WO2006051147A1 - Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono - Google Patents

Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono Download PDF

Info

Publication number
WO2006051147A1
WO2006051147A1 PCT/ES2005/070156 ES2005070156W WO2006051147A1 WO 2006051147 A1 WO2006051147 A1 WO 2006051147A1 ES 2005070156 W ES2005070156 W ES 2005070156W WO 2006051147 A1 WO2006051147 A1 WO 2006051147A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
blade
laminates
wind turbine
carbon
Prior art date
Application number
PCT/ES2005/070156
Other languages
English (en)
French (fr)
Inventor
Jose Ignacio Llorente Gonzalez
Sergio Velez Oria
Original Assignee
Gamesa Innovation And Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200402847A external-priority patent/ES2255436B1/es
Application filed by Gamesa Innovation And Technology, S.L. filed Critical Gamesa Innovation And Technology, S.L.
Priority to CN2005800386665A priority Critical patent/CN101094986B/zh
Priority to ES05815151.5T priority patent/ES2612031T3/es
Priority to EP05815151.5A priority patent/EP1826402B1/en
Priority to US11/663,013 priority patent/US7729100B2/en
Publication of WO2006051147A1 publication Critical patent/WO2006051147A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the object of the patent is a lightning rod system for transmission and reception of lightning in wind turbine blades. It is important to note that part of the blade is a carbon fiber laminate.
  • 'Lightning rod for wind turbine blades' consisting of an electrical conductor that extends from the tip of the blade passing through the interior of the blade and ending at the root of the blade in a spike axis that allows the blade to rotate .
  • the driver will be with or without an insulating coating and contributes to the proper holding of the blade.
  • US 6,612,810 presents a protection where the blade includes a pair of conductors extending longitudinally across the surface of the blade (it also incorporates anti-ice heating elements).
  • the tip of the blade has an impact receptor connected to a third conductor that runs through the inside of the blade. All conductors and heaters are connected to each other.
  • Carbon fiber as a conductive material, must be equipotentialized with the lightning arrester system.
  • the problem of leaving isolated conductive elements is the difference in potential so high that it is created between them due to the induction phenomena originated by the lightning as it passes through the lightning system. This potential difference can lead to a jump in the arc, which in the specific case in which the carbon fiber laminate constitutes the main resistant part of the blade, such a failure would be fatal.
  • the shovel lightning rod system with carbon fiber laminates object of the invention employs the lightning rod system based on a main cable, which is additionally provided with branches to connect it directly to the carbon fiber laminates, thus We ensure that both systems are at the same potential.
  • the method consists of the application of conductive resin based on nanocomposites in the immediate vicinity of the connection in a controlled manner. In this way, optimum electrical characteristics are achieved in the connection for the proper functioning of the blade's lightning protection system.
  • a specific embodiment may consist of two connections to each of the two laminates, said laminates are arranged on the two faces that are glued facing the blade shells called wings.
  • the connections are made one in the area of the root of the beam and the other in the area of the tip, in such a way that the wings of the beam become alternative beam paths.
  • the system used has as a differentiating feature the way to make the connections between the main cable and the carbon laminates, by means of branches of the main cable thanks to small pieces of auxiliary cable connected by means of a screwed connection to a metal plate.
  • the metallic plate is in charge of making the direct connection with the carbon.
  • the plates are placed during the beam's lamination process and in direct contact with the successive carbon fiber layers of the beam, being subsequently covered with the fiberglass layers used in the laminate of the following fiberglass layers .
  • the decks they are cured with the normal curing of said beam thus achieving a mechanically robust connection with the beam and electrically well connected with the carbon fiber.
  • the electrical connection can be further improved by using conductive resin in the area of the joint.
  • the conductive resin to be used is based on the realization of a controlled mixture of the resins usually used in the manufacture of wind turbine blades with nanofibers or carbon fiber nanotubes. The addition of these carbon fiber nanofibers or nanotubes gives the initial resin electrical properties several orders of magnitude different from the initial properties.
  • a specific embodiment of this resin contemplates the addition of a certain amount of carbon nanofibers or nanotubes, preferably in a proportion of between 3 and 30%, to an epoxy-type resin, commonly used in the manufacture of blades wind power. Subsequently, this conductive resin already mixed is applied in the mediations of the connection of the outer cable to the carbon laminate.
  • connection to the carbon is made by means of the metallic plates
