes and pigments
  • antistatic agents flame retardants and fillers.
  • the polymer contains at least a plasticizer or an antioxidant.
  • Plasticizer is not particularly limited, however, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic ester plasticizer, pyromellitic acid plasticizer, glycolate plasticizer, citrate ester Examples thereof include a plasticizer and a polyester plasticizer.
  • phosphate ester plasticizer for example, triphenyl phosphate, tricresyl phosphate, credinole resin-nore phosphate, otachino resin-nore phosphate, diphenol-no-biphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers examples include jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethyl hexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, and dicyclohexyl phthalate.
  • pyromellitic acid ester plasticizers such as tributyl trimellitate, triphenyl trimellitate, triethyl trimellitate, etc.
  • glycolate plasticizers such as tetrabutyl pyromellitate, tetraphenyl bimellitate, tetraethyl pyromellitate, and the like include triacetin, tributyrin, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl dallicolate, butyl phthalate
  • tributyl citrate tri-n-butyl citrate
  • acetyl acetyl citrate acetiltyl n-butyl citrate
  • the antioxidant used in the present invention will be described.
  • phenolic acid rust inhibitor conventionally known ones can be used, for example, 2-tube. 6- (3-tert-butyl 2-hydroxy-5-methylbenzyl) 4-methylphenol acrylate, 2, 4 di-tert-amyl 6- (1— (3,5-di-tert-amyl 2-hydroxy Acetalyl compounds described in Japanese Patent Application Laid-Open No. 63-179953 and Japanese Patent Application Laid-Open No.
  • phosphorus-based anti-oxidation agent there are no particular limitations on the phosphorus-based anti-oxidation agent as long as it is commonly used in the general oil industry, for example, triphenylphosphite, diphenylisodecylphosphite, phenoldiisodecyl.
  • Phosphite tris (norphenol) phosphite, tris (dinolephenol) phosphite, tris (2,4 di-t-butylphenol) phosphite, 10- (3,5- t-butyl 4-hydroxybenzyl) 9, 10 dihydro-9-oxa 10 phosphaphenanthrene 10 monophosphite compounds such as oxide; 4, 4'-butylidene-bis (3-methyl-6-t-butylphenol- And diphosphite compounds such as 4,4'-isopropylidene monobis (phenol didialkyl (C12-C15) phosphite).
  • tris (noyulphele) phosphite tris (dinoufulfer) phosphite, and tris (2,4 di-t-butylphenol) phosphite are particularly preferred, which prefer monophosphite compounds. .
  • iow antioxidants include dilauryl 3, 3 thiodipropionate and dimi. Listyl 3, 3'—thiodipropionate, distearyl 3, 3-thiodipropionate, lauryl stearyl 3, 3-thiodipropionate, pentaerythritol tetrakisto (j8-lauryl thiopropionate), 3 , 9 Bis (2 dodecylthioethyl) 2, 4, 8, 10-tetraoxaspiro [5, 5] undecane.
  • the light-resistant stabilizer used in the present invention will be described.
  • Examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like.
  • a hindered amine light stabilizer from the viewpoint of transparency of the lens, resistance to coloring, etc. It is preferable to use a hindered amine light stabilizer.
  • HALS hindered amine light-resistant stabilizers
  • a force S having a polystyrene equivalent Mn measured by GPC using tetrahydrofuran (THF) as a solvent is preferably 1,000 to 10,000 S, A force S of 2,000 to 5,000 is more preferable, and a force of 2,800 to 3,800 is particularly preferable.
  • Mn is too small, when HALS is blended by heating, melting and kneading into a block copolymer, it will not be able to blend a predetermined amount due to volatilization, or foaming or silver streak will occur during heat melting molding such as injection molding. This will reduce the stability of the cache. Also, when the lens is used for a long time with the lamp turned on, lens force volatile components are generated as gas. On the other hand, if Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, by setting HALS Mn in the above range, a lens having excellent processing stability, low gas generation and transparency can be obtained.
  • HALS include N, ⁇ ', Ng, N'"— tetrakis [4,6-bis ⁇ petite (N-methyl-2,2,6,6-tetramethylpiperidine -4)) amino ⁇ —triazine—2-yl] —4, 7 diazadecane— 1,10 diamine, dibutylamine and 1, 3, 5 triazine and N, N '—bis (2, 2, 6, 6— Polycondensate with tetramethyl-4-piperidyl) butyramine, poly [ ⁇ (1, 1, 3, 3-tetramethylbutyl) amino-1,3,5-triazine-1,2,4 dil ⁇ ⁇ (2, 2, 6, 6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2, 2, 6, 6-tetramethyl-1-piperidyl) imino ⁇ ], 1, 6 hexanediamin-1 N, N '—bis (2 , 2, 6, 6-tetramethyl-4-piperidyl
  • the blending amount of the thermoplastic resin material of the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, particularly preferably 100 parts by mass of the polymer. 0. 05 to 10 parts by mass. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, if the HALS content is too large, some of it will be generated as a gas, or the dispersibility in rosin will be reduced, and the transparency of the lens will be reduced.
  • thermoplastic resin material of the present invention by blending the thermoplastic resin material of the present invention with a compound having the lowest glass transition temperature of 30 ° C or less, various properties such as transparency, heat resistance and mechanical strength can be obtained. Without lowering, it can prevent white turbidity in high temperature and high humidity environment for a long time.
  • the thermoplastic resin composition molded body of the present invention is obtained by molding a molding material comprising the resin composition.
  • the molding method is not particularly limited, but melt molding is preferred in order to obtain a molded product excellent in characteristics such as low birefringence, mechanical strength, and dimensional accuracy.
  • Examples of the melt molding method include commercially available press molding, commercially available extrusion molding, and commercially available injection molding, and injection molding is also preferable in terms of moldability and productivity.
  • the molding conditions are appropriately selected depending on the purpose of use or the molding method.
  • the temperature of the resin composition in injection molding may provide a suitable fluidity to the resin at the time of molding to reduce the sink of the molded product.
  • the range of 150 ° C to 400 ° C is preferable, and more preferably It is in the range of 200 ° C to 350 ° C, particularly preferably in the range of 200 ° C to 330 ° C.
  • the molded product according to the present invention can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence. Because of its excellent properties, transparency, mechanical strength, heat resistance, and low water absorption, it can be applied to various optical components.
  • a power imaging lens for example, as an optical lens or an optical prism, a power imaging lens; a lens such as a microscope, an endoscope or a telescope lens; an all-light transmission lens such as a spectacle lens; CD, CD -ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc) and other optical disc pickup lens; Laser scanning lens such as lens and sensor lens; prism lens of camera finder system.
  • a lens such as a microscope, an endoscope or a telescope lens
  • an all-light transmission lens such as a spectacle lens
  • CD, CD -ROM, WORM recordable optical disc
  • MO rewritable optical disc
  • magneto-optical disc magneto-optical disc
  • MD mini disc
  • DVD digital video disc
  • Optical disc applications include CD, CD-ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc), and the like. It is done.
  • Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusing films; light diffusing plates; optical cards; and liquid crystal display element substrates.
  • a fine powder was obtained in the same manner as in the preparation of inorganic fine particles 1 except that Acid-Aluminum TM-300 (average particle size of about 7 nm) manufactured by Daimei Chemical Co., Ltd. was used. According to TEM observation, this powder had an average particle size of about lOnm, and this was designated as inorganic fine particles 2.
  • a fine powder was obtained in the same manner as the preparation of inorganic fine particles 1 except that aluminum nitride having an average particle diameter of about 5 nm obtained from Nanomat was used. According to TEM observation, this powder had an average particle size of about 8 nm, and this was designated as inorganic fine particles 3.
  • aqueous zinc nitrate solution was added to the dispersion dispersed in water so that the concentration of Laponite XLG (Nippon Silica Kogyo, particle diameter 20-30 nm, thickness l-2 nm) was 0.5 wt%.
  • An aqueous solution of thorium was added.
  • Zinc nitrate and sodium sulfate were added so that the concentration in the final dispersion was 0.25 mM.
  • Ultrafiltration was performed using USY-1 manufactured by Advantech Co., Ltd. to remove the clay, and it was dried to obtain fine zinc sulfate particles having an average particle size of 6 nm.
  • Fine powder was obtained in the same manner as the preparation of inorganic fine particles 1 except that Titanium ST-01 (average particle size: about 7 nm) manufactured by Ishihara Sangyo Co., Ltd. was used. According to TEM observation, this powder had an average particle size of about 8 nm and was designated as inorganic fine particles 5.
  • a mixer KF70 and a rotor: high shear type were mounted on a kneader Labo Plast Mill C type (manufactured by Toyo Seiki Seisakusho) and kneaded for 5 minutes at a preset temperature of 200 ° C and 300 rpm.
  • the kneading was performed by adding the following materials all at once to the mixer.
  • Inorganic particles Inorganic fine particles 1 to 5 18.5 g (15% w / w content)
  • the obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces.
  • Let the obtained resin composition molded object be the molded object 1-5, respectively. (Production of molded body 6)
  • the resin composition was added except that the added inorganic fine particles were inorganic fine particles 1,9.2 g (content in the resin 7.5% by weight).
  • the molded product 6 be the resin composition molded product obtained by the same method as the production method of the molded products 1-5.
  • a mixer KF70 and a rotor: high shear type were mounted on a kneader Labo Plast Mill C type (manufactured by Toyo Seiki Seisakusho) and kneaded for 5 minutes at a preset temperature of 200 ° C and 300 rpm.
  • the kneading was performed by adding the following materials all at once to the mixer.
  • Inorganic particles Gas phase method silica A300 manufactured by Nippon Aerosil Co., Ltd. (average particle size of about 7 nm) 8.4 g (content ratio in wrinkle 15 w%)
  • the obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces.
  • the obtained resin composition molded bodies are designated as molded bodies 7 respectively.
  • a molded body 8 was produced in the same manner as the molded body 7, except that the inorganic fine particles were changed to Daikin Chemical Industry Co., Ltd. Oxidium Aluminum TM-300 (average particle size: about 7 nm).
  • the transmittance of the obtained resin composition molded product in the thickness direction (3 mm thickness) at a wavelength of 587.5 nm was measured.
  • the linear expansion coefficient of the resin composition composition was measured by thermomechanical analysis (TMA) using CN8098F1 manufactured by Rigaku Corporation. The measurement was performed by measuring the displacement in the thickness direction of the disk.
  • each of the resin compositions used in the produced compacts 1 to 8 was melted and molded to prepare test plates having a thickness of 0.5 mm.
  • the refractive index was measured using an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) at a wavelength of 588 nm and the measurement temperature was changed from 10 ° C. to 30 ° C., and the temperature change rate dnZdT of the refractive index was obtained.
  • the molded resin composition of the present invention has a low linear expansion coefficient and I dn / dT I and a high light transmittance. It turns out that it is very useful as a resin composition to be used.
  • Nanofil919 Scaly inorganic mineral montmorillonite surface modified with organic material obtained from Sud Chemie Co. 3.4 g (5 wt% content in rosin)
  • the obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces.
  • the obtained resin composition molded product is referred to as molded product 9.
  • a compact 10 was produced in the same manner as the compact 7, except that the inorganic particles were changed to NanoCeram (alumina nanofibers having a diameter of 2 nm and an aspect ratio of 20 to 100) obtained from Argonide. Observation of the inorganic particles in the obtained kneaded material by TEM confirmed that they were dispersed in a layer having an average diameter of 2 nm and an average length of 60 nm.
  • NanoCeram alumina nanofibers having a diameter of 2 nm and an aspect ratio of 20 to 100
  • Molded body 11 was produced in the same manner as molded body 9 except that the inorganic particles were changed to Nippon Aerosil Co., Ltd. and hydrophobic silica R974 (average primary particle size 12 nm). When the inorganic particles in the obtained kneaded material were observed with TEM, it was confirmed that the average dispersed particle size was 14 nm and dispersed in a lump.
  • a molded body 12 was produced in the same manner as the molded body 9 except that the inorganic particles were changed to Nippon Steel Aerosil Co., Ltd. and acid aluminum C (average primary particle size 13 nm).
  • the inorganic particles in the obtained kneaded material were observed with TEM, it was confirmed that the average dispersed particle diameter was 16 nm and dispersed in a lump.
  • the obtained molded bodies 9 to 12 were measured for light transmittance, linear expansion coefficient, and I dn / dT I in the same manner as in Example 1.
  • the molded resin composition of the present invention has a low linear expansion coefficient and I dn / dT I and a high light transmittance. It turns out that it is very useful as a resin composition to be used.
  • thermoplastic resin composition molded article which is excellent in transparency and has a small rate of change in size and refractive index due to temperature.

Abstract

Disclosed is a thermoplastic resin composition wherein inorganic particles are dispersed in a resin matrix. The thermoplastic resin composition is characterized in that the refractive index of the inorganic particles is within a range of 1.3-2.3, and the resin composition has a light transmittance of not less than 70% per 3 mm of optical path length and a linear expansion coefficient of not more than 5 × 10-5 (/˚C).

Description

樹脂組成物及びそれを用いた光学素子  Resin composition and optical element using the same
技術分野  Technical field
[0001] 本発明は、レンズ、フィルター、グレーティング、光ファイバ一、平板光導波路などと して好適に用いられ、透明性に優れ、温度による寸法や屈折率の変化率が小さい熱 可塑性の榭脂組成物成形体に関する。  [0001] The present invention is suitably used as a lens, a filter, a grating, an optical fiber, a flat optical waveguide, etc., and is excellent in transparency and has a small change in size and refractive index due to temperature. The present invention relates to a composition molded body.
背景技術  Background art
[0002] MO、 CD、 DVDと 、つた光情報記録媒体 (以下、単に媒体とも!、う)に対して、情 報の読み取りや記録を行なうプレーヤー、レコーダー、ドライブといった情報機器に は、光ピックアップ装置が備えられている。光ピックアップ装置は、光源力 発した所 定波長の光を媒体に照射し、反射した光を受光素子で受光する光学素子ユニットを 備えており、光学素子ユニットはこれらの光を媒体の反射層ゃ受光素子で集光させ るためのレンズ等の光学素子を有している。  [0002] Optical pickups are used for information devices such as players, recorders, and drives that read and record information on MO, CD, DVD, and other optical information recording media (hereinafter simply referred to as media!). A device is provided. The optical pickup device includes an optical element unit that irradiates a medium with light having a predetermined wavelength generated by a light source, and receives the reflected light with a light receiving element. The optical element unit transmits the light to a reflection layer of the medium. It has an optical element such as a lens for condensing light by the light receiving element.
[0003] 光ピックアップ装置の光学素子は、射出成形等の手段により安価に作製できる等の 点で、プラスチックを材料として適用することが好ましい。光学素子に適用可能なブラ スチックとしては、環状ォレフィンと α—才レフインの共重合体 (例えば、特許文献 1) 等が知られている。  [0003] The optical element of the optical pickup device is preferably made of plastic as a material because it can be manufactured at low cost by means such as injection molding. As a plastic applicable to an optical element, a copolymer of cyclic olefin and α-age refin (for example, Patent Document 1) is known.
[0004] プラスチックを材料として適用した光学素子ユニットにおいては、ガラスレンズのよう な光学的安定性を有する物質であることが求められている。例えば、環状ォレフィン のような光学用プラスチック物質は、従来レンズ用プラスチックとして用いられてきた Ρ ΜΜΑに比べて吸水率が極めて低ぐ吸水による屈折率の変化が大幅に改善されて いる。し力しながら、光学特性の温度依存性については未だ解決されておらず、線膨 張係数や屈折率の温度依存性は無機ガラスより一桁以上大きいのが現状である。  [0004] An optical element unit using plastic as a material is required to be a substance having optical stability such as a glass lens. For example, optical plastic materials such as annular olefins have significantly improved the change in refractive index due to water absorption, which is extremely low in water absorption compared to conventional plastics for lenses. However, the temperature dependence of optical properties has not been solved yet, and the temperature dependence of the linear expansion coefficient and refractive index is one order of magnitude greater than that of inorganic glass.
[0005] 上記のような光学用プラスチック物質の短所を改善する方法の 1つとして、微細粒 子充填材を使用する方法が提案されている。  [0005] As one method for improving the disadvantages of the optical plastic material as described above, a method using a fine particle filler has been proposed.
例えば特許文献 2〜8には、屈折率の温度依存性 dnZdTを減少する方法として、 d nZdT<0であるポリマー状ホスト物質中に、 dnZdT>0である微細粒子物質が分 散された光学製品が提案されている (例えば、特許文献 2〜8参照。 )0しかしながら、 例えば、特許文献 6に記載の式 2で示されるように、ホスト材料の dnZdTを 50%減 少するためには、無機微粒子を 40質量%以上混合する必要があることが示されてお り、このように多量の無機微粒子を混合した榭脂材料では、比重が大きぐ透明度が 低いという弊害が生じる。また、この様に添加量が多い場合、榭脂中に分散した無機 微粒子が凝集し、長期保存した際に性能が変化するという問題もあり、実用化に適さ な 、榭脂材料を提供することしかできて 、な 、のが現状である。 For example, in Patent Documents 2 to 8, as a method for reducing the temperature dependence of refractive index dnZdT, a fine particulate material with dnZdT> 0 is separated from a polymeric host material with dnZdT <0. Scattered by an optical product has been proposed (e.g., see Patent Document 2-8.) 0 However, for example, as shown in equation 2 described in Patent Document 6, for small to dnZdT host material 50% reduction In order to achieve this, it has been shown that it is necessary to mix 40% by mass or more of inorganic fine particles, and such a resin material mixed with a large amount of inorganic fine particles has the disadvantage of high specific gravity and low transparency. . In addition, when the addition amount is large in this way, there is a problem that the inorganic fine particles dispersed in the resin aggregate and the performance changes when stored for a long period of time. Thus, a resin material suitable for practical use is provided. However, this is the current situation.
また、特許文献 9には、加熱試験前後の寸法変化率を小さくするために、超微粒子 が分散された榭脂組成物成形体が提案されて ヽるが、ここに開示された技術では、 光学用途として満足できる透明性を維持しながら、前述した光学用プラスチック物質 の短所を改善するには不十分である。 Patent Document 9 proposes a resin composition molded article in which ultrafine particles are dispersed in order to reduce the rate of dimensional change before and after the heating test. However, in the technique disclosed herein, It is insufficient to improve the disadvantages of the above-mentioned optical plastic materials while maintaining transparency that is satisfactory for use.
特許文献 1 特開 2002— 105131号公報 (第 4頁) Patent Document 1 Japanese Patent Application Laid-Open No. 2002-105131 (Page 4)
特許文献 2特開 2002— -207101号公報 (特許請求の範囲) Patent Document 2 JP 2002-207101 (Claims)
特許文献 3特開 2002— -240901号公報 (特許請求の範囲) Patent Document 3 JP 2002-240901 A (Claims)
特許文献 4特開 2002— -241560号公報 (特許請求の範囲) Patent Document 4 JP 2002-241560 A (Claims)
特許文献 5特開 2002— -241569号公報 (特許請求の範囲) Patent Document 5 JP 2002-241569 A (Claims)
特許文献 6特開 2002— -241592号公報 (特許請求の範囲) Patent Document 6 Japanese Patent Laid-Open No. 2002-241592 (Claims)
特許文献 7特開 2002— -241612号公報 (特許請求の範囲) Patent Document 7 JP 2002-241612 A (Claims)
特許文献 8特開 2002— -303701号公報 (特許請求の範囲) Patent Document 8 JP 2002-303701 A (Claims)
特許文献 9特開 2003— 155355号公報 (特許請求の範囲) Patent Document 9 Japanese Unexamined Patent Application Publication No. 2003-155355 (Claims)
発明の開示 Disclosure of the invention
本発明の目的は、透明性に優れ、温度による寸法や屈折率の変化率が小さい熱 可塑性の榭脂組成物成形体を提供することである。  An object of the present invention is to provide a thermoplastic resin composition molded article which is excellent in transparency and has a small rate of change in size and refractive index due to temperature.
上記目的を達成するための、本発明の態様の一つは、無機微粒子が榭脂マトリック ス中に分散された榭脂組成物であり、前記無機微粒子の屈折率が 1. 3〜2. 3の範 囲内であって、前記榭脂組成物の光路長 3mm当たりの光線透過率が 70%以上で あり、かつ線膨張係数が 5 X 10_5(Z°C)以下であることを特徴とする熱可塑性榭脂 組成物にある。 発明を実施するための最良の形態 In order to achieve the above object, one aspect of the present invention is a resin composition in which inorganic fine particles are dispersed in a resin matrix, and the refractive index of the inorganic fine particles is 1.3 to 2.3. The light transmittance per 3 mm of the optical path length of the resin composition is 70% or more and the linear expansion coefficient is 5 X 10 _5 (Z ° C) or less. It is in the thermoplastic rosin composition. BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 本発明の上記目的は、以下の構成により達成される。 [0007] The object of the present invention is achieved by the following configurations.
(1) 無機微粒子が榭脂マトリックス中に分散された榭脂組成物であり、前記無機微 粒子の屈折率が 1. 3〜2. 3の範囲内であって、前記榭脂組成物の光路長 3mm当 たりの光線透過率が 70%以上であり、かつ線膨張係数が 5 X 10_5(Z°C)以下であ ることを特徴とする熱可塑性榭脂組成物。 (1) A resin composition in which inorganic fine particles are dispersed in a resin matrix, wherein the refractive index of the inorganic fine particles is in the range of 1.3 to 2.3, and the optical path of the resin composition length 3mm and by those have enough light transmittance of 70% or more, and the linear expansion coefficient of 5 X 10 _5 (Z ° C ) thermoplastic榭脂composition characterized der Rukoto below.
(2) 前記榭脂組成物の d線波長における光路長 3mm当たりの光線透過率が 85% 以上であることを特徴とする前記(1)に記載の榭脂組成物。  (2) The resin composition according to (1), wherein the resin composition has a light transmittance of 85% or more per 3 mm of optical path length at the d-line wavelength.
(3) 無機微粒子が榭脂マトリックス中に分散された榭脂組成物であり、前記榭脂組 成物の d線波長における光路長 3mm当たりの光線透過率が 70%以上であって、前 記無機微粒子が板状または針状であることを特徴とする熱可塑性榭脂組成物。 (3) A resin composition in which inorganic fine particles are dispersed in a resin matrix, wherein the resin composition has a light transmittance of 70% or more at an optical path length of 3 mm at the d-line wavelength, A thermoplastic resin composition, wherein the inorganic fine particles are plate-shaped or needle-shaped.
(4) 前記無機微粒子が板状であり、その平均サイズにおいて、厚さが 0. 1〜: LOnm 、アスペクト比が 3〜: LOOOの範囲内であることを特徴とする前記(3)に記載の榭脂組 成物。 (4) The inorganic fine particles are plate-like, and the average size thereof has a thickness in the range of 0.1 to: LOnm and an aspect ratio of 3 to: LOOO. The rosin composition.
(5) 前記無機微粒子が針状であり、無機微粒子の最も短い直径の平均値が 0. 1〜 10nm、アスペクト比が 3〜5000の範囲内であることを特徴とする前記(3)に記載の 榭脂組成物。  (5) The inorganic fine particles are needle-shaped, the average value of the shortest diameter of the inorganic fine particles is 0.1 to 10 nm, and the aspect ratio is in the range of 3 to 5000. The rosin composition.
(6) 前記樹脂が、アクリル榭脂、環状ォレフィン榭脂、ポリカーボネート榭脂、ポリエ ステル樹脂、ポリエーテル榭脂、ポリアミド榭脂及びポリイミド榭脂から選ばれる少なく とも 1種であることを特徴とする前記(1)〜(5)のいずれか 1項に記載の榭脂組成物。 (6) The resin is at least one selected from acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin and polyimide resin. The coffin composition according to any one of (1) to (5).
(7) 前記無機微粒子の含有量が、前記榭脂組成物の質量に対し 0. 01質量%以 上、 30質量%以下であることを特徴とする前記(1)〜(6)の 、ずれか 1項に記載の榭 脂組成物。 (7) The deviation of (1) to (6) above, wherein the content of the inorganic fine particles is 0.01% by mass or more and 30% by mass or less with respect to the mass of the resin composition. The resin composition according to claim 1.
(8) 前記(1)〜(7)の 、ずれか 1項に記載の熱可塑性榭脂組成物を用いて成形さ れたことを特徴とする光学素子。  (8) An optical element formed by using the thermoplastic resin composition according to any one of (1) to (7) above.
[0008] 以下、本発明を実施するための最良の形態について詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail.
[0009] 本発明者らは、光学特性の環境依存性が大きぐ特に線膨張係数や屈折率の温度 依存性が無機ガラスに比べて 1桁以上大きいという、光学用プラスチックの問題点を 解決するために、様々な無機微粒子を榭脂マトリックス中に分散させた榭脂組成物 成形体を作製し、鋭意検討を行なった。その結果、多量の無機微粒子を添加しなく ても線膨張係数を大きく減少させ、かつ光学素子としての透明性を十分に維持でき る榭脂組成物成形体を作製可能であることを発見した。さらに、線膨張係数が減少 することにより、屈折率の温度依存性も大幅に改善されることを見出した。 [0009] The present inventors have found that the problem with optical plastics is that the environmental dependence of optical properties is large, especially that the temperature dependence of linear expansion coefficient and refractive index is one digit or more larger than that of inorganic glass. In order to solve this problem, a molded product of a resin composition in which various inorganic fine particles were dispersed in a resin matrix was prepared and studied earnestly. As a result, it was discovered that a resin composition molded body that can greatly reduce the linear expansion coefficient and maintain the transparency as an optical element can be produced without adding a large amount of inorganic fine particles. Furthermore, it has been found that the temperature dependence of the refractive index is greatly improved by reducing the linear expansion coefficient.
[0010] 具体的には、榭脂マトリックス中に分散された無機微粒子が板状または針状である 場合において、上記課題を解決できることを見出し、本発明に至った。板状または針 状といったアスペクト比の高い無機微粒子はマトリックス榭脂と強固に結合し、寸法安 定性を大幅に向上する。これにより線膨張係数を小さくすることが可能となり、さらに、 前記板状または針状粒子のサイズをナノメートルのオーダーまで小さくすることにより 、少量の添加でも線膨張係数を小さくでき、さらに光学材料としての透明性も維持で きることがわ力 た。榭脂マトリックス中に分散された無機微粒子の形状が、板状また は針状と ヽつたアスペクト比の高 、無機微粒子以外の場合でも、無機微粒子に表面 修飾を施し、マトリックス榭脂との相互作用を強固にすることにより線膨張係数の小さ ぃ榭脂組成物成形物を提供することが可能である。この場合、板状または針状粒子 の場合に比較して無機微粒子の添加量は多くする必用がある力 この場合において も光学材料としての透明性を維持し、光学用プラスチックのメリットである軽量性を維 持するために、無機微粒子の添加量は、榭脂組成物成形体の質量に対し 30質量% 以下であることが望ましい。また、無機微粒子がアスペクト比が 5以下の粒子の場合、 添加量が 9質量%以下では、本発明における課題に対して十分な効果が得られない ことから、この場合の無機微粒子の添加量は 10〜30質量%の範囲内であることが望 ましい。  [0010] Specifically, the present inventors have found that the above problems can be solved when the inorganic fine particles dispersed in the resin matrix are plate-like or needle-like, and have reached the present invention. Inorganic fine particles with a high aspect ratio, such as plate or needle, bind strongly to the matrix resin and greatly improve dimensional stability. This makes it possible to reduce the linear expansion coefficient. Furthermore, by reducing the size of the plate-like or needle-like particles to the order of nanometers, the linear expansion coefficient can be reduced even with a small amount of addition, and as an optical material. I was able to maintain the transparency of this. Even if the shape of the inorganic fine particles dispersed in the resin matrix has a high aspect ratio compared to that of a plate or needle, other than the inorganic fine particles, surface modification is applied to the inorganic fine particles to interact with the matrix resin. By reinforcing the strength, it is possible to provide a resin composition molded article having a small linear expansion coefficient. In this case, it is necessary to increase the amount of inorganic fine particles added compared to the case of plate-like or needle-like particles. In this case as well, the transparency as an optical material is maintained, and the lightness that is the merit of optical plastics. In order to maintain this, the amount of inorganic fine particles added is desirably 30% by mass or less with respect to the mass of the resin composition molded body. Further, when the inorganic fine particles are those having an aspect ratio of 5 or less, if the addition amount is 9% by mass or less, a sufficient effect cannot be obtained with respect to the problem in the present invention. It is desirable to be within the range of 10-30% by mass.