  • the application of the conductive resin based on nanocomposites between the metallic part and the carbon laminate to be connected, as well as in the vicinity of the connection during The lamination of the composite part considerably improves the electrical properties of the connection, since the way the current is transmitted from the metallic part to each of the carbon fibers of the laminate is improved.
  • Another application of the conductive resin includes the application of this conductive resin in those areas where it is interesting to decrease the electrical resistance of the laminate, such as, for example, the application of the resin on the entire outer surface of the beam.
  • Another characteristic object of the invention is the adequate determination of the radii in which the connections to the blade beam are arranged to facilitate a good electrical connection and avoid any arc jump due to induction phenomena.
  • Figure 1 depicts the relative position between the carbon wings and the cable running through the core in a section of the blade.
  • Figure 2 shows the plate that makes the connection with the carbon fiber as well as the branches using auxiliary cables.
  • Figure 3 shows in detail the connection between the plate and the carbon fiber and the branches of the auxiliary cables to the main cable.
  • Figure 4 shows a section of the shovel in which all the components of the system and the connections between them are represented.
  • Figure 5 shows the ideal area for the application of the conductive resin based on nanocomposites in order to improve the conductivity of the connection.
  • the lightning rod system (1) with carbon fiber laminates (2) object of the invention uses the lightning rod system based on a main cable (6) which is additionally provided with some branches to connect it directly to the carbon fiber laminates (2), in this way we ensure that both systems are at the same potential.
  • the branches are made by means of two connections to each of the two carbon fiber laminates (2), the one corresponding to the upper part of the beam (10) and the corresponding one to the bottom of it, represented in the previous figure.
  • Said laminates are arranged on the two faces that are glued facing the shells of the blade called wings (4).
  • the connections are made, one in the area of the root of the beam and the other in the area of the tip, in such a way that the wings (4) of the beam become alternative beam paths.
  • the differentiating characteristic of the system used lies in the way of making the connections between the main cable (6) and the carbon laminates (2), this is achieved by means of branches of the main cable (6) thanks to small pieces of auxiliary cable (5) which are connected by means of a screwed connection to a metal plate (3).
  • the metallic plate (3) is responsible for making the direct connection with the carbon (2).
  • the plates (3) are placed during the beam lamination process on the carbon fiber layers of the beam and are subsequently covered with the fiberglass layers used in the subsequent laminate of the beam.
  • the plates (3) are cured with the normal curing of said beam, thus achieving a mechanically robust connection with the beam and electrically well connected with the carbon fiber (2).
  • the electrical connection can be further improved by using conductive resin in the area of the joint as shown in Figure 5.
  • the tip of the blade (11) incorporates a metallic receiver (7) that extends through the main cable (6) for the entire length of the core (8) of the beam (10). As mentioned previously, the connections are made, one at the root of the beam and the other at the tip area.
  • the ideal way to improve the electrical characteristics of the joint consists in the application of conductive resin based on carbon nanofibers or nanotubes (11) both between the plate and the last carbon layer as in the immediate vicinity of the connection plate. Both the conductive resin and the plates (3) are cured with the normal curing of said beam thus achieving a mechanically robust connection with the beam and electrically well connected with the carbon fiber (2). The resulting connection has some properties considerably better than if the conductive resin is not used.
  • the equipotential bonding between the different layers of carbon fiber is achieved thanks to windows, discontinuities or open holes in the layers fiberglass hybrid laminate.
  • the equipotential bonding between the different carbon fiber layers separated by fiberglass layers can be obtained through the use of conductive nanocomposites based resins throughout the initially insulating glass fiber layer or in discrete areas of the same, for example in the position in which the windows were placed.
  • the equipotential bonding of the lightning rod system is carried out by means of branches from the main cable (6) and thanks to auxiliary cables (5) connected to metallic pins, preferably conical in shape, which cross the hybrid laminate with fiberglass and carbon fiber fabrics, in such a way that these pins establish the connection between all the layers of carbon fiber.
  • the electrical connection can be further improved by using conductive resin based on nanofibers or carbon nanotubes.
  • This second embodiment also has the advantage that in case of having a hybrid laminate that alternates layers of glass fiber and layers of carbon fiber, the equipotential bonding between the different layers of carbon fiber is achieved thanks to the conical pins and is not it is necessary to provide windows, discontinuities or gaps in the fiberglass layers.