[0011] また、本発明者らは、前記無機微粒子の屈折率が 1. 3〜2. 3の時に、本発明の課 題である光学材料としての透明性の維持が可能になることを発見した。無機微粒子 の屈折率は光工学ハンドブック (朝倉書店)等に記載されて!、るべッケ線を用いる方 法等により測定することもできるが、この測定値または無機微粒子と同じ組成のバル ク体の d線波長における屈折率の文献値のどちらかが 1. 3〜2. 3の範囲内であれば 、本発明の課題は達成されることを発見した。光学材料に求められる透明性は、その 用途により異なるが、光学材料である榭脂組成物成形体の d線波長における光路長 3mm当たりの光線透過率を 70%以上にすることによって、主な光学用途に要求され る透明性を得ることが可能であり、さらに前記光線透過率を 85%以上にすることによ り、レンズ用途に必要とされる透明性が得られる。 [0011] Further, the present inventors have found that when the refractive index of the inorganic fine particles is 1.3 to 2.3, it is possible to maintain transparency as an optical material that is a subject of the present invention. did. The refractive index of inorganic fine particles is described in Optical Engineering Handbook (Asakura Shoten)! However, either the measured value or the literature value of the refractive index at the d-line wavelength of the bulk material having the same composition as the inorganic fine particles is 1.3 to 2. It has been found that the object of the present invention can be achieved within the range of 3. Transparency required for optical materials Depending on the application, the transparency required for the main optical applications can be obtained by setting the light transmittance per 3 mm of the optical path length at the d-line wavelength of the resin composition molded body, which is an optical material, to 70% or more. Furthermore, by setting the light transmittance to 85% or more, the transparency required for lens use can be obtained.
[0012] 以下、本発明の詳細について説明する。  Hereinafter, details of the present invention will be described.
[0013] 《熱可塑性榭脂》  [0013] << Thermoplastic resin >>
本発明において、無機微粒子が分散されるマトリックス榭脂は、熱可塑性榭脂であ ることを特徴とする。本発明において用いられる熱可塑性榭脂としては、光学材料と して一般的に用いられる透明榭脂材料であれば良ぐアクリル榭脂、環状ォレフィン 榭脂、ポリカーボネート榭脂、ポリエステル榭脂、ポリエーテル榭脂、ポリアミド榭脂、 ポリイミド榭脂等であることが好ましい。具体的には、例えば、特開 2003— 73559の 第 1表に記載の化合物を挙げることができ、その好ましいィ匕合物を表 1に示す。  In the present invention, the matrix resin in which inorganic fine particles are dispersed is a thermoplastic resin. As the thermoplastic resin used in the present invention, an acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, and a polyether are acceptable as long as it is a transparent resin material generally used as an optical material. It is preferable to use a resin, a polyamide resin, a polyimide resin. Specific examples include the compounds described in Table 1 of JP-A-2003-73559, and preferred compounds are shown in Table 1.
[0014] [表 1] [0014] [Table 1]
Figure imgf000007_0001
Figure imgf000007_0001
[0015] 本発明において特に好ましく用いられる熱可塑性榭脂として、シクロォレフイン榭脂  [0015] As a thermoplastic resin particularly preferably used in the present invention, cycloolefin resin
(ZEONEX (日本ゼオン)、アートン (JSR)、ァペル(三井化学)などが挙げられるが これらに限るものではない。また、これらの榭脂と相溶性のある他の榭脂を併用するこ とも好ましい。  (ZONEX (Nippon Zeon), Arton (JSR), Apel (Mitsui Chemicals), etc. are not limited to these, and it is also preferable to use other resins that are compatible with these resins. .
[0016] 《無機微粒子》 本発明にお ヽて最も好ましく用いられる無機微粒子は、板状または針状の無機微 粒子である。本発明における板状の微粒子とは、少なくとも向かい合った 2つの面を 有する粒子であり、この面の円相当径(直径)の平均力 2つの面の面間距離の平均 値の 2倍以上であることを意味する。 2つの面の面間距離の平均値を平均厚さとする と、厚さは 0. 1〜: LOnmの範囲内であることが好ましい。厚さが 0. lnm未満であると 、無機微粒子の分散が困難であるために所望の性能が得られない恐れがあり、また 厚さが lOnmを超えると、得られる榭脂組成物成形体の透明性が低下する恐れがあ る。また、平均アスペクト比は 3〜: L000の範囲内であることが好ましぐより好ましくは 5〜300の範囲内である。この場合のアスペクト比は(面の円相当径(直径)の平均値 ) / (平均厚さ)を意味する。アスペクト比が 3未満では少量の無機微粒子の添加で線 膨張係数を小さくするという本発明における効果が十分に発現しない場合があり、ァ スぺタト比が 1000を超えると得られる榭脂組成物成形体の透明性が低下する恐れ がある。 [0016] << Inorganic fine particles >> The inorganic fine particles most preferably used in the present invention are plate-like or needle-like inorganic fine particles. The plate-like fine particles in the present invention are particles having at least two faces facing each other, and the average force of the equivalent circle diameter (diameter) of this face is at least twice the average value of the distance between the faces of the two faces. Means that. When the average value of the distance between two surfaces is defined as the average thickness, the thickness is preferably within a range of 0.1 to LOnm. If the thickness is less than 0.1 nm, it is difficult to disperse the inorganic fine particles, so that the desired performance may not be obtained. If the thickness exceeds lOnm, the obtained resin composition molded article Transparency may be reduced. The average aspect ratio is preferably in the range of 3 to L000, more preferably in the range of 5 to 300. The aspect ratio in this case means (average value of equivalent circle diameter (diameter) of the surface) / (average thickness). If the aspect ratio is less than 3, the effect of the present invention of reducing the linear expansion coefficient by adding a small amount of inorganic fine particles may not be sufficiently exhibited. Molding of a resin composition obtained when the aspect ratio exceeds 1000 The transparency of the body may be reduced.
[0017] 本発明における針状の無機微粒子とは、微粒子の最も長い径が、最も短い径の 2 倍以上であるものを指す。よって棒状、楕円体なども本発明の針状の微粒子に含ま れる。本発明において、微粒子の最も短い径の平均値が 0. 1〜: LOnmの範囲内であ ることが好ましい。この値が 0. lnm未満であると、無機微粒子の分散が困難であるた めに所望の性能が得られない恐れがあり、また lOnmを超えると、得られる榭脂組成 物成形体の透明性が低下する恐れがある。また、平均アスペクト比は 3〜2000の範 囲内であることが好ましぐより好ましくは 5〜500の範囲内である。この場合の平均ァ スぺタト比は、(微粒子の最も長 、径) Z (微粒子の最も短 、径)の平均値で与えられ る。この場合もアスペクト比が 3未満では少量の無機微粒子の添加で線膨張係数を 小さくすると 、う本発明における効果が十分に発現しな 、場合があり、アスペクト比が 5000を超えると得られる榭脂組成物成形体の透明性が低下する恐れがある。  [0017] The needle-shaped inorganic fine particles in the present invention refer to those in which the longest diameter of the fine particles is twice or more the shortest diameter. Therefore, rod-like and ellipsoids are also included in the needle-like fine particles of the present invention. In the present invention, the average value of the shortest diameters of the fine particles is preferably within the range of 0.1 to LOnm. If this value is less than 0.1 nm, it may be difficult to obtain the desired performance due to the difficulty in dispersing the inorganic fine particles, and if it exceeds lOnm, the transparency of the resulting molded resin composition May decrease. The average aspect ratio is preferably in the range of 3 to 2000, more preferably in the range of 5 to 500. The average aspect ratio in this case is given by the average value of (the longest diameter of the fine particles, the diameter) Z (the shortest diameter of the fine particles, the diameter). Even in this case, if the aspect ratio is less than 3, the effect of the present invention may not be sufficiently exhibited if the linear expansion coefficient is reduced by adding a small amount of inorganic fine particles. There is a risk that the transparency of the molded product of the composition is lowered.
[0018] 本発明にお 、て最も好ましく用いられる板状または針状の無機微粒子の含有量は 、本発明の効果を発揮できる範囲であれば特に限定されず、熱可塑性榭脂と無機微 粒子の種類により任意に決めることができるが、無機微粒子の含有量が高いと光散 乱により光線透過率等の光学特性が劣化するため好ましくない。従って、無機微粒 子の含有量は、無機微粒子をマトリックス榭脂中に分散した榭脂組成物成形体の質 量に対し、 0. 01質量%以上、 30質量%以下であることが好ましい。より好ましくは、 0. 01質量%以上 20質量%以下であり、さらに好ましくは 0. 01質量%以上 10質量 %以下である。 [0018] The content of the plate-like or needle-like inorganic fine particles most preferably used in the present invention is not particularly limited as long as the effects of the present invention can be exhibited, and thermoplastic resin and inorganic fine particles are not limited. However, if the content of the inorganic fine particles is high, optical properties such as light transmittance deteriorate due to light scattering, which is not preferable. Therefore, inorganic fine particles The content of the particles is preferably 0.01% by mass or more and 30% by mass or less with respect to the mass of the molded resin composition in which inorganic fine particles are dispersed in the matrix resin. More preferably, it is 0.01 mass% or more and 20 mass% or less, More preferably, it is 0.01 mass% or more and 10 mass% or less.
[0019] 榭脂マトリックス中に分散された無機微粒子の形状が、板状または針状といったァ スぺタト比の高い無機微粒子以外の場合でも、無機微粒子に表面修飾を施し、マトリ ックス榭脂との相互作用を強固にすることにより線膨張係数の小さい榭脂組成物成 形物を提供することは可能である。この場合、板状または針状粒子の場合に比較し て無機微粒子の添加量は多くする必用があるが、この場合においても光学素子とし ての透明性を維持し、光学用プラスチックのメリットである軽量性を維持するために、 無機微粒子の添加量は、榭脂組成物成形体の質量に対し 30質量%以下であること が望ましい。また、無機微粒子がアスペクト比が 3以下の粒子の場合、添加量が 9質 量%以下では、本発明における課題に対して十分な効果が得られないことから、この 場合の無機微粒子の添加量は 10〜30質量%の範囲内であることが望ましい。また、 この場合の無機微粒子の平均粒子径は lnm以上、 30nm以下が好ましぐ lnm以 上、 20nm以下がより好ましぐさらに好ましくは lnm以上、 10nm以下である。平均 粒子径が lnm未満であると、無機微粒子の分散が困難であるため所望の性能が得 られない恐れがあり、また平均粒子径が 30nmを超えると、得られる熱可塑性材料組 成物が濁るなどして透明性が低下する恐れがある。ここでいう平均粒子径は粒子と同 体積の球に換算した時の直径を言う。  [0019] Even if the shape of the inorganic fine particles dispersed in the resin matrix is other than the inorganic fine particles having a high aspect ratio such as a plate shape or a needle shape, the inorganic fine particles are subjected to surface modification to form a matrix resin. It is possible to provide a resin composition composition having a low coefficient of linear expansion by strengthening the interaction. In this case, it is necessary to increase the amount of inorganic fine particles added compared to the case of plate-like or needle-like particles, but even in this case, transparency as an optical element is maintained, which is an advantage of optical plastics. In order to maintain light weight, the amount of inorganic fine particles added is desirably 30% by mass or less based on the mass of the resin composition molded body. In addition, when the inorganic fine particles are particles having an aspect ratio of 3 or less, if the addition amount is 9 mass% or less, a sufficient effect cannot be obtained for the problem in the present invention. Is preferably in the range of 10 to 30% by mass. In this case, the average particle size of the inorganic fine particles is preferably 1 nm or more and 30 nm or less, preferably 1 nm or more, more preferably 20 nm or less, and further preferably 1 nm or more and 10 nm or less. If the average particle size is less than 1 nm, it is difficult to disperse the inorganic fine particles, so that the desired performance may not be obtained. If the average particle size exceeds 30 nm, the resulting thermoplastic material composition becomes cloudy. There is a risk that transparency will be reduced. The average particle diameter here refers to the diameter when converted to a sphere having the same volume as the particle.
[0020] 本発明にお 、て用いる無機微粒子の分布に関しては特に制限されるものではな!/ヽ 1S 本発明の効果をより効率よく発現させるためには、広範な分布を有するものよりも 、比較的狭い分布を持つものが好適に用いられる。  [0020] In the present invention, the distribution of the inorganic fine particles used in the present invention is not particularly limited! / ヽ 1S In order to more efficiently express the effects of the present invention, it is more preferable than those having a wide distribution. Those having a relatively narrow distribution are preferably used.
[0021] また、榭脂マトリックス中の無機微粒子と榭脂との屈折率差が大きいと、光散乱によ る光線透過率等の光学特性の劣化が起こりやすくなることから、本発明に用いる無機 微粒子の屈折率は 1. 3〜2. 3の範囲内であることが好ましぐより好ましくは 1. 3〜2 . 0の範囲内であり、さらに好ましくは 1. 3〜1. 7の範囲内である。無機微粒子の屈 折率につ 1、ては、光工学ノヽンドブック (朝倉書店)等に記載されて!、るべッケ線を用 いる方法等により測定することができる。また、無機微粒子と同じ組成のバルタ体の d 線波長における屈折率の文献値を参考にしてもよい。 [0021] In addition, when the difference in refractive index between the inorganic fine particles and the resin in the resin matrix is large, optical properties such as light transmittance due to light scattering are likely to deteriorate, and therefore the inorganic used in the present invention. The refractive index of the fine particles is preferably in the range of 1.3 to 2.3, more preferably in the range of 1.3 to 2.0, and still more preferably in the range of 1.3 to 1.7. Is within. The index of refraction of inorganic fine particles is described in the Optical Engineering Nord Book (Asakura Shoten)! It can be measured by the method. Reference values of the refractive index at the d-line wavelength of the Balta body having the same composition as the inorganic fine particles may be referred to.