Abstract

Sistema pararrayos para pala de aerogenerador formado por varias conexiones dispuestas sobre los laminados de fibra de carbono (2) de la pala (1), equipotenciando la superficie de las alas (4) de la viga (10) a través de las derivaciones de un cable principal (6) mediante los respectivos cables auxiliares (5). Los cables auxiliares se conectan a pletinas metálicas (3) que realizan la conexión directa con los laminados de fibra de carbono (2) y se colocan durante el proceso de laminación y curado de la pala (1), o bien se conectan a pines metálicos de forma preferentemente cónica que atraviesan el laminado híbrido. En las inmediaciones de la conexión se dispone resina conductora (11) basada en nanocomposites. Para el caso en que se trate de un laminado híbrido con capas de fibra de carbono y capas de fibra de vidrio, la equipotencialización de las distintas capas se obtiene por medio de ventanas, discontinuidades o huecos abiertos en las capas de fibra de vidrio.

Description

Description
SISTEMA PARARRAYOS PARA PALA DE AEROGENERADOR CON LAMINADOS DE FIBRA DE CARBONO
[1] Objeto de la patente
[2] El objeto de la patente es un sistema de pararrayos para transmisión y recepción de rayos en palas de aerogeneradores. Se da la característica importante de que parte de la pala es un laminado de fibra de carbono.
[3] Antecedentes de la invención
[4] La inclusión de fibra de carbono en la fabricación de palas de aerogenerador es bastante reciente y aunque ya está bastante extendida entre las empresas más im¬ portantes del sector, la experiencia en cuanto a la forma de protección contra rayo es aún muy limitada y no existe conocimiento generalizado de ninguna técnica cuya eficacia esté probada.
[5] Tanto en la normativa aplicable a aerogeneradores como en la bibliografía existente, se recoge que una forma eficaz de proteger las palas de fibra de vidrio contra los rayos consiste en un sistema pararrayos basado en receptores puntuales situados a lo largo de la pala y un cable que conecta dichos receptores con la raíz de la pala y que discurre por el interior de la misma.
[6] En ese sentido puede citarse la patente WO 96/07825 donde se presenta un
'Pararrayos para palas de aerogenerador' constituido por un conductor eléctrico que se extiende desde la punta de la pala transcurriendo por el interior de la misma y fi¬ nalizando en la raíz de la pala en un eje de espiga que permite el giro de la pala. El conductor estará con o sin revestimiento aislante y contribuye a la propia sujeción de la pala.
[7] Por la WO 0177527 se conoce una pala que presentan una protección contra rayo con conductores internos y externos, conectados entre si y distribuidos por toda la pala. También presenta una serie de puntos de penetración y un par de configuraciones para punta y resto de la pala.
[8] La US 6.612.810 presenta una protección donde la pala comprende un par de conductores extendidos longitudinalmente por la superficie de la pala (también incorpora elementos calentadores anti-hielo). La punta de la pala tiene un receptor de impacto conectado a un tercer conductor que discurre por el interior de la pala. Todos los conductores y calentadores están conectados entre sí.
[9] En la bibliografía existente sobre impactos de rayos se recoge también la necesidad de equipotencializar el objeto que va a recibir el impacto con el sistema pararrayos. Es decir, para que todos los elementos estén al mismo potencial deberán ser conectados eléctricamente mediante conductores situados en la zona a proteger.
[10] La fibra de carbono, como material conductor, deberá ser equipotencializada con el sistema pararrayos. El problema de dejar elementos conductores aislados es la diferencia de potencial tan elevada que se crea entre los mismos debido a los fenómenos de inducción originados por el rayo a su paso por el sistema pararrayos. Esta diferencia de potencial puede dar lugar a un salto del arco, lo que en el caso concreto que nos ocupa en el que el laminado de fibra de carbono constituye la parte resistente principal de la pala, un fallo de este tipo sería fatal.
[11] Existen diversas formas basadas en mallas metálicas que tratan de evitar la intervención del compuesto de fibra de carbono en el problema de la aparición de la diferencia de potencial pero ninguna de ellas ha demostrado eficacia en la resolución del problema.
[12] Descripción
[13] El sistema pararrayos en pala con laminados de fibra de carbono objeto de la invención emplea el sistema pararrayos basado en un cable principal al que adi- cionalmente se dota de unas derivaciones para conectarlo directamente con los laminados de fibra de carbono, de esta forma aseguramos que ambos sistemas se hallan al mismo potencial.
[14] También es objeto de esta invención presentar una nueva forma de mejorar las características eléctricas de las conexiones existentes en el sistema pararrayos de una pala entre el cable principal de bajada y los laminados de fibra de carbono de la pala. El método consiste en la aplicación de resina conductora basada en nanocomposites en las inmediaciones o proximidades de la conexión de forma controlada. De esta forma se consiguen unas características eléctricas en la conexión óptimas para el buen fun¬ cionamiento del sistema de protección antirrayos de la pala.
[15] Una realización concreta puede consistir en dos conexiones a cada uno de los dos laminados, dichos laminados se encuentran dispuestos en las dos caras que se pegan enfrentadas a las conchas de la pala denominadas alas. Las conexiones se realizan una en la zona de la raíz de la viga y la otra en la zona de punta, de tal forma que las alas de la viga pasan a ser caminos alternativos del rayo.
[16] El sistema empleado tiene como característica diferenciadora la forma de realizar las conexiones entre el cable principal y los laminados de carbono, por medio de derivaciones del cable principal gracias a pequeños trozos de cable auxiliar conectados mediante unión atornillada a una pletina metálica. La pletina metálica es la encargada de realizar la conexión directa con el carbono. Las pletinas se colocan durante el proceso de laminación de la viga y en contacto directo con las sucesivas capas de fibra de carbono de la misma, siendo posteriormente cubiertas con las capas de fibra de vidrio empleadas en el laminado de las siguientes capas de fibra de vidrio. Las pletinas se curan con el curado normal de dicha viga consiguiendo así una unión mecánicamente robusta con la viga y eléctricamente bien conectada con la fibra de carbono.
[17] La conexión eléctrica puede ser mejorada adicionalmente mediante el empleo de resina conductora en la zona de la unión. La resina conductora a emplear esta basada en la realización de una mezcla controlada de las resinas habitualmente empleadas en la fabricación de palas de aerogenerador con nanofibras o nanotubos de fibra de carbono. La adición de estas nanofibra o nanotubos de fibra de carbono confiere a la resina inicial unas propiedades eléctricas varios órdenes de magnitud diferentes a las propiedades iniciales.
[ 18] Una realización concreta de esta resina contempla la adición de un cierta cantidad de nanofibras o nanotubos de carbono, preferentemente en una proporción de entre un 3 y un 30%, a una resina de tipo epoxy, comúnmente empleada en la fabricación de palas eólicas. Posteriormente, esta resina conductora ya mezclada es aplicada en las in¬ mediaciones de la conexión del cable exterior al laminado de carbono.
[19] En el caso concreto en que la conexión al carbono se realiza mediante las pletinas metálicas, la aplicación de la resina conductora basada en nanocomposites entre la pieza metálica y el laminado de carbono a conectar, así como en las inmediaciones de la conexión durante la laminación de la pieza de compuesto, mejoran consider¬ ablemente las propiedades eléctricas de la conexión, ya que se mejora la forma en que la corriente se transmite desde la pieza metálica a cada una de las fibras de carbono del laminado.
[20] Otra aplicación de la resina conductora comprende la aplicación de esta resina conductora en aquellas zonas en las que interese disminuir la resistencia eléctrica del laminado, como por ejemplo la aplicación de la resina en toda la superficie exterior de la viga.
[21] Otra característica objeto de la invención es la determinación adecuada de los radios en los que se disponen las conexiones a la viga de la pala para facilitar una buena conexión eléctrica y evitar cualquier salto de arco debido a fenómenos de inducción.
[22] Descripción de las figuras
[23] La figura 1 representa la posición relativa entre las alas de carbono y el cable que discurre a través del alma en una sección de la pala.
[24] La figura 2 muestra la pletina que realiza la conexión con la fibra de carbono así como las derivaciones mediante cables auxiliares.
[25] La figura 3 muestra en detalle la conexión entre la pletina y la fibra de carbono y las derivaciones de los cables auxiliares al cable principal.
[26] La figura 4 muestra una sección de la pala en la que aparecen representados todos los componentes del sistema y las conexiones entre ellos. [27] La figura 5 muestra la zona idónea para la aplicación de la resina conductora basada en nanocomposites con el fin de mejorar la conductividad de la conexión.
[28] Descripción de la realización preferencial
[29] Tal y como muestra la figura 1, el sistema pararrayos en pala (1) con laminados de fibra de carbono (2) objeto de la invención emplea el sistema pararrayos basado en un cable principal (6) al que adicionalmente se dota de unas derivaciones para conectarlo directamente con los laminados de fibra de carbono (2), de esta forma aseguramos que ambos sistemas se hallan al mismo potencial.
[30] Tal y como muestran las figuras 2 y 3, las derivaciones se realizan mediante dos conexiones a cada uno de los dos laminados de fibra de carbono (2), el correspondiente a la parte superior de la viga (10) y el correspondiente a la parte inferior de la misma, representados en la figura anterior. Dichos laminados se encuentran dispuestos en las dos caras que se pegan enfrentadas a las conchas de la pala denominadas alas (4). Las conexiones se realizan una en la zona de la raíz de la viga y otra en la zona de la punta, de tal forma que las alas (4) de la viga pasan a ser caminos alternativos del rayo. La característica diferenciadora del sistema empleado radica en la forma de realizar las conexiones entre el cable principal (6) y los laminados de carbono (2), esto se consigue por medio de derivaciones del cable principal (6) gracias a pequeños trozos de cable auxiliar (5) que son conectados mediante unión atornillada a una pletina (3) metálica. La pletina (3) metálica es la responsable de realizar la conexión directa con el carbono (2). Las pletinas (3) son colocadas durante el proceso de laminación de la viga sobre las capas de fibra de carbono de la viga y posteriormente son cubiertas con las capas de fibra de vidrio empleadas en el laminado posterior de la viga. Las pletinas (3) se curan con el curado normal de dicha viga consiguiendo así una unión mecánicamente robusta con la viga y eléctricamente bien conectada con la fibra de carbono (2). La conexión eléctrica puede ser mejorada adicionalmente mediante el empleo de resina conductora en la zona de la unión tal y como se aprecia en la figura 5.
[31] Tal y como se muestra en la figura 4, la punta de la pala (11) incorpora un receptor metálico (7) que se extiende a través del cable principal (6) por toda la longitud del alma (8) de la viga (10). Tal y como se ha mencionado con anterioridad las conexiones se realizan una en la raíz de la viga y otra en la zona de punta.
[32] Tal y como muestra la figura 5, la forma idónea para mejorar las características eléctricas de la unión consiste en la aplicación de resina conductora basada en nanofibras o nanotubos de carbono (11) tanto entre la pletina y la última capa de carbono como en las inmediaciones de la pletina de conexión. Tanto la resina conductora como las pletinas (3) se curan con el curado normal de dicha viga con¬ siguiendo así una unión mecánicamente robusta con la viga y eléctricamente bien conectada con la fibra de carbono (2). La conexión resultante tiene unas propiedades eléctricas considerablemente mejores que si no se emplea la resina conductora.
[33] Para el caso en que se trate de un laminado híbrido alternando capas de fibra de carbono y capas de fibra de vidrio, la equipotencialización entre las distintas capas de fibra de carbono se consiguen gracias a ventanas, discontinuidades o huecos abiertos en las capas de fibra de vidrio del laminado híbrido. Alternativamente, la equipotencialización entre las distintas capas de fibra de carbono separadas por capas de fibra de vidrio se puede obtener mediante el empleo de resinas conductoras basadas en nanocomposites a lo largo de toda la capa de fibra de vidrio inicialmente aislante o en zonas discretas de la misma, como por ejemplo en la posición en la que se colocaban las ventanas.
[34] En una segunda realización práctica de la invención la equipotencialización del sistema pararrayos se lleva a cabo mediante derivaciones del cable principal (6) y gracias a cables auxiliares (5) conectados a pines metálicos de forma preferentemente cónica, que atraviesan el laminado híbrido con telas de fibra de vidrio y fibra de carbono, de tal forma que dichos pines establecen la conexión entre todas las capas de fibra de carbono. También en este caso la conexión eléctrica puede ser mejorada adi- cionalmente mediante el empleo de resina conductora basada en nanofibras o nanotubos de carbono. Esta segunda realización tiene además la ventaja de que en caso de tener un laminado híbrido que alterne capas de fibra de vidrio y capas de fibra de carbono, la equipotencialización entre las distintas capas de fibra de carbono se consigue gracias a los pines cónicos y no es necesario proveer ventanas, discon¬ tinuidades o huecos en las capas de fibra de vidrio.