[0022] 本発明にお 、て好ましく用いられる板状微粒子の種類につ!、ては特に限定される ものではないが、例えば層状珪酸塩類が挙げられる。層状珪酸塩は、厚さが約 lnm 、平均アスペクト比が約 20〜200の微細な多数の薄片状結晶がイオン結合により凝 集されている無機鉱物である。この凝集構造をィ匕学的または物理的な手段により解 き、薄片状結晶を榭脂中に均一に分散させることにより、本発明の目的である、温度 による寸法や屈折率の変化率が小さ!ヽ榭脂組成物成形体を得ることができる。層状 珪酸塩とは、層間に交換性陽イオンを有する珪酸塩鉱物を指す。層状珪酸塩の種 類は特に限定されるものではないが、膨潤性マイ力 (雲母)等の合成雲母、モンモリロ ナイト、サボナイト、ヘクトライト、パイデライト、スティブンサイト、ノントロナイトなどのス メタタイト系粘土鉱物のほか、バーミキユライト、ノ、ロイサイトなどがあり、天然のもので も合成されたものでも好ましく用いることができる。 [0022] The type of plate-like fine particles preferably used in the present invention is not particularly limited, and examples thereof include layered silicates. The layered silicate is an inorganic mineral in which a large number of fine flaky crystals having a thickness of about 1 nm and an average aspect ratio of about 20 to 200 are aggregated by ionic bonds. By solving this agglomerated structure by ionic or physical means and uniformly dispersing the flaky crystals in the resin, the rate of change in size and refractive index with temperature, which is the object of the present invention, is small. ! A molded resin composition can be obtained. Layered silicate refers to a silicate mineral having exchangeable cations between layers. The type of layered silicate is not particularly limited, but it is a synthetic mica such as swellable my strength (mica), smetite series such as montmorillonite, sabonite, hectorite, piderite, stevensite, nontronite. In addition to clay minerals, there are vermiculite, nor, leucite, and the like, and natural or synthesized ones can be preferably used.
さらに、本発明において好ましく用いられる無機微粒子として、金属酸化物微粒子が 挙げられる。金属酸化物を構成する金属が、 Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, S b, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Biおよび希土類金属からなる群より選ば れる 1種または 2種以上の金属である金属酸ィ匕物を用いることができ、さらに、リン酸 塩、硫酸塩、炭酸塩等を用いることもできる。  Furthermore, examples of the inorganic fine particles preferably used in the present invention include metal oxide fine particles. Metals constituting the metal oxide are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb , Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and one or more selected from the group consisting of rare earth metals Metal oxides that are metals of the above can be used, and phosphates, sulfates, carbonates and the like can also be used.
[0023] また、本発明の無機微粒子としては、半導体結晶組成の微粒子も好ましく利用でき る。該半導体結晶組成には特に制限はないが、光学素子として使用する波長領域に おいて吸収、発光、蛍光等が生じないものが望ましい。具体的な組成例としては、炭 素、ケィ素、ゲルマニウム、錫等の周期表第 14族元素の単体、リン (黒リン)等の周期 表第 15族元素の単体、セレン、テルル等の周期表第 16族元素の単体、炭化ケィ素 (SiC)等の複数の周期表第 14族元素力 なる化合物、酸化錫 (IV) (Sn02)、硫ィ匕 錫(Π, IV) (Sn(II) Sn(IV) S3)、硫ィ匕錫(IV) (SnS2)、硫ィ匕錫(Π) (SnS)、セレン化 錫(Π) (SnSe)、テルル化錫(Π) (SnTe)、硫化鉛(Π) (PbS)、セレンィ匕鉛(Π) (PbSe )、テルル化鉛 (II) (PbTe)等の周期表第 14族元素と周期表第 16族元素との化合物 、窒化ホウ素(BN)、リンィ匕ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム (A1N )、リン化アルミニウム(A1P)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム( AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチ モン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジ ゥム (InAs)、アンチモン化インジウム (InSb)等の周期表第 13族元素と周期表第 15 族元素との化合物(あるいは III— V族化合物半導体)、硫ィ匕アルミニウム (A12S3)、 セレン化アルミニウム(A12Se3)、硫化ガリウム(Ga2S3)、セレン化ガリウム(Ga2Se 3)、テルル化ガリウム(Ga2Te3)、酸化インジウム(In203)、硫化インジウム(In2S3 )、セレン化インジウム(In2Se3)、テルル化インジウム (ln2Te3)等の周期表第 13族 元素と周期表第 16族元素との化合物、塩ィ匕タリウム (I) (T1C1)、臭化タリウム (I) (T1 Br)、ヨウ化タリウム (I) (T1I)等の周期表第 13族元素と周期表第 17族元素との化合 物、酸化亜鉛 (ZnO)、硫化亜鉛 (ZnS)、セレンィ匕亜鉛 (ZnSe)、テルルイ匕亜鉛 (Zn Te)、酸化カドミウム(CdO)、硫ィ匕カドミウム(CdS)、セレン化カドミウム(CdSe)、テ ルル化カドミウム(CdTe)、硫化水銀 (HgS)、セレン化水銀 (HgSe)、テルル化水銀 (HgTe)等の周期表第 12族元素と周期表第 16族元素との化合物 (あるいは II-VI 族化合物半導体)、硫化砒素(III) (As2S3)、セレン化砒素(III) (As2Se3)、テルル ィ匕砒素(ΠΙ) (As2Te3)、硫化アンチモン(III) (Sb2S3)、セレンィ匕アンチモン(III) (S b2Se3)、テノレノレィ匕アンチモン(III) (Sb2Te3)、硫ィ匕ビスマス(III) (Bi2S3)、セレン 化ビスマス(III) (Bi2Se3)、テルルイ匕ビスマス(III) (Bi2Te3)等の周期表第 15族元 素と周期表第 16族元素との化合物、酸化銅 (I) (Cu20)、セレン化銅 (I) (Cu2Se) 等の周期表第 11族元素と周期表第 16族元素との化合物、塩化銅 (I) (CuCl)、臭化 銅 (I) (CuBr)、ヨウ化銅 (I) (Cul)、塩ィ匕銀 (AgCl)、臭化銀 (AgBr)等の周期表第 1 1族元素と周期表第 17族元素との化合物、酸化ニッケル (Π) (NiO)等の周期表第 1 0族元素と周期表第 16族元素との化合物、酸化コバルト (II) (CoO)、硫化コバルト (I I) (CoS)等の周期表第 9族元素と周期表第 16族元素との化合物、四酸化三鉄 (Fe 304)、硫化鉄 (II) (FeS)等の周期表第 8族元素と周期表第 16族元素との化合物、 酸化マンガン (II) (MnO)等の周期表第 7族元素と周期表第 16族元素との化合物、 硫ィ匕モリブデン (IV) (MoS2)、酸ィ匕タングステン (IV) (W02)等の周期表第 6族元素 と周期表第 16族元素との化合物、酸化バナジウム (II) (VO)、酸ィ匕バナジウム (IV) ( V02)、酸ィ匕タンタル (V) (Ta205)等の周期表第 5族元素と周期表第 16族元素と の化合物、酸化チタン (Ti02、 Ti205、 Ti203、 Ti509等)等の周期表第 4族元素 と周期表第 16族元素との化合物、硫ィ匕マグネシウム(MgS)、セレンィ匕マグネシウム( MgSe)等の周期表第 2族元素と周期表第 16族元素との化合物、酸化カドミウム (II) ク Pム(III) (CdCr204)、セレンィ匕カドミウム(Π)ク Pム(III) (CdCr2Se4)、硫ィ匕銅(II )クロム(III) (CuCr2S4)、セレンィ匕水銀(Π)クロム(III) (HgCr2Se4)等のカルコゲン スピネル類、ノリウムチタネート(BaTi03)等が挙げられる。なお、 G. Schmidら; Ad v. Mater. , 4卷, 494頁(1991)【こ報告されて!ヽる(ΒΝ) 75 (BF2) 15F15や、 D. Fenskeら; Angew. Chem. Int. Ed. Engl. , 29卷, 1452頁(1990)に報告され て!、る Cul46Se73 (トリェチルホスフィン) 22のように構造の確定されて 、る半導体 クラスターも同様〖こ例示される。 [0023] As the inorganic fine particles of the present invention, fine particles having a semiconductor crystal composition can also be preferably used. Although there is no restriction | limiting in particular in this semiconductor crystal composition, What does not produce absorption, light emission, fluorescence, etc. in the wavelength range used as an optical element is desirable. Specific examples of the composition include simple elements of Group 14 elements of the periodic table such as carbon, kaen, germanium and tin, periodic elements of Group 15 elements of the periodic table such as phosphorus (black phosphorus), periodic periods of selenium, tellurium and the like. Table 16 element simple substance, several periodic table such as silicon carbide (SiC), group 14 element power compound, tin oxide (IV) (Sn02), tin sulfate (IV, IV) (Sn (II ) Sn (IV) S3), sulfurized tin (IV) (SnS2), sulfurized tin (Π) (SnS), tin selenide (Π) (SnSe), tin telluride (Π) (SnTe), Compounds of periodic table group 14 elements and periodic table group 16 elements such as lead sulfide (鉛) (PbS), selenium lead (Π) (PbSe), lead telluride (II) (PbTe) Boron nitride (BN), phosphorous boron (BP), boron arsenide (BAs), aluminum nitride (A1N), aluminum phosphide (A1P), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN ), Gallium phosphide (GaP), Gallium arsenide (GaAs), Gallium antimonide (GaSb), Indium nitride (InN), Indium phosphide (InP), Indium arsenide (InAs), Indium antimonide (InSb) Compounds of Group 13 and Periodic Table 15 (or III-V compound semiconductors), aluminum sulfate (A12S3), aluminum selenide (A12Se3), gallium sulfide (Ga2S3), selenium Periodic Table 13 elements and periodic table such as gallium phosphide (Ga2Se 3), gallium telluride (Ga2Te3), indium oxide (In203), indium sulfide (In2S3), indium selenide (In2Se3), indium telluride (ln2Te3) Periodic table of compounds with group 16 elements, such as thallium (I) (T1C1), thallium bromide (I) (T1 Br), thallium iodide (I) (T1I) Compounds with Group 17 elements, zinc oxide (ZnO), zinc sulfide (ZnS), selenium-zinc (ZnSe), tellurium-zinc (Zn Te), cadmium oxide (CdO), zirconia cadmium (CdS), Cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc. Compounds (or II-VI group compound semiconductors), arsenic sulfide (III) (As2S3), arsenic selenide (III) (As2Se3), tellurium arsenic (ΠΙ) (As2Te3), antimony sulfide (III) (Sb2S3) , Selenium-antimony (III) (S b2Se3), Tenorenol-antimony (III) (Sb2Te3), Bismuth sulfate (III) (Bi2S3), Bismuth selenide (III) (Bi2Se3), Tellurium Periodic table such as bismuth (III) (Bi2Te3) periodic table group 15 element and periodic table group 16 element, copper oxide (I) (Cu20), copper selenide (I) (Cu2Se) etc. Compound of group 11 element and group 16 element, copper chloride (I) (CuCl), copper bromide (I) (CuBr), copper iodide (I) (Cul), silver chloride (AgCl) , Compounds of Group 1 elements of the periodic table such as silver bromide (AgBr) and Group 17 elements of the periodic table, Group 10 elements of the periodic table such as nickel oxide (ニ ッ ケ ル) (NiO) and Group 16 of the periodic table Compounds with elements, compounds of Group 9 elements of periodic table such as cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS) and Group 16 elements of periodic table, triiron tetroxide (Fe 304), Compounds of Group 8 elements of the periodic table such as iron (II) sulfide (FeS) and Group 16 elements of the periodic table, Group 7 elements of the periodic table such as manganese oxide (II) (MnO) and Group 16 elements of the periodic table Group 6 elements of the periodic table, such as compounds with molybdenum, molybdenum (IV) (MoS2), and acid tungsten (IV) (W02) And compounds of Group 16 elements of the Periodic Table, Group 5 elements of the Periodic Table such as vanadium oxide (II) (VO), acid-vanadium (IV) (V02), acid-tantalum (V) (Ta205), etc. Compounds with group 16 elements of the periodic table, compounds with group 4 elements of the periodic table such as titanium oxide (Ti02, Ti205, Ti203, Ti509, etc.), group 16 elements of the periodic table, magnesium sulfate (MgS), selenium匕 Magnesium (MgSe) and other compounds of Group 2 elements of the periodic table and Group 16 elements of the periodic table, cadmium oxide (II) Cu PIII (CdCr204), selenium cadmium (Π) Cu Pmu (III ) (CdCr2Se4), chalcogen spinels such as copper chloride (II) chromium (III) (CuCr2S4), selenium mercury (III) (HgCr2Se4), norium titanate (BaTi03), and the like. G. Schmid et al .; Ad v. Mater., 4, 494 (1991) [Reported! ΒΝ 75 (BF2) 15F15, D. Fenske et al .; Angew. Chem. Int. As reported in Ed. Engl., 29 (, p. 1452 (1990) !, Cul46Se73 (triethylphosphine) 22 has a well-defined structure, and semiconductor clusters are also exemplified.
[0024] 前記金属酸化物微粒子やリン酸塩、硫酸塩、炭酸塩の微粒子、半導体結晶組成 の微粒子等の形状は特に限定されるものではな 、が、板状または針状の微粒子であ ることは、より好ましい。金属酸化物の針状微粒子として、例えば直径 2〜4nm、ァス ぺクト比 20〜100のアルミナのナノファイバーである NanoCeram (アルゴナイド社製 )等が挙げられる。 [0024] The shape of the metal oxide fine particles, fine particles of phosphate, sulfate, carbonate, fine particles of semiconductor crystal composition, etc. is not particularly limited, but is a plate-like or acicular fine particle. It is more preferable. Examples of the metal oxide needle-shaped fine particles include NanoCeram (manufactured by Argonide), which is an alumina nanofiber having a diameter of 2 to 4 nm and an aspect ratio of 20 to 100.
[0025] また、前記金属酸化物微粒子やリン酸塩、硫酸塩、炭酸塩の微粒子、半導体結晶 組成の微粒子の中でも、マトリックス榭脂との屈折率差が小さいシリカ(酸化ケィ素)、 炭酸カルシウム、リン酸アルミニウムを選択することは、榭脂組成物の透明性を向上さ せることから、好ましぐその中でもシリカを用いることは、より好ましい。  [0025] Among the metal oxide fine particles, phosphate fine particles, sulfate fine particles, carbonate fine particles, and fine particles having a semiconductor crystal composition, silica (silicon oxide) having a small difference in refractive index from the matrix resin, calcium carbonate Since selecting aluminum phosphate improves the transparency of the resin composition, it is more preferable to use silica.
また、これらの微粒子は、 1種類の無機微粒子を用いてもよぐまた複数種類の無機 微粒子を併用してもよい。  In addition, these fine particles may use one kind of inorganic fine particles or a combination of plural kinds of inorganic fine particles.
[0026] 《無機微粒子の表面修飾》  <Surface modification of inorganic fine particles>
本発明にお ヽては、本発明に係る無機微粒子が表面処理を施されて ヽることが好 ましい。  In the present invention, the inorganic fine particles according to the present invention are preferably subjected to a surface treatment.
[0027] 例えば、層間に交換性陽イオンを有する層状珪酸塩鉱物の場合、層間に存在する 交換性陽イオンは、予めカチオン系界面活性剤等によりイオン交換されていることが 好ましい。特に、マトリックス榭脂として、環状ォレフィン榭脂等の非極性榭脂を用い る場合には、層間を予め、例えばカチオン系界面活性剤による陽イオン交換により、 疎水化しておくことが好ましぐそれによつて層状珪酸塩と樹脂との間に高い親和性 が得られる。 [0027] For example, in the case of a layered silicate mineral having an exchangeable cation between layers, the exchangeable cation existing between the layers may be previously ion-exchanged with a cationic surfactant or the like. preferable. In particular, when a nonpolar resin such as cyclic olefin fin resin is used as the matrix resin, it is preferable to make the layers hydrophobic beforehand by, for example, cation exchange with a cationic surfactant. Therefore, high affinity is obtained between the layered silicate and the resin.
[0028] また、金属酸化物微粒子等の無機微粒子の表面処理に用いる表面修飾剤として は、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロボキシシラン、テ トラフエノキシシラン、メチルトリメトキシシラン、ェチルトリメトキシシラン、プロピルトリメ トキシシラン、メチルトリエトキシシラン、メチルトリフエノキシシラン、ェチルトリエトキシ シラン、フエニルトリメトキシシラン、 3—メチルフエニルトリメトキシシラン、ジメチルジメ トキシシラン、ジェチルジェトキシシラン、ジフエ二ルジメトキシシラン、ジフエ二ルジフ エノキシシラン、トリメチルメトキシシラン、トリェチルエトキシシラン、トリフエニルメトキシ シラン、トリフエニルフエノキシシランなどを挙げることができる。  [0028] Examples of the surface modifier used for the surface treatment of inorganic fine particles such as metal oxide fine particles include, for example, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrahenoxysilane, methyltrimethoxysilane. Ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, 3-methylphenyltrimethoxysilane, dimethyldimethoxysilane, jetyljetoxy Examples include silane, diphenyldimethoxysilane, diphenyldimethoxysilane, trimethylmethoxysilane, triethylethoxysilane, triphenylmethoxysilane, and triphenylphenoxysilane.
これらの化合物は、反応速度などの特性が異なり、表面修飾の条件などに適した化 合物を用いることができる。また、 1種類のみを用いても、複数種類を併用してもよい 。さらに、用いる化合物によって得られる表面修飾微粒子の性状は異なることがあり、 材料組成物を得るにあたって用いる熱可塑性榭脂との親和性を、表面修飾する際に 用いる化合物を選ぶことによって図ることも可能である。表面修飾の割合は特に限定 されるものではないが、表面修飾後の微粒子に対して、表面修飾剤の割合が 10〜9 9質量%であることが好ましぐ 30〜98質量%であることがより好ましい。  These compounds have different characteristics such as reaction rate, and compounds suitable for surface modification conditions can be used. Further, only one type may be used or a plurality of types may be used in combination. Furthermore, the properties of the surface-modified fine particles obtained may vary depending on the compound used, and the affinity with the thermoplastic resin used in obtaining the material composition can be achieved by selecting the compound used for the surface modification. It is. The ratio of the surface modification is not particularly limited, but it is preferable that the ratio of the surface modifier is 10 to 99% by mass with respect to the fine particles after the surface modification. Is more preferable.
[0029] 《榭脂と無機微粒子の混合》  [0029] 《Mixture of resin and inorganic fine particles》
本発明の榭脂組成物は、熱可塑性榭脂と無機微粒子カゝら成るが、その作製方法は 特に限定されるものではない。すなわち、熱可塑性榭脂と無機微粒子をそれぞれ独 立して作製し、その後に両者を混合させる方法、予め作製した無機微粒子が存在す る条件で熱可塑性榭脂を作製する方法、予め作製した熱可塑性榭脂が存在する条 件で無機微粒子を作製する方法、熱可塑性榭脂と無機微粒子の両者を同時に作製 させる方法など、いずれの方法をも採用できる。具体的には、例えば、熱可塑性榭脂 が溶解した溶液と、無機微粒子が均一に分散した分散液の二液を均一に混合し、熱 可塑性榭脂に対して溶解性が乏しい溶液中に打ち合わせることにより、目的とする材 料組成物を得る方法を好適に挙げることができる力 これに限定されるものではな!/ヽ 本発明における熱可塑性材料組成物において、熱可塑性榭脂と無機微粒子の混合 の程度は特に限定されるものではないが、本発明の効果をより効率よく発現させるた めには、均一に混合していることが望ましい。混合の程度が不十分の場合には、特に 屈折率やアッベ数、光線透過率などの光学特性に影響を及ぼすことが懸念され、ま た熱可塑性や溶融成形性などの樹脂加工性にも悪影響する恐れがある。混合の程 度は、その作製方法に影響されることが考えられ、用いる熱可塑性榭脂及び無機微 粒子の特性を十分に勘案して、方法を選択することが重要である。 The resin composition of the present invention is composed of thermoplastic resin and inorganic fine particles, but the production method is not particularly limited. That is, a method of preparing thermoplastic coagulate and inorganic fine particles independently and then mixing them together, a method of producing thermoplastic coagulate under conditions in which pre-produced inorganic fine particles exist, Any method can be employed, such as a method of producing inorganic fine particles under the condition where plastic resin is present or a method of producing both thermoplastic resin and inorganic fine particles simultaneously. Specifically, for example, two solutions of a solution in which thermoplastic resin is dissolved and a dispersion in which inorganic fine particles are uniformly dispersed are mixed uniformly, and the solutions are arranged in a solution having poor solubility in thermoplastic resin. The target material The force capable of suitably mentioning the method of obtaining the material composition is not limited to this! / ヽ In the thermoplastic material composition of the present invention, the degree of mixing of the thermoplastic resin and the inorganic fine particles is particularly limited. Although not intended, in order to achieve the effect of the present invention more efficiently, it is desirable to mix uniformly. When the degree of mixing is insufficient, there is a concern that the optical properties such as the refractive index, Abbe number, and light transmittance may be affected, and the resin processability such as thermoplasticity and melt moldability is also adversely affected. There is a fear. The degree of mixing is considered to be affected by the production method, and it is important to select a method in consideration of the characteristics of the thermoplastic resin and inorganic fine particles used.
熱可塑性榭脂と無機微粒子の両者がより均一に混合するために、熱可塑性榭脂と無 機微粒子を直接結合させる方法等も、本発明において好適に用いることができる。  In order to more uniformly mix both the thermoplastic resin and the inorganic fine particles, a method of directly bonding the thermoplastic resin and the inorganic fine particles can be suitably used in the present invention.
[0030] 本発明の榭脂組成物は、線膨張係数が小さぐ従って屈折率の温度依存性が小さ ぐかつ透明度が高ぐ光学的に優れた榭脂組成物であり、さらには熱可塑性及び Z または射出成形性を有するために、成形加工性に非常に優れた熱可塑性材料であ る。この優れた光学特性と成形加工性を併せ持った材料は、これまでに開示されて いる材料では達成することができな力つた特性であり、特定の熱可塑性榭脂と特定の 無機微粒子力も成ることが、この特性に寄与して ヽることが考えられる。 [0030] The resin composition of the present invention is an optically excellent resin composition having a small coefficient of linear expansion, a small temperature dependence of the refractive index, and a high transparency, and further has thermoplasticity and Because it has Z or injection moldability, it is a thermoplastic material that has excellent moldability. This material with both excellent optical properties and moldability is a powerful property that cannot be achieved with the materials disclosed so far, and it also has a specific thermoplastic resin and a specific inorganic fine particle force. However, it is conceivable that it contributes to this characteristic.
[0031] 《その他の配合剤》  [0031] << Other ingredients >>
本発明の熱可塑性榭脂材料の調製時ゃ榭脂組成物の成型工程にお!、ては、必要 に応じて各種添加剤(配合剤ともいう)を添加することができる。添加剤については、 格別限定はないが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸 収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの榭脂改質剤;軟質重合体 、アルコール性ィ匕合物等の白濁防止剤;染料や顔料などの着色剤;帯電防止剤、難 燃剤、フィラーなどが挙げられる。これらの配合剤は、単独で、あるいは 2種以上を組 み合せて用いることができ、その配合量は本発明に記載の効果を損なわな 、範囲で 適宜選択される。本発明においては、特に、重合体が少なくとも可塑剤または酸化防 止剤を含有することが好まし 、。  When preparing the thermoplastic resin material of the present invention, various additives (also referred to as compounding agents) can be added to the resin composition molding step if necessary. There are no particular restrictions on the additives, but stabilizers such as antioxidants, heat stabilizers, light stabilizers, weather stabilizers, UV absorbers, near infrared absorbers, and oil refining agents such as lubricants and plasticizers. Examples thereof include: anti-clouding agents such as soft polymers and alcoholic compounds; coloring agents such as dyes and pigments; antistatic agents, flame retardants and fillers. These compounding agents can be used alone or in combination of two or more thereof, and the compounding amount thereof is appropriately selected within a range without impairing the effects described in the present invention. In the present invention, it is particularly preferable that the polymer contains at least a plasticizer or an antioxidant.
[0032] 《可塑剤》 可塑剤としては、特に限定はないが、リン酸エステル系可塑剤、フタル酸エステル 系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可 塑剤、クェン酸エステル系可塑剤、ポリエステル系可塑剤等を挙げることができる。 [0032] << Plasticizer >> The plasticizer is not particularly limited, however, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic ester plasticizer, pyromellitic acid plasticizer, glycolate plasticizer, citrate ester Examples thereof include a plasticizer and a polyester plasticizer.
[0033] リン酸エステル系可塑剤では、例えば、トリフエ-ルホスフェート、トリクレジルホスフ エート、クレジノレジフエ-ノレホスフェート、オタチノレジフエ-ノレホスフェート、ジフエ-ノレ ビフエ-ルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸 エステル系可塑剤では、例えば、ジェチルフタレート、ジメトキシェチルフタレート、ジ メチルフタレート、ジォクチルフタレート、ジブチルフタレート、ジー 2—ェチルへキシ ルフタレート、ブチルベンジルフタレート、ジフエ-ルフタレート、ジシクロへキシルフタ レート等、トリメリット酸系可塑剤では、例えば、トリブチルトリメリテート、トリフエ-ルトリ メリテート、トリェチルトリメリテート等、ピロメリット酸エステル系可塑剤では、例えば、 テトラブチルピロメリテート、テトラフエ-ルビ口メリテート、テトラエチルピロメリテート等 、グリコレート系可塑剤では、例えば、トリァセチン、トリブチリン、ェチルフタリルェチ ルグリコレート、メチルフタリルェチルダリコレート、ブチルフタリルブチルダリコレート 等、クェン酸エステル系可塑剤では、例えば、トリェチルシトレート、トリ— n—ブチル シトレート、ァセチルトリェチルシトレート、ァセチルトリー n—ブチルシトレート、ァセチ ルトリ一 n— (2—ェチルへキシル)シトレート等を挙げることができる。  [0033] In the phosphate ester plasticizer, for example, triphenyl phosphate, tricresyl phosphate, credinole resin-nore phosphate, otachino resin-nore phosphate, diphenol-no-biphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. Examples of phthalate ester plasticizers include jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethyl hexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, and dicyclohexyl phthalate. In the case of pyromellitic acid ester plasticizers such as tributyl trimellitate, triphenyl trimellitate, triethyl trimellitate, etc. Examples of glycolate plasticizers such as tetrabutyl pyromellitate, tetraphenyl bimellitate, tetraethyl pyromellitate, and the like include triacetin, tributyrin, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl dallicolate, butyl phthalate For example, tributyl citrate, tri-n-butyl citrate, acetyl acetyl citrate, acetiltyl n-butyl citrate, acetyl tri-n- (2— Ethylhexyl) citrate and the like.
[0034] 《酸化防止剤》  [0034] << Antioxidant >>
本発明に用いられる酸化防止剤につ 、て説明する。  The antioxidant used in the present invention will be described.
[0035] 酸ィ匕防止剤としては、フエノール系酸ィ匕防止剤、リン系酸化防止剤、ィォゥ系酸ィ匕 防止剤などが挙げられ、これらの中でもフエノール系酸ィ匕防止剤、特にアルキル置換 フエノール系酸ィ匕防止剤が好ましい。これらの酸化防止剤を配合することにより、透 明性、耐熱性等を低下させることなぐ成型時の酸化劣化等によるレンズの着色や強 度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは 2種以上を 組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で 適宜選択される力 本発明に係る重合体 100質量部に対して好ましくは 0. 001〜5 質量部、より好ましくは 0. 01〜1質量部である。  [0035] Examples of the antioxidant are phenolic antioxidants, phosphorus antioxidants, phenolic antioxidants, etc. Among them, phenolic antioxidants, especially alkyl Substituted phenolic acid oxidants are preferred. By blending these antioxidants, it is possible to prevent coloration and strength reduction of the lens due to oxidative deterioration during molding without reducing transparency, heat resistance and the like. These antioxidants can be used alone or in combination of two or more, and the amount of the antioxidant is appropriately selected within a range not impairing the object of the present invention. 100 mass of the polymer according to the present invention Preferably it is 0.001-5 mass parts with respect to a part, More preferably, it is 0.01-1 mass part.
[0036] フエノール系酸ィ匕防止剤としては、従来公知のものが使用でき、例えば、 2— tーブ チル一 6— (3— t ブチル 2 ヒドロキシ一 5—メチルベンジル) 4—メチルフエ- ルアタリレート、 2, 4 ジ一 t ァミル一 6— (1— (3, 5 ジ一 t—ァミル一 2 ヒドロキ シフエ-ル)ェチル)フエ-ルアタリレートなどの特開昭 63— 179953号公報ゃ特開 平 1— 168643号公報に記載されるアタリレート系化合物;ォクタデシル— 3— (3, 5 —ジ一 t—ブチル 4 ヒドロキシフエ-ル)プロピオネート、 2, 2' —メチレン一ビス( 4—メチル 6— t—ブチルフエノール)、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ — 5— t ブチルフエ-ル)ブタン、 1, 3, 5 トリメチル 2, 4, 6 トリス(3, 5 ジ一 t ブチル 4—ヒドロキシベンジル)ベンゼン、テトラキス(メチレン一 3— (3' , 5' ージ tーブチルー^ ーヒドロキシフエ-ルプロピオネート))メタン [すなわち、ペン タエリスリメチルーテトラキス(3— (3, 5—ジ tーブチルー 4ーヒドロキシフエニルプロ ピオネート))]、トリエチレングリコールビス(3— (3— t—ブチル 4—ヒドロキシ一 5— メチルフエ-ル)プロピオネート)などのアルキル置換フエノール系化合物; 6—(4ーヒ ドロキシ—3, 5 ジ—tーブチルァニリノ)—2, 4 ビスォクチルチオ—1, 3, 5 トリ ァジン、 4 ビスォクチルチオ 1, 3, 5 トリァジン、 2—ォクチルチオ 4, 6 ビス — (3, 5 ジ— t—ブチル—4—ォキシァ-リノ)— 1, 3, 5 トリァジンなどのトリアジ ン基含有フエノール系化合物;などが挙げられる。 [0036] As the phenolic acid rust inhibitor, conventionally known ones can be used, for example, 2-tube. 6- (3-tert-butyl 2-hydroxy-5-methylbenzyl) 4-methylphenol acrylate, 2, 4 di-tert-amyl 6- (1— (3,5-di-tert-amyl 2-hydroxy Acetalyl compounds described in Japanese Patent Application Laid-Open No. 63-179953 and Japanese Patent Application Laid-Open No. 1-168643, such as thiol) ethyl) phenyl acrylate, etc .; Octadecyl-3- (3, 5- t-butyl 4-hydroxyphenol) propionate, 2, 2'-methylene bis (4-methyl 6-t-butylphenol), 1, 1,3 tris (2-methyl 4-hydroxy--5- t-butylphenol ) Butane, 1, 3, 5 Trimethyl 2, 4, 6 Tris (3,5 Di-tert-butyl 4-hydroxybenzyl) benzene, Tetrakis (Methylene-l- (3 ', 5' Di-tert-butyl-^-hydroxyphenol propionate) )) Methane [ie Pentaerythrimethylte Lakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl 4-hydroxy-1-5-methylphenyl) propionate) Alkyl-substituted phenol compounds; 6- (4-hydroxy-3,5 di-tert-butylanilino) -2,4 bisoctylthio-1,3,5 triazine, 4 bisoctylthio 1,3,5 triazine, 2-octylthio 4, 6 Bis — (3,5 di-t-butyl-4-oxy-lino) — 1, 3, 5 Triazine-containing phenolic compounds such as triazine;