Claims

Claims
[1] 1. -Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono de los que incorporan un cable principal (6) de bajada caracterizado porque el mencionado cable principal (6) está equipotencializado con los laminados (2) de fibra de carbono en diferentes localizaciones de la pala (1), siendo estas localizaciones preferentemente en punta (11) y raíz de la pala.
[2] 2.-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según la reivindicación primera, caracterizado porque la equipotencialización se consigue por medio de derivaciones del cable principal (6) gracias a cables auxiliares (5) conectados mediante unión atornillada a una pletina (3) metálica conectada a su vez al laminado de fibra de carbono (2).
[3] 3. -Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según la reivindicación segunda, caracterizado porque la conexión metálica al cable auxiliar (5) está constituida por un pin metálico prefer¬ entemente cónico que establece el contacto eléctrico con el laminado.
[4] 4 .-Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono, según reivindicaciones anteriores, caracterizado porque las pletinas (3) son las responsables de la conexión directa con los laminados de fibra de carbono (2) y se colocan durante el proceso de laminación de la pala o de parte de la pala, como por ejemplo la viga (10), en contacto con capas de fibra de carbono (2) de dicha pala o viga (10) y siendo cubiertas posteriormente con las siguientes capas de fibra de carbono y curadas al mismo tiempo que los propios laminados.
[5] 5 .-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según las reivindicaciones anteriores, caracterizado porque las conexiones de equipotencialización al laminado de carbono incorporan resina conductora en la zona de la conexión constituida por las pletinas y los pines al laminado de carbono.
[6] 6.-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según la reivindicación quinta, caracterizado porque la resina conductora está formada por la adición de nanofibras o nanotubos de carbono a una resina inicialmente no conductora, preferentemente resina epoxy.
[7] 7 .-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según las reivindicaciones anteriores, caracterizado porque los laminados de fibra de carbono (2) están integrados en un laminado híbrido con telas de fibra de vidrio y fibra de carbono, y en el que la equipotencialización entre las distintas capas de fibra de carbono se consigue mediante ventanas, dis¬ continuidades, huecos abiertos en las capas de fibra de vidrio o la impregnación de resinas conductoras aplicadas en toda la superficie de las capas de fibra de vidrio o en parte de ella. [8] 8 .-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según las reivindicaciones anteriores, caracterizado por impregnar con resina conductora la superficie exterior del laminado. [9] 9 .-Sistema pararrayos en pala de aerogenerador con laminados de fibra de carbono, según reivindicaciones anteriores, caracterizado porque la punta de la pala (11) dispone de un receptor metálico (7) desde donde se inicia el cable principal (6) que se extiende a través del lateral de la viga (10) hasta la raíz de la pala (1).
PCT/ES2005/070156 2004-11-11 2005-11-10 Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono WO2006051147A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800386665A CN101094986B (zh) 2004-11-11 2005-11-10 用于具有碳纤维叠层的风力涡轮机叶片的雷电保护系统
ES05815151.5T ES2612031T3 (es) 2004-11-11 2005-11-10 Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono
EP05815151.5A EP1826402B1 (en) 2004-11-11 2005-11-10 Lightning conductor system for wind generator blades comprising carbon fibre laminates
US11/663,013 US7729100B2 (en) 2004-11-11 2005-11-10 Lightning conductor system for wind generator blades comprising carbon fibre laminates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200402847A ES2255436B1 (es) 2004-11-11 2004-11-11 Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono.
ESP200402847 2004-11-11
ES200502728A ES2274726B1 (es) 2004-11-11 2005-11-10 Sistema pararrayos para pala de aerogenerador con resinas conductoras basadas en nanocomposites.
ESP200502728 2005-11-10

Publications (1)

Publication Number Publication Date
WO2006051147A1 true WO2006051147A1 (es) 2006-05-18

Family

ID=36336244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070156 WO2006051147A1 (es) 2004-11-11 2005-11-10 Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono

Country Status (3)

Country Link
US (1) US7729100B2 (es)
EP (1) EP1826402B1 (es)
WO (1) WO2006051147A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020134A1 (en) * 2007-12-20 2011-01-27 Vestas Wind Systems A/S Lightning receptors comprising carbon nanotubes
EP2458207A2 (en) 2010-11-30 2012-05-30 Gamesa Innovation & Technology, S.L. Lightning conduction system for wind turbine blades with carbon fibre laminates
EP2806160A1 (de) 2013-05-23 2014-11-26 Nordex Energy GmbH Windenergieanlagenrotorblatt mit einer elektrischen Heizeinrichtung und mehreren Blitzschutzleitern
EP3091228A1 (en) 2015-05-08 2016-11-09 Gamesa Innovation & Technology, S.L. Lightning protection system for wind turbine blades with conducting structural components
EP3255274A1 (en) 2016-06-07 2017-12-13 Gamesa Innovation & Technology, S.L. Lightning system for wind turbine blades with optimized means for injecting lightning currents in conductive components of their shells
US10330087B2 (en) 2015-06-17 2019-06-25 Siemens Gamesa Renewable Energy Innovation & Technology, S. L. Lightning protection system for wind turbine blades with an effective injection area to carbon fiber laminates and a balanced lightning current and voltage distribution between different conductive paths