[0037] リン系酸ィ匕防止剤としては、一般の榭脂工業で通常使用される物であれば格別な 限定はなぐ例えば、トリフエ-ルホスフアイト、ジフエ-ルイソデシルホスファイト、フエ -ルジイソデシルホスフアイト、トリス(ノ -ルフエ-ル)ホスファイト、トリス(ジノ-ルフエ -ル)ホスファイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト、 10— (3, 5— ジ一 t—ブチル 4 ヒドロキシベンジル) 9, 10 ジヒドロ一 9—ォキサ 10 ホス ファフェナントレン 10 オキサイドなどのモノホスファイト系化合物; 4, 4' ーブチリ デン—ビス(3—メチル—6— t—ブチルフエ-ルージ—トリデシルホスフアイト)、 4, 4 ' —イソプロピリデン一ビス(フエ-ル一ジ一アルキル(C12〜C15)ホスファイト)など のジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合 物が好ましぐトリス(ノユルフェ-ル)ホスファイト、トリス(ジノユルフェ-ル)ホスフアイ ト、トリス(2, 4 ジー t—ブチルフエ-ル)ホスファイトなどが特に好ましい。  [0037] There are no particular limitations on the phosphorus-based anti-oxidation agent as long as it is commonly used in the general oil industry, for example, triphenylphosphite, diphenylisodecylphosphite, phenoldiisodecyl. Phosphite, tris (norphenol) phosphite, tris (dinolephenol) phosphite, tris (2,4 di-t-butylphenol) phosphite, 10- (3,5- t-butyl 4-hydroxybenzyl) 9, 10 dihydro-9-oxa 10 phosphaphenanthrene 10 monophosphite compounds such as oxide; 4, 4'-butylidene-bis (3-methyl-6-t-butylphenol- And diphosphite compounds such as 4,4'-isopropylidene monobis (phenol didialkyl (C12-C15) phosphite). Of these, tris (noyulphele) phosphite, tris (dinoufulfer) phosphite, and tris (2,4 di-t-butylphenol) phosphite are particularly preferred, which prefer monophosphite compounds. .
[0038] ィォゥ系酸化防止剤としては、例えば、ジラウリル 3, 3 チォジプロピオネート、ジミ リスチル 3, 3' —チォジプロピピオネート、ジステアリル 3, 3—チォジプロピオネート 、ラウリルステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラキスー ( j8—ラウリル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカンなどが挙げられる。 [0038] Examples of iow antioxidants include dilauryl 3, 3 thiodipropionate and dimi. Listyl 3, 3'—thiodipropionate, distearyl 3, 3-thiodipropionate, lauryl stearyl 3, 3-thiodipropionate, pentaerythritol tetrakisto (j8-lauryl thiopropionate), 3 , 9 Bis (2 dodecylthioethyl) 2, 4, 8, 10-tetraoxaspiro [5, 5] undecane.
[0039] 《耐光安定剤》  [0039] <Light stabilizer>
本発明に用いられる耐光安定剤について説明する。  The light-resistant stabilizer used in the present invention will be described.
[0040] 耐光安定剤としては、ベンゾフエノン系耐光安定剤、ベンゾトリアゾール系耐光安定 剤、ヒンダードアミン系耐光安定剤などが挙げられる力 本発明においては、レンズ の透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ま しい。ヒンダードアミン系耐光安定剤(以下、 HALSと記す。)の中でも、テトラヒドロフ ラン (THF)を溶媒として用いた GPCにより測定したポリスチレン換算の Mnが 1, 000 〜10, 000であるちの力 S好ましく、 2, 000〜5, 000であるちの力 Sより好ましく、 2, 80 0〜3, 800であるものが特に好ましい。 Mnが小さすぎると、該 HALSをブロック共重 合体に加熱溶融混練して配合する際に、揮発のため所定量を配合できな力つたり、 射出成型等の加熱溶融成型時に発泡やシルバーストリークが生じるなどカ卩ェ安定性 が低下する。また、ランプを点灯させた状態でレンズを長時間使用する場合に、レン ズ力 揮発性成分がガスとなって発生する。逆に Mnが大き過ぎると、ブロック共重合 体への分散性が低下して、レンズの透明性が低下し、耐光性改良の効果が低減する 。したがって、本発明においては、 HALSの Mnを上記範囲とすることにより加工安定 性、低ガス発生性、透明性に優れたレンズが得られる。  [0040] Examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like. In the present invention, from the viewpoint of transparency of the lens, resistance to coloring, etc. It is preferable to use a hindered amine light stabilizer. Among hindered amine light-resistant stabilizers (hereinafter referred to as HALS), a force S having a polystyrene equivalent Mn measured by GPC using tetrahydrofuran (THF) as a solvent is preferably 1,000 to 10,000 S, A force S of 2,000 to 5,000 is more preferable, and a force of 2,800 to 3,800 is particularly preferable. If Mn is too small, when HALS is blended by heating, melting and kneading into a block copolymer, it will not be able to blend a predetermined amount due to volatilization, or foaming or silver streak will occur during heat melting molding such as injection molding. This will reduce the stability of the cache. Also, when the lens is used for a long time with the lamp turned on, lens force volatile components are generated as gas. On the other hand, if Mn is too large, the dispersibility in the block copolymer is lowered, the transparency of the lens is lowered, and the effect of improving light resistance is reduced. Therefore, in the present invention, by setting HALS Mn in the above range, a lens having excellent processing stability, low gas generation and transparency can be obtained.
[0041] このような HALSの具体例としては、 N, Ν' , Nグ , N' " —テトラキス一〔4, 6— ビス {プチルー(N—メチルー 2, 2, 6, 6—テトラメチルピペリジンー4 ィル)ァミノ }—トリァジン— 2—ィル〕—4, 7 ジァザデカン— 1, 10 ジァミン、ジブチルァミンと 1, 3, 5 トリアジンと N, N' —ビス(2, 2, 6, 6—テトラメチル— 4 ピペリジル)ブ チルァミンとの重縮合物、ポリ〔{ (1, 1, 3, 3—テトラメチルブチル)アミノー 1, 3, 5— トリアジン一 2, 4 ジィル } { (2, 2, 6, 6—テトラメチル一 4 ピペリジル)イミノ}へキ サメチレン { (2, 2, 6, 6—テトラメチル一 4 ピペリジル)ィミノ }〕、 1, 6 へキサンジ ァミン一 N, N' —ビス(2, 2, 6, 6—テトラメチル一 4 ピペリジル)とモルフォリン一 2, 4, 6 トリクロ口 1, 3, 5 トリアジンとの重縮合物、ポリ〔(6 モルフォリノ s— トリアジン— 2, 4 ジィル) (2, 2, 6, 6, —テトラメチル— 4 ピペリジル)ィミノ〕—へ キサメチレン〔(2, 2, 6, 6—テトラメチルー 4ーピペリジル)ィミノ〕などの、ピぺリジン 環がトリァジン骨格を介して複数結合した高分子量 HALS;コノ、ク酸ジメチルと 4—ヒ ドロキシ 2, 2, 6, 6—テトラメチルー 1ーピペリジンエタノールとの重合物、 1, 2, 3 , 4 ブタンテトラカルボン酸と 1, 2, 2, 6, 6 ペンタメチルー 4ーピベリジノールと 3 , 9 ビス(2 ヒドロキシ一 1, 1—ジメチルェチル)一 2, 4, 8, 10—テトラオキサスピ 口 [5, 5]ゥンデカンとの混合エステル化物などの、ピぺリジン環がエステル結合を介 して結合した高分子量 HALS等が挙げられる。 [0041] Specific examples of such HALS include N, Ν ', Ng, N'"— tetrakis [4,6-bis {petite (N-methyl-2,2,6,6-tetramethylpiperidine -4)) amino} —triazine—2-yl] —4, 7 diazadecane— 1,10 diamine, dibutylamine and 1, 3, 5 triazine and N, N '—bis (2, 2, 6, 6— Polycondensate with tetramethyl-4-piperidyl) butyramine, poly [{(1, 1, 3, 3-tetramethylbutyl) amino-1,3,5-triazine-1,2,4 dil} {(2, 2, 6, 6-tetramethyl-4-piperidyl) imino} hexamethylene {(2, 2, 6, 6-tetramethyl-1-piperidyl) imino}], 1, 6 hexanediamin-1 N, N '—bis (2 , 2, 6, 6-tetramethyl-4-piperidyl) and morpholine-1 2, 4, 6 Trichrome 1, 3, 5 Polycondensate with triazine, poly [(6 morpholinos s-triazine-2,4 diyl) (2, 2, 6, 6, —tetramethyl-4-piperidyl) imino ] -Hexamethylene [(2, 2, 6, 6-tetramethyl-4-piperidyl) imino] and other high molecular weight HALS with multiple piperidine rings linked via a triazine skeleton; cono, dimethyl succinate and 4-hydroxyl Polymer with 2, 2, 6, 6-tetramethyl-1-piperidineethanol, 1, 2, 3, 4 butanetetracarboxylic acid, 1, 2, 2, 6, 6 pentamethyl-4-piberidinol and 3,9bis (2 hydroxy 1,1,1-dimethylethyl) -1,2,4,8,10-tetraoxaspire High molecular weight HALS with piperidine ring bonded via ester bond, such as mixed esterified product with [5,5] undecane Etc.
[0042] これらの中でも、ジブチルァミンと 1, 3, 5 トリァジンと N, N' —ビス(2, 2, 6, 6 —テトラメチル一 4 ピペリジル)プチルァミンとの重縮合物、ポリ〔{ (1, 1, 3, 3—テト ラメチノレブチノレ)アミノー 1, 3, 5 トリアジンー 2, 4 ジィル } { (2, 2, 6, 6—テトラメ チル一 4 ピペリジル)イミノ}へキサメチレン { (2, 2, 6, 6—テトラメチル一 4 ピペリ ジル)イミノ}〕、コハク酸ジメチルと 4ーヒドロキシ 2, 2, 6, 6—テトラメチルー 1ーピ ペリジンエタノールとの重合物などの Mnが 2, 000〜5, 000のものが好ましい。  [0042] Among these, polycondensates of dibutylamine, 1, 3, 5 triazine and N, N'-bis (2, 2, 6, 6-tetramethyl-4-piperidyl) ptyramine, poly [{(1, 1,3,3-Tetralametinolevbutenole) amino-1,3,5 triazine-2,4 dil} {(2, 2, 6, 6-tetramethyl-1-piperidyl) imino} hexamethylene {(2, 2 , 6, 6-tetramethyl-4-piperidyl) imino}], dimethyl succinate and 4-hydroxy 2, 2, 6, 6-tetramethyl-1-piperidineethanol, etc. , 000 is preferred.
[0043] 本発明の熱可塑性榭脂材料に対する上記配合量は、重合体 100質量部に対して 、好ましくは 0. 01〜20質量部、より好ましくは 0. 02〜15質量部、特に好ましくは 0. 05〜10質量部である。添加量が少なすぎると耐光性の改良効果が十分に得られず 、屋外で長時間使用する場合等に着色が生じる。一方、 HALSの配合量が多すぎる と、その一部がガスとなって発生したり、榭脂への分散性が低下して、レンズの透明 性が低下する。  [0043] The blending amount of the thermoplastic resin material of the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, particularly preferably 100 parts by mass of the polymer. 0. 05 to 10 parts by mass. If the amount added is too small, the effect of improving light resistance cannot be obtained sufficiently, and coloring occurs when used outdoors for a long time. On the other hand, if the HALS content is too large, some of it will be generated as a gas, or the dispersibility in rosin will be reduced, and the transparency of the lens will be reduced.
[0044] また、本発明の熱可塑性榭脂材料に、更に最も低 ヽガラス転移温度が 30°C以下で ある化合物を配合することにより、透明性、耐熱性、機械的強度などの諸特性を低下 させることなく、長時間の高温高湿度環境下での白濁を防止できる。  [0044] Further, by blending the thermoplastic resin material of the present invention with a compound having the lowest glass transition temperature of 30 ° C or less, various properties such as transparency, heat resistance and mechanical strength can be obtained. Without lowering, it can prevent white turbidity in high temperature and high humidity environment for a long time.
[0045] 《榭脂組成物成形体の成形》  <Molding of molded resin composition>
本発明の熱可塑性の榭脂組成物成形体は、前記榭脂組成物からなる成形材料を 成形して得られる。成形方法としては、格別制限されるものはないが、低複屈折性、 機械強度、寸法精度等の特性に優れた成形物を得る為には溶融成形が好ましい。 溶融成形法としては、例えば、市販のプレス成形、市販の押し出し成形、市販の射出 成形等が挙げられるが、射出成形が成形性、生産性の観点力も好ましい。 The thermoplastic resin composition molded body of the present invention is obtained by molding a molding material comprising the resin composition. The molding method is not particularly limited, but melt molding is preferred in order to obtain a molded product excellent in characteristics such as low birefringence, mechanical strength, and dimensional accuracy. Examples of the melt molding method include commercially available press molding, commercially available extrusion molding, and commercially available injection molding, and injection molding is also preferable in terms of moldability and productivity.
[0046] 成形条件は使用目的、または成形方法により適宜選択されるが、例えば、射出成 形における榭脂組成物の温度は、成形時に適度な流動性を榭脂に付与して成形品 のヒケやひずみを防止し、榭脂の熱分解によるシルバーストリークの発生を防止し、 更に、成形物の黄変を効果的に防止する観点から 150°C〜400°Cの範囲が好ましく 、更に好ましくは 200°C〜350°Cの範囲であり、特に好ましくは 200°C〜330°Cの範 囲である。 [0046] The molding conditions are appropriately selected depending on the purpose of use or the molding method. For example, the temperature of the resin composition in injection molding may provide a suitable fluidity to the resin at the time of molding to reduce the sink of the molded product. From the viewpoint of preventing the occurrence of silver streaks due to thermal decomposition of the resin, and effectively preventing yellowing of the molded product, the range of 150 ° C to 400 ° C is preferable, and more preferably It is in the range of 200 ° C to 350 ° C, particularly preferably in the range of 200 ° C to 330 ° C.
[0047] またアスペクト比が高 、無機微粒子が分散された榭脂組成物の成形時には、複屈 折率性を低くするために、無機微粒子の配向を少なくするような成形条件を選択する 必要がある。  [0047] Further, when molding a resin composition having a high aspect ratio and dispersed inorganic fine particles, it is necessary to select molding conditions that reduce the orientation of the inorganic fine particles in order to reduce the birefringence. is there.
[0048] 本発明に係る成形物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、 フィルムまたはシート形状など種々の形態で使用することができ、また、低複屈折性、 透明性、機械強度、耐熱性、低吸水性に優れるため、各種光学部品への適用が可 能である。具体的な適用例としては、例えば、光学レンズや光学プリズムとしては、力 メラの撮像系レンズ;顕微鏡、内視鏡、望遠鏡レンズなどのレンズ;眼鏡レンズなどの 全光線透過型レンズ; CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書き変 え可能な光ディスク;光磁気ディスク)、 MD (ミニディスク)、 DVD (デジタルビデオデ イスク)などの光ディスクのピックアップレンズ;レーザビームプリンターの f 0レンズ、セ ンサー用レンズなどのレーザ走査系レンズ;カメラのファインダ一系のプリズムレンズ などが挙げられる。  [0048] The molded product according to the present invention can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence. Because of its excellent properties, transparency, mechanical strength, heat resistance, and low water absorption, it can be applied to various optical components. As specific application examples, for example, as an optical lens or an optical prism, a power imaging lens; a lens such as a microscope, an endoscope or a telescope lens; an all-light transmission lens such as a spectacle lens; CD, CD -ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc) and other optical disc pickup lens; Laser scanning lens such as lens and sensor lens; prism lens of camera finder system.
[0049] 光ディスク用途としては、 CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書 き変え可能な光ディスク;光磁気ディスク)、 MD (ミニディスク)、 DVD (デジタルビデ ォディスク)などが挙げられる。その他の光学用途としては、液晶ディスプレイなどの 導光板;偏光フィルム、位相差フィルム、光拡散フィルムなどの光学フィルム;光拡散 板;光カード;液晶表示素子基板などが挙げられる。  [0049] Optical disc applications include CD, CD-ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc), and the like. It is done. Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusing films; light diffusing plates; optical cards; and liquid crystal display element substrates.
[0050] これらの中でも、低複屈折性が要求されるピックアップレンズやレーザ走査系レンズ として好適であり、ピックアップレンズに最も好適に用いられる。 実施例 [0050] Among these, it is suitable as a pickup lens or a laser scanning system lens that requires low birefringence, and is most preferably used as a pickup lens. Example
[0051] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。  [0051] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0052] 実施例 1 [0052] Example 1
〔無機微粒子 1の調製〕  (Preparation of inorganic fine particles 1)
日本ァエロジル社製の気相法シリカ A300 (平均粒径約 7nm) 5gにメタノール 300 gと 1モル%の硝酸水溶液を添カ卩した。この液を 50°Cで撹拌しながら、メタノール 100 gとシクロペンチルトリメトキシシラン 6gの混合液を 60分かけて添カ卩し、その後さらに 2 時間撹拌した。得られた透明な分散液を酢酸ェチルに懸濁させ、遠心分離を行い白 色の微粒粉末を得た。 TEM観察によればこの粉末は平均粒径約 lOnmであり、これ を無機微粒子 1とした。  300 g of methanol and 1 mol% nitric acid aqueous solution were added to 5 g of vapor phase silica A300 (average particle size of about 7 nm) manufactured by Nippon Aerosil Co., Ltd. While stirring this solution at 50 ° C., a mixed solution of 100 g of methanol and 6 g of cyclopentyltrimethoxysilane was added over 60 minutes, and then the mixture was further stirred for 2 hours. The obtained transparent dispersion was suspended in ethyl acetate and centrifuged to obtain a white fine powder. According to TEM observation, this powder had an average particle size of about lOnm, and this was designated as inorganic fine particles 1.
[0053] 〔無機微粒子 2の調製〕  [Preparation of inorganic fine particles 2]
大明化学工業 (株)製の酸ィ匕アルミニウム TM— 300 (平均粒径約 7nm)を用いた 以外は、無機微粒子 1の調製と同様にして微粒粉末を得た。 TEM観察によれば、こ の粉末は平均粒径約 lOnmであり、これを無機微粒子 2とした。  A fine powder was obtained in the same manner as in the preparation of inorganic fine particles 1 except that Acid-Aluminum TM-300 (average particle size of about 7 nm) manufactured by Daimei Chemical Co., Ltd. was used. According to TEM observation, this powder had an average particle size of about lOnm, and this was designated as inorganic fine particles 2.
[0054] 〔無機微粒子 3の調製〕  [Preparation of inorganic fine particles 3]
Nanomat社より入手した平均粒径約 5nmの窒化アルミニウムを用いた以外は、無 機微粒子 1の調製と同様にして微粒粉末を得た。 TEM観察によれば、この粉末は平 均粒径約 8nmであり、これを無機微粒子 3とした。  A fine powder was obtained in the same manner as the preparation of inorganic fine particles 1 except that aluminum nitride having an average particle diameter of about 5 nm obtained from Nanomat was used. According to TEM observation, this powder had an average particle size of about 8 nm, and this was designated as inorganic fine particles 3.
[0055] 〔無機微粒子 4の調製〕  [Preparation of inorganic fine particles 4]
ラポナイト XLG (日本シリカ工業、粒子径 20〜30nm、厚さ l〜2nm)の濃度が 0. 5 wt%になるように水に分散した分散液に硝酸亜鉛水溶液を添加し、 5分後に硫化ナ トリウム水溶液を添加した。硝酸亜鉛および硫ィ匕ナトリウムは、最終的な分散液中で の濃度が 0. 25mMになるように添加した。アドバンテック社製 USY— 1を用いて限 外濾過を行なって粘土を取り除き、乾燥させたところ、平均粒径 6nmの硫ィ匕亜鉛微 粒子を得た。得られた微粒子 5gにメタノール 300gと 1モル%の硝酸水溶液を添カロし た。この液を 50°Cで撹拌しながら、メタノール lOOgとシクロペンチルトリメトキシシラン 6gの混合液を 60分かけて添加し、その後さらに 2時間撹拌した。得られた透明な分 散液を酢酸ェチルに懸濁させ、遠心分離を行い微粒粉末を得た。 TEM観察によれ ばこの粉末は平均粒径約 9nmであり、これを無機微粒子 4とした。 An aqueous zinc nitrate solution was added to the dispersion dispersed in water so that the concentration of Laponite XLG (Nippon Silica Kogyo, particle diameter 20-30 nm, thickness l-2 nm) was 0.5 wt%. An aqueous solution of thorium was added. Zinc nitrate and sodium sulfate were added so that the concentration in the final dispersion was 0.25 mM. Ultrafiltration was performed using USY-1 manufactured by Advantech Co., Ltd. to remove the clay, and it was dried to obtain fine zinc sulfate particles having an average particle size of 6 nm. 300 g of methanol and a 1 mol% nitric acid aqueous solution were added to 5 g of the obtained fine particles. While stirring this solution at 50 ° C., a mixed solution of methanol lOOg and cyclopentyltrimethoxysilane 6 g was added over 60 minutes, and then further stirred for 2 hours. The resulting transparent fraction The liquid dispersion was suspended in ethyl acetate and centrifuged to obtain a fine powder. According to TEM observation, this powder had an average particle size of about 9 nm, and this was designated as inorganic fine particles 4.
〔無機微粒子 5の調製〕  (Preparation of inorganic fine particles 5)
石原産業 (株)製の酸ィ匕チタン、タイペータ ST-01 (平均粒径約 7nm)を用いた以 外は、無機微粒子 1の調製と同様にして微粒粉末を得た。 TEM観察によれば、この 粉末は平均粒径約 8nmであり、これを無機微粒子 5とした。  Fine powder was obtained in the same manner as the preparation of inorganic fine particles 1 except that Titanium ST-01 (average particle size: about 7 nm) manufactured by Ishihara Sangyo Co., Ltd. was used. According to TEM observation, this powder had an average particle size of about 8 nm and was designated as inorganic fine particles 5.
(成形体 1〜5の作製) (Preparation of compacts 1-5)
混練装置ラボプラストミル C型 (東洋精機製作所製)に、ミキサー: KF70、ロータ:高 せん断型を装着し、設定温度 200°C、 300rpmで 5分間混練を行なった。  A mixer: KF70 and a rotor: high shear type were mounted on a kneader Labo Plast Mill C type (manufactured by Toyo Seiki Seisakusho) and kneaded for 5 minutes at a preset temperature of 200 ° C and 300 rpm.
混練は、下記の素材を一括でミキサーに添加し行なった。 The kneading was performed by adding the following materials all at once to the mixer.
榭脂:ゼォネックス 480R (日本ゼオン製) 37. 5g、 Oil: Zeonex 480R (made by Nippon Zeon) 37.5g,
無機粒子:無機微粒子 1〜5 18. 5 g (榭脂中での含有率 15w%) Inorganic particles: Inorganic fine particles 1 to 5 18.5 g (15% w / w content)
得られた混練物を直径 10mm、厚さ 3mmの円盤状に射出成形し、円盤の両面は鏡 面になるようにした。得られた榭脂組成物成形体をそれぞれ成形体 1〜5とする。 (成形体 6の作製) The obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces. Let the obtained resin composition molded object be the molded object 1-5, respectively. (Production of molded body 6)
榭脂組成物成形体 1〜5の作製方法にお ヽて、添加した無機微粒子が無機微粒子 1、 9. 2g (榭脂中での含有量 7. 5wt%)である以外は榭脂組成物成形体 1〜5の作 製方法と同様の方法で得られた榭脂組成物成形体を、成形体 6とする。  In the production method of the resin composition 1-5, the resin composition was added except that the added inorganic fine particles were inorganic fine particles 1,9.2 g (content in the resin 7.5% by weight). Let the molded product 6 be the resin composition molded product obtained by the same method as the production method of the molded products 1-5.
(成形体 7の作製) (Production of molded body 7)
混練装置ラボプラストミル C型 (東洋精機製作所製)に、ミキサー: KF70、ロータ:高 せん断型を装着し、設定温度 200°C、 300rpmで 5分間混練を行なった。  A mixer: KF70 and a rotor: high shear type were mounted on a kneader Labo Plast Mill C type (manufactured by Toyo Seiki Seisakusho) and kneaded for 5 minutes at a preset temperature of 200 ° C and 300 rpm.
混練は、下記の素材を一括でミキサーに添加し行なった。 The kneading was performed by adding the following materials all at once to the mixer.
榭脂:ゼォネックス 480R (日本ゼオン製) 47. 6g、 Oil: Zeonex 480R (Nippon Zeon) 47. 6g,
無機粒子:日本ァエロジル社製の気相法シリカ A300 (平均粒径約 7nm) 8. 4 g ( 榭脂中での含有率 15w%) Inorganic particles: Gas phase method silica A300 manufactured by Nippon Aerosil Co., Ltd. (average particle size of about 7 nm) 8.4 g (content ratio in wrinkle 15 w%)
得られた混練物を直径 10mm、厚さ 3mmの円盤状に射出成形し、円盤の両面は鏡 面になるようにした。得られた榭脂組成物成形体をそれぞれ成形体 7とする。 The obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces. The obtained resin composition molded bodies are designated as molded bodies 7 respectively.
(成形体 8の作製) 無機微粒子を大明化学工業 (株)製の酸ィ匕アルミニウム TM— 300 (平均粒径約 7n m)に変えた以外は、成形体 7と同じ方法で、成形体 8を作製した。 (Production of molded body 8) A molded body 8 was produced in the same manner as the molded body 7, except that the inorganic fine particles were changed to Daikin Chemical Industry Co., Ltd. Oxidium Aluminum TM-300 (average particle size: about 7 nm).
(光線透過率の測定)  (Measurement of light transmittance)
(株)島津製作所製、分光光度計 UV— 3150を用いて、得られた榭脂組成物成形 体の厚さ方向(3mm厚)の波長 587. 5nmにおける透過率を測定した。  Using a spectrophotometer UV-3150 manufactured by Shimadzu Corporation, the transmittance of the obtained resin composition molded product in the thickness direction (3 mm thickness) at a wavelength of 587.5 nm was measured.
(線膨張係数の測定)  (Measurement of linear expansion coefficient)
(株)リガク製 CN8098F1を用いて、熱機械的分析法 (TMA)により榭脂組成物成 形体の線膨張係数を測定した。なお測定は円盤の厚さ方向の変位を測定することに より行なった。  The linear expansion coefficient of the resin composition composition was measured by thermomechanical analysis (TMA) using CN8098F1 manufactured by Rigaku Corporation. The measurement was performed by measuring the displacement in the thickness direction of the disk.
(dnZdTの測定)  (Measurement of dnZdT)
上記作製した成形体 1〜8に用いられた各榭脂組成物を溶融し、成形することによ り厚さ 0. 5mmの試験用プレートをそれぞれ作製した。これらについて、アッベ屈折 計 (ァタゴ社製 DR— M2)を用い波長 588nmで測定温度を 10°Cから 30°C変化させ て屈折率を測定し、屈折率の温度変化率 dnZdTを求めた。  Each of the resin compositions used in the produced compacts 1 to 8 was melted and molded to prepare test plates having a thickness of 0.5 mm. With respect to these, the refractive index was measured using an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) at a wavelength of 588 nm and the measurement temperature was changed from 10 ° C. to 30 ° C., and the temperature change rate dnZdT of the refractive index was obtained.
[0057] 以上により得られた結果を、表 2に示す。なお、表中の微粒子屈折率は微粒子と同 じ組成のバルタ状態での d線波長における屈折率であり、文献値である。  [0057] Table 2 shows the results obtained as described above. The fine particle refractive index in the table is the refractive index at the d-line wavelength in the Balta state with the same composition as the fine particle, and is a literature value.
[0058] [表 2]  [0058] [Table 2]
Figure imgf000022_0001
Figure imgf000022_0001
[0059] 表 2に記載の結果より明らかな様に、本発明の榭脂組成物成形体は線膨張係数お よび I dn/dT Iが小さぐかつ光線透過率が高いことから、光学素子に使用する榭 脂組成物として極めて有用であることがわかる。  [0059] As is apparent from the results shown in Table 2, the molded resin composition of the present invention has a low linear expansion coefficient and I dn / dT I and a high light transmittance. It turns out that it is very useful as a resin composition to be used.
[0060] 実施例 2  [0060] Example 2
(成形体 9の作製) 混練装置ラボプラストミル C型 (東洋精機製作所製)に、ミキサー: KF70、ロータ:高 せん断型を装着し、下記の素材を一括でミキサーに添加し、設定温度 200°C、 300rp mで 5分間混練を行なった。 (Production of molded body 9) Mixer: KF70, Rotor: High shear type, kneading equipment lab plast mill type C (manufactured by Toyo Seiki Seisakusho), add the following ingredients to the mixer in a lump, and set at 200 ° C and 300 rpm for 5 minutes. Kneading was performed.
榭脂: APL5014DP (三井ィ匕学 (株)製) 64. 6g、 Oil: APL5014DP (Mitsui Engineering Co., Ltd.) 64.6g,
無機粒子: Sud Chemie社より入手した Nanofil919 (鱗片状無機鉱物モンモリロナ イトの表面を有機材料で表面改質したもの) 3. 4g (榭脂中での含有率 5wt%) 得られた混練物中の無機粒子を TEMで観察したところ、平均直径 200nm、平均厚 さ lnmの層状に分散していることが確認された。得られた混練物を直径 10mm、厚さ 3mmの円盤状に射出成形し、円盤の両面は鏡面になるようにした。得られた榭脂組 成物成形体を成形体 9とする。 Inorganic particles: Nanofil919 (Scaly inorganic mineral montmorillonite surface modified with organic material) obtained from Sud Chemie Co. 3.4 g (5 wt% content in rosin) When the inorganic particles were observed by TEM, it was confirmed that they were dispersed in a layer shape having an average diameter of 200 nm and an average thickness of 1 nm. The obtained kneaded material was injection-molded into a disk shape having a diameter of 10 mm and a thickness of 3 mm so that both surfaces of the disk were mirror surfaces. The obtained resin composition molded product is referred to as molded product 9.
(成形体 10の作製) (Production of molded body 10)
無機粒子をアルゴナイド社より入手した NanoCeram (直径 2nm、アスペクト比 20〜1 00のアルミナのナノファイバー)に変更した以外は成形体 7と同様の方法で成形体 1 0を作製した。得られた混練物中の無機粒子を TEMで観察したところ、平均直径 2n m、平均長さ 60nmの層状に分散して ヽることが確認された。  A compact 10 was produced in the same manner as the compact 7, except that the inorganic particles were changed to NanoCeram (alumina nanofibers having a diameter of 2 nm and an aspect ratio of 20 to 100) obtained from Argonide. Observation of the inorganic particles in the obtained kneaded material by TEM confirmed that they were dispersed in a layer having an average diameter of 2 nm and an average length of 60 nm.
(成形体 11の作製) (Production of molded body 11)
無機粒子を日本ァエロジル製、疎水性シリカ R974 (平均一次粒径 12nm)に変更 した以外は成形体 9と同様の方法で成形体 11を作製した。得られた混練物中の無機 粒子を TEMで観察したところ、平均分散粒径は 14nmで、塊状に分散していること が確認された。  Molded body 11 was produced in the same manner as molded body 9 except that the inorganic particles were changed to Nippon Aerosil Co., Ltd. and hydrophobic silica R974 (average primary particle size 12 nm). When the inorganic particles in the obtained kneaded material were observed with TEM, it was confirmed that the average dispersed particle size was 14 nm and dispersed in a lump.
(成形体 12の作製) (Production of molded body 12)
無機粒子を日本ァエロジル製、酸ィ匕アルミニウム C (平均一次粒径 13nm)に変更し た以外は成形体 9と同様の方法で成形体 12を作製した。得られた混練物中の無機 粒子を TEMで観察したところ、平均分散粒径は 16nmで、塊状に分散していること が確認された。  A molded body 12 was produced in the same manner as the molded body 9 except that the inorganic particles were changed to Nippon Steel Aerosil Co., Ltd. and acid aluminum C (average primary particle size 13 nm). When the inorganic particles in the obtained kneaded material were observed with TEM, it was confirmed that the average dispersed particle diameter was 16 nm and dispersed in a lump.
得られた成形体 9〜 12について、実施例 1と同様の方法で、光線透過率、線膨張係 数、 I dn/dT Iの測定を行なった。 The obtained molded bodies 9 to 12 were measured for light transmittance, linear expansion coefficient, and I dn / dT I in the same manner as in Example 1.
以上により得られた結果を、表 3に示す。 [0062] [表 3] Table 3 shows the results obtained as described above. [0062] [Table 3]
Figure imgf000024_0001
Figure imgf000024_0001
[0063] 表 3に記載の結果より明らかな様に、本発明の榭脂組成物成形体は線膨張係数お よび I dn/dT Iが小さぐかつ光線透過率が高いことから、光学素子に使用する榭 脂組成物として極めて有用であることがわかる。  [0063] As is clear from the results shown in Table 3, the molded resin composition of the present invention has a low linear expansion coefficient and I dn / dT I and a high light transmittance. It turns out that it is very useful as a resin composition to be used.
産業上の利用可能性  Industrial applicability
[0064] 本発明によれば、透明性に優れ、温度による寸法や屈折率の変化率が小さい熱可 塑性の樹脂組成物成形体を提供することができる。 [0064] According to the present invention, it is possible to provide a thermoplastic resin composition molded article which is excellent in transparency and has a small rate of change in size and refractive index due to temperature.