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962130B2 (en) * 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
JP2009535530A (ja) * 2006-05-02 2009-10-01 ロール インコーポレイテッド ナノ補強材を用いた複合材料中に用いられる補強繊維トウの修飾
GB0805640D0 (en) * 2008-03-28 2008-04-30 Hexcel Composites Ltd Improved composite materials
US7931828B2 (en) 2008-05-22 2011-04-26 Rolls-Royce Corporation Gas turbine engine and method including composite structures with embedded integral electrically conductive paths
US8137074B2 (en) 2008-08-21 2012-03-20 General Electric Company Wind turbine lightning protection system
WO2010028653A2 (en) * 2008-09-11 2010-03-18 Vestas Wind Systems A/S Low power heating
EP3276162B1 (en) 2008-12-05 2020-04-08 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
AU2010259234B2 (en) 2009-02-17 2014-11-20 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
EP2279852B1 (en) 2009-07-30 2016-11-23 Rolls-Royce Corporation Gas turbine engine and method including composite structures with embedded integral electrically conductive paths
US8561934B2 (en) * 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
CA2777001A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-tailored composite space-based structures
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
CN101705922B (zh) * 2009-11-30 2011-10-26 天津南车风电叶片工程有限公司 大型复合材料风电叶片及其制备方法
CN103079805B (zh) 2009-12-14 2015-02-11 应用纳米结构方案公司 含有碳纳米管并入的纤维材料的防火复合材料和制品
US20130034447A1 (en) * 2010-01-14 2013-02-07 Saab Ab Wind turbine blade having an outer surface with improved properties
US20130028738A1 (en) * 2010-01-14 2013-01-31 Saab Ab Multifunctional de-icing/anti-icing system of a wind turbine
CA2785803A1 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
DE102010017062B4 (de) 2010-05-21 2019-07-11 Thyssenkrupp Steel Europe Ag Rotorblatt einer Windkraftanlage
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
EP2390498B1 (en) * 2010-05-27 2017-02-22 Siemens Aktiengesellschaft Wind turbine blade with coating for lightning protection and method for manufacturing the wind turbine blade
CN103154507B (zh) 2010-07-23 2016-08-03 爱瑞柯国际公司 用于风力涡轮叶片的雷电保护的接收器
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
FI20110232L (fi) * 2011-07-05 2013-01-11 Hafmex Oy Lämmitettävä tuulivoimalan roottori
US8449259B1 (en) * 2012-05-15 2013-05-28 Modular Wind Energy, Inc. Lightning protection for wind turbine blades, and associated systems and methods
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
DE102013107296B4 (de) * 2013-07-10 2015-03-19 Senvion Se Rotorblatt mit Blitzableiter
US10316827B2 (en) 2014-11-11 2019-06-11 General Electric Company Conduit assembly for a lightning protection cable of a wind turbine rotor blade
US9719495B2 (en) 2015-05-13 2017-08-01 General Electric Company Lightning protection system for wind turbine rotor blades
US10830214B2 (en) * 2017-03-22 2020-11-10 General Electric Company Method for securing a lightning receptor cable within a segmented rotor blade
ES2955528T3 (es) * 2017-11-14 2023-12-04 Siemens Gamesa Renewable Energy As Pala de turbina eólica y turbina eólica
ES2799176T3 (es) 2018-01-11 2020-12-15 Siemens Gamesa Renewable Energy As Tapa de larguero, pala de turbina eólica, procedimiento de fabricación de una tapa de larguero, y procedimiento de fabricación de una pala de turbina eólica
EP3581796B1 (en) 2018-06-14 2022-03-23 Siemens Gamesa Renewable Energy A/S Stepped conductivity interface
DK3594494T3 (da) * 2018-07-12 2021-04-26 Siemens Gamesa Renewable Energy As Vindmøllevinge og en vindmølle
DK3597911T3 (da) 2018-07-17 2021-10-04 Siemens Gamesa Renewable Energy As Vindmøllevinge og en vindmølle
ES2901496T3 (es) * 2019-04-25 2022-03-22 Siemens Gamesa Renewable Energy As Tapa de larguero, pala de turbina eólica, turbina eólica y método para fabricar una tapa de larguero
DK3901452T3 (da) 2020-04-24 2024-03-25 Siemens Gamesa Renewable Energy As Vindmøllevinge til en vindmølle og fremgangsmåde til fremstilling af en vindmøllevinge
DE112020007455T5 (de) 2020-07-27 2023-07-13 Nabrawind Technologies, Sl Blitzschutzsystem für ein modulares rotorblatt und verfahren zur herstellung eines stapels
CN112901428B (zh) * 2021-03-23 2022-04-22 国电联合动力技术(保定)有限公司 一种风电叶片避雷系统的制作方法
EP4166780A1 (en) 2021-10-13 2023-04-19 Siemens Gamesa Renewable Energy A/S A rotor blade lightning protection system with spark-gaps for equipotential bonds

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580417A1 (en) * 1992-07-24 1994-01-26 British Aerospace Public Limited Company A lightning shield
WO2000014405A1 (en) * 1998-09-09 2000-03-16 Lm Glasfiber A/S Lightning protection for wind turbine blade
US6102662A (en) * 1995-11-29 2000-08-15 Eurocopter Blade with shielding for enhanced protection against lighting, for rotorcraft rotor
WO2000079128A1 (en) * 1999-06-21 2000-12-28 Lm Glasfiber A/S Wind turbine blade with a system for deicing and lightning protection
ES2161196A1 (es) * 2000-05-09 2001-11-16 Torres Disenos Ind S A M Instalacion de pararrayos para aerogeneradores.
WO2003008800A1 (en) * 2001-07-19 2003-01-30 Neg Micon A/S Wind turbine blade
WO2005026538A1 (en) * 2003-09-15 2005-03-24 Lm Glasfiber A/S A method of lightning-proofing a blade for a wind-energy plant
WO2005050808A1 (en) * 2003-10-31 2005-06-02 Vestas Wind Systems A/S Member for potential equalising