Claims

請求の範囲 The scope of the claims
[1] 無機微粒子が榭脂マトリックス中に分散された榭脂組成物であり、前記無機微粒子 の屈折率が 1. 3〜2. 3の範囲内であって、前記榭脂組成物の光路長 3mm当たりの 光線透過率が 70%以上であり、かつ線膨張係数が 5 X 10_5(Z°C)以下であることを 特徴とする熱可塑性榭脂組成物。 [1] A resin composition in which inorganic fine particles are dispersed in a resin matrix, wherein the refractive index of the inorganic fine particles is in the range of 1.3 to 2.3, and the optical path length of the resin composition and a light transmittance per 3mm 70% or more, and the linear expansion coefficient of 5 X 10 _5 (Z ° C ) thermoplastic榭脂composition characterized by less.
[2] 前記榭脂組成物の d線波長における光路長 3mm当たりの光線透過率が 85%以上 であることを特徴とする請求の範囲第 1項に記載の榭脂組成物。  [2] The resin composition according to claim 1, wherein the resin composition has a light transmittance of 85% or more per optical path length of 3 mm at a d-line wavelength.
[3] 無機微粒子が榭脂マトリックス中に分散された榭脂組成物であり、前記榭脂組成物 の d線波長における光路長 3mm当たりの光線透過率が 70%以上であって、前記無 機微粒子が板状または針状であることを特徴とする熱可塑性榭脂組成物。  [3] A resin composition in which inorganic fine particles are dispersed in a resin matrix, wherein the resin composition has a light transmittance of 70% or more at an optical path length of 3 mm at a d-line wavelength, A thermoplastic resin composition, wherein the fine particles are plate-like or needle-like.
[4] 前記無機微粒子が板状であり、その平均サイズにおいて、厚さが 0. 1〜: LOnm、ァ スぺタト比が 3〜: LOOOの範囲内であることを特徴とする請求の範囲第 3項に記載の 榭脂組成物。  [4] The inorganic fine particles are plate-like, and in the average size, the thickness is in the range of 0.1 to LOnm and the aspect ratio is 3 to LOOO. The coffin composition according to Item 3.
[5] 前記無機微粒子が針状であり、無機微粒子の最も短い直径の平均値が 0. 1〜10 nm、アスペクト比が 3〜5000の範囲内であることを特徴とする請求の範囲第 3項に 記載の榭脂組成物。  [5] The inorganic fine particles are needle-shaped, the average value of the shortest diameter of the inorganic fine particles is 0.1 to 10 nm, and the aspect ratio is in the range of 3 to 5000. The rosin composition as described in the item.
[6] 前記樹脂が、アクリル榭脂、環状ォレフィン榭脂、ポリカーボネート榭脂、ポリエステ ル榭脂、ポリエーテル榭脂、ポリアミド榭脂及びポリイミド榭脂から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 1項に記載の榭脂組成物。  [6] The resin is at least one selected from acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin and polyimide resin. The rosin composition according to claim 1.
[7] 前記無機微粒子の含有量が、前記榭脂組成物の質量に対し 0. 01質量%以上、 3 0質量%以下であることを特徴とする請求の範囲第 1項に記載の榭脂組成物。  [7] The resin according to claim 1, wherein the content of the inorganic fine particles is 0.01% by mass or more and 30% by mass or less with respect to the mass of the resin composition. Composition.
[8] 請求の範囲第 1項に記載の熱可塑性榭脂組成物を用いて成形されたことを特徴と する光学素子。  [8] An optical element characterized by being molded using the thermoplastic resin composition according to claim 1.
[9] 前記樹脂が、アクリル榭脂、環状ォレフィン榭脂、ポリカーボネート榭脂、ポリエステ ル榭脂、ポリエーテル榭脂、ポリアミド榭脂及びポリイミド榭脂から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 3項に記載の榭脂組成物。  [9] The resin is at least one selected from acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin and polyimide resin. The rosin composition according to claim 3.
[10] 前記無機微粒子の含有量が、前記榭脂組成物の質量に対し 0. 01質量%以上、 3 0質量%以下であることを特徴とする請求の範囲第 3項に記載の榭脂組成物。 請求の範囲第 3項に記載の熱可塑性榭脂組成物を用いて成形されたことを特徴と する光学素子。 [10] The resin according to claim 3, wherein the content of the inorganic fine particles is 0.01% by mass or more and 30% by mass or less with respect to the mass of the resin composition. Composition. An optical element formed by using the thermoplastic resin composition according to claim 3.
PCT/JP2005/019891 2004-11-10 2005-10-28 Resin composition and optical device using same WO2006051699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544833A JPWO2006051699A1 (en) 2004-11-10 2005-10-28 Resin composition and optical element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004326017 2004-11-10
JP2004-326017 2004-11-10

Publications (1)

Publication Number Publication Date
WO2006051699A1 true WO2006051699A1 (en) 2006-05-18

Family

ID=36336381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019891 WO2006051699A1 (en) 2004-11-10 2005-10-28 Resin composition and optical device using same

Country Status (2)

Country Link
JP (1) JPWO2006051699A1 (en)
WO (1) WO2006051699A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114391A (en) * 2007-11-08 2009-05-28 San-Dia Polymer Ltd Absorbable resin particle, method for producing the same, absorbable body and absorbable article, containibg the resin particle
JP2011500889A (en) * 2007-10-12 2011-01-06 ダウ コーニング コーポレーション Reinforced silicone resin film and nanofiber filled silicone composition
WO2012172918A1 (en) * 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Polycarbonate resin composition and formed article
WO2013011663A1 (en) * 2011-07-19 2013-01-24 Canon Kabushiki Kaisha Cycloolefin resin composition, molded article thereof, and mirror
WO2013179603A1 (en) * 2012-05-30 2013-12-05 Canon Kabushiki Kaisha Molded article and method of producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168944A (en) * 2002-11-21 2004-06-17 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2004256693A (en) * 2003-02-26 2004-09-16 Nissan Motor Co Ltd Method for producing resin composition and resin composition
JP2004269727A (en) * 2003-03-10 2004-09-30 Sumitomo Bakelite Co Ltd Transparent compounded composition
JP2004307845A (en) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2005113107A (en) * 2002-11-21 2005-04-28 Sekisui Chem Co Ltd Transparent resin composition for optical communication
JP2005146042A (en) * 2003-11-12 2005-06-09 Olympus Corp Organic-inorganic composite material, its manufacturing method and optical element
JP2005239802A (en) * 2004-02-25 2005-09-08 Sumitomo Bakelite Co Ltd Transparent plastic composite sheet and display element using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168944A (en) * 2002-11-21 2004-06-17 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2005113107A (en) * 2002-11-21 2005-04-28 Sekisui Chem Co Ltd Transparent resin composition for optical communication
JP2004256693A (en) * 2003-02-26 2004-09-16 Nissan Motor Co Ltd Method for producing resin composition and resin composition
JP2004269727A (en) * 2003-03-10 2004-09-30 Sumitomo Bakelite Co Ltd Transparent compounded composition
JP2004307845A (en) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2005146042A (en) * 2003-11-12 2005-06-09 Olympus Corp Organic-inorganic composite material, its manufacturing method and optical element
JP2005239802A (en) * 2004-02-25 2005-09-08 Sumitomo Bakelite Co Ltd Transparent plastic composite sheet and display element using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500889A (en) * 2007-10-12 2011-01-06 ダウ コーニング コーポレーション Reinforced silicone resin film and nanofiber filled silicone composition
JP2009114391A (en) * 2007-11-08 2009-05-28 San-Dia Polymer Ltd Absorbable resin particle, method for producing the same, absorbable body and absorbable article, containibg the resin particle
WO2012172918A1 (en) * 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Polycarbonate resin composition and formed article
WO2013011663A1 (en) * 2011-07-19 2013-01-24 Canon Kabushiki Kaisha Cycloolefin resin composition, molded article thereof, and mirror
JP2013041274A (en) * 2011-07-19 2013-02-28 Canon Inc Cycloolefin resin composition, molded body thereof and mirror
JP2017129874A (en) * 2011-07-19 2017-07-27 キヤノン株式会社 Injection molded body and mirror
WO2013179603A1 (en) * 2012-05-30 2013-12-05 Canon Kabushiki Kaisha Molded article and method of producing the same
US9353247B2 (en) 2012-05-30 2016-05-31 Canon Kabushiki Kaisha Molded article and method of producing the same

Also Published As

Publication number Publication date
JPWO2006051699A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US7649035B2 (en) Thermoplastic composite material and optical element
JP5096014B2 (en) Organic-inorganic composite composition, method for producing the same, molded product, and optical component
US20090281234A1 (en) Manufacturing method of thermoplastic composite material, thermoplastic composite material and optical element
WO2006051699A1 (en) Resin composition and optical device using same
JP2008001895A (en) Optical plastic material and optical element
JP5037393B2 (en) Metal oxide fine particle dispersion and molded body
KR20100058491A (en) Resin material for optical use and optical device
JP2007077235A (en) Thermoplastic resin composition and optical element
JP2007154159A (en) Organic inorganic composite material and optical element
JP2006160992A (en) Thermoplastic resin composition and optical element
JP2007163655A (en) Optical resin material and optical device
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
WO2007138924A1 (en) Optical pickup device
JP2006299183A (en) Non-aqueous fine particle dispersion and thermoplastic composite material and optical element
KR20180098156A (en) Organic-inorganic hybrid composition, and article and optical component including the same
JP2006188677A (en) Thermoplastic resin and optical element
JP2007161980A (en) Masterbatch, optical element, method for producing masterbatch, and method for manufacturing optical element
JP2007254681A (en) Thermoplastic composite material and optical element
JP2006299032A (en) Thermoplastic resin composition and optical element
WO2006049015A1 (en) Thermoplastic resin composition and optical device using same
WO2008044342A1 (en) Organic/inorganic composite material and optical element
JP2006299033A (en) Method for producing thermoplastic resin composition, thermoplastic resin composition and optical element
JP2007070564A (en) Thermoplastic resin composition and optical element
JP2007206197A (en) Optical resin material and optical element
JP2009235325A (en) Production method for optical resin material, optical resin material, and optical element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544833

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05799257

Country of ref document: EP

Kind code of ref document: A1