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9807198D0 (en) * 1998-04-04 1998-06-03 British Aerospace Adhesively bonded joints in carbon fibre composite structures
JP4264804B2 (ja) * 2002-12-03 2009-05-20 東洋紡績株式会社 導電性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580417A1 (en) * 1992-07-24 1994-01-26 British Aerospace Public Limited Company A lightning shield
US6102662A (en) * 1995-11-29 2000-08-15 Eurocopter Blade with shielding for enhanced protection against lighting, for rotorcraft rotor
WO2000014405A1 (en) * 1998-09-09 2000-03-16 Lm Glasfiber A/S Lightning protection for wind turbine blade
WO2000079128A1 (en) * 1999-06-21 2000-12-28 Lm Glasfiber A/S Wind turbine blade with a system for deicing and lightning protection
ES2161196A1 (es) * 2000-05-09 2001-11-16 Torres Disenos Ind S A M Instalacion de pararrayos para aerogeneradores.
WO2003008800A1 (en) * 2001-07-19 2003-01-30 Neg Micon A/S Wind turbine blade
WO2005026538A1 (en) * 2003-09-15 2005-03-24 Lm Glasfiber A/S A method of lightning-proofing a blade for a wind-energy plant
WO2005050808A1 (en) * 2003-10-31 2005-06-02 Vestas Wind Systems A/S Member for potential equalising

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1826402A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020134A1 (en) * 2007-12-20 2011-01-27 Vestas Wind Systems A/S Lightning receptors comprising carbon nanotubes
EP2458207A2 (en) 2010-11-30 2012-05-30 Gamesa Innovation & Technology, S.L. Lightning conduction system for wind turbine blades with carbon fibre laminates
EP2806160A1 (de) 2013-05-23 2014-11-26 Nordex Energy GmbH Windenergieanlagenrotorblatt mit einer elektrischen Heizeinrichtung und mehreren Blitzschutzleitern
EP3091228A1 (en) 2015-05-08 2016-11-09 Gamesa Innovation & Technology, S.L. Lightning protection system for wind turbine blades with conducting structural components
US10125744B2 (en) 2015-05-08 2018-11-13 Gamesa Innovation & Technology, S. L. Lightning protection system for wind turbine blades with conducting structural components
US10330087B2 (en) 2015-06-17 2019-06-25 Siemens Gamesa Renewable Energy Innovation & Technology, S. L. Lightning protection system for wind turbine blades with an effective injection area to carbon fiber laminates and a balanced lightning current and voltage distribution between different conductive paths
EP3255274A1 (en) 2016-06-07 2017-12-13 Gamesa Innovation & Technology, S.L. Lightning system for wind turbine blades with optimized means for injecting lightning currents in conductive components of their shells
US10753341B2 (en) 2016-06-07 2020-08-25 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Lightning system for wind turbine blades with optimized means for injecting lightning currents in conductive components of their shells

Also Published As

Publication number Publication date
US20080073098A1 (en) 2008-03-27
EP1826402A4 (en) 2012-10-31
US7729100B2 (en) 2010-06-01
EP1826402A1 (en) 2007-08-29
EP1826402B1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2006051147A1 (es) Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono
ES2612031T3 (es) Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono
ES2358671T3 (es) Un método para proteger frente a rayos un álabe para una planta de energía eólica.
ES2255454B1 (es) Sistema pararrayos para pala de aerogenerador.
US10584684B2 (en) Wind turbine blades and potential equalization systems
CN101876293B (zh) 具有预制的前缘段的风力涡轮叶片
ES2782337T3 (es) Mejoras en relación con los sistemas de protección contra rayos para palas de aerogenerador
ES2350765T3 (es) Miembro de igualación de potencial.
ES2396839B1 (es) Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono.
ES2805365T3 (es) Estructura compuesta
CA2913600C (en) Conductor joint and conductor joint component
ES2941942T3 (es) Pala de rotor y método para fabricar una pala de rotor
ES2730577T3 (es) Pala de aerogenerador que comprende un sistema pararrayos equipada con material absorbente de radar
ES2712630T3 (es) Pala de turbina eólica
CN108701971A (zh) 分散雷电流的斜拉桥的防雷装置
ES2694429T3 (es) Pala de rotor de turbina eólica con un elemento de compensación del potencial
ES2626287T3 (es) Pala de rotor de aerogenerador con un dispositivo de calefacción eléctrico y un pararrayos
CN113167219A (zh) 具有用于雷电保护系统的集成的下导体元件的翼梁结构
DK9800009U3 (da) Vinge til el-produktion opvarmet ved hjælp af et kulfiberlag.
WO2022023586A1 (es) Sistema de protección de rayo para pala modular y método de formación de un empilado

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11663013

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580038666.5

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2005815151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005815151

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005815151

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11663013

Country of ref document: US